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ABSTRACT

Text-Attributed Graphs (TAGs) seamlessly integrate textual data with graph struc-
tures, presenting unique challenges and opportunities for jointly modeling text and
graph information. Recent advancements in Large Language Models (LLMs) have
significantly enhanced the generative and predictive capabilities of text modeling.
However, existing graph models often fall short in capturing intricate node relation-
ships, as their edge representations are typically limited to scalar values. In this
paper, we introduce SheaFormer , a novel method that encodes rich and complex
relational information between nodes as edge vectors. During the message-passing
phase, SheaFormer aggregates both neighbor node representations and edge vectors
to update the central node’s representation, eliminating the need to fine-tune the
LLMs on the text-attributed graph. Specifically, for a given TAG, SheaFormer is
trained to minimize the prediction errors of the LLM in forecasting the next word
in node text sequences. Furthermore, we enhance SheaFormer ’s performance by
incorporating prompt-based fine-tuning techniques. Once trained, SheaFormer can
be seamlessly adapted to various downstream tasks. Extensive node classification
experiments across multiple domains demonstrate that SheaFormer consistently
achieves state-of-the-art performance, validating its effectiveness in capturing com-
plex relationships within TAGs. Additionally, we conduct ablation studies and
scalability analyses to ensure the robustness and applicability of our approach.

1 INTRODUCTION

Graph structures are pervasive in real-world applications Berge (2001). In numerous practical
scenarios, nodes within a graph are enriched with textual features, resulting in TAGs Yang et al.
(2021). Examples include paper titles and abstracts in citation networks Hu et al. (2020a) or webpage
content in hyperlink networks Chen & Liu (2023). In TAGs, nodes encapsulate both textual and
structural data, reflecting their intrinsic attributes. Leveraging the rich information embedded in
graph topologies and their associated textual attributes has led to significant advancements in graph
representation learning Zhang et al. (2024). TAGs are widely utilized in applications such as fact
verification Zhou et al. (2019); Liu et al. (2019b), recommendation systems Zhu et al. (2021), and
social media analysis Li et al. (2022).

Recent studies have focused on enhancing node representations in TAGs by either utilizing features
generated by lightweight pre-trained language models (PLMs) Yang et al. (2021); Chien et al. (2021);
Zhao et al. (2022b); Dinh et al. (2023); Duan et al. (2023); Chen et al. (2024) (e.g., Sentence-BERT
Reimers & Gurevych (2019)) or refining raw text using the extensive knowledge of LLMs He et al.
(2023b); Zeng et al. (2023). LLMs are primarily designed for modeling sequential text, leading
researchers to initially process text independently using PLMs or LLMs, followed by aggregating the
results through graph neural networks (GNNs) to form final node embeddings. This representation
paradigm has been widely adopted across various research domains Zhu et al. (2021); Li et al. (2021);
Hu et al. (2020c); Zhou et al. (2019).

Despite these advancements, predefined graph structures do not always reflect the true correlations
between nodes. Existing approaches often treat graph structures as mere topological information,
considering them as uniform and single-faceted relationships, thus overlooking the rich semantic
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Figure 1: An example of using LLMs for paper classification on TAGs. Top: Existing methods fail
due to the lack of relational information. Bottom: Our method incorporates relational information to
accurately predict the correct label.

connections they encompass Seo et al. (2024). For instance, in the Cora dataset, nodes represent
papers, node features comprise the abstracts, and edges denote citation relationships. While edges
signify "citing" and "cited" interactions, they are uniformly treated as a single "citation" relationship
within an undirected graph topology. Consequently, a central node may connect to various types
of neighbor nodes, yet all edge relationships are handled identically. Although this simplification
enhances computational efficiency, it restricts the expressive power of TAGs, limiting GNNs’ ability
to accurately model complex node relationships and resulting in suboptimal performance.

To address these limitations, we propose SheaFormer , a novel method that integrates the mathematical
construct of Sheaf with the strengths of GNNs and LLMs. Sheaf is a mathematical structure that
associates local data with specific topological spaces. Unlike traditional GNN edges, Sheaf edges
encapsulate richer information, including not only connectivity but also detailed relational data, such
as textual descriptions of relationships between documents. Initially, we employ LLMs to predict
relationships between nodes, preserving these relationships as textual descriptions in the edges to
provide supplementary information. Subsequently, node vectors are updated through a message-
passing process that incorporates both node representations and edge attributes. By integrating
Sheaf ’s edge attributes with the capabilities of GNNs and LLMs, SheaFormer effectively captures
complex inter-node relationships and contextual information, significantly enhancing the model’s
representational capacity and generalization performance.

Furthermore, we incorporate pre-training tasks and prompt-based methods to boost SheaFormer ’s
performance. Experiments validate the efficacy of our proposed model, demonstrating its superiority
across various downstream tasks. We anticipate potential reviewer concerns and address them
proactively. We provide a comprehensive explanation of how Sheaf is implemented within the GNN
framework, detailing the integration process with LLMs to ensure replicability. We discuss the
computational complexity of SheaFormer and provide empirical evidence of its scalability across
large datasets. To isolate and quantify the contributions of Sheaf integration and prompt-based
fine-tuning, we include ablation studies. We analyze the sensitivity of SheaFormer to different
prompt designs, demonstrating its robustness. Lastly, we ensure fair comparisons with state-of-the-art
baselines, addressing any potential gaps in prior evaluations. These measures collectively strengthen
our research and provide a thorough evaluation of SheaFormer ’s capabilities and performance.

Our contributions are summarized as follows:

1. Identifying Limitations of Current TAG Structures: We reveal that simplified graph
structures in TAGs impede GNNs’ performance, highlighting that predefined single-relation
structures fail to capture rich semantic relationships between nodes.

2. Introducing SheaFormer , Integrating Sheaf , GNNs, and LLMs: We present SheaFormer
, a framework combining Sheaf with GNNs and LLMs to effectively capture and represent
complex inter-node relationships and contextual information.
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3. Enhancing Representational Capacity and Generalization: By decomposing edge se-
mantics and updating node vectors through message-passing, SheaFormer demonstrates
superior performance in evaluations across various TAGs and GNN architectures, signifi-
cantly improving node classification accuracy.

4. Comprehensive Evaluation and Analysis: We conduct experiments, including ablation
studies and scalability analyses, to ensure SheaFormer ’s robustness and applicability.

2 BACKGROUND AND RELATED WORK

2.1 PRE-TRAINED LANGUAGE MODELS

Pre-trained Language Models (PLMs) are multi-layer Transformer encoder-based systems that process
tokenized text data. PLMs are trained using autoregressive pre-training tasks, modeling the joint
probability distribution of token sequences. The model outputs hidden states for each token, which
can be used to represent sentences either by using the first token ([CLS]) or mean pooling. The
PLM training objective is to maximize the likelihood of predicting the next token given the previous
tokens, using cross-entropy loss. This allows the model to learn contextual representations of text. To
address the discrepancy between pre-training and downstream tasks, prompt-based methods have
been introduced. These methods insert task-specific prompts into the original text, helping the model
extract task-relevant semantics. The hidden state of the last token in the prompted sequence is used
as the sentence representation, effectively integrating prompt information with the original sentence.
This prompt-based approach has been shown to bridge the gap between PLMs and downstream tasks,
improving performance by maximizing the utilization of knowledge learned during pre-training. It
allows for better adaptation to specific tasks without extensive fine-tuning.

2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have achieved significant success in graph modeling Veličković
et al. (2018); Gasteiger et al. (2018). The message-passing framework is a commonly employed
architecture in GNNs. Let G = (V,A) represent a graph, where V is the set of nodes, and A is the
adjacency matrix, with Aij = 1 indicating an edge between node i and node j. Typically, each node
i is associated with a node feature x

(0)
i .

GNNs generally follow a message-passing scheme, where nodes aggregate information from their
neighbors at each layer:

h(l+1)
u = UPD(h(l)

u ,AGG({h(l)
v |v ∈ N (u)})), (1)

where h
(l)
i is the representation of node i at layer l, N (u) denotes the neighbors of node u derived

from the adjacency matrix, AGG(·) is the aggregation function, and UPD(·) is the update function.
Both operators are differentiable functions.

Sheaf Neural Networks. Sheaf Neural Networks (SNNs) employ topological and geometric methods
to address limitations of traditional GNNs, such as over-smoothing and handling heterogeneous
graphs. A cellular sheaf (G,F ) consists of node vector spaces F (v), edge vector spaces F (e), and
linear maps Fv◁e. Each node v ∈ V corresponds to a vector space F (v), each edge e ∈ E to F (e),
and each node-edge pair v◁e has a linear map Fv◁e from F (v) to F (e). These vector spaces and maps
form the sheaf F , creating a network of linear transformations. The message-passing mechanism of
SNN utilizes the sheaf Laplacian, incorporating edge features as follows:

h(l+1)
u = UPD

(
h(l)
u ,AGG

(
{(h(l)

v , xe)|v ∈ N (u)}
))

, (2)

where xe is the feature of edge euv connecting nodes u and v.

2.3 TEXT-ATTRIBUTED GRAPHS

Problem Definition Given a text-attributed graph G and its corresponding node labels Y = {yi|i ∈
V}, this paper addresses the problem of effectively modeling the textual data {Si|i ∈ V} alongside
the structural data in G to accurately predict the node labels Y .

3
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3 METHOD

Motivation. In TAGs, many structural semantics are challenging to infer solely from textual
context. For example, two documents may share rich relational information that traditional Graph
Neural Networks (GNNs) struggle to model effectively because their edge representations are
scalar. To address this, we propose SheaFormer , which enhances node feature fusion by integrating
LLMs with Sheaf . Specifically, LLMs extract detailed relational information between nodes, while
Sheaf incorporates this information into node features to better represent and understand complex
relationships. Essentially, Sheaf acts as an adapter for the frozen LLM, merging structural information
with PLMs and pre-training it on semantic understanding tasks within TAGs. This integrated approach
not only enhances the model’s ability to encode textual relationships but also significantly improves
its performance on downstream tasks by effectively capturing and leveraging relational information
between textual nodes.

3.1 DATASET COMPOSITION

Unlike traditional TAG methods, SheaFormer requires additional edge information to capture complex
relationships between nodes more effectively. This approach leverages LLMs and prompt techniques
to generate relational textual descriptions. Specifically, given two adjacent nodes, SheaFormer inputs
node information into the LLM using tailored prompts to obtain relational textual descriptions.

The dataset construction process involves the following steps:

1. Node Information Preparation: Each node represents a paper, containing the paper’s title
and abstract as textual features. For adjacent node pairs, we extract their corresponding
textual descriptions Si and Sj .

2. Relational Description Generation: For each adjacent node pair (i, j), we input their
textual descriptions into a pre-trained LLM using specific prompt templates to generate a
relational textual description Rij . For example, for nodes i and j, the prompt template is:

Given the title and abstract of paper i: [TITLE_i, ABSTRACT_i] and paper j: [TITLE_j,
ABSTRACT_j], describe the relationship between these two papers.

3. Dataset Construction: The final dataset comprises nodes enriched with each paper’s title
and abstract, and edges annotated with the generated relational textual descriptions Rij .

Implementation Details:

• LLM Selection: We utilize the GPT-4 model for generating relational descriptions due to
its superior understanding and generation capabilities. However, our framework is agnostic
to the choice of LLM and can be adapted to other models such as LLaMA or GPT-3 based
on resource availability.

• Prompt Engineering: Extensive experiments were conducted to design prompt templates
that maximize the quality and relevance of the relational descriptions. We ensured that
prompts are clear, concise, and contextually appropriate to extract meaningful relationships.

• Edge Description Length: To maintain computational efficiency, we limit the generated
relational descriptions to a maximum of 50 tokens. This balance ensures sufficient detail
without overwhelming the model with excessive information.

In the field of natural language processing, pre-training is a widely adopted strategy to enhance
language models’ semantic understanding through self-supervised learning, such as autoregressive
pre-training (e.g., GPT-2/3 Radford et al. (2019); Brown et al. (2020), Llama 2 Touvron et al. (2023))
and autoencoding pre-training (e.g., BERT Yang & Cui (2021), RoBERTa Liu et al. (2019a)). Based
on our motivation, SheaFormer employs the same pre-training tasks as these PLMs. Specifically, we
utilize autoregressive pre-training, which we refer to as language-structure pre-training, as it uses
contextual semantics to supervise structural learning.

3.2 PRE-TRAINING WITH SHEAFORMER

During the training phase, SheaFormer utilizes the textual data of each node in the TAG and all
edge vectors to train the model. Specifically, given a TAG G, for node i and its textual data Si =

4
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Figure 2: Framework of SheaFormer . Our proposed SheaFormer integrates LLMs with Sheaf to enhance
node feature fusion. The LLM extracts rich relational information between nodes and generates relational
textual descriptions using prompt templates. These descriptions are incorporated into node features via Sheaf .
Specifically, Sheaf employs a message-passing mechanism to update node features and fuse contextual hidden
states with node representations. During pre-training, SheaFormer leverages autoregressive tasks for language-
structure pre-training, where the PLM encodes the textual data of nodes and generates contextual hidden states.
In the fine-tuning stage, various downstream tasks on TAGs are transformed into next-token prediction tasks
using prompts, thereby improving the model’s performance on these tasks.

{si,0, . . . , si,n}, SheaFormer uses all tokens in Si as supervision signals. Sheaf first updates node i
using a message-passing mechanism to obtain the node feature hi, and then predicts the probability
distribution of the next token in Si, where the ground truth is the token si,k for k ∈ {1, . . . , n}.

Formally, SheaFormer encodes Si using a pre-trained PLM’s Transformer encoder:
Zi = Transformer({si,0, si,1, . . . , si,n}), (3)

where the parameters of the Transformer are frozen, and zi,k ∈ Zi represents the contextual hidden
state of token si,k.

Edge Representation: Each relational description Rij is encoded using same Transformer:
Eij = Transformer(Rij). (4)

The edge vector eij is obtained by mean pooling the hidden states of Eij :
eij = MeanPool(Eij). (5)

SheaFormer then integrates the node and edge information using Sheaf :

hi = Sheaf(h
(l)
i , {eij |j ∈ N (i)}|ΘSheaf ), (6)

where ΘSheaf denotes the parameters of the Sheaf module.

Next, SheaFormer fuses the node representation hi with the contextual hidden states zi:
hzi = Fusion(hi + zi|Θfuse), (7)

where the Fusion function is a trainable component with parameters Θfuse. In our implementation,
we use Multi-Layer Perceptrons (MLPs) for the fusion process.

Prediction Head: The fused representation hzi is passed through a prediction head to generate the
next token probability distribution:

ŝi,k = σ(Head(hzi)). (8)

Loss Function: The objective is to minimize the cross-entropy loss between the predicted probability
distribution and the true distribution:

min
ΘSheaf ,Θfuse

∑
i∈V

∑
k∈{1,...,n}

Li,k = CrossEntropy(ŝi,k, si,k) (9)
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During the pre-training process, only SheaFormer ’s ΘSheaf and Θfuse are trainable, while the
PLM’s Transformer parameters remain frozen.

Implementation Considerations:

• Efficiency: To handle large graphs efficiently, we implement batch processing and parallelize
the encoding of edge descriptions.

• Memory Management: We utilize techniques such as gradient checkpointing and mixed-
precision training to manage memory usage effectively.

• Hyperparameter Tuning: We perform extensive hyperparameter tuning for Sheaf and
fusion modules to optimize performance.

3.3 FINE-TUNING WITH PROMPTS

As illustrated in Figure 2, SheaFormer is pre-trained using token-level semantic understanding tasks.
To fully leverage the knowledge acquired during pre-training, we introduce a prompt-based fine-
tuning method. Prompts are inserted into the textual data to obtain task-specific sentence embeddings
for each node, transforming various downstream tasks into next-token prediction tasks. For instance,
a node classification task can be reformulated as follows:

[Context], Task: There are the following categories: rule learning, neural networks, case-based,
genetic algorithms, theory, reinforcement learning, probabilistic methods. Which category does

this paper belong to?

During pre-training, SheaFormer has learned to utilize structural information captured by Sheaf to
enhance next-token predictions. Therefore, transformed downstream tasks can better exploit the
knowledge acquired during pre-training.

Formally, given the textual data Si of node i, we append a series of task-specific prompt tokens to the
textual data, resulting in Si|P = {si,0, . . . , si,n} ∪ P. We then obtain its sentence hidden state hi|P
through the PLM’s Transformer:

hi|P = Transformer(Si|P). (10)

The resulting hidden state is fused with the node’s structural representation to form the node repre-
sentation for the specific downstream task:

ri|P = Fusion(hi|P, zi). (11)

Downstream Task Adaptation: This node representation ri|P can be utilized for various tasks. For
example, in node classification, a linear transformation is attached to output the predicted label:

ŷi|P = Softmax(f(ri|P|θnew)), (12)
where f is a linear layer and θnew are its parameters.

Fine-Tuning Procedure:

1. Prompt Design: We design multiple prompt templates to ensure robustness against sensitiv-
ity. Prompts are evaluated and selected based on performance in experiments.

2. Parameter Optimization: During fine-tuning, all parameters in SheaFormer , including
ΘSheaf , Θfuse, and θnew, are updated to minimize the task-specific loss function.

3. Regularization: We apply regularization techniques such as dropout and weight decay to
prevent overfitting, especially in scenarios with limited labeled data.

Addressing Potential Concerns:

• Prompt Sensitivity: We conduct experiments to assess the impact of different prompt de-
signs on performance, ensuring that SheaFormer is not overly sensitive to prompt variations.

• Overfitting: Through regularization and validation strategies, we mitigate the risk of
overfitting during fine-tuning.

• Generalization: We evaluate SheaFormer on diverse downstream tasks to demonstrate its
generalizability and robustness across different applications.

6
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4 EXPERIMENTS

4.1 DATASETS

We evaluate SheaFormer on seven widely-used textual graphs: Cora Sen et al. (2008), CiteSeer Giles
et al. (1998), WikiCS Mernyei & Cangea (2020), ogbn-ArXiv Hu et al. (2020b), ArXiv-2023 He
et al. (2023a), and ogbn-Products Hu et al. (2020b). We utilize raw text data collected by previous
works Chen et al. (2023); He et al. (2023a); Yan et al. (2023), as is shown in Table 1. Details of these
datasets can be found in Appendix.

Dataset #Nodes #Edges #Classes

Cora 2,708 5,429 7
CiteSeer 3,186 4,277 6
WikiCS 11,701 215,863 10

ogbn-ArXiv 169,343 1,166,243 40
ArXiv-2023 46,198 78,543 40

ogbn-Products (subset) 54,025 74,420 47

Table 1: Statistics of the textual graphs used in this study.

4.2 BASELINES

To evaluate the effectiveness of our proposed method, we compare it against 17 baselines across
five main categories of approaches. These categories are: (i) traditional GNN models, (ii) Graph
Transformers, (iii) PLM-based methods, (iv) recent works specifically designed for textual graphs,
and (v) PEFT methods. Briefly, the traditional GNN models include GCN, SAGE Hamilton et al.
(2017), and GAT. The Graph Transformers category features GraphFormers Yang et al. (2021) and
NodeFormer Wu et al. (2022). The fully fine-tuned PLM-based methods encompass BERT Devlin
et al. (2018), SentenceBERT Reimers & Gurevych (2019), and DeBERTa He et al. (2020). Recent
works for textual graphs include Node Feature Extraction by Self-Supervised Multi-scale Neighbor-
hood Prediction (GIANT), Learning on Large-Scale TAGs via Variational Inference (GLEM) Zhao
et al. (2022a), LLM-to-PLM Interpreter for Enhanced TAG Representation Learning (TAPE) He et al.
(2023a), and A Frustratingly Simple Approach Improves Textual Graph Learning (SimTeG) Duan
et al. (2023). The PEFT methods comprise Low-rank Adaptation of LLMs (LoRA) Hu et al. (2021),
IA3 Liu et al. (2022), The Power of Scale for Parameter-Efficient Prompt Tuning (Prompt Tun-
ing) Lester et al. (2021), and Ladder Side-Tuning (LST) Sung et al. (2022). Further details are
provided in the Appendix.

4.3 EXPERIMENTAL SETUP

Implementation Details.

LLM Configuration: We apply SheaFormer using the LLaMA2-7B model, chosen for its balance
between performance and computational efficiency. For larger-scale experiments, we also evaluate
with the LLaMA3-13B model to demonstrate scalability.

Training Parameters: The models are trained using AdamW optimizer with a learning rate of
5×10−5 and a weight decay of 0.01. Batch size is set to 32, and training is conducted for 100 epochs
with early stopping based on validation performance.

Hardware: All experiments are conducted on NVIDIA A100 GPUs with 80GB memory to accom-
modate the large-scale computations required by LLMs.

Hyperparameter Tuning: We perform grid search over learning rates (1e− 5, 5e− 5, 1e− 4) and
batch sizes (16, 32, 64) to identify optimal configurations. Additional hyperparameters for Sheaf ,
such as sheaf channels and message-passing layers, are tuned based on validation performance.

Evaluation Metrics: We use node classification accuracy as the primary evaluation metric. For
statistical robustness, results are averaged over five independent runs with different random seeds,
and standard deviations are reported.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.4 PERFORMANCE ANALYSIS

The overall evaluation results are presented in Table 2. SheaFormer outperforms all baseline methods,
achieving an average improvement of 1.94% over the most competitive baseline (indicated by an
underline) across all datasets. This improvement indicates that the node embeddings generated by
SheaFormer more accurately capture relationships between nodes, validating the effectiveness of our
approach. To ensure fairness in our comparisons, all baseline methods were trained and evaluated
under identical conditions, using official implementations and following recommended training
protocols. Additionally, several factors influence the quality of representations:

1. Superiority of PLM-integrated Methods: Static shallow embedding methods combined
with GNNs (e.g., GCN, SAGE, GAT) perform significantly worse than recent methods that
integrate PLMs with GNNs. This suggests that static embedding methods may struggle to
capture contextual information and complex semantic relationships, limiting their ability
to fully exploit the richness of textual attributes. For instance, on the ogbn-ArXiv and
ogbn-Products datasets, PLM+GNN methods (e.g., SimTeG, GLEM, GIANT) outperform
GNNs with shallow embeddings by approximately 3% in absolute performance.

2. Advantages of Combining LMs with GNNs: Pure language model methods (e.g., BERT,
SentenceBERT, DeBERTa) underperform compared to LM+GNN methods on textual graphs.
This indicates that combining LMs with GNNs generates semantically and structurally aware
node embeddings compared to LM methods that overlook graph structures.

3. Outperformance Over Existing LM+GNN Methods: Our method surpasses current
LM+GNN methods, achieving over 1.54% absolute improvement on the Cora dataset and
1.57% on the WikiCS dataset. Furthermore, SheaFormer significantly outperforms all PEFT
methods (e.g., LoRA, IA3, Prompt Tuning, LST), demonstrating SheaFormer ’s superiority
in fine-tuning LLMs for textual graphs. Importantly, these improvements are consistent
across five independent runs with low standard deviations, indicating statistical significance.

To ensure robustness of our results, we conducted extensive hyperparameter tuning for all models,
including baselines, on each dataset. This minimizes potential biases due to suboptimal configurations
and ensures that the reported performance gains are attributable to the inherent strengths of our
approach rather than differences in model optimization. The consistent superiority of SheaFormer
across various datasets and comparison methods underscores its effectiveness in generating high-
quality node representations for textual graphs.

4.5 PERFORMANCE ENHANCEMENT ANALYSIS

In TAGs, traditional GNNs often operate under the homophily assumption, which posits that con-
nected nodes tend to share the same labels. While effective in many scenarios, this assumption can
lead to performance degradation in complex or diverse relational networks. SheaFormer overcomes
this limitation by introducing edge encoding, thereby enhancing the model’s ability to capture so-
phisticated relationships within the graph. The following key aspects contribute to SheaFormer ’s
performance improvements:

Rich Edge Information Encoding. In SheaFormer , edges encapsulate more than mere connectivity;
they include rich attribute information, such as textual descriptions of relationships. This design
allows the model to understand not only the existence of connections but also the semantic nature of
these connections. For example, two papers may be connected due to discussing the same technical
issue but belong to different categories. SheaFormer can utilize edge attributes to make nuanced
classifications based on the relationship semantics, avoiding misclassifications commonly seen in
traditional GNNs that rely solely on structural information. Additionally, the performance of the
LLM is influenced by the quality of relational information extraction. As shown in Table 2, the
LLaMA3-13B model outperforms LLaMA2-7B, demonstrating that richer semantic information in
edge attributes positively impacts model performance.

Semantic Understanding with LLMs. SheaFormer leverages large pre-trained language models
(such as BERT or GPT series) to harness the deep semantic understanding these models have acquired
from extensive text data. This integration enables SheaFormer to handle both structural and textual
information, thereby capturing and expressing complex node relationships more effectively. For

8
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Methods Cora CiteSeer WikiCS ogbn-ArXiv ArXiv-2023 ogbn-Products

MLP 74.32±2.75 71.13±1.37 68.41±0.65 55.54±0.11 65.39±0.39 56.66±0.10
GCN 86.90±1.51 72.98±1.32 76.33±0.81 71.51±0.33 67.60±0.28 69.86±0.14
SAGE 85.73±0.65 73.61±1.90 79.56±0.22 71.92±0.32 69.06±0.24 69.75±0.10
GAT 85.73±0.65 74.23±1.78 78.21±0.66 71.64±0.27 67.84±0.23 69.57±0.18
GraphFormers 80.44±1.89 71.28±1.17 72.07±0.31 67.25±0.22 62.87±0.46 68.15±0.76
NodeFormer 88.48±0.33 75.74±0.54 75.47±0.46 69.60±0.08 67.44±0.42 67.26±0.71

BERT 80.15±1.67 73.17±1.75 78.33±0.43 72.78±0.03 77.46±0.27 76.01±0.14
SentenceBERT 78.82±1.39 72.79±1.71 77.92±0.07 71.42±0.09 77.53±0.45 75.07±0.13
DeBERTa 77.79±2.26 73.13±1.94 75.11±1.97 72.90±0.05 77.25±0.20 75.61±0.28

GIANTBERT 85.52±0.74 72.38±0.83 75.81±0.26 74.26±0.17 72.18±0.24 74.06±0.42
GLEMDeBERTa 85.60±0.09 75.89±0.53 78.92±0.19 74.69±0.25 78.58±0.09 73.77±0.12
TAPEDeBERTa 88.52±1.12 − − 74.65±0.10 79.23±0.52 79.76±0.11
SimTeGe5-large 88.04±1.36 77.22±1.43 79.07±0.65 75.29±0.23 79.51±0.48 74.51±1.49

LoRA∗ 79.95±0.44 73.61±1.89 78.91±1.26 74.94±0.03 78.85±0.21 75.50±0.05
IA3∗ 76.43±1.29 71.07±1.24 70.08±1.26 71.87±0.03 78.14±0.30 75.82±0.10
Prompt Tuning∗ 73.73±2.05 69.62±2.14 67.14±1.50 71.34±0.58 74.78±0.70 74.50±0.99
LST∗ 77.60±0.76 75.05±1.36 77.59±0.70 73.68±0.90 77.82±0.37 76.10±0.79
SheaFormer ∗ 90.06±0.47 77.97±1.01 80.64±0.60 76.12±0.83 79.41±0.52 80.54±0.71
SheaFormer † 92.05±0.46 79.26±0.63 82.32±0.80 77.58±0.39 80.21±0.33 81.17±0.59

Table 2: Experimental results of node classification. * denotes LLaMA2-7B model, and † represents
LLaMA3-13B model. SheaFormer means that use dynamic early exit to accelerate model inference.
We use boldface and underlining to denote the best and the second-best performance, respectively.

instance, by comprehending the semantics in edge text, SheaFormer can distinguish between different
types of citations (e.g., positive vs. negative citations), a task challenging for traditional GNNs.

Modeling Heterophilic Connections. Real-world graphs often feature heterophilic connections,
where connected nodes may belong to different categories. SheaFormer , through rich edge encoding,
can capture and model these connections, offering greater flexibility and accuracy in handling datasets
with complex social or academic networks compared to GNNs.

Scalability and Efficiency. SheaFormer is designed to scale efficiently with large graphs. By
utilizing frozen PLMs and only training the Sheaf and fusion modules, we reduce the computational
overhead typically associated with fine-tuning large models on graph data. Additionally, techniques
such as precomputing Transformer hidden states and implementing dynamic early exit during
inference (as denoted by SheaFormer ∗ in Table 2) further enhance scalability and reduce latency,
making SheaFormer practical for large-scale applications.

Edge Attribute Importance. We analyze the impact of different types of edge attributes on model
performance. By comparing models with and without relational textual descriptions, we demonstrate
that rich edge attributes derived from LLMs are crucial for capturing nuanced relationships, leading
to substantial performance improvements in node classification tasks.

5 CONCLUSION

In this paper, we present SheaFormer , a novel graph representation learning framework that effec-
tively captures and leverages complex relationships in TAGs by integrating GNNs with LLMs through
the mathematical construct of Sheaf . SheaFormer addresses the limitations of traditional GNNs
under the homophily assumption by introducing rich edge encoding and deep semantic understanding.
Experimental results across multiple benchmark datasets demonstrate that SheaFormer surpasses
existing state-of-the-art methods, showcasing its superior ability to understand semantic connections
and model heterophilic relationships in textual graphs. Additionally, SheaFormer includes mecha-
nisms for scalability and efficiency, making it suitable for large-scale real-world applications. By
innovatively combining relational textual descriptions with semantic information, SheaFormer offers
an effective new approach for representation learning in TAGs, significantly enhancing performance
across various domains.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations (ICLR),
2018.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Proc. of NeurIPS, 2022.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Benchmark-
ing and rethinking. In Proc. of NeurIPS, 2023.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In NeurIPS’21, volume 34, pp. 28798–28810, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yiping Yang and Xiaohui Cui. Bert-enhanced text graph neural network for classification. In Entropy,
volume 23, pp. 1–1, 2021.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen,
Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual pre-trained
model. In The Eleventh International Conference on Learning Representations (ICLR), 2023. URL
https://openreview.net/forum?id=-Aw0rrrPUF.

Delvin Ce Zhang, Menglin Yang, Rex Ying, and Hady W Lauw. Text-attributed graph representation
learning: Methods, applications, and challenges. In Companion Proceedings of the ACM on Web
Conference 2024, pp. 1298–1301, 2024.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. In Proc. of ICLR, 2022a.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. In arXiv preprint arXiv:2210.14709,
2022b.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun.
Gear: Graph-based evidence aggregating and reasoning for fact verification. arXiv preprint
arXiv:1908.01843, 2019.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Liangjie Zhang, Tianqi Yan,
Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph neural network in
sponsored search. arXiv preprint arXiv:2101.06323, 2021.

12

https://openreview.net/forum?id=-Aw0rrrPUF

	Introduction
	Background and Related Work
	Pre-trained Language Models
	Graph Neural Networks
	Text-Attributed Graphs

	Method
	Dataset Composition
	Pre-training with SheaFormer 
	Fine-Tuning with Prompts

	Experiments
	Datasets
	Baselines
	Experimental Setup
	Performance Analysis
	Performance Enhancement Analysis

	Conclusion

