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Abstract

Decentralized training removes the centralized server, making it a communication-
efficient approach that can significantly improve training efficiency, but it often
suffers from degraded performance compared to centralized training. Multi-Gossip
Steps (MGS) serve as a simple yet effective bridge between decentralized and
centralized training, significantly reducing experiment performance gaps. How-
ever, the theoretical reasons for its effectiveness and whether this gap can be fully
eliminated by MGS remain open questions. In this paper, we derive upper bounds
on the generalization error and excess error of MGS using stability analysis, sys-
tematically answering these two key questions. 1). Optimization Error Reduction:
MGS reduces the optimization error bound at an exponential rate, thereby exponen-
tially tightening the generalization error bound and enabling convergence to better
solutions. 2). Gap to Centralization: Even as MGS approaches infinity, a non-
negligible gap in generalization error remains compared to centralized mini-batch

SGD (O(T T /mm) in centralized and (’)(T% / nmzcﬂlﬁ) in decentralized).
Furthermore, we provide the first unified analysis of how factors like learning rate,
data heterogeneity, node count, per-node sample size, and communication topology
impact the generalization of MGS under non-convex settings without the bounded
gradients assumption, filling a critical theoretical gap in decentralized training.
Finally, promising experiments on CIFAR datasets support our theoretical findings.

1 Introduction

Recently, decentralized training [1, 2] has bs T obmen=]
emerged as a promising alternative to central- 2o T Smbsemi0
ized training, which suffers from challenges like  §°

high communication overhead [3]], single point ..
of failure [4], and privacy risks [5]. In con-
trast, decentralized training eliminates the cen-

tral server, offering stronger privacy protection * Communication Rounds * Communication Rounds.
[6]], faster model training [[7} 2], and robustness
to slow client devices [[8]], making it an increas-
ingly popular method [4} [7]].
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Figure 1: Under ring topology, DSGD-MGS with 20
gossip steps still shows significant performance gaps
versus Mini-batch SGD in both training loss and test
accuracy (LeNet on CIFAR-10, Dir 0.3, 50 nodes).
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However, despite the aforementioned advan-

tages of decentralized training, some works [9,[10} [11] have pointed out that decentralized training
methods underperform compared to centralized training methods in terms of model performance.
Therefore, improving the performance of decentralized training models remains an important research
question. Multiple Gossip Steps (MGS) [12}[13]], as a simple yet effective method to enhance the per-
formance of decentralized training models, has been experimentally proven to significantly improve
the efficiency and performance of decentralized training [[14, 15116, [17]. Even under communication
compression, MGS continues to demonstrate its advantages in performance improvement [[18]].

Despite the substantial empirical benefits of MGS, the underlying theoretical understanding of its
efficacy and its potential to eliminate the performance gap with centralized training remain critical
open questions. Specifically, two key issues need to be addressed:

(1) Why is MGS effective in improving model performance?
(2) Can decentralized training ultimately match or even surpass the performance of centralized
training by increasing the number of gossip steps?

To answer these open questions, we aim to theoretically explain how MGS works and how it affects
model generalization. Using stability analysis, we find upper limits for the generalization error and
excess error of MGS, giving systematic theoretical answers to these two main questions.

For Question 1, our theoretical analysis shows that MGS can reduce the optimization error bound at
an exponential rate. This reduction in optimization error directly leads to an exponential reduction in
the generalization error (as shown in Theorem 2] [3] and Remark 2, enabling the model to find better
solutions. This relationship clearly explains why MGS effectively improves model performance.
As illustrated in Figure |1} when the number of gossip steps is increased from 1 to 5, there is a
significant reduction in the training loss (indicating reduced optimization error), and the test accuracy
(measuring generalization) also shows a noticeable improvement. Furthermore, this improvement
tends to diminish almost linearly as the number of gossip steps increases exponentially, consistent
with the exponential decay in our theory findings.

For Question 2, our further analysis shows that even with a very large number of gossip steps, a
basic difference in generalization error remains between decentralized DSGD-MGS and centralized
mini-batch SGD.

Specifically, when the number of gossip steps becomes extremely large, the generalization error bound
2c

for DSGD-MGS becomes at most O(T' 252 /nm 7eh T2 ). However, this is still noticeably larger than

the centralized mini-batch SGD bound of O(T e /mm), highlighting a lasting difference in how

it scales with the number of clients m (because 1/m < 1/ M52 when m > 1). This theoretical
observation reveals a basic constraint: decentralized training cannot fully achieve the generalization
performance of centralized training solely by increasing the number of MGS steps. Experiments
shown in Figure [I] support this conclusion, indicating that even with 20 gossip steps, DSGD-MGS
still performs worse than centralized mini-batch SGD in the same settings.

Moreover, we are the first to provide a theoretical framework to understand how critical factors, in-
cluding learning rate, data heterogeneity, number of nodes, sample size per node, and communication
topology, jointly influence the generalization performance of MGS (see Reamrk [2}j9). Remarkably, we
also eliminate the bounded gradient assumption in the non-convex condition. This work enhances our
understanding of the challenges in decentralized learning and provides theoretical insights for hyper-
parameters to better model generalization. Finally, extensive experiments on CIFAR datasets further
validate our theoretical results. The main contributions of this paper can be summarized as follows:

* Theoretically elucidating the mechanism by which MGS enhances the generalization performance
of decentralized training models through an exponential reduction in optimization error.

* Revealing that even with sufficient gossip communication, a theoretical gap in generalization error
remains between MGS and centralized training, and this gap cannot be eliminated by MGS alone.

* Establishing, for the first time under non-convex and without the bound gradient assumption, a
unified framework analyzing factors impacting the MGS generalization performance (i.e., learning
rate, data heterogeneity, number of nodes, sample size, and topology), thereby addressing a
significant gap in existing theoretical frameworks.



* Validating our theoretical findings through empirical experiments on the CIFAR datasets.

These findings provide new theoretical insights and practical implications for understanding and
improving decentralized learning algorithms.

2 Related Works

This section reviews the current theoretical understanding and challenges in decentralized training,
along with the evolution and impact of MGS. Moreover, at the end of each subsection, we highlight
the existing gaps and open questions within these areas to position the contributions of this paper.

Theoretical Analysis of D-SGD. Decentralized learning has attracted significant research interest
due to its potential for enhanced privacy, communication efficiency, and scalability [7, 15,6} 8]]. Early
theoretical studies primarily focused on the convergence analysis of D-SGD, examining the number of
iterations or communication rounds needed to reach an e-accurate solution [7, 18 [19]. More recently,
attention has shifted towards understanding the generalization performance of these algorithms. Sun
et al. [20] were the first to analyze the generalization performance of D-SGD using uniform stability,
later extending their results to asynchronous D-SGD [21]]. However, these analyses assumed homoge-
neous data and bounded gradients. Zhu et al. [22] further studied the impact of communication topol-
ogy on the generalization error of D-SGD, with their generalization bounds later improved by [L1], but
they also relied on the same assumptions. More recently, Ye et al. [23] analyzed the generalization be-
havior of D-SGD under heterogeneous data, but their analysis was limited to strongly convex loss func-
tions. Overall, current D-SGD theories still lack a unified framework that comprehensively accounts
for all key algorithm parameters (e.g., data heterogeneity, non-convex loss function, topology, etc.).

MGS in Decentralized Training. Multiple Gossip Steps (MGS) [24.12] is a technique that improves
consensus by allowing multiple rounds of local communication. When integrated into decentralized
algorithms, MGS not only enhances generalization performance but also accelerates convergence [23].
Additionally, Yuan et al. [[19] showed that MGS can reduce the adverse effects of data heterogeneity,
a finding supported by other studies [26} [16]]. Li et al. [27] found that MGS can significantly improve
algorithm accuracy. In the field of decentralized federated learning, Shi et al. [16] incorporated MGS
into their DFedSAM algorithm, significantly improving its generalization performance experimentally.
Notably, MGS alone can achieve optimal convergence rates in non-convex settings [[19]] without
relying on more complex techniques like gradient tracking [28]], quasi-global momentum [29]], or
adaptive momentum [30]. However, these studies have largely overlooked the question of why MGS
is effective from a generalization perspective, with these advantages demonstrated mainly through
empirical results, leaving a significant gap in the theoretical understanding of MGS.

3 Background

In this section, we first present some fundamental definitions required for stability analysis, including
population risk, empirical risk, generalization error, excess error, and [5 on-average model stability.
Subsequently, we introduce a key lemma that establishes the relationship between the generalization
error bound and /5 on-average model stability.

3.1 Stability and Generalization in Decentralized Learning

We consider the general statistical learning setting, adapted to a decentralized framework with m
agentﬂ Each agent k observes data points drawn from a local distribution Dy, with support Z. The
goal is to find a global model § € RY that minimizes the population risk, defined as:

RO)2 5 0(0) 2 > B, [66:2)],
k=1 k=1

where ¢ is some loss function. We denote by 6* a global minimizer of the population risk, i.e.,
0* € arg ming R(6).

2In this paper, the terms node, agent, and client are used interchangeably.



Although the population risk R(#) is not directly computable, we can instead evaluate an empirical

counterpart using m local datasets S = (S1,...,S,), where Sy = {Z1, . .., Zni } represents the
dataset of agent k, with each sample Z;; drawn from the local distribution Dj. For simplicity, we
assume that each local dataset has the same size n, though our analysis can be extended to the
heterogeneous case. The resulting empirical risk is given by'

ZR& = ZZ@ 0; Zur) -

k:lzl

One of the most well-known and extensively studied estimators is the empirical risk minimizer,
defined as Ogpy 2 argming Rg(6). However, in most practical scenarios, directly computing
this estimator is infeasible. Instead, one typically employs a potentially random decentralized
optimization algorithm A, which takes the full dataset .S as input and returns an approximate
minimizer A(S) € RY for the empirical risk Rg(6).

In this setting, the expected excess risk R(A(S)) — R(6*) can be upper-bounded by the sum of the
(expected) generalization error (€gen) and the (expected) optimization error (€qp) 123 [11]]:

Ea,5[R(A(S)) — R(0%)] < €gen + €opt (3.1)

where €gen = Ea 5[R(A(S)) — Rs(A(S))] and € = E4 s[Rs(A(S)) — RS(é\ERM)i~ This work
focuses on controlling the expected generalization error €gep, for which a common approach is to use
the stability analysis of the algorithm A.

Contrary to a large body of works using the well-known uniform stability [31, 32], our analysis relies
on the notion of on-average model stability [33]], which has the advantage of removing the bounded
gradient assumption [3} 134} [10]] in our analysis, making the theoretical results more general. Below,
we recall this notion, with a slight adaptation to the decentralized setting.

Definition 1 (/> on-average model stability). Let S =(S1,...,Sm) with Sy, = {Z1ky. - Znk}
and S = (Sl, ooy Sin) with S = {Zlk, .. nk} be two independent copies such that Z;, ~
Dy and Zy, ~ Dy. Forany i € {1,...,71} and j € {1,...,m}, let us denote by S =
(517 ey Sj—h SJ(»Z), Sj+1, ceey Sm), with sz) = {le, RN Zi—l]; le, ZH—lj; ey an}, the dataset
formed from S by replacing the i-th element of the j-th agent’s dataset by Zij. A randomized algorithm
A is said to be Iy on-average model e-stable if

m

B 303 IA(S) - A <2 (32)

=1 j5=1

A key aspect of on-average model stability is that it can directly be linked to the generalization error,
as shown in the following lemma.

Lemma 1 (Generalization via on-average model stability [33]). Let A be I on-average model
e-stable. Let v > 0. Then, if {(-; z) is nonnegative and is B—smoothness forall z € Z, we have

54"7 () 112
o S g S EaslIVHAS) Zi)P)+ 5T S 3 R sllA(S) — A5

1=1 j=1 =1 j=1

In fact, we modified the proof of the lemma from Lei et al.[33]], replacing the Rs(A(S)) on the right-
hand side with a gradient E 4 s[||V/(A(S); Zi;)||?]. This adjustment better captures the impact of
data heterogeneity on the generalization error. With this lemma, obtaining the desired generalization
bound reduces to controlling the 5 on-average model stability of the decentralized algorithm A.

3.2 Decentralized SGD with Multiple Gossip Steps

In this paper, we focus on the widely-used Decentralized Stochastic Gradient Descent (D-SGD)
algorithm [35] (7], which aims to find minimizers (or saddle points) of the empirical risk Rg () in a
fully decentralized manner. This algorithm relies on peer-to-peer communication between agents,
with a graph representing which pairs of agents (or nodes) are able to interact. Specifically, the
communication topology is captured by a g0s51p matrix W € [0, 1]™*™ (see Deﬁmtion' where
Wi > 0 indicates the weight that agent j assigns to messages from agent k, and W;;, = 0 (no edge)
implies that agent j does not receive messages from agent k.



The D-SGD with Multiple Gossip Steps (DSGD- - - -
MGS) algorithm perfoF;ms mulgple ngSSip up- Algorithm 1 Decentralized SGD with MGS

dates during the communication phase of the D- . . Tnitiali (0) _ p(0) d o,
SGD algor%thm, while all other Icjzomputational I Input: Initialize vk, 0,7 = 07 € R, itera
components remain identical to D-SGD, as de-
tailed in Algorithm [I] Specifically, the main
procedure at time ¢ is divided into two steps:

tions T, stepsizes {nt}tT;Ol, weight matrix W,
Multiple Gossip Steps Q.
2. fort=0,...,T—1do
3 for each node k = 1, ..., m in parallel do
* Local Update Steps: Each node inde- 4. Local Update Steps:
pendently and uniformly draws a training 5. Sample I! ~U{1,...,n}
sample Z ¢, from its local dataset Si.. Based
p Itk k 6 9}(?0) _ 9](:/) _ ntvg(el(:); Zlfck)
7
8

Multiple Gossip Steps:
forq=0toQ — 1do

on the current model parameter H(t), it
computes the gradient V@(Q,(f);Z 1t x) and

performs gradient descent to obtain the 9 z;i:qﬂ) =37 Wiay?
initi i i i - 10: end for

101%%?1 _po;(ltt) for é/[gu(lettgl.eZGo)smphSteps. " 0}(: 2 el gng)

B = Uk — VAR Enk)s WRSTE T 1) end for

denotes the step size. 13 end for

* Multiple Gossip Steps: Each node exchanges

information with its neighbors through @) gossip averaging steps: 9,(:"‘1“) =>" Wklﬁl(t’q). The

glit,q—i-l)

resulting model parameter is then used as the initial point 9,(:“) for the next Local Update

Steps.
4 Generalization Analysis

In this section, we first introduce the Definition and Assumptions required for analyzing the gener-
alization of the DSGD-MGS algorithm. We then present the upper bounds for the generalization
error and excess error, followed by a detailed analysis of these bounds. Proofs for all Lemmas and
Theorems can be found in the Appendix [B]

4.1 Definition and Assumption

Definition 2 (Gossip Matrix). Let W € [0, 1]"*™ be a symmetric doubly stochastic matrix. This
means that W = W, and both the row sums and column sums of W equal one, i.e., W1 =1
and 1"W = 17, where 1 is the vector of all ones. The eigenvalues of W are ordered as 1 =
M) > [A(W)] > -+ > | N\, (W)|. The spectral gap of W, denoted by ¢, is defined as
§:=1—|A(W)| €(0,1).

Assumption 1. (3-smoothness). The loss function £ is 3-smooth i.e. 38 > 0 such that V0,0’ €
R?, 2z € Z, [|VU(O; 2) — VO 2) |2 < BIO — 0|2

Assumption 2. (Bounded Stochastic Gradient Noise). There exists o> > 0 such that
Ez, ,|VU(0; Z; ;) — VRs, (0)||* < 2, for any agent j € [m] and € R

Assumption 3. (Bounded Heterogeneity). There exists £ > 0 such that =3/ | |[VRg, () —
VRs(0)|]? < &2, forany 6 € R4

Using the property [-smoothness of £(6;z), it is straightforward to show that ¢,(f) =
Ez~p,[0(0; Z)] and Rg, (0) = L 37" | £(6; Z;,) also satisty the property 3-smoothness.

Remark 1. Definition 2| stipulates that the communication topology must be a doubly stochastic
matrix, which appears in many decentralized optimization works [I7, 34, 11} [18, 3I]. Assumption([]]
specifies that the loss function is smooth, which is often used in optimization and generalization
studies under non-convex settings [36, |10, 37, 138,139, 40]]. Assumption@]states that the stochastic
gradients of the samples are bounded, and Assumption 3| bounds the heterogeneity of the data. These
assumptions are frequently used in the convergence analysis of many works [36} 3| 16, |37)], and we
will employ them in this paper to analyze the stability and generalization of DSGD-MGS.

4.2 Generalization Error and Excess Error of DSGD-MGS

A

Due to its fully decentralized structure, DSGD-MGS produces m distinct outputs, A;(S) =
HET), oL AR(S) 2 Gg ), one for each agent. As a result, the stability and generalization anal-



ysis that follows will focus on these individual outputs, rather than a single global output A(S) as
described in Section Denote by Ax(S) = 6.7 and Ay, (S)) = 67 (i, §), the final iterates
of agent k for DSGD-MGS run over two data sets S and S(*9) that differ only in the i-th sample
of agent j. To obtain a tighter upper bound for the non-convex case, we modify Lemma [T| by
introducing a variable ¢, resulting in the following key lemma, which transforms the computation of
the generalization error upper bound e, into the computation of the stability upper bound.
Lemma 2. Assume the loss function £(-, z) is nonnegative and bounded in [0, 1], and that Assumptions
hold. Foralli=1,...,nandj=1,...,m, let {9;(:)}?:0 and {é,(ct)(i, ) }YE o, the iterates of agent
k=1,...,mfor DSGD-MGS run on S and S\") respectively. Then, for every ty € {0,1,...,T}
we have:

IEA,s[R(A (S)) - RS(Ak(S))”

o, TP 1 )
< = 0 — . .
< 2mn ZZE(S (i,4)|6%) (i, ) o]+Qmm;;E[|\W(Ak(5),zm)|| ]

1=1 j=1

I1: 1o on-average model stability I>: Related to optimization error
L . .. (t (t n
where 5 (i, §) is the vector containing Vk = 1,...,m, (5 )(z j) = ||9 ) _ )(z N3

According to Lemma E], to compute the generalization error €g.n, We need to calculate the [ on-
average model stability (/1) and the gradient related to the optimization error (I3). Below, we first
provide the stability upper bound, followed by the optimization error upper bound.

Upper bound of I;: For a fixed couple (i,j), we are first going to control the vector A®) =
e 32 AW, ), where A (i, j) £ E[61) (4, )[5) (i, j) = 0]. When it is clear from context,
we simply write é,(:)(i, j) = é,(:). Next, we provide the upper bound of the /> on-average model
stability for the DSGD-MGS algorithm.

Theorem 1 (Stability for the DSGD-MGS). As in the conditions of Lemmal[2] then the following
holds:

»3 2¢cp

Pt 1+ 2¢fB)nmiy \ to

Upper bound of I5: Let G = -1 > IE[||V£(9,(€T); Z;i)|1?]. According to the Assumptionsand
[l the following inequality holds:

G= ZEnwe(T’ Zi)|I? ZEHW 0"); Zij) + VRs, (00") £ VRs(6.")]?]

,J 5,

< 30”4 3¢2 + 3E[| VRs (6 )]

Since / satisfies the S-smoothness property, it is straightforward to show that RS(GI(CT)) also satisfies
the 3-smoothness property. Consequently, Rg(6) also satisfies the self-bounding property in Lemma
[ (see the Appendlx ,ie., [[VRs(0)||? < 28Rs(0). Then, we have

G < 302 + 3¢2 + 68Es[Rg (0] “.1)

Next, we will focus on bounding Eg [RS(HIET))]. According to the results from [18, Theorem 1] (see
Lemma 2]in the Appendix[B), we have the following theorem:

Theorem 2 (Optimization error of DSGD-MGS). Let A? := maxg- ex- S IIVRs, (67)

Ry = Rs(0\0) — R%, where X* = argming Rg(0) and R = RS(GERM). Suppose Assumptions
and Polyak-Lojasiewicz (PL) condition (see AssumptionH|in the Appendix) hold. Define

2

>

o A WP J
Qo.—log(p/46)/1°g<1 2>’p'_1 mB T 52180+ (4+ 20)A2

max

(I-w)



Then, if the nodes are initialized such that 9,? =0, for any Q > Qo after T iterations the iterates
of DSGD-MGS with 1, =  satisfy
57Q

A2e— "1 _53Q
Es[Rs(0\7)] -~ Ry = O <16p + {1 + % (1 te Q)} RopT> . “.2)

Here, § represents the spectral gap of W, and p £ 1 — § = |\o(W)| is defined in deﬁnition

By combining Equation (4.1 with Theorem we obtain the upper bound for G.

2, —%Q .
G =0 +8+R5) +0 (me_ + [1 2 (14 e—“”f)} Rob’pT) “3)
I—p wp

Generalization Bound for DSGD-MGS: With the above Theorem [I] & [2] we can derive the
generalization error upper bound for DSGD-MGS.

Theorem 3 (Generalization error of DSGD-MGS). Based on Lemma 2] Theorem[l|and Theorem|[2]
and assuming that Assumptions hold, let the learning rate satisfy n; < tJ%l for some constant
c > 0. We derive the following result by appropriately selecting ty and y:

[Ea,s[R(Ak(S)) — Rs(Ax(S))]|

28 +3 <2Gemc2T2cﬁ > 5 L 2842 <4gemc2T2cﬂ) s
= (n(2eh + 1))% m n(2¢f + 1) m

where the expression for G is given in Equation .

Remark 2 (Optimization Error Reduction). As shown in Theorem 3| the generalization error
bound obtained via ly on-average model stability is closely related to the optimization error G.
Analyzing the MGS-related terms reveals that increasing the number of MGS steps () reduces G,

thereby tightening the generalization error bound. Moreover, a more detailed analysis shows that the
5vQ
)

reduction in the generalization error bound is exponential, specifically on the order of O(e
indicating that even a small increase in Q) can lead to significant gains. This observation will also be
validated in the experimental section[5.2)

Remark 3 (Gap to Centralization). As indicated by Theorem|3| by letting (Q approach infinity,
we can derive the limiting generalization error bound, which helps address whether DSGD-MGS
with sufficiently many steps can effectively approximate centralized mini-batch SGD. The answer

s

is no, because the resulting bound is at most O (T 242 [nm 2ep+2 ), which still differs in terms of

node count m and per-node data size n from the bound O (T% / mn) established for centralized

mini-batch SGD based on uniform stability in [|11| 41]]. Therefore, this gap persists unless the
number of nodes or the data size per node is significantly increased. As illustrated in Figure[]

Remark 4 (Related to the Optimization Error). Compared to prior works on the generalization er-
ror of D-SGD [42/ 41} |11} 122}], which rely on Lipschitz assumptions for the loss function, our approach
removes this assumption, allowing for a more explicit connection between optimization error and
generalization error. In those works, the Lipschitz assumption effectively absorbs optimization-related
quantities (e.g., gradients) into a Lipschtiz constant, obscuring this relationship. In contrast, our work
removes the Lipschitz assumption, making the relationship between generalization and optimization
errors more explicit. Our results show that reducing optimization error can also decrease generaliza-
tion error to some extent, which explains the common observation that as training progresses, both
the training error decreases and the model’s performance on the validation set improves.

Remark 5 (Influential Factors of the Generalization Error for DSGD-MGS). When the model,
loss function, and dataset are fixed, parameters like the smoothness 3, gradient noise o, and data
heterogeneity § are also fixed. In this case, to reduce the generalization error bound according to the
upper bound in Theorem|[3] the following strategies are effective: 1) Increase the data size per node
n, 2) Increase the number of nodes m; 3) Increase the MGS step count QQ; 4) Reduce the distance
between the optimal point and the initial point Ry; 5) Use a communication topology with a larger
spectral gap 6 (which implies a smaller p); 6) Decrease the learning rate c. The first five are straight-
forward, while the sixth is recommended because the number of iterations T' is usually large, making



208 . . ) . . .
T'2¢5+2 the dominant term in the bound. Reducing c can significantly reduce this term. Additionally,
if the choice of dataset is flexible, selecting one that is as close to i.i.d. as possible is beneficial, as
a larger data heterogeneity parameter & will generally increase the generalization error bound.

Remark 6 (Innovation in Generalization Error Bounds). Our work introduces ls on-average
model stability to deriving generalization error bounds for decentralized algorithms, characterized
by the following key innovations: 1) Removal of Lipschitz Assumption: Unlike previous proofs based
on uniform stability [41] 120,11, |10} 9, 43]], our approach removes the Lipschitz assumption on the
loss function (which implicitly bounds the gradient), allowing the relationship between optimization
error and generalization error to become more explicit. 2) Explicit Role of Optimization Error: We
establish, for the first time, a direct connection between the optimization error and generalization
error of the D-SGD algorithm, revealing that reducing the optimization error also decreases the gen-
eralization error, which aligns better with observed training dynamics. 3) Exponential MGS Benefit:
Our bounds demonstrate that the impact of MGS on reducing generalization error is exponential, high-
lighting the significant gains achievable with a moderate number of MGS steps. 4) Quantification of
Heterogeneity Impact: Ye et al.[23|]] were the first to theoretically reveal that data heterogeneity can
degrade the generalization bound of the D-SGD algorithm under the strongly convex setting. Building
on this, we take a further step by providing a precise characterization of how data heterogeneity
affects generalization in the non-convex setting, filling a critical gap in existing theoretical analyses.
Theorem 4 (Excess Error of DSGD-MGS). Under the same conditions and notation as Theorems
[Bland 2} and based on the decomposition of excess error in Equation (3.1)), the optimization error
bound (Equation[d.2), and the generalization error bound (Theorem|[3), we obtain the following upper
bound for the excess error.

_5Q
A2e~ "%

L=p

1 GB%CBTQCB 2Cf}+3 1 B%C2T2cﬁ 2051+2
+ 2c8+2 +=
n2ch+3 m n m

Remark 7 (The difference of conclusions obtained from excess error and generalization
error). Since the excess error can be decomposed as E 5 s[R(A(S)) — R(6*)] < €gen + €opr, most
conclusions about the generalization error also apply to the excess error (see Remark[3)). The only
key difference lies in the choice of learning rate. For €gen, a smaller learning rate (i.e., smaller c) is

Eas[R(A(S)) — R(6%)] = 0( + {1 + % (1+ e-“f)} Rop” (4.4)

preferred, as €ge, is dominated by the term O(T 2¢5+2 ), meaning that reducing c significantly reduces
this term and hence the generalization error. However, this is not the case for €,y. Prior work on the

convergence of D-SGD [[7|] shows that €,y = O ( %), indicating that an excessively large learning

rate increases ¢y, thereby undermining convergence. Thus, the choice of learning rate involves
a trade-off between minimizing generalization error and maintaining convergence, a conclusion
that will be confirmed in the Experimental Section[A.2}

Remark 8. (On the Technical Role of the PL Condition). Our analysis of the generalization
error requires bounding the expected squared gradient norm at the final iterate, denoted as G.
However, establishing a tight upper bound for the final iterate’s gradient in non-convex decentralized
optimization remains a challenging frontier problem. While recent advances have been made in
last-iterate convergence analysis (e.g., [44)]), existing results either do not incorporate the MGS
mechanism or provide bounds only on the function value gap, which are insufficient for directly
bounding G. To bridge this gap, we adopt the Polyak-Lojasiewicz (PL) condition. This is a standard
approach in the literature (e.g., [34|]) used to connect the squared gradient norm with the function
value gap. This technical choice is deliberate and crucial, as a tight upper bound on the function
value gap under the MGS setting is available [18]. Consequently, the PL condition enables us
to derive some of the first fine-grained, MGS-aware generalization bounds that explicitly link the
generalization error to key algorithmic hyperparameters, including the number of MGS steps (Q),
communication topology, and learning rate. This provides concrete, quantitative insights that
significantly advance beyond high-level bounds, such as the classic O(1/T) analysis provided by
L2-stability [33]. Therefore, the reliance on the PL condition reflects the current theoretical limits in
non-convex last-iterate analysis rather than a fundamental limitation of our stability framework. Our
Sframework is modular: should future research provide a direct, assumption-free upper bound for G
in the MGS setting, our generalization bounds can be immediately strengthened by replacing this
component. A more detailed discussion is provided in the Appendix [D.4]



Remark 9. All the above discussions are also solid to 6(7) = % Sy HI(CT). In addition, our
theoretical results apply to decentralized topologies other than the fully connected case. When the
topology becomes fully connected, the iterative update reduces to the centralized setting. For detailed
analysis, please refer to the Appendix. For detailed proof, please refer to Appendix D} Additionally,
we provide a consensus error analysis to further illustrate the behavior of MGS in both finite and
infinite regimes (detailed discussion provided in Appendix|[C)). Furthermore, we extend our theoretical
analysis to the case involving batch size b. The detailed proofs and analyses are provided in the

Appendix|[D.2]

S Experiment

In this section, we present extensive experiments to validate our theoretical findings. We first describe
the experimental setup, followed by the empirical results and corresponding analysis. Due to space
constraints, the experimental validation of excess error is presented in Appendix Furthermore,
we conduct an in-depth exploration of the subtle relationship between mini-batch size and (Q) on the
CIFAR-100 dataset, providing practitioners with insights for achieving higher performance. Detailed
analyses and discussions can be found in the Appendix[D.3]

5.1 Empirical Setup

We conduct experiments on the CIFAR-10 dataset [45] with a Dirichlet distribution (non-IID, o = 0.3)
using LeNet to validate the excess error and generalization error of DSGD-MGS. To examine the
impact of key hyperparameters, we follow the study by Hardt et al.[41] and investigate the weight
distance (-, >0, ||9§-t> - 9;””%) and the loss distance (R(6")) — Rg(6™"))) when replacing
only one data point in the training dataset. We primarily validate the experimental performance of
key parameters in the DSGD-MGS algorithm, such as communication topology, the number of MGS
steps, and the total number of clients. For fairness, when exploring one parameter, all other parameters
are kept at the same settings. Further implementation details are provided in Appendix [A-T]

5.2 Experimental Validation of Generalization Error.

As shown in Figure[2] subplots (a) and (b) respectively illustrate the weight distance and loss distance
for different parameter settings of the DSGD-MGS algorithm on the perturbed dataset. Overall,
both weight distance and loss distance exhibit the same power-law behavior as our theoretical bound

o(r 235&2) (see Theorem . Additionally, within each column of Figure(corresponding to the
same parameter setting), these two metrics follow similar trends, confirming the validity of LemmalT]
[33]], which states that the generalization error can indeed be captured by the stability bound.
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From subplots (a) and (b) in Figure[2] we can observe the following patterns: 1) Using a communica-
tion topology with a smaller spectral gap (i.e., a larger p in Theorem 3) leads to lower generalization
error. 2) Increasing the number of MGS effectively reduces the generalization error. For example,
in terms of weight distance (Figure [2](a)), setting M G'S = 5 reduces the weight distance to roughly
half of that with M GS = 1. 3) Smaller learning rates help reduce generalization error, consistent
with the findings in [10] on decentralized federated learning. 4) A larger client number (i.e., m in
Theorem 3) also helps reduce generalization error, reflecting a nearly linear speedup effect with the
number of clients. Notably, these observations align well with our theoretical results (see Theorem 3|
and Remark [5)). This further validates the correctness of our theoretical analysis.

6 Conclusion

This paper is the first to establish the generalization error and excess error bounds for the DSGD-MGS
algorithm in non-convex settings without the bounded gradients assumption. It addresses how MGS
can exponentially reduce the generalization error bound and shows that even with a very large number
of MGS steps, it cannot completely close the gap between decentralized and centralized training.
Additionally, our theoretical results capture the impact of key factors like data heterogeneity 4,
communication topology spectrum &, Multiple Gossip Steps (), client number m, and per-client data
size n. Previous work has not unified the analysis of these critical parameters, and this paper fills that
gap, offering both theoretical insights and experimental validation and significantly advancing the
theoretical understanding of decentralized optimization.

Limitation. The theoretical findings in this paper depend on the properties of the last iteration of
D-SGD in optimization theory, which is an emerging area yet to be explored. This paper derives the
properties of the function value at the last iteration under the PL-condition. Future work can further
explore the properties of the loss function gradient at the last iteration under non-convex conditions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We explicitly state the problem addressed and the contributions made by this
paper in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the paper at the end of the article.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the complete proofs in the appendix, and detailed assumptions are
presented in the theoretical analysis section.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of the algorithm in the experimental and appendix
sections. And we guide how to select hyperparameters and reproduce it.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our method is highly implementable, requiring only minor changes to the
optimizer in open-source platforms such as FedML.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed descriptions of data segmentation, hyperparameter selec-
tion, and additional implementation details in the experimental and appendix sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We included the standard errors of the tests in the tables in the experimental
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Our experiments were conducted on an NVIDIA GeForce RTX 3090, with the
runtime of each experiment ranging from 1 hour to 4 hours. The duration depends on the
size of the dataset and the complexity of the model.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work complies with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not involve the use of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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