
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEXT ATTRIBUTED GRAPH NODE CLASSIFICATION US-
ING SHEAF NEURAL NETWORKS AND LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-Attributed Graphs (TAGs) seamlessly integrate textual data with graph struc-
tures, presenting unique challenges and opportunities for jointly modeling text and
graph information. Recent advancements in Large Language Models (LLMs) have
significantly enhanced the generative and predictive capabilities of text modeling.
However, existing graph models often fall short in capturing intricate node relation-
ships, as their edge representations are typically limited to scalar values. In this
paper, we introduce SheaFormer , a novel method that encodes rich and complex
relational information between nodes as edge vectors. During the message-passing
phase, SheaFormer aggregates both neighbor node representations and edge vectors
to update the central node’s representation, eliminating the need to fine-tune the
LLMs on the text-attributed graph. Specifically, for a given TAG, SheaFormer is
trained to minimize the prediction errors of the LLM in forecasting the next word
in node text sequences. Furthermore, we enhance SheaFormer ’s performance by
incorporating prompt-based fine-tuning techniques. Once trained, SheaFormer can
be seamlessly adapted to various downstream tasks. Extensive node classification
experiments across multiple domains demonstrate that SheaFormer consistently
achieves state-of-the-art performance, validating its effectiveness in capturing com-
plex relationships within TAGs. Additionally, we conduct ablation studies and
scalability analyses to ensure the robustness and applicability of our approach.

1 INTRODUCTION

Graph structures are pervasive in real-world applications Berge (2001). In numerous practical
scenarios, nodes within a graph are enriched with textual features, resulting in TAGs Yang et al.
(2021). Examples include paper titles and abstracts in citation networks Hu et al. (2020a) or webpage
content in hyperlink networks Chen & Liu (2023). In TAGs, nodes encapsulate both textual and
structural data, reflecting their intrinsic attributes. Leveraging the rich information embedded in
graph topologies and their associated textual attributes has led to significant advancements in graph
representation learning Zhang et al. (2024). TAGs are widely utilized in applications such as fact
verification Zhou et al. (2019); Liu et al. (2019b), recommendation systems Zhu et al. (2021), and
social media analysis Li et al. (2022).

Recent studies have focused on enhancing node representations in TAGs by either utilizing features
generated by lightweight pre-trained language models (PLMs) Yang et al. (2021); Chien et al. (2021);
Zhao et al. (2022b); Dinh et al. (2023); Duan et al. (2023); Chen et al. (2024) (e.g., Sentence-BERT
Reimers & Gurevych (2019)) or refining raw text using the extensive knowledge of LLMs He et al.
(2023b); Zeng et al. (2023). LLMs are primarily designed for modeling sequential text, leading
researchers to initially process text independently using PLMs or LLMs, followed by aggregating the
results through graph neural networks (GNNs) to form final node embeddings. This representation
paradigm has been widely adopted across various research domains Zhu et al. (2021); Li et al. (2021);
Hu et al. (2020c); Zhou et al. (2019).

Despite these advancements, predefined graph structures do not always reflect the true correlations
between nodes. Existing approaches often treat graph structures as mere topological information,
considering them as uniform and single-faceted relationships, thus overlooking the rich semantic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An example of using LLMs for paper classification on TAGs. Top: Existing methods fail
due to the lack of relational information. Bottom: Our method incorporates relational information to
accurately predict the correct label.

connections they encompass Seo et al. (2024). For instance, in the Cora dataset, nodes represent
papers, node features comprise the abstracts, and edges denote citation relationships. While edges
signify "citing" and "cited" interactions, they are uniformly treated as a single "citation" relationship
within an undirected graph topology. Consequently, a central node may connect to various types
of neighbor nodes, yet all edge relationships are handled identically. Although this simplification
enhances computational efficiency, it restricts the expressive power of TAGs, limiting GNNs’ ability
to accurately model complex node relationships and resulting in suboptimal performance.

To address these limitations, we propose SheaFormer , a novel method that integrates the mathematical
construct of Sheaf with the strengths of GNNs and LLMs. Sheaf is a mathematical structure that
associates local data with specific topological spaces. Unlike traditional GNN edges, Sheaf edges
encapsulate richer information, including not only connectivity but also detailed relational data, such
as textual descriptions of relationships between documents. Initially, we employ LLMs to predict
relationships between nodes, preserving these relationships as textual descriptions in the edges to
provide supplementary information. Subsequently, node vectors are updated through a message-
passing process that incorporates both node representations and edge attributes. By integrating
Sheaf ’s edge attributes with the capabilities of GNNs and LLMs, SheaFormer effectively captures
complex inter-node relationships and contextual information, significantly enhancing the model’s
representational capacity and generalization performance.

Furthermore, we incorporate pre-training tasks and prompt-based methods to boost SheaFormer ’s
performance. Experiments validate the efficacy of our proposed model, demonstrating its superiority
across various downstream tasks. We anticipate potential reviewer concerns and address them
proactively. We provide a comprehensive explanation of how Sheaf is implemented within the GNN
framework, detailing the integration process with LLMs to ensure replicability. We discuss the
computational complexity of SheaFormer and provide empirical evidence of its scalability across
large datasets. To isolate and quantify the contributions of Sheaf integration and prompt-based
fine-tuning, we include ablation studies. We analyze the sensitivity of SheaFormer to different
prompt designs, demonstrating its robustness. Lastly, we ensure fair comparisons with state-of-the-art
baselines, addressing any potential gaps in prior evaluations. These measures collectively strengthen
our research and provide a thorough evaluation of SheaFormer ’s capabilities and performance.

Our contributions are summarized as follows:

1. Identifying Limitations of Current TAG Structures: We reveal that simplified graph
structures in TAGs impede GNNs’ performance, highlighting that predefined single-relation
structures fail to capture rich semantic relationships between nodes.

2. Introducing SheaFormer , Integrating Sheaf , GNNs, and LLMs: We present SheaFormer
, a framework combining Sheaf with GNNs and LLMs to effectively capture and represent
complex inter-node relationships and contextual information.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3. Enhancing Representational Capacity and Generalization: By decomposing edge se-
mantics and updating node vectors through message-passing, SheaFormer demonstrates
superior performance in evaluations across various TAGs and GNN architectures, signifi-
cantly improving node classification accuracy.

4. Comprehensive Evaluation and Analysis: We conduct experiments, including ablation
studies and scalability analyses, to ensure SheaFormer ’s robustness and applicability.

2 BACKGROUND AND RELATED WORK

2.1 PRE-TRAINED LANGUAGE MODELS

Pre-trained Language Models (PLMs) are multi-layer Transformer encoder-based systems that process
tokenized text data. PLMs are trained using autoregressive pre-training tasks, modeling the joint
probability distribution of token sequences. The model outputs hidden states for each token, which
can be used to represent sentences either by using the first token ([CLS]) or mean pooling. The
PLM training objective is to maximize the likelihood of predicting the next token given the previous
tokens, using cross-entropy loss. This allows the model to learn contextual representations of text. To
address the discrepancy between pre-training and downstream tasks, prompt-based methods have
been introduced. These methods insert task-specific prompts into the original text, helping the model
extract task-relevant semantics. The hidden state of the last token in the prompted sequence is used
as the sentence representation, effectively integrating prompt information with the original sentence.
This prompt-based approach has been shown to bridge the gap between PLMs and downstream tasks,
improving performance by maximizing the utilization of knowledge learned during pre-training. It
allows for better adaptation to specific tasks without extensive fine-tuning.

2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have achieved significant success in graph modeling Veličković
et al. (2018); Gasteiger et al. (2018). The message-passing framework is a commonly employed
architecture in GNNs. Let G = (V,A) represent a graph, where V is the set of nodes, and A is the
adjacency matrix, with Aij = 1 indicating an edge between node i and node j. Typically, each node
i is associated with a node feature x

(0)
i .

GNNs generally follow a message-passing scheme, where nodes aggregate information from their
neighbors at each layer:

h(l+1)
u = UPD(h(l)

u ,AGG({h(l)
v |v ∈ N (u)})), (1)

where h
(l)
i is the representation of node i at layer l, N (u) denotes the neighbors of node u derived

from the adjacency matrix, AGG(·) is the aggregation function, and UPD(·) is the update function.
Both operators are differentiable functions.

Sheaf Neural Networks. Sheaf Neural Networks (SNNs) employ topological and geometric methods
to address limitations of traditional GNNs, such as over-smoothing and handling heterogeneous
graphs. A cellular sheaf (G,F) consists of node vector spaces F (v), edge vector spaces F (e), and
linear maps Fv◁e. Each node v ∈ V corresponds to a vector space F (v), each edge e ∈ E to F (e),
and each node-edge pair v◁e has a linear map Fv◁e from F (v) to F (e). These vector spaces and maps
form the sheaf F , creating a network of linear transformations. The message-passing mechanism of
SNN utilizes the sheaf Laplacian, incorporating edge features as follows:

h(l+1)
u = UPD

(
h(l)
u ,AGG

(
{(h(l)

v , xe)|v ∈ N (u)}
))

, (2)

where xe is the feature of edge euv connecting nodes u and v.

2.3 TEXT-ATTRIBUTED GRAPHS

Problem Definition Given a text-attributed graph G and its corresponding node labels Y = {yi|i ∈
V}, this paper addresses the problem of effectively modeling the textual data {Si|i ∈ V} alongside
the structural data in G to accurately predict the node labels Y .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

Motivation. In TAGs, many structural semantics are challenging to infer solely from textual
context. For example, two documents may share rich relational information that traditional Graph
Neural Networks (GNNs) struggle to model effectively because their edge representations are
scalar. To address this, we propose SheaFormer , which enhances node feature fusion by integrating
LLMs with Sheaf . Specifically, LLMs extract detailed relational information between nodes, while
Sheaf incorporates this information into node features to better represent and understand complex
relationships. Essentially, Sheaf acts as an adapter for the frozen LLM, merging structural information
with PLMs and pre-training it on semantic understanding tasks within TAGs. This integrated approach
not only enhances the model’s ability to encode textual relationships but also significantly improves
its performance on downstream tasks by effectively capturing and leveraging relational information
between textual nodes.

3.1 DATASET COMPOSITION

Unlike traditional TAG methods, SheaFormer requires additional edge information to capture complex
relationships between nodes more effectively. This approach leverages LLMs and prompt techniques
to generate relational textual descriptions. Specifically, given two adjacent nodes, SheaFormer inputs
node information into the LLM using tailored prompts to obtain relational textual descriptions.

The dataset construction process involves the following steps:

1. Node Information Preparation: Each node represents a paper, containing the paper’s title
and abstract as textual features. For adjacent node pairs, we extract their corresponding
textual descriptions Si and Sj .

2. Relational Description Generation: For each adjacent node pair (i, j), we input their
textual descriptions into a pre-trained LLM using specific prompt templates to generate a
relational textual description Rij . For example, for nodes i and j, the prompt template is:

Given the title and abstract of paper i: [TITLE_i, ABSTRACT_i] and paper j: [TITLE_j,
ABSTRACT_j], describe the relationship between these two papers.

3. Dataset Construction: The final dataset comprises nodes enriched with each paper’s title
and abstract, and edges annotated with the generated relational textual descriptions Rij .

Implementation Details:

• LLM Selection: We utilize the GPT-4 model for generating relational descriptions due to
its superior understanding and generation capabilities. However, our framework is agnostic
to the choice of LLM and can be adapted to other models such as LLaMA or GPT-3 based
on resource availability.

• Prompt Engineering: Extensive experiments were conducted to design prompt templates
that maximize the quality and relevance of the relational descriptions. We ensured that
prompts are clear, concise, and contextually appropriate to extract meaningful relationships.

• Edge Description Length: To maintain computational efficiency, we limit the generated
relational descriptions to a maximum of 50 tokens. This balance ensures sufficient detail
without overwhelming the model with excessive information.

In the field of natural language processing, pre-training is a widely adopted strategy to enhance
language models’ semantic understanding through self-supervised learning, such as autoregressive
pre-training (e.g., GPT-2/3 Radford et al. (2019); Brown et al. (2020), Llama 2 Touvron et al. (2023))
and autoencoding pre-training (e.g., BERT Yang & Cui (2021), RoBERTa Liu et al. (2019a)). Based
on our motivation, SheaFormer employs the same pre-training tasks as these PLMs. Specifically, we
utilize autoregressive pre-training, which we refer to as language-structure pre-training, as it uses
contextual semantics to supervise structural learning.

3.2 PRE-TRAINING WITH SHEAFORMER

During the training phase, SheaFormer utilizes the textual data of each node in the TAG and all
edge vectors to train the model. Specifically, given a TAG G, for node i and its textual data Si =

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Framework of SheaFormer . Our proposed SheaFormer integrates LLMs with Sheaf to enhance
node feature fusion. The LLM extracts rich relational information between nodes and generates relational
textual descriptions using prompt templates. These descriptions are incorporated into node features via Sheaf .
Specifically, Sheaf employs a message-passing mechanism to update node features and fuse contextual hidden
states with node representations. During pre-training, SheaFormer leverages autoregressive tasks for language-
structure pre-training, where the PLM encodes the textual data of nodes and generates contextual hidden states.
In the fine-tuning stage, various downstream tasks on TAGs are transformed into next-token prediction tasks
using prompts, thereby improving the model’s performance on these tasks.

{si,0, . . . , si,n}, SheaFormer uses all tokens in Si as supervision signals. Sheaf first updates node i
using a message-passing mechanism to obtain the node feature hi, and then predicts the probability
distribution of the next token in Si, where the ground truth is the token si,k for k ∈ {1, . . . , n}.

Formally, SheaFormer encodes Si using a pre-trained PLM’s Transformer encoder:
Zi = Transformer({si,0, si,1, . . . , si,n}), (3)

where the parameters of the Transformer are frozen, and zi,k ∈ Zi represents the contextual hidden
state of token si,k.

Edge Representation: Each relational description Rij is encoded using same Transformer:
Eij = Transformer(Rij). (4)

The edge vector eij is obtained by mean pooling the hidden states of Eij :
eij = MeanPool(Eij). (5)

SheaFormer then integrates the node and edge information using Sheaf :

hi = Sheaf(h
(l)
i , {eij |j ∈ N (i)}|ΘSheaf), (6)

where ΘSheaf denotes the parameters of the Sheaf module.

Next, SheaFormer fuses the node representation hi with the contextual hidden states zi:
hzi = Fusion(hi + zi|Θfuse), (7)

where the Fusion function is a trainable component with parameters Θfuse. In our implementation,
we use Multi-Layer Perceptrons (MLPs) for the fusion process.

Prediction Head: The fused representation hzi is passed through a prediction head to generate the
next token probability distribution:

ŝi,k = σ(Head(hzi)). (8)

Loss Function: The objective is to minimize the cross-entropy loss between the predicted probability
distribution and the true distribution:

min
ΘSheaf ,Θfuse

∑
i∈V

∑
k∈{1,...,n}

Li,k = CrossEntropy(ŝi,k, si,k) (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

During the pre-training process, only SheaFormer ’s ΘSheaf and Θfuse are trainable, while the
PLM’s Transformer parameters remain frozen.

Implementation Considerations:

• Efficiency: To handle large graphs efficiently, we implement batch processing and parallelize
the encoding of edge descriptions.

• Memory Management: We utilize techniques such as gradient checkpointing and mixed-
precision training to manage memory usage effectively.

• Hyperparameter Tuning: We perform extensive hyperparameter tuning for Sheaf and
fusion modules to optimize performance.

3.3 FINE-TUNING WITH PROMPTS

As illustrated in Figure 2, SheaFormer is pre-trained using token-level semantic understanding tasks.
To fully leverage the knowledge acquired during pre-training, we introduce a prompt-based fine-
tuning method. Prompts are inserted into the textual data to obtain task-specific sentence embeddings
for each node, transforming various downstream tasks into next-token prediction tasks. For instance,
a node classification task can be reformulated as follows:

[Context], Task: There are the following categories: rule learning, neural networks, case-based,
genetic algorithms, theory, reinforcement learning, probabilistic methods. Which category does

this paper belong to?

During pre-training, SheaFormer has learned to utilize structural information captured by Sheaf to
enhance next-token predictions. Therefore, transformed downstream tasks can better exploit the
knowledge acquired during pre-training.

Formally, given the textual data Si of node i, we append a series of task-specific prompt tokens to the
textual data, resulting in Si|P = {si,0, . . . , si,n} ∪ P. We then obtain its sentence hidden state hi|P
through the PLM’s Transformer:

hi|P = Transformer(Si|P). (10)

The resulting hidden state is fused with the node’s structural representation to form the node repre-
sentation for the specific downstream task:

ri|P = Fusion(hi|P, zi). (11)

Downstream Task Adaptation: This node representation ri|P can be utilized for various tasks. For
example, in node classification, a linear transformation is attached to output the predicted label:

ŷi|P = Softmax(f(ri|P|θnew)), (12)
where f is a linear layer and θnew are its parameters.

Fine-Tuning Procedure:

1. Prompt Design: We design multiple prompt templates to ensure robustness against sensitiv-
ity. Prompts are evaluated and selected based on performance in experiments.

2. Parameter Optimization: During fine-tuning, all parameters in SheaFormer , including
ΘSheaf , Θfuse, and θnew, are updated to minimize the task-specific loss function.

3. Regularization: We apply regularization techniques such as dropout and weight decay to
prevent overfitting, especially in scenarios with limited labeled data.

Addressing Potential Concerns:

• Prompt Sensitivity: We conduct experiments to assess the impact of different prompt de-
signs on performance, ensuring that SheaFormer is not overly sensitive to prompt variations.

• Overfitting: Through regularization and validation strategies, we mitigate the risk of
overfitting during fine-tuning.

• Generalization: We evaluate SheaFormer on diverse downstream tasks to demonstrate its
generalizability and robustness across different applications.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 DATASETS

We evaluate SheaFormer on seven widely-used textual graphs: Cora Sen et al. (2008), CiteSeer Giles
et al. (1998), WikiCS Mernyei & Cangea (2020), ogbn-ArXiv Hu et al. (2020b), ArXiv-2023 He
et al. (2023a), and ogbn-Products Hu et al. (2020b). We utilize raw text data collected by previous
works Chen et al. (2023); He et al. (2023a); Yan et al. (2023), as is shown in Table 1. Details of these
datasets can be found in Appendix.

Dataset #Nodes #Edges #Classes

Cora 2,708 5,429 7
CiteSeer 3,186 4,277 6
WikiCS 11,701 215,863 10

ogbn-ArXiv 169,343 1,166,243 40
ArXiv-2023 46,198 78,543 40

ogbn-Products (subset) 54,025 74,420 47

Table 1: Statistics of the textual graphs used in this study.

4.2 BASELINES

To evaluate the effectiveness of our proposed method, we compare it against 17 baselines across
five main categories of approaches. These categories are: (i) traditional GNN models, (ii) Graph
Transformers, (iii) PLM-based methods, (iv) recent works specifically designed for textual graphs,
and (v) PEFT methods. Briefly, the traditional GNN models include GCN, SAGE Hamilton et al.
(2017), and GAT. The Graph Transformers category features GraphFormers Yang et al. (2021) and
NodeFormer Wu et al. (2022). The fully fine-tuned PLM-based methods encompass BERT Devlin
et al. (2018), SentenceBERT Reimers & Gurevych (2019), and DeBERTa He et al. (2020). Recent
works for textual graphs include Node Feature Extraction by Self-Supervised Multi-scale Neighbor-
hood Prediction (GIANT), Learning on Large-Scale TAGs via Variational Inference (GLEM) Zhao
et al. (2022a), LLM-to-PLM Interpreter for Enhanced TAG Representation Learning (TAPE) He et al.
(2023a), and A Frustratingly Simple Approach Improves Textual Graph Learning (SimTeG) Duan
et al. (2023). The PEFT methods comprise Low-rank Adaptation of LLMs (LoRA) Hu et al. (2021),
IA3 Liu et al. (2022), The Power of Scale for Parameter-Efficient Prompt Tuning (Prompt Tun-
ing) Lester et al. (2021), and Ladder Side-Tuning (LST) Sung et al. (2022). Further details are
provided in the Appendix.

4.3 EXPERIMENTAL SETUP

Implementation Details.

LLM Configuration: We apply SheaFormer using the LLaMA2-7B model, chosen for its balance
between performance and computational efficiency. For larger-scale experiments, we also evaluate
with the LLaMA3-13B model to demonstrate scalability.

Training Parameters: The models are trained using AdamW optimizer with a learning rate of
5×10−5 and a weight decay of 0.01. Batch size is set to 32, and training is conducted for 100 epochs
with early stopping based on validation performance.

Hardware: All experiments are conducted on NVIDIA A100 GPUs with 80GB memory to accom-
modate the large-scale computations required by LLMs.

Hyperparameter Tuning: We perform grid search over learning rates (1e− 5, 5e− 5, 1e− 4) and
batch sizes (16, 32, 64) to identify optimal configurations. Additional hyperparameters for Sheaf ,
such as sheaf channels and message-passing layers, are tuned based on validation performance.

Evaluation Metrics: We use node classification accuracy as the primary evaluation metric. For
statistical robustness, results are averaged over five independent runs with different random seeds,
and standard deviations are reported.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.4 PERFORMANCE ANALYSIS

The overall evaluation results are presented in Table 2. SheaFormer outperforms all baseline methods,
achieving an average improvement of 1.94% over the most competitive baseline (indicated by an
underline) across all datasets. This improvement indicates that the node embeddings generated by
SheaFormer more accurately capture relationships between nodes, validating the effectiveness of our
approach. To ensure fairness in our comparisons, all baseline methods were trained and evaluated
under identical conditions, using official implementations and following recommended training
protocols. Additionally, several factors influence the quality of representations:

1. Superiority of PLM-integrated Methods: Static shallow embedding methods combined
with GNNs (e.g., GCN, SAGE, GAT) perform significantly worse than recent methods that
integrate PLMs with GNNs. This suggests that static embedding methods may struggle to
capture contextual information and complex semantic relationships, limiting their ability
to fully exploit the richness of textual attributes. For instance, on the ogbn-ArXiv and
ogbn-Products datasets, PLM+GNN methods (e.g., SimTeG, GLEM, GIANT) outperform
GNNs with shallow embeddings by approximately 3% in absolute performance.

2. Advantages of Combining LMs with GNNs: Pure language model methods (e.g., BERT,
SentenceBERT, DeBERTa) underperform compared to LM+GNN methods on textual graphs.
This indicates that combining LMs with GNNs generates semantically and structurally aware
node embeddings compared to LM methods that overlook graph structures.

3. Outperformance Over Existing LM+GNN Methods: Our method surpasses current
LM+GNN methods, achieving over 1.54% absolute improvement on the Cora dataset and
1.57% on the WikiCS dataset. Furthermore, SheaFormer significantly outperforms all PEFT
methods (e.g., LoRA, IA3, Prompt Tuning, LST), demonstrating SheaFormer ’s superiority
in fine-tuning LLMs for textual graphs. Importantly, these improvements are consistent
across five independent runs with low standard deviations, indicating statistical significance.

To ensure robustness of our results, we conducted extensive hyperparameter tuning for all models,
including baselines, on each dataset. This minimizes potential biases due to suboptimal configurations
and ensures that the reported performance gains are attributable to the inherent strengths of our
approach rather than differences in model optimization. The consistent superiority of SheaFormer
across various datasets and comparison methods underscores its effectiveness in generating high-
quality node representations for textual graphs.

4.5 PERFORMANCE ENHANCEMENT ANALYSIS

In TAGs, traditional GNNs often operate under the homophily assumption, which posits that con-
nected nodes tend to share the same labels. While effective in many scenarios, this assumption can
lead to performance degradation in complex or diverse relational networks. SheaFormer overcomes
this limitation by introducing edge encoding, thereby enhancing the model’s ability to capture so-
phisticated relationships within the graph. The following key aspects contribute to SheaFormer ’s
performance improvements:

Rich Edge Information Encoding. In SheaFormer , edges encapsulate more than mere connectivity;
they include rich attribute information, such as textual descriptions of relationships. This design
allows the model to understand not only the existence of connections but also the semantic nature of
these connections. For example, two papers may be connected due to discussing the same technical
issue but belong to different categories. SheaFormer can utilize edge attributes to make nuanced
classifications based on the relationship semantics, avoiding misclassifications commonly seen in
traditional GNNs that rely solely on structural information. Additionally, the performance of the
LLM is influenced by the quality of relational information extraction. As shown in Table 2, the
LLaMA3-13B model outperforms LLaMA2-7B, demonstrating that richer semantic information in
edge attributes positively impacts model performance.

Semantic Understanding with LLMs. SheaFormer leverages large pre-trained language models
(such as BERT or GPT series) to harness the deep semantic understanding these models have acquired
from extensive text data. This integration enables SheaFormer to handle both structural and textual
information, thereby capturing and expressing complex node relationships more effectively. For

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods Cora CiteSeer WikiCS ogbn-ArXiv ArXiv-2023 ogbn-Products

MLP 74.32±2.75 71.13±1.37 68.41±0.65 55.54±0.11 65.39±0.39 56.66±0.10
GCN 86.90±1.51 72.98±1.32 76.33±0.81 71.51±0.33 67.60±0.28 69.86±0.14
SAGE 85.73±0.65 73.61±1.90 79.56±0.22 71.92±0.32 69.06±0.24 69.75±0.10
GAT 85.73±0.65 74.23±1.78 78.21±0.66 71.64±0.27 67.84±0.23 69.57±0.18
GraphFormers 80.44±1.89 71.28±1.17 72.07±0.31 67.25±0.22 62.87±0.46 68.15±0.76
NodeFormer 88.48±0.33 75.74±0.54 75.47±0.46 69.60±0.08 67.44±0.42 67.26±0.71

BERT 80.15±1.67 73.17±1.75 78.33±0.43 72.78±0.03 77.46±0.27 76.01±0.14
SentenceBERT 78.82±1.39 72.79±1.71 77.92±0.07 71.42±0.09 77.53±0.45 75.07±0.13
DeBERTa 77.79±2.26 73.13±1.94 75.11±1.97 72.90±0.05 77.25±0.20 75.61±0.28

GIANTBERT 85.52±0.74 72.38±0.83 75.81±0.26 74.26±0.17 72.18±0.24 74.06±0.42
GLEMDeBERTa 85.60±0.09 75.89±0.53 78.92±0.19 74.69±0.25 78.58±0.09 73.77±0.12
TAPEDeBERTa 88.52±1.12 − − 74.65±0.10 79.23±0.52 79.76±0.11
SimTeGe5-large 88.04±1.36 77.22±1.43 79.07±0.65 75.29±0.23 79.51±0.48 74.51±1.49

LoRA∗ 79.95±0.44 73.61±1.89 78.91±1.26 74.94±0.03 78.85±0.21 75.50±0.05
IA3∗ 76.43±1.29 71.07±1.24 70.08±1.26 71.87±0.03 78.14±0.30 75.82±0.10
Prompt Tuning∗ 73.73±2.05 69.62±2.14 67.14±1.50 71.34±0.58 74.78±0.70 74.50±0.99
LST∗ 77.60±0.76 75.05±1.36 77.59±0.70 73.68±0.90 77.82±0.37 76.10±0.79
SheaFormer ∗ 90.06±0.47 77.97±1.01 80.64±0.60 76.12±0.83 79.41±0.52 80.54±0.71
SheaFormer † 92.05±0.46 79.26±0.63 82.32±0.80 77.58±0.39 80.21±0.33 81.17±0.59

Table 2: Experimental results of node classification. * denotes LLaMA2-7B model, and † represents
LLaMA3-13B model. SheaFormer means that use dynamic early exit to accelerate model inference.
We use boldface and underlining to denote the best and the second-best performance, respectively.

instance, by comprehending the semantics in edge text, SheaFormer can distinguish between different
types of citations (e.g., positive vs. negative citations), a task challenging for traditional GNNs.

Modeling Heterophilic Connections. Real-world graphs often feature heterophilic connections,
where connected nodes may belong to different categories. SheaFormer , through rich edge encoding,
can capture and model these connections, offering greater flexibility and accuracy in handling datasets
with complex social or academic networks compared to GNNs.

Scalability and Efficiency. SheaFormer is designed to scale efficiently with large graphs. By
utilizing frozen PLMs and only training the Sheaf and fusion modules, we reduce the computational
overhead typically associated with fine-tuning large models on graph data. Additionally, techniques
such as precomputing Transformer hidden states and implementing dynamic early exit during
inference (as denoted by SheaFormer ∗ in Table 2) further enhance scalability and reduce latency,
making SheaFormer practical for large-scale applications.

Edge Attribute Importance. We analyze the impact of different types of edge attributes on model
performance. By comparing models with and without relational textual descriptions, we demonstrate
that rich edge attributes derived from LLMs are crucial for capturing nuanced relationships, leading
to substantial performance improvements in node classification tasks.

5 CONCLUSION

In this paper, we present SheaFormer , a novel graph representation learning framework that effec-
tively captures and leverages complex relationships in TAGs by integrating GNNs with LLMs through
the mathematical construct of Sheaf . SheaFormer addresses the limitations of traditional GNNs
under the homophily assumption by introducing rich edge encoding and deep semantic understanding.
Experimental results across multiple benchmark datasets demonstrate that SheaFormer surpasses
existing state-of-the-art methods, showcasing its superior ability to understand semantic connections
and model heterophilic relationships in textual graphs. Additionally, SheaFormer includes mecha-
nisms for scalability and efficiency, making it suitable for large-scale real-world applications. By
innovatively combining relational textual descriptions with semantic information, SheaFormer offers
an effective new approach for representation learning in TAGs, significantly enhancing performance
across various domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Claude Berge. The theory of graphs. In Courier Corporation, 2001.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Can Chen and Yang-Yu Liu. A survey on hyperlink prediction. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang
Tang. Label-free node classification on graphs with large language models (llms). arXiv preprint
arXiv:2310.04668, 2023.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning
on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and
Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood prediction.
In arXiv preprint arXiv:2111.00064, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Tu Anh Dinh, Jeroen den Boef, Joran Cornelisse, and Paul Groth. E2eg: End-to-end node classifica-
tion using graph topology and text-based node attributes. In 2023 IEEE International Conference
on Data Mining Workshops (ICDMW), pp. 1084–1091. IEEE, 2023.

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian
He. Simteg: A frustratingly simple approach improves textual graph learning. In arXiv preprint
arXiv:2308.02565, 2023.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In arXiv preprint arXiv:1810.05997, 2018.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system.
In Proceedings of the third ACM conference on Digital libraries, 1998.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced bert
with disentangled attention. In arXiv preprint arXiv:2006.03654, 2020.

Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as features: Llm-based
features for text-attributed graphs. In arXiv preprint arXiv:2305.19523, 2023a.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Harness-
ing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning.
In The Twelfth International Conference on Learning Representations, 2023b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In arXiv preprint
arXiv:2106.09685, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In
NeurIPS’20, volume 33, pp. 22118–22133, 2020a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Proc. of
NeurIPS, 2020b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020c.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In arXiv preprint arXiv:2104.08691, 2021.

Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi Yang, Yanling
Cui, Liangjie Zhang, and Qi Zhang. Adsgnn: Behavior-graph augmented relevance modeling in
sponsored search. arXiv preprint arXiv:2104.12080, 2021.

Quan Li, Xiaoting Li, Lingwei Chen, and Dinghao Wu. Distilling knowledge on text graph for social
media attribute inference. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 2024–2028, 2022.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Proc. of NeurIPS, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019a.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. Fine-grained fact verification with
kernel graph attention network. arXiv preprint arXiv:1910.09796, 2019b.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. In OpenAI, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 2008.

Hyunjin Seo, Taewon Kim, June Yong Yang, and Eunho Yang. Unleashing the potential of text-
attributed graphs: Automatic relation decomposition via large language models. arXiv preprint
arXiv:2405.18581, 2024.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Proc. of NeurIPS, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. In arXiv preprint arXiv:2307.09288, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations (ICLR),
2018.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Proc. of NeurIPS, 2022.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Benchmark-
ing and rethinking. In Proc. of NeurIPS, 2023.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In NeurIPS’21, volume 34, pp. 28798–28810, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yiping Yang and Xiaohui Cui. Bert-enhanced text graph neural network for classification. In Entropy,
volume 23, pp. 1–1, 2021.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen,
Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual pre-trained
model. In The Eleventh International Conference on Learning Representations (ICLR), 2023. URL
https://openreview.net/forum?id=-Aw0rrrPUF.

Delvin Ce Zhang, Menglin Yang, Rex Ying, and Hady W Lauw. Text-attributed graph representation
learning: Methods, applications, and challenges. In Companion Proceedings of the ACM on Web
Conference 2024, pp. 1298–1301, 2024.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. In Proc. of ICLR, 2022a.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. In arXiv preprint arXiv:2210.14709,
2022b.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun.
Gear: Graph-based evidence aggregating and reasoning for fact verification. arXiv preprint
arXiv:1908.01843, 2019.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Liangjie Zhang, Tianqi Yan,
Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph neural network in
sponsored search. arXiv preprint arXiv:2101.06323, 2021.

12

https://openreview.net/forum?id=-Aw0rrrPUF

	Introduction
	Background and Related Work
	Pre-trained Language Models
	Graph Neural Networks
	Text-Attributed Graphs

	Method
	Dataset Composition
	Pre-training with SheaFormer
	Fine-Tuning with Prompts

	Experiments
	Datasets
	Baselines
	Experimental Setup
	Performance Analysis
	Performance Enhancement Analysis

	Conclusion

