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ABSTRACT

Visual reasoning tasks are designed to test a learning algorithm’s capability to
infer causal relationships, discover object interactions, and understand temporal
dynamics, all from visual cues. It is commonly believed that to achieve compo-
sitional generalization on visual reasoning, an explicit abstraction of the visual
scene must be constructed; for example, object detection can be applied to the
visual input to produce representations that are then processed by a neural net-
work or a neuro-symbolic framework. We demonstrate that a simple and general
self-supervised approach is able to learn implicit symbolic representations with
general-purpose neural networks, enabling the end-to-end learning of visual rea-
soning directly from raw visual inputs. Our proposed approach “compresses”
each frame of a video into a small set of tokens with a transformer network. The
self-supervised learning objective is to reconstruct each image based on the com-
pressed temporal context. To minimize the reconstruction loss, the network must
learn a compact representation for each image, as well as capture temporal dy-
namics and object permanence from temporal context. We evaluate the proposed
approach on two visual reasoning benchmarks, CATER and ACRE. We observe
that self-supervised pretraining is essential to achieve compositional generaliza-
tion for our end-to-end trained neural network, and our proposed method achieves
on par or better performance compared to recent neuro-symbolic approaches that
often require additional object-level supervision.

1 INTRODUCTION

This paper investigates if an end-to-end trained neural network is able to solve challenging visual
reasoning tasks (Zhang et al.}[2021;|Girdhar & Ramanan, 2019} Y1 et al., 2019) that involve inferring
causal relationships, discovering object relations, and capturing temporal dynamics. A prominent
approach (Shamsian et al., 2020) for visual reasoning is to construct a structured and interpretable
representation from the visual inputs, and then apply symbolic programs (Mao et al.,|2019) or neural
networks (Ding et al., [2021) to solve the reasoning task. Despite their appealing properties, such as
being interpretable and easier to inject expert knowledge into the learning framework, it is practi-
cally challenging to determine what types of symbols to use and how to detect them reliably from
visual data. In fact, the suitable symbolic representation for a single scene may differ significantly
across different tasks: the representation for modeling a single human’s kinematics (e.g. with body
parts and joints) is unlikely to be the same as that for modeling group social behaviors (e.g. each
pedestrian can be viewed as a whole entity). With the success of unified neural frameworks for
multi-task learning (Bommasani et al., [2021), it is desirable to have a unified input interface (e.g.
raw pixels) and have the neural network learn to dynamically extract suitable representations for
different tasks. However, how to learn distributed representation with a deep neural network that be-
haves and generalizes similarly to learning methods based on symbolic representation (Zhang et al.,
2021)) for visual reasoning remains an open problem.

The key hypothesis we make in this paper is that a general-purpose neural network, such as Trans-
formers (Vaswani et al., |2017), can be turned into an implicit symbolic concept learner with self-
supervised pre-training. For reasoning with image and video cues, the concepts are often organized
as object-centric, as objects usually serve as the basic units in visual reasoning tasks. Our proposed
approach is inspired by the success of self-supervised learning of object detectors with neural net-
works (Burgess et al.,|2019; [Locatello et al., 2020; Niemeyer & Geiger, |[2021) and the emergence of
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Figure 1: Comparison between a neuro-symbolic approach (e.g. (2019)), a hybrid ap-
proach with learned object embeddings (e.g. |Ding et al.| (2021)), and our proposed approach for

visual reasoning. The illustration of each model family flows upwards, where visual inputs are en-
coded by neural networks (stage 1), and then processed by symbolic programs or another neural
network to generate reasoning predictions (stage 2). Compared to (a) and (b), our approach does not
require a separate “preprocessing” stage to extract the symbolic representation from visual inputs,
and the self-supervised pretrained neural network can be end-to-end “finetuned” to the downstream
visual reasoning tasks.

object masks in self-supervised classification networks (Caron et al.} [2021). It is also motivated by
concept binding in neuroscience (Treisman} [1996} [Roskies, [1999; [Feldman|, [2013)) and in machine
learning (Greff et al.| 2020), where concept binding for raw visual inputs refers to the process of
segregating and representing visual scenes into a collection of (distributed) concept representation,
which can be composed and utilized to solve downstream recognition and reasoning tasks. The
concepts are bound in an object-centric fashion, where attributes (e.g. colors, shapes, sizes) of the
same objects are associated via dynamic information routing. Different from explicit symbolic rep-
resentation, implicit symbolic representation via dynamic information binding in a neural network
does not require predefining the concept vocabulary or the construction of concept classifiers. The
implicit representation can also be “finetuned” directly on the target tasks, it does not suffer from the
early commitment or loss of information issues which may happen when visual inputs are converted
into symbols and frozen descriptors (e.g. via object detection and classification).

Our proposed representation learning framework, implicit symbolic concept learner (IS-CL) con-
sists of two main components: first, a single image is compressed into a small set of tokens with a
neural network. This is achieved by a vision transformer (ViT) network (Dosovitskiy et al.| [2020)
with multiple “slot” tokens (e.g. the [CLS] token in ViT) that attend to the image inputs. Sec-
ond, the slot tokens are provided as context information via a temporal transformer network for
other images in the same video, where the goal is to perform video reconstruction via the masked
autoencoding objective with the temporal context. Despite its simplicity, the re-
construction objective motivates the emergence of two desired properties in the pretrained network:
first, to provide context useful for video reconstruction, the image encoder must learn a compact
representation of the scene with its slot tokens. Second, to utilize the context cues, the temporal
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transformer must learn to associate objects and their implicit representation across time (“implicit
tracking”), and also capture the notion of object permanence — the existence of an object even when
it is occluded from the visual observations. One intuitive way to view our proposed IS-CL frame-
work is from the perspective of Slot Attention model by |Locatello et al. (2020): Instead of using a
shared slot attention module to iteratively refine the encoded tokens, our image encoder is imple-
mented as a stack of Transformer encoder layers with dedicated “slot” tokens. This generalization
enables us to directly transfer the pretrained implicit symbolic representation encoded by expressive
ViT backbones directly to downstream reasoning tasks.

To validate our proposed framework, we conduct extensive ablation experiments on the Compo-
sitional Actions and TEmporal Reasoning (CATER) (Girdhar & Ramanan, 2019) benchmark and
the Abstract Causal REasoning (ACRE) (Zhang et al.| [2021) benchmark. We observe that the
self-supervised representation learned by IS-CL indeed behave likes the symbolic representation,
in the sense that when finetuned on CATER and ACRE, our learned representation achieves com-
petitive or better generalization performance when compared with the frameworks that use explicit
object-centric representation. Intriguingly, we observe that the network inductive biases, such as
the number of slot tokens per image, play an important role on transfer learning performance: On
both datasets, we observe that a small number of slot tokens per image (1 for CATER and 4 for
ACRE) lead to the best transfer learning performance on visual reasoning tasks. To the best of our
knowledge, our proposed framework is the first to achieve competitive performance on CATER and
ACRE without the need to construct explicit symbolic representation from visual inputs.

In summary, our paper makes the following two main contributions: First, unlike common assump-
tions made by neuro-symbolic approaches, we demonstrate that compositional generalization for
visual reasoning can be achieved with end-to-end neural networks and implicit symbolic represen-
tations. Second, we propose a self-supervised representation learning framework IS-CL, to learn
implicit symbolic representation with general-purpose Transformer neural networks. As a byprod-
uct, we show that the learned representation achieves competitive performance on the challenging
CATER and ACRE visual reasoning benchmarks. The code and pretrained checkpoints will be
released upon paper acceptance.

2 RELATED WORK

Neural Network Pretraining. We have collectively made huge progress towards building unified
learning frameworks for a wide range of tasks, including natural language understanding (Devlin
et al.,2018}; Radford et al.,2019; Brown et al., 2020; Liu et al.,2019), visual recognition (Kokkinos|
2017;|Kendall et al.,|2018};|Zamir et al., 2018;|Ghiasi et al.,[2021), and multimodal perception (Jaegle
et al.,|2021}; Sun et al., [2019} |Likhosherstov et al., 2021; |Girdhar et al., 2022} |Alayrac et al., [2022).
As this pretraining-adaptation learning paradigm gains momentum, researchers at Stanford (Bom-
masani et al.,|2021)) have even coined the term “foundation models” to refer to these pretrained neural
networks. Unfortunately, most of the “foundation models” for visual data focus on perception tasks,
such as object classification, detection, or image captioning.

Despite improved empirical performance on the visual question answering task (Hudson & Man-
ning| 2019; Antol et al., 2015; Zellers et al.,[2019)), visual reasoning remains challenging when mea-
sured on more controlled benchmarks that require compositional generalization and causal learn-
ing (Zhang et al., 2021} (Girdhar & Ramanan, [2019; |Chen et al.| [2022). It is commonly believed
that symbolic or neurosymbolic methods (Mao et al., 2019} |Y1 et al., 2018; |[Lake & Baroni, 2018;
Andreas, |2019)), as opposed to the general-purpose neural networks, are required to achieve gen-
eralizable visual reasoning |Yi et al. (2019); |[Zhang et al. (2021). To our knowledge, our proposed
framework is the first to demonstrate the effectiveness of implicit symbolic representation on these
visual reasoning benchmarks.

Self-supervised Learning from Images and Videos. Self-supervised learning methods aim to
learn strong visual representations from unlabelled datasets using pre-text tasks. Pre-text tasks were
initially hand-designed to incorporate visual priors (Doersch et al., 2015 |Zhang et al., 2016} Caron
et al., 2018)). Subsequent works used contrastive formulations which encourage different augmented
views of the same input to map to the same feature representation, whilst preventing the model from
collapsing to trivial solutions (Oord et al.|[2018;|Chen et al.; 2020; |He et al.,|2020; Gr1ll et al., 2020
Akbari et al.; [2021)).
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Our work is most related to masked self-supervised approaches. Early works in this area used
stacked autoencoders (Vincent et al., 2010) or inpainting tasks (Pathak et al., [2016)) with convo-
lutional networks. These approaches have seen a resurgence recently, inspired by BERT (Devlin
et al., [2018) and vision transformers (Dosovitskiy et al., 2020). BEiT (Bao et al., 2022) encodes
masked patches with discrete variational autoencoders and predicts these tokens. Masked Autoen-
coders (MAE) (He et al.,2022), on the other hand, simply regress to the pixel values of these tokens.
Masked Feature Prediction (Wei et al.,2022) (MFP) also regresses to pixelwise targets, but feature
transformations of them as opposed to the direct RGB values as MAE. MAE and MFP have also
both been extended to video too (Tong et al.| 2022} Feichtenhofer et al., 2022), and are shown to
be effective in object detection [Li et al.[(2022). The video reconstruction objective is also based on
masked autoencoding, however, the goal is to learn a compact “implicit symbolic” representation
for reasoning as opposed to generic visual descriptors for recognition tasks. We confirm empirically
that the proposed method outperforms MAE and VideoMAE pretraining methods by large margins
on the CATER and ACRE benchmarks.

Object-centric Representation for Reasoning. Most of the existing neuro-symbolic (Mao et al.,
2019;|Y1 et al., 2018)) and neural network (Ding et al.,2021)) based visual reasoning frameworks re-
quire a “preprocessing” stage of symbolic representation construction, which often involves detect-
ing and classifying objects and their attributes from image or video inputs. Our proposed framework
aims to investigate the effectiveness of single-stage, end-to-end neural networks for visual reason-
ing, which is often more desirable than the two-stage frameworks for scenarios that require transfer
learning or multi-task learning. In order to obtain the object-centric, or symbolic representation in
the preprocessing stage, one can rely on a supervised object detector (Mao et al., |2019), such as
Mask R-CNN (He et al.,2017). An alternative approach is to employ self-supervised objectives and
learn low-level features that are correlated with objects, such as textures (Geirhos et al.| [2018; Her-
mann et al., 2020; [Olah et al., 2017), or objects themselves (Burgess et al., 2019; |Locatello et al.,
2020; Caron et al., 2021). In practice, supervised or self-supervised approaches for object detection
and object-centric representation learning may suffer from the lack of supervised annotations, or the
noisy object detection results. For example, Zhang et al.| (2022) observed that object-centric rep-
resentation is beneficial for transfer learning to temporal event classification only when the ground
truth object detections are used.

3 METHOD

We now introduce the proposed implicit symbolic concept learning (IS-CL) framework. We follow
the pretraining and transfer learning paradigm: During pretraining (Figure[2), we task a shared image
encoder to output patch-level visual embeddings along with a small set of slot tokens that compress
the image’s information. The pretraining objective is masked autoencoding (MAE) for unlabeled
video frames, namely reconstructing the pixel values for a subset of “masked” image patches, given
the “unmasked” image patches as context. Compared to the standard MAE for images (He et al.|
2022), the image decoder has access to two additional types of context information: (1) The encoded
patch embedding from the unmasked image patches of the neighboring frames; (2) The encoded slot
tokens from a subset of context frames. The context information is encoded and propagated by a
temporal transformer network. To successfully reconstruct a masked frame, the image encoder must
learn a compact representation of the full image via the slot tokens, and the temporal transformer
has to learn to capture object permenance and temporal dynamics.

During transfer learning (Figure[3)), the image decoder can be discarded, and only the image encoder
and temporal transformer need to be transferred. The inputs to the temporal transformer are the slot
tokens encoded from individual, unmasked video frames. We consider the full finetuning strategy
where the weights of both the newly added task decoder (e.g. a linear classifier), and the pretrained
image and temporal transformers are updated during transfer learning.

Image Encoder: We adopt the Vision Transformer (ViT) backbone to encode each image indepen-
dently: An input image is broken into non-overlapping patches of 16x16 pixels, which are then
linearly projected into patch embeddings as inputs to the transformer encoder. Spatial information
is preserved by sinusoidal positional encodings. We use the standard ViT-Base configuration which
has 12 Transformer encoder layers. Each layer has hidden size of 768, MLP projection size of 3072,
and 12 attention heads. During pretraining, a subset of video frames are spatially masked randomly
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Figure 2: An overview of the proposed implicit symbolic concept learner (IS-CL) framework for
self-supervised pretraining. We consider the video reconstruction objective via masked autoencod-
ing: A ViT-B image encoder is tasked to (1) extract visual representation (orange) for the unmasked
patches per image and (2) compress an image into a small set of slot tokens (blue). A temporal trans-
former then propagates the information from slot representation and patch-level representation from
neighboring frames, which are essential for successful reconstruction. We hypothesize that implicit
symbolic representation emerges automatically in the slot tokens by self-supervised pre-training.

given a masking ratio. As illustrated in Figure 2] only the unmasked image patches are fed into the
ViT-B encoder. For context frames and during transfer learning, all image patches are provided as
inputs to the image encoder.

Slot Tokens: In the seminal work by [Locatello et al. (2020), slot tokens are defined as the represen-
tational bottleneck in an image autoencoder, where the slot representations are iteratively updated
with a GRU after the slots attend to the visual inputs in each iteration. We borrow their terminology,
and also use slots to denote the representational bottleneck which we hope to encode symbolic, or
object-centric information. We generalize their slot update rules by: (1) iteratively updating the
input representation from raw pixels to visual representation encoded by the Transformer encoder
(ViT); (2) replacing cross-attention with multi-headed self-attention; (3) using MLP layers with
untied weights to update the intermediate slot representation as opposed to a shared GRU network.
These two modifications allow us to implement “slot attention” directly with a Transformer encoder,
simply by prepending slot tokens as additional inputs to the encoder (similar to [CLS] tokens). The
initial slot embeddings at the input of the visual encoder are implemented as a learnable embedding
lookup table. To compare the effectiveness of different methods to aggregate “slot” information, we
also explore single-headed soft attention and Gumbel-max attention as used by Xu et al. (2022).

Temporal Transformer: To propagate temporal information across frames, we use another trans-
former encoder (with fewer layers than the ViT-B image encoder) which takes the tokens encoded
by the image encoder as its inputs. During pretraining, the slot tokens from context frames, along
with the unmasked patch tokens from the query frames are concatenated together and fed into the
temporal transformer. For each query image, the temporal transformer outputs its corresponding
unmasked patch tokens contextualized from both the unmasked patches from neighboring query
frames and the slot tokens from context frames. The contextualized patches are then fed into the
image decoder to compute the reconstruction loss. To preserve temporal position information, we
use learned positional embeddings (implemented with an embedding lookup table). During transfer
learning, the temporal transformer takes the slot tokens encoded by the image encoder as its inputs.

Putting the image encoder and the temporal transformer together, the overall video encoder used for
transfer learning can be viewed as an factorized space-time encoder proposed by[Arnab et al.| (2021).
It is more parameter-efficient than the vanilla video vision transformer used by [Tong et al. (2022)).
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Figure 3: An illustration of the transfer learning process: Both the ViT-B image encoder and the
temporal transformer are transferred to downstream visual reasoning tasks to encode video inputs.
Unlike pretraining, only the slot tokens are provided as inputs to the temporal transformer.

Image Decoder for Pre-training: We use the same image decoder as in (He et al.,[2022). As illus-
trated in Figure[2] the query images are decoded independently given the contextualized unmasked
patch tokens. The image decoder is implemented with another transformer, where masked patch
tokens are appended to the contextualized unmasked patch tokens as inputs to the image decoder.
Sinusoidal positional encodings are used to indicate the spatial locations of individual patch tokens.
We use the same number of layers, hidden size, and other hyperparameters as recommended by
(2022). For pre-training purpose, we use mean squared error to measure the distance between
the original query image patches and the reconstructed patches.

Transfer Learning: As the goal of pre-training is to learn the slot tokens which we hope to compress
an input image into several implicitly symbolic tokens, we only ask the image encoder to generate
the slot tokens during finetuning (Figure [3), which are fed to the temporal transformer as its inputs.
We then average pool the output tokens of the temporal transformer and add a task-specific decoder
to make predictions. Both benchmarks used in our experiments can be formulated as multi-class
classification: For CATER, the goal is to predict the final location of the golden snitch (Figure [
top), where the location is quantized into one of the 6x6 positions; For ACRE, the goal is to predict
whether the platform will activate, not activate, or undetermined given a query scenario (Figure [
bottom). We hence use linear classifiers as the task-specific decoders and the standard softmax
cross-entropy for transfer learning.

4 EXPERIMENTS

We present results on CATER (Girdhar & Ramanan, 2019) and ACRE (Zhang et al.| 2021).

4.1 EXPERIMENTAL SETUP

Benchmarks: In the classic “shell game”, a ball is placed under a cup and shuffled with other empty
cups on a flat surface; then, the objective is to determine which cup in the final shuffled configuration
contains the ball. Inspired by this, CATER is a dataset composed of videos of CLEVR
objects as they move around the scene. A special golden ball, called the “snitch”,
is present in each video, and the associated reasoning task is to determine the snitch’s position at
the final frame. Object locations in the CATER dataset are denoted by positions on an invisible
6-by-6 grid; therefore, in essence, the CATER task boils down to a 36-way classification problem.
Solving this task is complicated by the fact that larger objects can visually occlude smaller ones, and
certain objects can be picked up and placed down to explicitly cover other objects; when an object is
covered, it changes position in consistence with the larger object that covers it. Therefore, in order
to solve the task successfully, a model must learn to reason not only about objects and movement,
but also about object permanence, long-term occlusions, and recursive covering relationships.
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Figure 4: Illustration of the CATER and ACRE benchmarks.

The CATER dataset features a split where the camera is statically fixed to a particular angle and
position throughout the videos, as well as a moving camera split where the viewing angle is able to
change over time. We use the static split for evaluation. Each video has 300 frames. A visualization
of a CATER video and the associated snitch localization task is shown in Figure ] (top).

The ACRE dataset tests a model’s ability to understand and discover causal relationships. The con-
struction of the dataset is motivated by the Blicket experiment in developmental psychology
2000), where there is a platform as well as many distinct objects, some of which contain
the “Blicketness” property. When at least one object with the “Blicketness” property is placed on
the platform, music will be played; otherwise, the platform will maintain silence. Given a few con-
text demonstrations of different object combinations, as well as the resulting effect, young children
have been shown to successfully infer which objects contain the “Blicketness” property, and which
combinations would cause the platform to play music. In ACRE, the platform is represented by a
large pink block that either glows or remains dim depending on the combination of CLEVR ob-
jects placed on it. Given six evidence frames of objects placed on the platform, the objective of the
reasoning task is to determine the effect a query frame, containing a potentially novel object com-
bination, would have on the platform. Possible answers include lighting up the platform, keeping
the platform dim, or unable to be determined with the given evidence frames. A visualization of an
example ACRE sample is shown in the bottom row of Figure ] (bottom).

Pretraining data: We use the unlabeled videos from the training and validation splits of the CATER
dataset for pretraining. Both the static and moving camera splits are used, which contains 9,304
videos in total. In our experiments, we observe that ACRE requires higher resolution inputs during
pretraining and finetuning. Our default preprocessing setup is to randomly sample 32 frames of
64 x64 for pretraining checkpoints to be transferred to CATER, and 16 frames of 224x224 for
pretraining checkpoints to be transferred to ACRE. The randomly sampled frames are sorted to
preserve the arrow of time information. No additional data augmentations are performed.

Table 1: Pretraining ablation experiments on CATER

(a) Impact of the mask ratio (b) Impact of pretrain context (c) Tmpact of pretrain frames
Mask ratio Accuracy # context Accuracy
# frames Accuracy
37.5% 69.48 % 8 69.48 % 3 69.48%
12.5% 66.35% 0 65.35%
50% 66.57% 1 67.69% M o238
75% 64.12% 4 67.47% 64 68.25‘70
87.5% 61.94% 16 64.34% g

Transfer learning: For CATER, we evaluate on the static split which has 3,065 training, 768 vali-
dation, and 1645 test examples. We select the hyperparameters based on the validation performance,
then use both training and validation data to train the model to be evaluated on the test split. By de-
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Table 2: Ablation experiments on CATER tokens

(a) Impact of the slot token (b) Impact of slot pool layer

number (c) Impact of slot pool method
# slots Accuracy Pool layer Accuracy Pool method Accuracy
1 69.48% 11 69.48% Slice 69.48%
2 66.52% ; 22'22;'//" Soft 64.23%
4 64.90% 9 P 60/" Hard 65.90%
8 64.45% o0

fault, we use 100 randomly sampled frames of 64 x64 during training, and 100 uniformly sampled
frames of stride 3 during evaluation. For ACRE, we explore all three splits, all of which contain
24,000 training, 8,000 validation, and 8,000 test examples. We again use the validation set to select
hyperparameters and use both training and validation to obtain the models evaluated on the test split.
We use all seven frames of 224 x224 during training and evaluation.

Default hyperparameters: We use Adam optimizer for pretraining at learning rate of 10~3, and
AdamW optimizer for transfer learning at learning rate of 5 x 107°. The pretraining checkpoints
are trained from scratch for 1,000 epochs at batch size of 256. For transfer learning, we finetune the
pretrained checkpoints for 500 epochs at batch size of 512. All experiments are performed on TPU
with 32 cores. Below we study the impact of several key model hyperparameters.

4.2 ABLATION STUDY

We use CATER for ablation study in Table |1} and reuse the optimal hyperparameters in ACRE
experiments. The impact of the number of slot tokens for ACRE is studied separately in Table

Masking ratio: Contrary to the large masking ratio employed in vanilla MAE, we found that the
optimal masking ratio was 37.5% on downstream CATER accuracy. This is perhaps due to the fact
that CATER is designed to test “compositional generalization”, and so the spatial context provides
less information than in natural images and video.

Number of Total Frames and Context Frames: We also study the impact of the number of frames
the implicit symbolic concept learner is pretrained on, and find the best performance on 32 frames.
Fixing the total number of pretraining frames, we then ablate over the number of context frames,
which are the frames from which slot representations are generated. When 0 context frames are used,
we essentially utilize only patch-level representations to perform reconstruction with the temporal
transformer (simulating a per-frame MAE followed by a temporal transformer). We find that the best
performance is achieved with 8 context frames, which balances the number of slot representations
with patch-level representations.

Number of Slot Tokens: Another useful ablation is on the impact of the number of slots used
for CATER and ACRE. In CATER, we find that only 1 slot token per frame is enough to solve
the reasoning task. We believe that this may be due to how the reasoning objective of CATER is
designed: to successfully perform snitch localization, the model need only maintain an accurate
prediction of where the snitch actually or potentially is, and can ignore more detailed representation
of other objects in the scene. Under the hypothesis that the slot tokens represent symbols, perhaps
the singular slot token is enough to contain the snitch location. On the other hand, when ablating
over the number of tokens for the ACRE task (Table , we find that a higher number of tokens
is beneficial for reasoning performance. This can potentially be explained by the need to model
multiple objects across evidence frames in order to solve the final query; under our belief that slot
tokens are encoding symbols, multiple may be needed in order to achieve the best final performance.

Slot Pooling Layer and Method: We ablate over which layer to pool over to generate the slot
tokens. The patch tokens are discarded after the pooling layer, and only the slot tokens are further
processed by the additional Transformer encoder layers. As expected, it is desirable to use all image
encoder layers to process both slot and patch tokens. Additionally, we also study the impact of slot
pooling method, and observe that adding additional single-headed soft attention and Gumbel-max
attention are outperformed by simply using the slot tokens directly.



Under review as a conference paper at ICLR 2023

Table 3: Ablation on ACRE compositionality (comp), systematicity (sys), and L.I.D. (iid) splits.

#slots  comp Sys iid

1 91.75% 90.34%  90.96%
2 90.82% 88.21% 88.73%
4 93.03% 92.36% 92.13%
8 95.54% 86.18% 88.97%
64 90.45%  80.07%  90.82%

Table 4: Benchmark results on CATER (static).

Method Object-centric  Object superv. Top-1 Acc. Top-5 Acc.

OPNet (Shamsian et al., [2020) v Ve 74.8 % -
Hopper (Zhou et al.}[2021]) Ve v 73.2% 93.8%
ALOE base (Ding et al.,|2021) v X 60.5% 84.5%
ALOE++ (Ding et al.[[2021) v X 74.0% 90.4%
Random Init. X X 3.3% 18.0%
R3D LSTM X X 60.2% 81.8%
R3D + NL LSTM X X 46.2% 66.9%
MAE (He et al., 2022) X X 27.1% 47.8%
VideoMAE (Tong et al.,[2022) X X 63.7% 82.8%
IS-CL (ours) X X 69.5% 88.3%

4.3 COMPARISON TO THE STATE-OF-THE-ART

Table 4] compares the result of IS-CL against other state-of-the-art models on CATER snitch local-
ization. We also compare IS-CL on ACRE against other existing models in Table [S5| We pretrain
MAE and VideoMAE ourselves on the same pretraining dataset and searched for their correspond-
ing optimal hyperparameters. We observe that the spacetime ViViT used by VideoMAE leads to
collapsed training, and modified it to use factorized encoder. Other results are cited from the pub-
lished results. IS-CL achieves the best performance among the approaches that do not dependent
on explicit object-centric representation, it also achieves overall state-of-the-art performance on the
comp and iid splits of ACRE.

Table 5: Results on ACRE compositionality (comp), systematicity (sys), and L.I.D. (iid) splits.

Method Object-centric  Object superv.  comp sys iid

NS-OPT (Zhang et al., [2021) 69.04% 67.44% 66.29%
ALOE (Ding et al.,[2021) 91.76% 93.90% -

Random Init. 38.78% 38.57% 38.67%
CNN-BERT (Zhang et al.}[2021) 43.79% 3993% 43.56%
MAE (He et al.,[2022) 80.27% 76.32%  80.81%
VideoMAE (Tong et al./[2022) 78.85% 71.69% 77.14%
IS-CL (ours) 93.03% 92.36% 92.13%

%N X X% X x| NN
™% X % X x| X N

5 CONCLUSION AND FUTURE WORK

In this work we propose the implicit symbolic concept learner (IS-CL) framework, which trains a
neural network end-to-end to solve complex visual reasoning tasks, without explicitly constructing
an object-centric representation. IS-CL learns such implicit symbolic representations as slot embed-
dings in a pretraining step through a self-supervised video reconstruction objective via masking. We
observe the exciting results that the learned representation behave like their symbolic counterparts,
when measured on compositional generalization performance on CATER and ACRE benchmarks.
Future work includes probing experiments to understand the information encoded by the slot tokens,
and applying IS-CL to large-scale natural image and video datasets.
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