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Abstract

One of the most intriguing findings in the structure of neural network landscapes is the
phenomenon of mode connectivity Freeman & Bruna (2017); Draxler et al. (2018): For two
typical global minima, there exists a path connecting them without barrier. This concept of
mode connectivity has played a crucial role in understanding important phenomena in deep
learning.
In this paper, we conduct a fine-grained analysis of this connectivity phenomenon. First,
we demonstrate that in the overparameterized case, the connecting path can be as simple as
a two-piece linear path, and the path length can be nearly equal to the Euclidean distance.
This finding suggests that the landscape should be nearly convex in a certain sense. Second,
we uncover a surprising star-shaped connectivity: For a finite number of typical minima,
there exists a center on the minima manifold that connects all of them simultaneously
via linear paths. These results are provably valid for linear networks and two-layer ReLU
networks under a teacher-student setup, and are empirically supported by models trained
on MNIST and CIFAR-10.

1 Introduction

It is well-known that neural networks are highly non-convex, but they can still be efficiently trained by simple
algorithms like stochastic gradient descent (SGD). Understanding the underlying mechanism is crucial and
in particular, a key aspect of this is to uncover the topology and geometry of neural network landscapes.

Some recent studies exploited the local properties of neural network landscapes, including the absence of
spurious minima Ge et al. (2016); Soudry & Carmon (2016), the sharpness of different minima Hochreiter &
Schmidhuber (1997); Keskar et al. (2017); Wu et al. (2017), and the structures of saddle points Zhang et al.
(2021) and plateaus Ainsworth & Shin (2021). Other studies have examined the nonlocal structures, including
the impact of symmetries and invariances Simsek et al. (2021), the presence of non-attracting regions of
minima Petzka & Sminchisescu (2021), the monotonic linear interpolation phenomenon Goodfellow et al.
(2014); Wang et al. (2022); Vlaar & Frankle (2022); Lucas et al. (2021). Among these nonlocal structures,
one of the most intriguing findings is the mode connectivity, which is the focus of this paper.

Mode connectivity refers to the property that global minima of (over-parameterized) neural networks are
(nearly) path-connected and form a connected manifold Cooper (2018), rather than being isolated. This
characteristic of neural network landscape was first observed by Freeman and Bruna in Freeman & Bruna
(2017), and its practical universality was later demonstrated in Draxler et al. (2018); Garipov et al. (2018)
through extensive large-scale experiments. Mode connectivity has attracted wide attention and has been
utilized to understand many important aspects of deep learning, including the role of permutation invariance
Entezari et al. (2021); Ainsworth et al. (2022), properties of SGD solutions Mirzadeh et al. (2020); Frankle
et al. (2020), explaining the success of certain learning methods such as ensemble methods Garipov et al.
(2018); He et al. (2019), and even to design methods with better generalization Benton et al. (2021).

In this paper, we conduct a fine-grained analysis of this mode connectivity. Our specific investigation is
inspired by the empirical observation that the connecting paths can be piecewise linear with as few as two
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pieces Garipov et al. (2018). This motivates us to examine the piecewise linear connectivity of the global
minima manifold. Two minima are said to be k-piece linearly connected if they can be connected using paths
with at most k linear segments. Specifically, our main contributions are summarized as follows.

• We provide a theoretical analysis of the piecewise linear connectivity for two-layer ReLU networks
and linear networks under a teacher-student setup. We prove that as long as the network is suf-
ficiently over-parameterized, any two minima are 2-piece linearly connected. By exploiting this
property, we further discover the following surprising structures of the global minima manifold:

– Star-shaped connectivity: For a finite set of typical minima, there exists a minimum (center)
such that it is linearly connected to all these minima simultaneously.

– Geodesic connectivity: For two typical minima, the geodesic distance on the minima man-
ifold is close to the Euclidean distance. Moreover, the ratio between them monotonically de-
creases towards 1 as increasing the network width. This suggests that the landscape of over-
parameterized networks might be not far away from a convex one in some sense.

• We then provide extensive experiments on MNIST and CIFAR-10 datasets that confirm our theo-
retical findings on practical models.
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Figure 1: Left: The speculation of a potential shape of the star-shaped connectivity in the loss
landscape. Due to the limitation in 2-dimensional visualization, here we only provide a potential
section as a heuristic plot. Right: For 2 minima θ1, θ2 as described in the setting of Proposition 16,
we consider the linear mode connectivity through a center θ∗. For the linear interpolations between
two minima, and the θ1 → θ∗ → θ2 fold-lines constructed by two linear interpolations, we plot the
training loss along these paths. Specifically, the x-axis t here denotes the point tθ∗ + (1 − t)θi in the
linear interpolation (the orange line). On the other hand, for the loss along the fold-line (blue line),
t < 0.5 corresponds to the point 2tθ∗ + (1 − 2t)θ1, while t ≥ 0.5 corresponds to (2t − 1)θ2 + (2 − 2t)θ∗.
The result shows our expectation of linear mode connectivity through the center we obtained.

1.1 Related works

Understanding the mode connectivity. There have been several studies that aim to theoretically
explain the phenomenon of mode connectivity. The initial work by Freeman and Bruna Freeman & Bruna
(2017) proved the mode connectivity for both linear networks and two-layer ReLU networks when the model
is regularized by squared ℓ2 norm. Garipov et al. (2018) empirically discovered that connecting paths can
be piecewise linear. Based on this observation, Kuditipudi et al. (2019) proved that if two minima satisfy
certain conditions such as the dropout stability and noise stability, then they can be connected using paths
with at most 10 linear segments. Moreover, the result in Kuditipudi et al. (2019) is applicable to deep
neural networks. Shevchenko & Mondelli (2020) provided a theoretical explanation of why SGD tends to
find solutions that satisfy the dropout stability for two-layer neural networks. In addition to these studies,
Nguyen et al. (2018; 2021a;b) investigated how the connectivity depends on the network width and depth, but
the analysis does not provide any information about the structure of the connecting paths. In contrast, we
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investigate the particular structure of connecting paths and provide both empirical and theoretical evidence
showing that when networks are sufficiently over-parameterized, typical minima can be connected using
paths of merely 2 linear segment. Moreover, we also explore the geometry of the global minima manifold by
using the simplicity of connecting paths.

Critical points. Fukumizu et al. (2019); Zhang et al. (2021) studied the hierarchical structures of critical
points and in particular, how local minima degenerate to saddle points when increasing the number of
neurons. Ros et al. (2019); Maillard et al. (2020) provided an analytical characterization of the distribution
of critical points for learning a single neuron in an asymptotic regime by using the Kac-Rice replicated
method from statistical physics. Ainsworth & Shin (2021); Fukumizu & Amari (2000); Yoshida & Okada
(2019) studied the appearance of plateaus in the neural network landscape and its impact on the training
process. In addition, it has been always a major problem to understand under what conditions bad local
minima/valley disappear Kawaguchi (2016); Soudry & Carmon (2016); Liang et al. (2018); Lin et al. (2022)
or not Auer et al. (1995); Safran & Shamir (2018); Yun et al. (2018); Ding et al. (2022); Lu & Kawaguchi
(2017). Another line of works inspects curvatures at minima Sagun et al. (2017) and how the curvatures of
the local landscape are related to the generalization of networks represented by those minima Hochreiter &
Schmidhuber (1997); Wu et al. (2017); Jastrzębski et al. (2017); Ma & Ying (2021); Wu et al.. In this paper,
we study the topology and geometry of global minima by utilizing the mode connectivity.

Nonlocal structures. Note that the mode connectivity is nonlocal in nature. Therefore, our work is also
helpful for understanding the nonlocal structures of the neural network landscape. Fort & Jastrzebski (2019)
proposed a phenomenological model (a set of high dimensional wedges) to study large-scale structures of
neural network landscape. Goodfellow et al. (2014) discovered the surprising monotonic linear interpolation
(MLI) phenomenon: the loss often decreases monotonically in the linear interpolation between random
initialization and minima found by SGD. Wang et al. (2022); Vlaar & Frankle (2022); Lucas et al. (2021)
provided theoretical analyses of MLI phenomenon. Cooper (2018) proved that in the over-parameterized
case, global minima form a high-dimensional manifold and this minima manifold is path connected as implied
by the mode connectivity phenomenon Garipov et al. (2018); Freeman & Bruna (2017); Draxler et al.
(2018). Recently, Annesi et al. (2023) showed a star-shaped structure in the regime of the spherical negative
perceptron. We instead provide both theoretical and empirical evidence, showing that star-shaped structure
also exists for neural networks.

2 Preliminaries

Notation. For an integer n, let [n] = {1, 2, . . . , n}. For a compact Ω, denote by Unif(Ω) the uniform
distribution over Ω. Let Sd−1 = {x ∈ Rd : ∥x∥2 = 1} and τd−1 = Unif(Sd−1). Denote by {ej}d

j=1 the
canonical basis of Rd.

Let f : X × Θ 7→ Y be a neural network with X and Θ denoting the input space and parameter
space, respectively. Let ℓ : Y × Y 7→ R be a loss function. Then the loss landscape is determined by
R(θ) = E(x,y)∼D[ℓ(f(x; θ), y)], where D denotes the input distribution. In this paper, we make the over-
parameterization assumption: infθ∈Θ R(θ) = 0. Then, the global minima manifold is given by

M = {θ ∈ Θ : R(θ) = 0}. (1)

For any θ1, θ2 ∈ M, denote by Pθ1,θ2 the space of paths on M connecting θ1 and θ2:

Pθ1,θ2 = {γ : [0, 1] 7→ M | γ(0) = θ1, γ(1) = θ2} .

Existing works on mode connectivity imply that under some conditions, M is path connected, i.e., Pθ1,θ2 ̸= ∅
for typical θ1, θ2 ∈ M. In this paper, we make a refined analysis of the connectivity. To be rigorous, we
formalize some concepts that we shall use throughout this paper below.
Definition 1 (Linear interpolation). For any θ1, θ2 ∈ Θ, denote by γlin

θ1,θ2
: [0, 1] → Θ the linear interpolation

path defined as γ(t) = tθ1 + (1 − t)θ2, t ∈ [0, 1].
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Definition 2 (k-piece linear connectivity). For any θ1, θ2 ∈ M, we write θ1 ↔ θ2 if γlin
θ1,θ2

⊂ M. We say
θ1 and θ2 are k-piece linearly (k-PL) connected if there exist β1, . . . , βk−1 ∈ M such that θ1 ↔ β1 ↔ · · · ↔
βk−1 ↔ θ2. Particularly, the case of k = 1 is referred to as linear connectivity.
Definition 3 (Star-shaped linear connectivity). For multiple minima S = {θi}r

i=1 ⊂ M, we refer to the
star-shaped linear connectivity as there exists a θ∗ ∈ M such that θi ↔ θ∗ for all i = 1, 2, . . . , r. Specifically,
θ∗ and S are said to be the center and feet, respectively.

In this paper, we also consider another quantity to measure the strength of connectivity.
Definition 4 (Normalized geodesic distance (NGD)). For any θ1, θ2 ∈ M, define the normalized geodesic
distance between θ1 and θ2 by

G(θ1, θ2) =
infγ∈Pθ1,θ2

∫ 1
0 ∥γ′(t)∥2 dt

∥θ1 − θ2∥2
. (2)

If Pθ1,θ2 is an empty set, set G(θ1, θ2) = +∞.

If the landscape is convex, it is trivial that the NGD is exactly 1 for any pair of global minima since the
geodesic is simply the linear interpolation. However, for nonconvex landscapes, the NGD is always strictly
greater than 1. The value of NGD can serve as a factor to quantify the degree of non-convexity. If the NGD
keeps close to 1 for any pair of minima, then the landscape should be somehow as benign as a convex one.
Otherwise, the landscape must be highly non-convex. We are particularly interested in how the value of
NGD changes as increasing the level of over-parameterization.

3 Two-layer ReLU networks

We first consider the two-layer ReLU network under a teacher-student setup, where the label is generated
by a teacher network: f∗(x) =

∑M
j=1 σ(w∗

j · x). Here the activation function σ : R 7→ R is given by
σ(z) := max(0, z). We make the following assumption.
Assumption 5. Suppose M ≤ d, w∗

j = ej for j = 1, . . . , M , and x ∼ τd−1.

By the rotational symmetry, the specific assumption that w∗
j = ej for j = 1, . . . , M is equivalent to only

assume {w∗
j }M

j=1 to be orthonormal. However, we will focus on Assumption 5 to make our statement more
succinct. In such a case, the loss objective can be rewritten as

R(θ) = Ex∼τd−1

( m∑
i=1

σ (wi · x) −
M∑

i=1
σ (xi)

)2 , (3)

where m denotes the number of neurons of the student network and θ = (w1, w2, . . . , wm)T = (wi,j) ∈ Rm×d

. Using this notation, each row of W represents a student neuron.

Assumption 5 allows us to obtain the following analytic characterization of the global minima manifold. This
characterization will play a critical role in our theoretical analysis and might be of independent interest to
other related problems as well.
Theorem 6. Suppose that m ≥ M and Assumption 5 hold. Let S0 = {(0, . . . , 0) ∈ Rd}, Sj = {αej : α ̸= 0}
for j ∈ [M ], and S = ∪M

j=0Sj. Then the global minima manifold M is a compact set in Rm×d:

M =
{

θ = (w1, . . . , wm)T ∈ Rm×d : ∀ i ∈ [m], wi ∈ S and ∀ j ∈ [M ],
m∑

i=1
wi,j = 1

}
(4)

The proof is deferred to Appendix A.1. Note that Sj ∩Sk = ∅ for any j ̸= k ∈ {0, 1, . . . , M}. Hence Theorem
6 implies the following facts about the global minima:
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• There are at most m + 1 types of student neurons, represented by S0, S1, . . . , SM , regardless of how
overparameterized the student network is. Moreover, for any j ∈ [M ], there exists at least one
student neuron taking the type of Sj .

• For each neuron, there exists at most one coordinate to be nonzero and the coordinates from M + 1
to d must be zero.

The following lemma provides a precise condition of when two global minima are linearly connected, which
will be used in our subsequent analysis.
Lemma 7 (Linear connectivity). For any two global minima θ(1) = (w(1)

1 , . . . , w(1)
m )T ,

θ(2) = (w(2)
1 , . . . , w(2)

m )T ∈ Rm×d, we have W (1) ↔ W (2) if and only for any i ∈ {1, . . . , m}, one of the
following happens:

• w(1)
i ∈ S0 or w(2)

i ∈ S0;

• there exists j ∈ {1, . . . , M} such that w(1)
i ∈ Sj and w(2)

i ∈ Sj.

The above lemma (proof deferred to Appendix A.1) means that if θ1 ↔ θ2, then for any i ∈ [m], the nonzero
coordinates of w(1)

i and w(2)
i must be the same if they are not zero simultaneously.

3.1 The k-piece linear connectivity

Theorem 8. Suppose m > M and two minima θ(1), θ(2) are i.i.d. drawn from Unif(M). Then, w.p. at least
pm,M = 1 − M( M2−1

M2 )m−2M , θ(1) and θ(2) are 2-PL connected.

The proof of this theorem can be found in Appendix A.2. Notice that the probability pm,M → 1 as
m → ∞, implying that when the student is sufficiently over-parameterized, the 2-PL connectivity holds
with probability nearly 1. Quantitatively speaking, for any δ ∈ (0, 1), m ≥ CM2 log(M/δ) is sufficient to
guarantee that the probability of 2-PL connectivity is no less than 1 − δ.

The following theorem further shows that if allowing the number of pieces to be slightly larger, then the
k-PL connectivity holds for two global minima.
Theorem 9. Suppose m ≥ 2M − 1, then any two global minima are 4-PL connected.

The proof is deferred to Appendix A.3.

3.2 Star-shaped connectivity

Theorem 10. Suppose m > M and let θ1, θ2 be two minima i.i.d. drawn from Unif(M). Then, w.p. at least
1 − M( Mk−1

Mk )m−kM , there exists a center θ∗ ∈ M such that θi ↔ θ∗ for all i ∈ [k].

A simple calculation implies that to ensure the probability larger than 1 − δ, we need m ≥ CMk log(M/δ).
The following theorem shows by allowing the connectivity between feet and the center to be a two-piece
linear path, then the probability becomes exactly 1 as long as m ≥ kM .
Theorem 11. Given k ∈ N, suppose m ≥ kM . For any k global minima θ1, . . . , θk, we can find a center θ∗

such that θ∗ and θi are 2-PL connected for any i = 1, . . . , k.

The proofs of Theorem 10 and Theorem 11 can be found in Appendix A.4 and A.5, respectively. In Figure 2,
we provide an illustration of the difference in how the feet are connected to the star center between Theorem
10 and Theorem 11.

3.3 The geodesic connectivity

The left of Figure 3 shows the normalized geodesic distances (NGDs) between minima found by SGD for the
two-layer ReLU networks mentioned above. We can see clearly that the value of NGD decreases monotoni-
cally towards 1 as the network width m increases. This implies that the landscape of wide networks should
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Figure 2: Left. The original star-shaped connectivity. The five white circles are the feet and the
red circle is the center. The blue line represents the linear connecting path. Right. The extended
star-shaped connectivity is proved in Theorem 11, where the feet are connected to the center via a
two-piece linear path.

be somehow not far from a convex one. This is consistent with our intuition that wider networks should
have a simpler landscape than narrow networks. Below, we provide some theoretical evidence to explain this
mysterious phenomenon.
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Figure 3: Left. How the normalized geodesic distance (NGD) changes with the network width for
two-layer ReLU networks. The teacher network has M = 4 neurons and we refer to Section 5 for the
algorithm of estimating NGD. Right. The L2 norm of each neuron for SGD solutions. Here, m = 512,
M = 4, d = 4. One can see that SGD tends to find sparse solutions.

Theorem 12. Suppose m > M , and let θ1, θ2 be two minima independently drawn from Unif(M). Then
there exists absolute constants c1, c2 > 0 such that w.p. at least 1−c1e−m that G(θ1, θ2) ≤ c2

√
M . Moreover,

the upper bound can be achieved by a two-piece linear path.

The proof is deferred to Appendix A.6. This theorem shows that the NGD between uniformly sampled
minima is independent of the level of over-parameterization. However, Figure 3 shows that NGD shrinks to
1 when increasing the network width for minima found by SGD. We hypothesize that SGD induces a biased
distribution over the minima manifold. In the right of Figure 3, we visualize the magnitude of different
neurons for an SGD solution. We observe that SGD tends to find solutions with sparse structures, i.e., only
a few dominant neurons contribute.

To study the influence of neuron sparsity on the geodesic connectivity, we define the following distribution
to formulate the sparsity bias.
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Definition 13 (Neuron-sparse distribution). For any absolute constant 0 < r < 1, we define SP(M, r),
the neuron-sparse distribution with a sparsity r over M, as following: for θ = (w1, . . . , wm)T , for any
i ∈ {1, . . . , m}, P (wi ∈ S0) = r and P (wi ∈ Sj) = 1−r

M for j ∈ {1, . . . , M}.
Theorem 14. Suppose m > M and let θ1, θ2 be two minima independently drawn from SP(M, r). Then
there exists two absolute constants c1, c2 > 0 such that w.p.at least 1 − c1Me−mr2 that G(θ1, θ2) ≤ 1 + c2

r
√

m
.

Moreover, the upper bound can be achieved by a two-piece linear path.

The proof is deferred to Appendix A.7. This theorem demonstrates that the bias towards sparse solutions
can explain the shrinkage of NGD to 1. In particular, when m → ∞, NGD approaches to 1.

4 Linear networks

A linear network f(·; θ) : Rd 7→ R is parameterized by f(x; θ) = ALAL−1 . . . A1x, where Al ∈ Rml×ml−1 for
l = 1, 2, . . . , L. Here L denotes the network depth and {ml}L

l=0 denotes the widths. Note that m0 = d and
mL = 1 and we assume m2 = · · · = mL−1 = m for simplicity. We make the following assumption on the
data distribution.
Assumption 15. Suppose that y = Qx for some Q ∈ R1×d, E[x] = 0, and λmin(E[xxT ]) > 0.

The above assumption is quite mild but ensures that the global minima manifold has the following analytic
characterization:

M = {(AL, AL−1, . . . , A1) : ALAL−1 · · · A1 = Q} (5)

The following theorem provides the characterization of k-PL connectivity of the loss landscape of linear
networks. The proof can be found in Appendix B.
Theorem 16. Let f(·; θ) be the linear network described in Section 4. Let θ1, θ2 ∈ M be two global minima.
If m > 2L − 1, then we have:

• Two global minima are almost surely 2-PL connected;

• Any two global minima are 3-PL connected,

We remark that the “almost surely” condition in characterizing the 2-PL connectivity cannot be removed.
The following lemma provides a counterexample, showing that there indeed exist pathological minima that
are not 2-PL connected.
Lemma 17. Consider the case of m = 4, d = 1, L = 2 and the target y = x. Then, we have M = {(a, b) ∈
Rm ⊗ Rm : aT b = 1}. Consider two global minima θ1 = (A(1)

1 , A
(2)
1 ), θ2 = (A(1)

2 , A
(2)
2 ) with

A
(1)
1 = (1, 0, 0, 0), A

(1)
2 = (1, 0, 0, 0)T , A

(2)
1 = (−1, 0, 0, 0), A

(2)
2 = (−1, 0, 0, 0)T .

Then, θ1 and θ2 are not 2-PL connected. Quantitatively,

inf
θ∈M

(∫ 1

0
R(tθ1 + (1 − t)θ) dt +

∫ 1

0
R(tθ2 + (1 − t)θ)

)
dt ≥ 4

15Ex2.

Theorem 18 (star-shaped linear connectivity). Consider linear networks of depth L and width m. Let
{θi}r

i=1 be r global minima. If m > 1 + r(L − 1), then we almost surely (with respect to the Lebesgue measure
over M⊗r) have that there exists a θ∗ ∈ M such that θ∗ ↔ θi for all i = 1, . . . , r.

Here M⊗r = {(θ1, . . . , θr) ∈ Rr : θi ∈ M for i ∈ [r]}. This theorem establishes that when linear networks
are sufficiently wide, the star-shaped connectivity holds almost surely. The proof can be found in Appendix
B.1.

The geodesic connectivity. In Figure 4, we empirically demonstrate that the Normalized Geodesic Dis-
tances (NGDs) for linear networks are also close to 1. Additionally, we observe that the NGD monotonically
decreases with increasing network width, although this phenomenon has not yet been theoretically proven.
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Figure 4: Normalized geodesic distance vs. network width for linear networks. Following the setting
as described earlier in this section, we consider a fully connected linear network with L = 2. We set
d = m, and vary m to consider the normalized geodesic distance of a center with 2-PL-connectivity.
Algorithm 5 is applied here to train a center and the result is an average of 5 separate experiments.
It is shown that as the width increases, we can obtain a center that satisfies 2-PL-connectivity with a
shorter geodesic distance.

5 Experiments

In this section, we provide experiments to validate the star-shaped and geodesic connectivity across a range
of architectures and datasets.

The center-finding algorithm. Given a set of minima S = {θ∗
i }r

i=1, to find a center θ that connects to
all of them via linear paths, we propose to minimize the following objective

JS(θ) := 1
r

r∑
i=1

(
Et∼U [0,1][R(tθ + (1 − t)θ∗

i )] + λp(θ, θ∗
i )
)

, (6)

where p(·, ·) is a penalization function to be determined later. To efficiently solve this optimization problem,
we use the Adam Kingma & Ba (2014) optimizer with the minibatch gradient:

∇ĴS(θ) = ∇

 1
BrBt

Br∑
k=1

Bt∑
j=1

R(tjθt + (1 − tj)θ∗
ik

) + λ

Br

Br∑
k=1

p(θt, θ∗
ik

)

 , (7)

where ik
i.i.d.∼ Unif([r]) and tj

i.i.d.∼ Unif([0, 1]) for k ∈ [Br] and j ∈ [Bt]. Here, Br, Bt ∈ N denote the batch
sizes. Across all our experiments, we always set Br = 1, Bt = 3.

Estimating the normalized geodesic distance. Given two minima θ∗
1 and θ∗

2 , we first find a center
θ̃ ∈ M by minimizing the objective equation 6 for S = {θ∗

1 , θ∗
2} and p(θ, θ′) = ∥θ − θ′∥2

2. This allows us
to find a minimum on the minima manifold such that it connects to both θ∗

1 and θ∗
2 via the shortest linear

paths. Moreover, by Definition 4, it holds for any θ ∈ M, satisfying θ ↔ θ∗
i for i = 1, 2, that

G(θ∗
1 , θ∗

2) ≤ ∥θ∗
1 − θ∥2 + ∥θ − θ∗

2∥2

∥θ∗
1 − θ∗

2∥2
. (8)

Then, plugging θ̃ into the right hand side of equation 8 gives an upper bound of G(θ∗
1 , θ∗

2).

The experiment setup. To validate our theoretical findings for practical models, we train fully-connected
neural networks (FNNs) and VGG16 Simonyan & Zisserman (2014) for classifying MNIST LeCun et al. (1998)
dataset, and VGG16 Simonyan & Zisserman (2014) and ResNet34 He et al. (2016) for classifying CIFAR-10
Krizhevsky et al. (2009) dataset, respectively:
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• The FNN is three-layer, whose architecture is 728 → 500 → 300 → 10. We trained FNNs under the
hyperparameters: lr = 1e-3 and batchsize = 200,

• The architecture of VGG16 and ResNet34 can be found in Simonyan & Zisserman (2014) and He
et al. (2016), respectively. We trained VGG16 and ResNet34 under the hyperparameters: lr = 5e-3
and batchsize = 200.

As for the center-finding algorithm, we set Br = 1, Bt = 3 as mentioned above, and learning rate η = 0.01.
For all cases, the Adam optimizer Kingma & Ba (2014) is adopted.

5.1 Star-shaped connectivity

In Figure 5, we visualize the star-shaped connectivity for VGG-16 in classifying the CIFAR10 dataset. We
independently train the model to find 3 minima {θ∗

i }3
i=1 and then run the center-finding algorithm to locate

a center θc∗ on the minima manifold. We can see that the linear interpolation between any pair minima
among the three ones indeed encounters a very high barrier. However, through the center θc, the three
minima form a star-shaped connectivity.

In Table 1, we provide more experiments for a variety of model architectures and training datasets. We can
see that the star-shaped connectivity holds for all scenarios examined.

Figure 5: An validation of star-shaped connectivity. The model is VGG16 and the dataset is CIFAR-
10. We examine 3 minima obtained by running Adam independently. Then we applied the center-
finding algorithm to obtain the corresponding center. For all the 3 linear interpolations between
minima, and all the 3 “minimum-center-minimum” fold-lines constructed by two linear interpolations,
we plot the training loss (left) and accuracy (right) along these paths. Specifically, the x-axis t here
denotes the point tθ∗ + (1 − t)θi in the linear interpolation (the orange line). On the other hand, for
a pair (θi, θj) (blue line), t < 0.5 corresponds to the point 2tθ∗ + (1 − 2t)θi, while t ≥ 0.5 corresponds
to (2t − 1)θj + (2 − 2t)θ∗. It is shown in the experiment that our algorithm successfully found a center
that is linearly connected to all three minima simultaneously, i.e., forms a star-shaped connectivity.

5.2 The geodesic connectivity

In Table 2, we report the NGDs estimated by the aforementioned algorithm. It is demonstrated that minima (found
by the commonly-used Adam optimizers) can be connected via paths whose NGDs are nearly 1. This is consistent
with our theoretical findings in toy models.

9
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MNIST CIFAR10
VGG16 FNN VGG16 ResNet34

Loss Barrier (linear) 16.91 1.25 6.21 3.28
Loss Barrier (fold-line) 3.1e-05 1.1e-03 5.0e-03 1.0e-02

MNIST CIFAR10
VGG16 FNN VGG16 ResNet34

Accuracy Barrier (linear) 28.55% 68.09% 10.79% 41.21%
Accuracy Barrier (fold-line) 100.00% 99.96% 99.99% 99.65%

Table 1: For different models and datasets, we independently trained 5 minima using Adam opti-
mizer. Then, we run the path-finding algorithm with Br = 1, Bt = 3 for 200 epochs. For all the
10 linear interpolations between minima, and all the 10 “minimum-center-minimum” fold-lines con-
structed by two linear interpolations, we computed the maximum (for loss) or minimum (for accuracy)
and averaged them, which is denoted as “barrier”. It is shown that there is nearly no barrier on the
fold-lines we constructed, which validates that our observation of star-shaped connectivity holds for a
wide range of settings.

FNN+MNIST VGG16+MNIST VGG16+CIFAR10 ResNet18+CIFAR10
NGD 1.003 1.001 1.051 1.003

Barrier 99.89% 99.25% 99.91% 99.63%

Table 2: The upper bound of NGD estimated via Eq. 8 for different networks and datasets. We
independently trained 2 minima in each setting, then trained the center via the center-finding algorithm
with a penalized term. It turns out that we can obtain great linear mode connectivity via a fold-line,
as well as keeping the relative distance proportion controlled.

6 Conclusion

In this paper, we systematically investigate the star-shaped and geodesic connectivity phenomenon for the landscape of
neural networks. We provide theoretical analysis on toy models such as two-layer ReLU networks and linear networks,
as well as experimental validations on popular networks trained on MNIST and CIFAR-10 datasets. Our findings
reveal that the neural network landscape has many simple structures. Specifically, the star-shaped phenomenon
suggests a connectivity property stronger than mode connectivity. The geodesic connectivity indicates that the loss
landscape might be not far from being convex in a certain sense. For future work, it would be interesting to explore
the potential relationships between our findings and optimization and generalization in neural networks.
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A Proofs in Section 3

A.1 Proof of Theorem 6.

Let

M̃ =

{
W ∈ Rm×d : wi ∈ S for i = 1, . . . , m and

m∑
i=1

wi,j = 1 for j = 1, . . . , M

}
.

Our task is to prove that M = M̃. For any W ∈ M, we have L(W ) = Ex∼τd−1 [(
∑m

i=1 σ(wT
i x) −

∑M

j=1 σ(xj))2] = 0.
By the non-degeneracy of τd−1, this is equivalent to

m∑
i=1

σ(wT
i x) =

M∑
j=1

σ(xj) ∀ x ∈ Sd−1. (9)

• We first consider the first M columns. Taking x = ej in equation 9 gives for any j ∈ [M ] that
m∑

i=1

σ(wi,j) =
m∑

i=1

σ(wT
i ej) = 1. (10)

Taking x = −ej in equation 9 gives for any j ∈ [M ] that
m∑

i=1

σ(−wij) =
m∑

i=1

σ(−wT
i ej) = 0. (11)

Combining equation 10 and equation 11 leads towij ≥ 0 ∀ i ∈ [m], j ∈ [M ]
m∑

i=1
wij = 1 ∀ j ∈ [M ] . (12)

• Next we turn to consider the columns from M + 1 to d. Analogously, for any j ∈ M + 1, . . . , d, we take
x = ej and x = −ej in equation 9, yielding

m∑
i=1

σ(wij) = 0
m∑

i=1
σ(−wij) = 0

. (13)

This implies
wij = 0, ∀ i ∈ {1, . . . , m}, j ∈ {M + 1, . . . , d}. (14)

• Now we prove by contradiction that for each j ∈ [m], there exists at most one coordinate to be nonzero.
Suppose that there exists i ∈ [m] such that ||wi||0 ≥ 2. W.L.O.G, let i = 1 and w11 > 0, w12 > 0. Then,
there must exist ϵ > 0 such that

√
1 − ϵ2w11 − ϵw12 > 0.

Let x =
√

1 − ϵ2e1 − ϵe2 in equation 9. First, we have
M∑

i=1
σ (xi) =

√
1 − ϵ2. Second,

m∑
i=1

σ(wi · x) =
m∑

i=1

σ(
√

1 − ϵ2wi1 − ϵwi2) = σ(
√

1 − ϵ2w11 − ϵw12) +
m∑

i=2

σ(
√

1 − ϵ2wi1 − ϵwi2)

≤ σ(
√

1 − ϵ2w11 − ϵw12) +
m∑

i=2

σ(
√

1 − ϵ2wi1) =
√

1 − ϵ2w11 − ϵw12 +
m∑

i=2

√
1 − ϵ2wi1

=
√

1 − ϵ2
m∑

i=1

wi1 − ϵwi2 <
√

1 − ϵ2
m∑

i=1

wi1 =
√

1 − ϵ2.

Thus,
m∑

i=1
σ(wi · x) <

M∑
i=1

σ (xi), which is contradictory with equation 9.

Combining the three conclusions above, we proved M ⊂ M̃. What remains is to prove M̃ ⊂ M. It is obvious that

for any W ∈ M̃, we have
m∑

i=1
σ (wi · x) =

m∑
i=1

σ

(
d∑

j=1
wijxj

)
=

m∑
i=1

d∑
j=1

wijσ (xj) =
M∑

i=1
σ (xi). Thus W is a global

minimum, implying M̃ ⊂ M.
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Proof of Lemma 7. Recall that Theorem 6 shows

M =

{
W ∈ Rm×d : wi ∈ S for i = 1, . . . , m and

m∑
i=1

wi,j = 1 for j = 1, . . . , M

}
, (15)

where S = ∪M
j=0Sj with S0 = {(0, . . . , 0) ∈ Rd} and Sj = {αej ∈ Rd : α ̸= 0} for j = 1, . . . , M .

Given any θ1, θ2 ∈ M, our task is to prove that θ1 ↔ θ2 is equivalent to that one of the following two conditions is
satisfied:

a) w(1)
i ∈ S0 or w(2)

i ∈ S0;
b) there exists j ∈ {1, . . . , M} such that w(1)

i ∈ Sj and w(2)
i ∈ Sj .

We first prove that θ1 ↔ θ2 can lead to the condition a) or b). Note that θ1 ↔ θ2 means

γ(t) = ((1 − t)w(1)
1 + tw(2)

1 , · · · , (1 − t)w(1)
m + tw(2)

m )T ∈ M.

By equation 15, (1 − t)w(1)
i + tw(2)

i ∈ S holds for any i ∈ [m] and t ∈ [0, 1]. Since any element in S has at most one
nonzero coordinate, w(1)

i and w(2)
i have at most one nonzero coordinate and their nonzero coordinates must be the

same. Otherwise, the number of nonzero coordinates of (1 − t)w(1)
i + tw(2)

i will be no less than 2 for any t ∈ (0, 1).
This implies that either condition a) or condition b) is satisfied.

Second, if condition a) or condition b) is satisfied, then for any t ∈ [0, 1] and any i ∈ [m], (1 − t)w(1)
i + tw(2)

i ∈ S.
Moreover, for any j ∈ [M ],

m∑
i=1

(
(1 − t)w(1)

i,j + tw
(2)
i,j

)
= (1 − t)

m∑
i=1

w
(1)
i,j + t

m∑
i=1

w
(2)
i,j = (1 − t) + t = 1.

Hence, by equation 15, (1 − t)θ1 + tθ2 ∈ M for any t ∈ [0, 1].

A.2 Proof of Theorem 8.

Let θi
iid∼ Unif(M) for i = 1, 2. We aim to give a lower bound for the probability that there exists a global minimum

θ∗ such that θ1 ↔ θ∗ and θ∗ ↔ θ2. From Theorem 6, given a θ = (w1, . . . , wm)T ∈ Rm×d, the sufficient and necessary
condition for θ to be a global minimum is:

(1) wi ∈ S, for any i ∈ [m].
(2)

∑
j:wj ∈Si

wj = ei, for i ∈ {1, . . . , M}.

We notice that θ1(θ2) has the requirement that for every i ∈ {1, . . . , M}, there exists j ∈ {1, . . . , m} such that
θ1

j (θ2
j ) ∈ Si, after we already have M different elements of θ1(θ2), the rest elements have no restriction and can be

arbitrarily chosen in at least m − 2M overlapped positions.

Hence, we suppose w1
j and w2

j have uniform distribution over S for any j ∈ T , where T is a subset of {1, . . . , m}
containing m − 2M elements. i.e. w1

j (w2
j ) (j ∈ T )chooses randomly a set from {S0, . . . , SM } to belong to.

For j ∈ T , we consider the pair (w1
j , w2

j ). We denote [w1
j , w2

j ] ∆=[p, q] if w1
j ∈ Sp and w2

j ∈ Sq.

Then we define the incident Ai: for any j ∈ T , [w1
j , w2

j ] ̸= [i, i]. Since θi
iid∼ Unif(M) for i = 1, 2, we have

P (Ai) = ( M2−1
M2 )m−2M .

Thus, from the inclusion-exclusion principle, we have:

P (θ1 and θ2 are 2-PL connected)

≥1 −
M∑

i=1

P (Ai)

=1 − MP (A1)

=1 − M

(
M2 − 1

M2

)m−2M

.
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A.3 Proof of Theorem 9.

First, we consider the choice of θ3 (θ5). Since θ1 (θ2) has property that for every i ∈ {1, . . . , M}, there exists
ji ∈ {1, . . . , m} such that w1

ji
∈ Si. Then, we let w3

ji
= ei for i ∈ {1, . . . , M}, and set the other line vector of θ3 as

zero. From Theorem 6, θ3 is a global minimum of Equation (3). Further, from Lemma 7, we have θ1 ↔ θ3. We call
this method generating θ3 from θ1 “merging”, since it straightforwardly merges some line vectors of θ1 belonging to
the same set in S to a single non-zero vector. Similarly, we can merge θ2 to θ5.

θ3 and θ5 share the common characteristic that they contain exactly M different non-zero line vectors {e1, . . . , eM },
and m − M zero line vectors. Since m ≥ 2M − 1, we have m − M ≥ M − 1, thus θ3 has at least M − 1 zero line
vectors.

Case 1.

If there are at least M zero line vectors, suppose the set of the zero line vectors is {w3
a1 , . . . , w3

aM
}. Then, since

w5
a1 , . . . , w5

aM
belong to different subsets of S or belong to S0, we can find a feasible set of {w4

a1 , . . . , w4
aM

} =
{e1, . . . , eM }. We set other line vectors of θ4 as zero and then we are done since we have a feasible global minimum
θ4.

Case 2.

If there are only M − 1 zero line vectors for θ3. Now, we fix a feasible θ3 merged from θ1, suppose the set of its zero
line vectors is {w3

a1 , . . . , w3
aM−1 }. First, we look at the corresponding line vectors of these θ3’s zero vectors in θ5, i.e.

{w5
a1 , . . . , w5

aM−1 }. We notice that θ5 is not fixed when generated from θ2, and trivially we have at least M different
positions to choose from for the M − 1 zero line vectors. Hence, there exists a choice of θ5 where at least one element
of {w5

a1 , . . . , w5
aM−1 } is non-zero. Thus, there is at least one zero vector of θ5 with a non-zero corresponding line

vector in θ3, the set of which we denote as {w3
b1 , . . . , w3

bf
}.

Case 2-1.

If there exists w3
bi

belongs to different subset of S from any element of {w5
a1 , . . . , w5

aM−1 }, then we can find a feasible
set of {w4

bi
, w4

a1, . . . , w4
aM−1 } = {e1, . . . , eM }. We set other line vectors of θ4 as zero and then we are done since we

have a feasible global minimum θ4.

Case 2-2.

If every element of w3
b1 , . . . , w3

bf
belongs to the same subset of S as an element of {w5

a1 , . . . , w5
aM−1 }, we arbitrarily

choose a line vector from w3
b1 , . . . , w3

bf
. Suppose w3

bj
∈ St and w5

aq
∈ St. Then we suppose w2

bj
∈ Sp, and w5

bg
∈ Sp.

Case 2-2-1.

If p = 0, then we let w5
bj

= et, and let w5
aq

= 0. Then we can find a feasible set of {w4
bj

, w4
a1, . . . , w4

aM−1 } =
{e1, . . . , eM }. We set other line vectors of θ4 as zero and then we are done since we have a feasible global minimum
θ4.

Case 2-2-2.

If p ̸= 0, then we can switch w5
bj

and w5
bg

without damaging the connectivity of the global minima. Now, the number
of the non-zero corresponding line vectors in θ3 reduces to f − 1. After at most f − 1 same operations, if we still
didn’t find the feasible global minimum W4, then we get exactly one non-zero corresponding line vector in θ3 and
exactly one non-zero element in {w5

a1 , . . . , w5
aM−1 }, and further, these two vectors belong to the same subset of S.

Suppose w3
bj′ ∈ St′ and w5

aq′ ∈ St′ (t′ ̸= 0). Then we suppose w2
bj′ ∈ Sp′ , and w5

bg′ ∈ Sp′ .

Case 2-2-2-1.

If p′ = 0, then we let w5
bj′ = et′ , and let w5

aq′ = 0. Then we can find a feasible set of {w4
bj′ , w4

a1, . . . , w4
aM−1 } =

{e1, . . . , eM }. We set other line vectors of θ4 as zero and then we are done since we have a feasible global minimum
θ4.

Case 2-2-2-2.
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If p′ ̸= 0, then we can switch w5
bj′ and w5

bg′ without damaging the connectivity of the global minima. Since p′ ̸= t′,
we can find a feasible set of {w4

bg′ , w4
a1, . . . , w4

aM−1 } = {e1, . . . , eM }. We set other line vectors of θ4 as zero and then
we are done since we have a feasible global minimum θ4.

Concluding above, we completed the proof.

A.4 Proof of Theorem 10

We follow the proof of Theorem 8 and apply some modifications.

Here, for j ∈ T , we consider the combination (w1
j , . . . , wk

j ). We denote [w1
j , . . . wk

j ] ∆=[p1, . . . , pk] if wi
j ∈ Spi for

i ∈ {1, . . . , k}.

Similarly, we define the incident Ai: for any j ∈ T , [w1
j , w2

j , . . . , wk
j ] ̸= [i, i, . . . , i].

Thus. following the proof of Theorem 8, based on our assumption for uniform distribution, we can calculate that
P (Ai) = ( Mk−1

Mk )m−kM .

Hence, 1 −
M∑

i=1
P (Ai) = 1 − M( Mk−1

Mk )m−kM , which is the lower bound in the theorem.

A.5 Proof of Theorem 11.

We follow the proof of Theorem 9. Firstly, we merge θi to be θi0 just as what we did in the proof of Theorem 9.
Considering θi0 for any i ∈ {1, . . . , k}, since m ≥ kM , it has at least (k − 1)M zero line vectors.

Hence, it trivially holds that θ10 and θ20 share at least (k − 2)M zero line vectors of relatively same position, θ10 ,
θ20 and θ30 share at least (k − 3)M zero line vectors of relatively same position. . . We can easily use mathematical
induction to deduce that θ10 , . . . , θk−10 share at least M zero line vectors of relatively same position. Suppose the
positions of the M common line vectors are {a1, . . . , aM }. Since wk

a1 , . . . , wk
aM

belong to different subsets of S or
belong to S0, we can find a feasible set of {wk+1

a1 , . . . , wk+1
aM

} = {e1, . . . , eM }. We set other line vectors of θk+1 as
zero and then we are done since we have a feasible global minimum θk+1.

A.6 Proof of Theorem 12

Lemma 19. For any two global minima θ1 = (u1
1, . . . , u1

d), θ2 = (u2
1, . . . , u2

d), for i ∈ {1, . . . , M}, suppose θ1
and θ2 respectively have m1 and m2 neurons that belong to Si, with mt neurons sharing common coordinates and
mt ≤ min{m1, m2}. Then, for any global minimum θ = (v1, . . . , vd), we have

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

≤ 1

1 −
√

(m1−mt)(m2−mt)
m1m2

.

Proof of Lemma 19. Suppose θ1 = (w1
1, . . . , w1

m)T = (u1
1, . . . , u1

d), θ2 = (w2
1, . . . , w2

m)T = (u2
1, . . . , u2

d) ∈ Rm×d.
Suppose θ = (w1, . . . , wm)T = (v1, . . . , vd).

Suppose a1, . . . , amt , b1, . . . , bmt are the ith components of w1 where w1 shares common coordinates with w2.
amt+1, . . . , am1 , bmt+1, . . . , bm2 are the rest components. We have

mt∑
j=1

aj ≤ 1 and
mt∑
j=1

bj ≤ 1. Suppose x1, . . . , xmt

are the ith components of w that share common coordinates with w1 and w2. From Theorem 6, we have
mt∑
j=1

xj = 1.

17
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Thus,
∥vi − u1

i ∥2
2 + ∥vi − u2

i ∥2
2

=
mt∑
i=1

[
(xi − ai)2 + (xi − bi)2]+

m1∑
i=mt+1

a2
i +

m2∑
i=mt+1

b2
i

=2
mt∑
i=1

[
x2

i − (ai + bi)xi + a2
i + b2

i

2

]
+

m1∑
i=mt+1

a2
i +

m2∑
i=mt+1

b2
i

=2
mt∑
i=1

[
(xi − ai + bi

2 )2 + (ai − bi)2

4

]
+

m1∑
i=mt+1

a2
i +

m2∑
i=mt+1

b2
i

≥2

(
1 −

mt∑
i=1

(ai + bi) /2
)2

m
+

mt∑
i=1

(ai − bi)2

2 +
m1∑

i=mt+1

a2
i +

m2∑
i=mt+1

b2
i .

Thus, we have

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

=
2

(
1−

mt∑
i=1

(ai+bi)/2

)2

m
+

mt∑
i=1

(ai−bi)2

2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

mt∑
i=1

(ai − bi)2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

∆= M.

Further, we have

M ≤
2

(
1−

mt∑
i=1

(ai+bi)/2

)2

m
+

mt∑
i=1

(ai−bi)2

2 +
(1−

mt∑
i=1

ai)2

m1−mt
+

(1−
mt∑
i=1

bi)2

m2−mt

mt∑
i=1

(ai − bi)2 +
(1−

mt∑
i=1

ai)2

m1−mt
+

(1−
mt∑
i=1

bi)2

m2−mt

.

Denote Sa
∆=

mt∑
i=1

ai, Sb
∆=

mt∑
i=1

bi, then we have

M ≤
2 (1− Sa+Sb

2 )2

m
+ (Sa−Sb)2

2mt
+ (1−Sa)2

m1−mt
+ (1−Sb)2

m2−mt

(Sa−Sb)2

mt
+ (1−Sa)2

m1−mt
+ (1−Sb)2

m2−mt

=
m1

mt(m1−mt) (1 − Sa)2 + m2
mt(m2−mt) (1 − Sb)2

(Sa−Sb)2

mt
+ (1−Sa)2

m1−mt
+ (1−Sb)2

m2−mt

≤
√

m1(m2 − mt)m2(m1 − mt)√
m1(m2 − mt)m2(m1 − mt) − (m1 − mt)(m2 − mt)

= 1

1 −
√

(m1−mt)(m2−mt)
m1m2

.

Now we completed the proof.

Lemma 20 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables. Assume that Xi ∈ [mi, Mi]
for every i. Then, for any t > 0, we have

P

{
n∑

i=1

(Xi − EXi) ≥ t

}
≤ e

− 2t2∑n

i=1
(Mi−mi)2

.

18
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We suppose m1 ≥ m2, then we have mt
m1

=

m1∑
j=1

1{w2
j ∈Si}

m1
. Then, from Hoeffding’s inequality (Lemma 20), we have for

any ϵ > 0, with probability 1 − e−2m1ϵ2 ,
m1∑
j=1

1{w2
j ∈ Si}

m1
− 1

m + 1 ≥ −ϵ.

Then we have
1

1 −
√

(m1−mt)(m2−mt)
m1m2

≤ 1
1 − m1−mt

m1

= 1
mt
m1

≤ 1
1

M+1 − ϵ
.

Now, we suppose θ1 and θ2 respectively have m1i and m2i neurons that belong to Si, and from Lemma 19 we have

with probability 1 −
M∑

i=1
e−2 max{m1i,m2i}ϵ2 ,

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

≤ 1
1

M+1 − ϵ

for all i ∈ {1, . . . , M}. Hence,

min
θ

∥θ − θ1∥2
2 + ∥θ − θ2∥2

2

∥θ1 − θ2∥2
2

≤ 1
1

M+1 − ϵ
.

Furthermore, for any δ > 0, from Hoeffding’s inequality, we have with probability 1 − e−2mδ2 ,

m1i

m
− 1

M + 1 ≥ −δ.

Hence, with probability 1 − Me−2mδ2 ,

max{m1i, m2i}
m

− 1
M + 1 ≥ −δ

for all i ∈ {1, . . . , M}. Therefore, with probability 1 − Me−2mδ2
− Me−2( m

M+1 −mδ)ϵ2
,

min
θ

∥θ − θ1∥2
2 + ∥θ − θ2∥2

2

∥θ1 − θ2∥2
2

≤ 1
1

M+1 − ϵ
.

We let δ = ϵ, and we obtain with probability 1 − Me−2mϵ2
− Me−2( m

M+1 −mϵ)ϵ2
,

min
θ

∥θ − θ1∥2
2 + ∥θ − θ2∥2

2

∥θ1 − θ2∥2
2

≤ 1
1

M+1 − ϵ
.

Last, using Cauchy’s inequality, we completed the proof.

A.7 Proof of Theorem 14

Lemma 21. Suppose a1, . . . , amt , b1, . . . , bmt are the ith components of w1 and w2 where w1 shares common co-
ordinates with w2 or where the neuron of w1 or w2 belongs to S0. amt+1, . . . , am1 , bmt+1, . . . , bm2 are the rest
components. Then we have

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

=
2

(
1−

mt∑
i=1

(ai+bi)/2

)2

mt
+

mt∑
i=1

(ai−bi)2

2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

mt∑
i=1

(ai − bi)2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

.
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Proof of Lemma 21. We have
mt∑
j=1

aj ≤ 1 and
mt∑
j=1

bj ≤ 1. Suppose x1, . . . , xmt are the ith components of w that

share common coordinates with w1 and w2. From Theorem 6, we have
mt∑
j=1

xj = 1. Thus,

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

=
mt∑
i=1

[(xi − ai)2 + (xi − bi)2] +
m1∑

i=mt+1

a2
i +

m2∑
i=mt+1

b2
i

=2
mt∑
i=1

[x2
i − (ai + bi)xi + a2

i + b2
i

2 ] +
m1∑

i=mt+1

a2
i +

m2∑
i=mt+1

b2
i

=2
mt∑
i=1

[(xi − ai + bi

2 )2 + (ai − bi)2

4 ] +
m1∑

i=mt+1

a2
i +

m2∑
i=mt+1

b2
i

≥2

(
1 −

mt∑
i=1

(ai + bi)/2
)2

mt
+

mt∑
i=1

(ai − bi)2

2 +
m1∑

i=mt+1

a2
i +

m2∑
i=mt+1

b2
i

Thus, we have

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

=
2

(
1−

mt∑
i=1

(ai+bi)/2

)2

mt
+

mt∑
i=1

(ai−bi)2

2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

mt∑
i=1

(ai − bi)2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

.

Lemma 22. With probability 1 − 5e−2mtϵ2
,

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

≤ A.

Here,

A =
2
(

1
mt

− 1
2m1

+ 1
2m2

+ϵ
)2

mt
+ c−ϵ

2 + ( 1
mt

− 1
m1

+ ϵ)2 + ( 1
mt

− 1
m2

+ ϵ)2

c − ϵ + ( 1
mt

− 1
m1

+ ϵ)2 + ( 1
mt

− 1
m2

+ ϵ)2 .

Proof of Lemma 22. From Lemma 21, we have

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

≤
2

(
1−

mt∑
i=1

(ai+bi)/2

)2

mt
+

mt∑
i=1

(ai−bi)2

2 + (1 −
mt∑
i=1

ai)2 + (1 −
mt∑
i=1

bi)2

mt∑
i=1

(ai − bi)2 + (1 −
mt∑
i=1

ai)2 + (1 −
mt∑
i=1

bi)2
.

Since θ1 and θ2 are independently drawn from SP (M, r), (ai − bi)2 has a positive expectation c > 0. Then, from
Hoeffding’s inequality (Lemma 20), for any ϵ > 0, we have with probability 1 − e−2mtϵ2 ,

mt∑
i=1

(ai − bi)2 − cmt ≥ −mtϵ.

Similarly, we have with probability 1 − 2e−2mtϵ2 ,
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∣∣∣∣∣
mt∑
i=1

ai − mt

m1

∣∣∣∣∣ ≤ mtϵ,

and with probability 1 − 2e−2mtϵ2 , ∣∣∣∣∣
mt∑
i=1

bi − mt

m2

∣∣∣∣∣ ≤ mtϵ.

Hence, we have with probability 1 − 5e−2mtϵ2 ,

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

=
2

(
1−

mt∑
i=1

(ai+bi)/2

)2

mt
+

mt∑
i=1

(ai−bi)2

2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

mt∑
i=1

(ai − bi)2 +
m1∑

i=mt+1
a2

i +
m2∑

i=mt+1
b2

i

≤A.

Now, go back to the original problem, we have

mt

m1
≥

m1∑
j=1

1{w2
j ∈ Si} +

m1∑
j=1

1{w2
j ∈ S0}

m1
.

Then, from Hoeffding’s inequality (Lemma 20), we have for any ϵ > 0, with probability 1 − 2e−2m1ϵ2 ,∣∣∣∣∣∣∣∣
m1∑
j=1

1{w2
j ∈ Si} +

m1∑
j=1

1{w2
j ∈ S0}

m1
− 1 + (M − 1)r

M

∣∣∣∣∣∣∣∣ ≤ ϵ.

Similarly we have with probability 1 − 2e−2m2ϵ2 ,

∣∣∣∣∣∣∣∣
m2∑
j=1

1{w1
j ∈ Si} +

m2∑
j=1

1{w1
j ∈ S0}

m2
− 1 + (M − 1)r

M

∣∣∣∣∣∣∣∣ ≤ ϵ.

Also, with probability 1 − e−2mϵ2 ,

m1

m
− 1 + (M − 1)r

M
≥ −ϵ,

and with probability 1 − e−2mϵ2 ,

m2

m
− 1 + (M − 1)r

M
≥ −ϵ.

We denote
(

(M−1)(1−r)
M

+ϵ

( 1+(M−1)r
M

−ϵ)2m
+ ϵ

)2

= q, then in this case, we have
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A ≤ 1
2 +

2q

( 1+(M−1)r
M

−ϵ)2m
+ q

c − ϵ + 2q
.

Now, we suppose θ1 and θ2 respectively have m1i and m2i neurons that belong to Si, and we have with probability

1 −
M∑

i=1
11e−2( 1+(M−1)r

M
−ϵ)2mϵ2 ,

min
θ

∥vi − u1
i ∥2

2 + ∥vi − u2
i ∥2

2

∥u1
i − u2

i ∥2
2

≤ 1
2 +

2q

( 1+(M−1)r
M

−ϵ)2m
+ q

c − ϵ + 2q

for all i ∈ {1, . . . , M}.

Hence, with probability 1 − 11Me−2( 1+(M−1)r
M

−ϵ)2mϵ2 ,

min
θ

∥θ − θ1∥2
2 + ∥θ − θ2∥2

2

∥θ1 − θ2∥2
2

≤ 1
2 +

2q

( 1+(M−1)r
M

−ϵ)2m
+ q

c − ϵ + 2q
.

At last, we used Cauchy’s inequality and we completed the proof.

B Proofs in Section 4

Before delving into Theorem 16, we first consider the simplest case where L = 2, d = 1 for gaining some intuition of
the proof technique.
Proposition 23. Theorem 16 holds true for L = 2, d = 1.

Proof. Let θi = (A(i)
1 , A

(i)
2 ) for i = 1, 2 be the two global minima. We are aiming to find a θ∗ = (A(3)

1 , A
(3)
2 ) satisfying

• θ∗ is a global minima: A
(3)
1 A

(3)
2 = Q;

• θ1 and θ2 are 2-PL connected through θ∗: for any t ∈ [0, 1] and i = 1, 2, we have

(tA(i)
1 + (1 − t)A(3)

1 )(tA(i)
2 + (1 − t)A(3)

2 ) = Q. (16)

Noticing that θ1 and θ2 are global minima, we have A
(i)
1 A

(i)
2 = Q for i = 1, 2. Combining this with equation 16 leads

to
A

(3)
1 A

(i)
2 + A

(i)
1 A

(3)
2 = 2Q

The problem now is converted to finding A
(3)
1 ∈ R1×m, A

(3)
2 ∈ Rm×1 satisfied the following properties:


A

(1)
1 A

(3)
2 = 2Q − A

(3)
1 A

(1)
2

A
(2)
1 A

(3)
2 = 2Q − A

(3)
1 A

(2)
2

A
(3)
1 A

(3)
2 = Q

1. When A
(1)
1 , A

(2)
1 are linearly independent, we choose A

(3)
1 linearly independent of both A

(1)
1 and A

(2)
1 . Then

the problem above turns into solving a set of linear equations for A
(3)
2 . Since m ≥ 3, we can find a proper

solution and finish the proof.
2. Suppose kA

(1)
1 = A

(2)
1 , we consider the first two equations, θ∗ = (A(3)

1 , A
(3)
2 ) exists only if A

(3)
1 (kA

(1)
2 −A

(2)
2 ) =

(2k −2)C, otherwise the first two equations will draw a contradiction by multiplying k times in both sides of
the first equation. Noticing that if kA

(1)
2 − A

(2)
2 = 0, we have Q = A

(2)
1 A

(2)
2 = k2A

(1)
1 A

(1)
2 = k2Q, then k = 1

or −1. We note that we have assumed that k ̸= −1, while for k = 1, (A(1)
1 , A

(2)
1 ) = (A(2)

1 , A
(2)
2 ) is a trivial

case. Thus, with the condition kA
(1)
2 −A

(2)
2 ̸= 0, we can find a solution A

(3)
1 for A

(3)
1 (kA

(1)
2 −A

(2)
2 ) = (2k−2)C

that is linearly independent of A
(1)
1 , A

(1)
2 (we can find m − 1 ≥ 2 linearly independent solutions in fact) first,

then get a proper A
(3)
2 and finish the whole proof.
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Remark 24. This will not hold for the case that (A(1)
1 , A

(1)
2 ) = (−A

(2)
1 , −A

(2)
2 ), since k = −1, (kA

(2)
1 − A

(2)
2 ) = 0 will

directly draw 0 = −4A
(2)
1 A

(2)
2 , which will be a contradiction when A

(2)
1 A

(2)
2 ̸= 0. We outline a simple counter-example

here: A
(1)
1 = (1, 0, 0, 0), A

(1)
2 = (1, 0, 0, 0)T , A

(2)
1 = (−1, 0, 0, 0), A

(2)
2 = (−1, 0, 0, 0)T , Q = 1. In particular, denote the

center A′
1 = (α1, . . . , α4), A′

2 = (β1, . . . , β4), the necessary conditions can be converted into α1 +β1 = 2, α1 +β1 = −2,∑4
i=1 αiβi = 2, which draw a contradiction.

Proof of Theorem 16

The case of 2-PL connectivity. With the toy structure in Proposition 23, we can similarly consider the
representation structure in Theorem 16 with the case d > 1.

Proof. If we consider each column of A2 separately, then the problem turns out to be the case in Proposition 23
by considering each column separately. Once A

(1)
1 , A

(2)
1 are independent, we consider A

(3)
1 linearly independent of

A
(1)
1 , A

(2)
1 and find a solution for each column in A

(3)
2 independently, then the problem is solved directly by applying

the case with d = 1 separately.

Now we consider the case that kA
(1)
1 = A

(2)
1 for some k ∈ R, in this case by considering conditions{

A
(1)
1 A

(3)
2 = 2Q − A

(3)
1 A

(1)
2

A
(2)
1 A

(3)
2 = 2Q − A

(3)
1 A

(2)
2

we need A
(3)
1 (kA

(1)
2 − A

(2)
2 ) = (2k − 2)Q. We view it as solving linear equations A

(3)
1 (kA

(1)
2 − A

(2)
2 ) = (2k − 2)Q for

A
(3)
1 . Denote Q = (Q1, . . . , Qn). If rank(kA

(1)
2 − A

(2)
2 ) = d < m, it would be easy to find a solution A

(3)
1 that is

additionally independent to A
(1)
1 . Otherwise, if rank(kA

(1)
2 − A

(2)
2 ) < d, without loss of generality, we consider a case

of column-wise linear dependency. Assume that the first two columns of A
(1)
2 , A

(2)
2 are (α1, α2), (β1, β2), respectively.

If kα1 − β1 = t(kα2 − β2), we naturally have

k2Q1 − Q1 = A
(2)
1 (kα1 − β1) = tA

(2)
1 (kα2 − β2) = tk2Q2 − tQ2.

We have assumed that k ̸= −1. If k = 1, the linear connectivity always holds naturally. On the other hand, if k2 ̸= 1,
we will obtain Q1 = tQ2, which will never affect the linear equations in A

(3)
1 (kA

(1)
2 − A

(2)
2 ) = (2k − 2)Q.

Thus, we can find a solution A
(3)
1 that satisfies A

(3)
1 (kA

(1)
2 − A

(2)
2 ) = (2k − 2)Q for A

(3)
1 and independent to A

(1)
1 .

With this, we can then derive a proper A
(3)
2 by considering each column separately as in Proposition 23. Then, we

finish our proof of Theorem 16.

The case of 3-PL connectivity. For two minima

θ1 = (A(1)
L , A

(1)
L−1, . . . , A

(1)
1 ), θ2 = (A(2)

L , A
(2)
L−1, . . . , A

(2)
1 )

that belong to the zero-measure set in the proof of 2-PL connectivity, we consider θ3 = (A′
L, A

(1)
L−1, . . . , A

(1)
1 ), where

A′
L satisfies that A′

LA
(1)
L−1 . . . A

(1)
1 = Q. Then it is natural that θ1 ↔ θ3.

We consider the following linear relationship: A′
LA

(1)
L−1 . . . A

(1)
t and A

(2)
L A

(2)
L−1 . . . A

(2)
t are linearly independent for

t = L, . . . , 2, which would yield 2-PL connectivity of θ2 and θ3 following by the discussion above. To satisfy the
L − 1 conditions along with A′

LA
(1)
L−1 . . . A

(1)
1 = Q, we consider seeking for FL, . . . , F2 such that Fj is independent

of A
(2)
L . . . A

(2)
j for j = 2, . . . , L. Then we consider A′

LA
(1)
L−1 . . . A

(1)
j = Fj for j = 2, . . . , L and A′

LA
(1)
L−1 . . . A

(1)
1 = Q

as L linear equations on the m1 parameters in A′
L. We have assumed that m > 2L − 1, thus if Et = A

(1)
L−1 . . . A

(1)
t ,

t = L, . . . , 1 (EL = 1m) are linearly independent, the linear system would have a proper solution.

On the other hand, as we need to select FL, . . . , F2 to make sure the linear equations have a solution, we consider
solving the dependency by the following adjustments. If some of the Ej ’s are linearly dependent, for instance, Ek can
be represented by the linear combination of another group of Ej ’s, then our Fk need to be automatically determined
by the corresponding Fj ’s to ensure the existence of solutions. Since Fk need to be independent of A

(2)
L−1 . . . A

(2)
k , here

we (might) lose a degree of freedom when selecting Fj ’s, while the fact that we do not need to consider Fk anymore
reduces an equation from the L conditions required. Thus, in the process of reducing our restrictions to be linearly
independent, our degree of freedom would always be greater than the number of restrictions since m > 2L − 1 at
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the beginning. Thus, with the (eventually) linear-independent coefficients (with the number of restrictions less than
parameters), we will have a proper solution of A′

L that meets the above conditions, which would yield θ2 ↔ θ∗, θ∗ ↔ θ3
for some θ∗ from the first statement. Thus we will have θ1 ↔ θ3, θ3 ↔ θ∗, θ∗ ↔ θ2.

B.1 Proof of Theorem 18

We first propose a lemma about linear independence which we will use in our later proof.
Lemma 25. For linearly independent vectors C1, . . . , Cp ∈ R1×r1 , linearly independent vectors D1, . . . , Dq ∈ R1×r2 ,
and vectors E1, . . . , Ep ∈ R1×r2 , if r2 > p + q and r1 > q, there exist a matrix K ∈ Rr1×r2 such that the p + q vectors
CiK + Ei(i = 1, 2, . . . , p), Di(i = 1, 2, . . . , q) are linearly independent.

Proof. Since r2 > p + q, we can find another p vectors F1, . . . , Fp such that D1, . . . , Dq, F1, . . . , Fp are linearly
independent.

Then, we consider the p equations CiK + Ei = Fi(i = 1, 2, . . . , p). Since C1, . . . , Cp ∈ R1×r1 are independent and
r1 > p, we can find a solution for K by considering each column of K separately.

Thus, with CiK + Ei = Fi(i = 1, 2, . . . , p) and the linear independence of D1, . . . , Dq, F1, . . . , Fp, we finish our proof
of the lemma.

Now we begin with our proof of 18.

Proof. Following the explicit description in equation 5, it is natural to consider whether the explicit representation
of linear layers achieves A∗

L . . . A∗
2A∗

1. As a set out of only zero-measure points in the minima manifold, we consider
an assumption below:

Assumption 26. For all k = 1, 2, . . . , n − 1, the r vectors A
(i)
L . . . A

(i)
2 A

(i)
1 ∈ R1×m(i = 1, 2, . . . , r) are linearly

independent.

To begin, for each i ∈ [1, r], q = 1, 2, . . . , L, we define σi,k,q to be the sum of all Ck
q elements in{

BLBL−1 . . . BL−q+1
∣∣for j ∈ {1, . . . , q}, only k of Bj to be Ai

j , while the remaining q − k Bj to be A∗
j

}
, (17)

With this notation, our desirable connectivity property can be written in terms that

(tA(i)
L + (1 − t)A∗

L)(tA(i)
L−1 + (1 − t)A∗

L−1) . . . (tA(i)
1 + (1 − t)A∗

1) =
L∑

j=0

tj(1 − t)L−jσi,j,L

for all i = 1, 2, . . . , r and j = 1, 2, . . . , L. Since this should be right for any t ∈ [0, 1] in the context of star-shaped
connectivity, it is natural to find A∗

1, . . . , A∗
L such that σi,k,L = Ck

LQ for all i and k, which are the necessary condition
followed by considering different order terms of t. On the other hand, if this holds, we will directly derive that each
point in the star-shaped manifold is an exact minimum, i.e., for any t ∈ [0, 1],

(tA(i)
L + (1 − t)A∗

L)(tA(i)
L−1 + (1 − t)A∗

L−1) . . . (tA(i)
1 + (1 − t)A∗

1) =
L∑

j=0

Cj
Ltj(1 − t)L−jQ = Q.

Now we start to construct A∗
1, . . . , A∗

L inductively. Firstly, consider the case in Assumption 26 when k = 1. Since
m > r + 1, we can find A∗

L by Lemma 25 such that C1 = {A∗
L, A

(1)
L , . . . , A

(r)
L } are linearly independent.

Then, we consider Assumption 26 with k = 2. We notice that A∗
L, A

(1)
L , . . . , A

(r)
L are linearly independent and

m > 2r + 1, m > r, then following Lemma 25, we can find A∗
L−1 such that the 2r + 1 vectors in

CL−1 =
{

A
(i)
L A∗

L−1 + A∗
LA

(i)
L−1(i = 1, 2, . . . , r), A

(i)
L A

(i)
L−1(i = 1, 2, . . . , r), A∗

LA∗
L−1

}
are linearly independent.

We repeat the process using Assumption 2,3 and Lemma 25 to accumulate more layers while keeping with their
independent property. In particular, with wr + 1(1 < w < L − 1) linearly independent vectors in

Cw = {σi,k,w−1A∗
L−w+1 + σi,k−1,w−1Ai

L−w+1(k = 1, . . . , w − 1; i = 1, . . . , r),
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A∗
LA∗

L−1 . . . A∗
L−w+1, A

(i)
L A

(i)
L−1 . . . A

(i)
L−w+1(i = 1, 2, . . . , r)},

we consider Lemma 25 to obtain K as A∗
L−w, with Di being independent vectors A

(i)
L . . . A

(i)
1 , i = 1, 2, . . . , r being

ensured by Assumption 26. By doing so, we derive a new group of independent vectors

Cw+1 = {σi,k,wA∗
L−w+σi,k−1,wAi

L−w(k = 1, . . . , w; i = 1, . . . , r), A∗
LA∗

L−1 . . . A∗
L−w, A

(i)
L A

(i)
L−1 . . . Ai

L−w(i = 1, 2, . . . , r)}.

Thus, by induction, we can sequentially get A∗
L, . . . , A∗

2 such that all (L − 1)r + 1 vectors

CL−1 = {σi,k,L−2A∗
2 + σi,k−1,L−2Ai

2(k = 1, . . . , L − 2; i = 1, . . . , r),

A∗
LA∗

L−1 . . . A∗
2, A

(i)
L A

(i)
L−1 . . . Ai

2(i = 1, 2, . . . , r)}

are linearly independent.

We illustrate that keeping such linearly independent properties in induction is of essential importance in this proof,
which shares the very essence in Theorem 16, providing a sufficient condition for us to obtain the proper solution of
the linear equations.

Finally, recall that we aim to make sure σi,k,L = Ck
LQ for all i = 1, 2, . . . , r and k = 0, 1, . . . , L. Consider that the case

for k = L is naturally true, and all r equations when k = 0 are the same, we can therefore view that as (L − 1)r + 1
linear equations of variable A∗

1 since A∗
L, . . . , A∗

2 have been fixed. Since all the coefficients of A∗
1 in the (L − 1)r + 1

equations are actually the (L−1)r +1 vectors in CL−1, which are linearly independent, we can therefore find a proper
solution for A∗

1 by considering each column in A∗
1 separately. The condition m > (L − 1)r + 1 in Assumption 2 makes

sure of the existence of the solution.

Thus, we finish the construction of A∗
L, . . . , A∗

1, which satisfies the required property, and finish the proof.
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