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ABSTRACT

Model pruning is a performance optimization technique for large language and vision
models. However, existing pruning methods often lead to significant performance degra-
dation or require extensive retraining and fine-tuning. This technique aims to identify
and remove neurons, connections unlikely leading to the contribution during the machine
generation phase. Our goal is to obtain a much smaller and faster foundational model
that can quickly generate content almost as good as those of the unpruned models. We
propose MAMA Pruning (short for Movement and Magnitude Analysis), an improved
pruning method that effectively reduces model size and network computational complex-
ity while maintaining performance comparable to the original unpruned model even at
extreme pruned levels. The improved method is based on weights, bias, activations and
proposed novel pruning indicators. Empirical results show that our method outperforms
and be comparable to state-of-the-art methods across various pruning levels. All our code,
models, dataset, and demo are publicly available.

1 INTRODUCTION

Large language and vision models(Brown et al., 2020a; OpenAI, 2023) face significant computational chal-
lenges due to massive model sizes and the high query loads that these systems need to support. These
models, along with related large-scale production systems, are responsible for processing and integrating
vast amounts of data—including web pages, videos, and multimodal content—into underlying network ar-
chitectures such as Transformers and Diffusion models. One crucial cost factor is the query processing per
user, which must scale with both data size and query load. As a result, large foundational models devote
substantial hardware and energy resources to this kind of generation task. There has been extensive research
on improving query processing performance, including work on various caching techniques, retrieval infor-
mation systems, and high-performance knowledge representation. To address these challenges, a significant
number of optimization techniques, commonly referred to as model pruning, have emerged to enhance the
efficiency and effectiveness of AI-Generated Content (AIGC) generation processes. In this paper, we pro-
pose an improved model pruning algorithm based on novel indicators derived from an in-depth analysis of
weights, biases, and activations. Our method significantly enhances the performance and efficiency of large
language and vision models. We demonstrate through extensive experiments that our approach outperforms
existing state-of-the-art pruning techniques across various metrics.

In this paper, we focus on model pruning, an optimization technique aimed at enhancing neural network ef-
ficiency. Our approach involves analyzing learning representations, network architectures, and performance
metrics to identify neurons and connections that significantly contribute to the model’s output in response
to user input. By systematically removing neurons unlikely to improve the network’s performance, we
reduce the model’s size and complexity. The resulting pruned neural network maintains nearly the same
output quality as the original unpruned model while requiring substantially less CPU power, memory, and
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GPU resources. This optimization leads to faster query processing and more efficient deployment of neural
networks in resource-limited environments.

To motivate the problem, consider a state-of-the-art language model with around 175 billion parameters,
deployed across various services and processing an estimated 100 million user queries daily. Interestingly,
during typical inference tasks, only about 20-30% of the parameters are activated. This means that a major-
ity—approximately 70-80% of the model’s weights—remain unused for each specific input. For example,
each query might engage roughly 52 billion parameters on average, leaving about 123 billion parameters
inactive.

This imbalance raises an important question: Can we reduce the computational load by pruning these inac-
tive weights without sacrificing the model’s overall performance? Pruning 70-80% of the model’s parameters
could theoretically reduce the active parameter count significantly, lowering the operational costs of running
the service. However, aggressive pruning might lead to unacceptable losses in quality, causing user-facing
services to suffer noticeable degradation in response accuracy or fluency. The challenge, therefore, lies in
developing a pruning method that effectively reduces the parameter count while maintaining high accuracy
and minimizing computational overhead. Given the scale of such large models, even a 1-2% drop in accu-
racy could result in millions of queries per day yielding suboptimal results. This example underscores the
urgent need for improved pruning methods that can balance sparsity and efficiency without compromising
the quality of large-scale models.

Previous work on model pruning for large language and vision models has primarily focused on approaches
such as retaining layers that exceed a global impact threshold or keeping high-scoring neurons within each
layer. For details, we refer to (Han et al., 2015b; Frantar & Alistarh, 2023b; Sun et al., 2024b). While these
methods have yielded promising results at certain pruning levels, there remains significant room for opti-
mization. The goal of this paper is to build on existing work by developing a methodology that combines
multiple indicators to achieve a better balance between neural network size and generation quality, as mea-
sured by standard retrieval evaluation metrics. In our approach, we consider pruning as a prediction problem
within a feature-rich environment, aiming to determine which neurons, weights, or layers to retain.

Table 1 serves as a motivating example on the end-to-end effectiveness of pruned model (OPT-1.3B) for
downstream task such as text generation. Below are the key observations:

1. Perplexity and Pruning Level: As the pruning level increases (from 0.00 to 0.99), the perplexity of the
generated text also increases significantly. This indicates that the model’s ability to generate coherent and
meaningful text deteriorates as more parameters are pruned.

2. Text Generation Quality: The generated text samples clearly demonstrate the impact of pruning. At
lower pruning levels, the model generates relatively fluent and coherent sentences. However, as pruning
progresses, the generated text becomes increasingly repetitive, fragmented, and nonsensical.

3. Trade-off between Efficiency and Quality: Pruning can lead to significant reductions in model size and
computational requirements, but it comes at the cost of reduced performance. The table illustrates this
trade-off, as higher pruning levels result in smaller models but poorer text generation quality.

The remainder of this paper is organized as follows. In Section 2, we provide background information on
learning representations, neural networks, and related pruning techniques. We summarize our key contri-
butions in Section 3, highlighting the novelty and significance of our approach. In Section 4, we provide a
comprehensive explanation of our proposed methodology and developed algorithms. We present our experi-
mental results in Section 5, along with implementation details and performance analysis. Finally, in Section
6, we provide concluding remarks, summarizing our main findings and suggesting potential directions for
future research.
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Table 1: A motivating example for the End-to-end effectiveness of pruned model for downstream task text
generation across different pruning levels.

Pruned Level Perplexity text generation starts with University is

0.00 5.677 University is a great place to learn about the world.
0.50 19.191 University is a great place to start a new year.
0.60 23.205 University is a great place to start.
0.70 44.246 University is a good place to get a good place to get a good place to get a good
0.80 364.304 University is a lot lot lot lot lot lot lot lot lot lot lot lot lot lot lot lot
0.90 3772.829 University is.
0.95 8892.167 University is is is is is is is is is is is is is is is is is is
0.99 22548.809 University is is is is is is is is is is is is,,,,,,

2 BACKGROUND AND RELATED WORK

In this section, we provide background on neural network architectures, emphasizing components pertinent
to model pruning. We discuss the role of human input and machine-generated data in training neural net-
works and explore quantization and compression techniques used to optimize model performance. We then
review previous work related to model pruning in the context of large-scale systems, highlighting advances
and identifying areas for further research. For additional details on general neural network architectures, we
refer readers to (Goodfellow et al., 2016; Russell & Norvig, 2020).

2.1 BACKGROUND

2.1.1 NEURAL NETWORK ARCHITECTURES

Neural network architectures have undergone significant evolution over the past decades, moving from sim-
ple multi-layer perceptrons (MLPs) to highly sophisticated models such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and transformers. These architectures are designed to handle
different types of input data and tasks. This enables deep learning models to tackle complex challenges
across various domains, including natural language processing (NLP), computer vision, and time-series pre-
diction.

CNNs were pivotal in advancing the field of computer vision by introducing specialized layers that focus on
spatial hierarchies in data. AlexNet(Krizhevsky et al., 2012), for instance, brought CNNs to prominence by
demonstrating their superiority in tasks like image classification. These models use convolutional layers to
capture local features from the input, pooling layers for dimensionality reduction, and fully connected layers
to make final predictions. More advanced versions like ResNet(He et al., 2016) introduced the concept
of residual learning, enabling the training of ultra-deep networks by allowing information to bypass layers
through skip connections.

In contrast, RNNs and their variants, such as long short-term memory (LSTM) networks (Hochreiter &
Schmidhuber, 1997), have excelled in sequential data processing. These models capture temporal depen-
dencies, making them suitable for tasks like speech recognition and machine translation. However, their
limitations in handling long-range dependencies led to the rise of attention mechanisms and transformers.

Transformers(Vaswani et al., 2017) revolutionized the field by discarding the need for recurrence, relying
instead on self-attention mechanisms to capture relationships between tokens, regardless of their distance in
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the sequence. This architectural shift led to models such as BERT (Bidirectional Encoder Representations
from Transformers)(Devlin et al., 2019) and GPT (Generative Pre-trained Transformer) (Radford et al.,
2018), which set new benchmarks across a range of NLP tasks.

As neural networks continue to grow in size and complexity, designing architectures that balance perfor-
mance with efficiency has become a critical challenge. Techniques like depth-wise separable convolutions
used in MobileNet(Howard et al., 2017) and efficient transformer variations such as DistilBERT(Sanh et al.,
2019) aim to reduce the computational burden without sacrificing accuracy. These advancements pave the
way for large-scale neural networks that are both performant and scalable.

2.1.2 HUMAN INPUT & MACHINE GENERATION

The interaction between human input and machine generation is a rapidly evolving area with significant
implications for artificial intelligence (AI) systems designed to augment or replace human decision-making.
Human input—whether in the form of annotations, feedback, or direct manipulation of model outputs—plays
a critical role in training and refining AI models. This interaction is key in supervised learning, where labeled
datasets curated by humans guide the learning processes of models (LeCun et al., 2015).

In domains like content generation, machine learning models utilize human inputs to produce creative out-
puts such as text, images, or music. Generative Adversarial Networks (GANs)(Goodfellow et al., 2014) have
demonstrated remarkable success in generating high-quality images by leveraging an adversarial relation-
ship between a generator and a discriminator. The generator creates new images, while the discriminator
evaluates their authenticity compared to real images, driving iterative improvements in generation quality.

Similarly, transformer-based models like GPT-3(Brown et al., 2020b) have showcased the power of machine
generation in natural language tasks. GPT-3 can generate human-like text ranging from simple responses
to complex narratives or technical content. The flexibility of transformer architectures allows them to be
fine-tuned for diverse applications, from automated customer support to creative writing.

However, machine generation presents challenges, particularly in controlling and guiding model outputs to
align with human intentions. While human input can define high-level goals or constraints, fine-tuning mod-
els often requires extensive iterations and feedback loops. In creative fields, for instance, human designers
may provide input to a generative model, but the output might still require refinement to meet aesthetic
or functional criteria. Techniques like Reinforcement Learning with Human Feedback (RLHF)(Christiano
et al., 2017; Ouyang et al., 2022) address this issue by using reward mechanisms to guide models toward
more desirable outputs based on human evaluations.

The relationship between human input and machine generation continues to evolve, driving innovations in
AI systems that not only automate tasks but also enhance creative and decision-making processes. Under-
standing this interplay is essential for developing efficient model pruning techniques that preserve the quality
of machine-generated content while optimizing computational resources.

2.1.3 MODEL QUANTIZATION & COMPRESSION

Model quantization and compression are essential techniques aimed at reducing the computational and mem-
ory footprints of deep learning models, making them more suitable for deployment in resource-constrained
environments such as mobile devices and embedded systems. These techniques allow models to maintain
high accuracy while being smaller, faster, and more energy-efficient, which is critical in real-time applica-
tions and edge computing.

Quantization refers to the process of reducing the precision of the weights and activations in a neural network
(Krishnamoorthi, 2018). Instead of using 32-bit floating-point numbers, which is the default precision in
many models, quantized models use lower precision formats, such as 16-bit or 8-bit integers. Quantization-
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Aware Training (QAT) incorporates quantization into the training process itself, allowing the model to adjust
to lower precision during learning (Jacob et al., 2018). Techniques like Post-Training Quantization (PTQ)
enable quantization after training, making it easier to deploy pre-trained models with minimal loss in accu-
racy (Simonyan & Zisserman, 2015).

Model compression involves various techniques that aim to reduce the overall size of a neural network. This
can be achieved through weight pruning, where less important weights are removed (Han et al., 2016), or
through knowledge distillation, where a smaller ”student” model is trained to mimic the behavior of a larger
”teacher” model (Hinton et al., 2015). Model compression techniques often complement quantization, as
both aim to make models more efficient without substantial sacrifices in performance.

Recent advances in model quantization and compression have introduced more sophisticated strategies that
exploit the trade-offs between model size and accuracy. For example, mixed-precision quantization allows
certain layers of the model to retain higher precision for critical tasks while quantizing less critical layers
more aggressively. Compression-aware training techniques further optimize the model architecture, ensuring
that compressed models remain robust during inference (He et al., 2018).

These techniques are particularly important in real-world scenarios where latency, memory usage, and en-
ergy efficiency are crucial. From autonomous driving systems to personal digital assistants, quantization and
compression enable AI to function effectively in environments where computational resources are limited.

2.1.4 MODEL PRUNING & INDICATORS DISCOVERY

Model pruning is a widely used technique aimed at reducing the complexity of deep neural networks by
removing unnecessary parameters, resulting in more efficient models in terms of both size and inference
speed (Han et al., 2015a). Pruning can target weights, neurons, channels, or even entire layers within the
network. A crucial aspect of the pruning process is the discovery of reliable indicators that determine which
parts of the network can be safely removed without significantly affecting model performance.

Traditional pruning techniques, such as magnitude-based pruning, operate under the assumption that smaller-
magnitude weights contribute less to the overall model output and can be pruned with minimal loss of accu-
racy (Han et al., 2015a). While this method is straightforward and effective in some cases, it overlooks the
complex interdependencies between weights and the hierarchical structure of neural networks, potentially
leading to suboptimal pruning choices.

In contrast, structured pruning techniques operate at a higher level by removing entire channels, filters, or
layers (Li et al., 2017). This approach offers more systematic reductions in model size and is particularly
advantageous for hardware implementations, as it leads to predictable reductions in computational load.
However, identifying reliable indicators for structured pruning—such as the importance or sensitivity of
specific channels or layers—remains a challenge.

Layer-wise pruning approaches introduce the concept of adaptive sparsity, where different layers are pruned
at varying rates based on their sensitivity to performance degradation (Zhu & Gupta, 2018). Techniques like
variational dropout (Molchanov et al., 2017a) and dynamic sparse training enhance pruning by dynamically
adjusting sparsity during training. These methods enable the model to discover optimal pruning strategies
that balance performance and efficiency.

Recent advancements in pruning have focused on identifying novel indicators for pruning decisions.
Gradient-based methods, such as SNIP (Wang et al., 2024), evaluate the importance of weights based on
the magnitude of their gradients during backpropagation. Additionally, the Lottery Ticket Hypothesis (Fran-
kle & Carbin, 2019) suggests that sparse sub-networks exist within dense models that can be trained from
scratch to achieve comparable performance. This has opened new avenues for efficient pruning by empha-
sizing the selection of these ”winning tickets.”
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The discovery of reliable pruning indicators plays a pivotal role in advancing model pruning techniques.
By accurately identifying which parameters can be removed without harming performance, it is possible
to develop more compact models that maintain high accuracy across various tasks. In our work, we aim to
build upon these methods by developing a novel approach that combines multiple indicators to guide pruning
decisions more effectively, leading to improved efficiency without compromising model performance.

2.2 RELATED WORK

2.2.1 THE MAGNITUDE PRUNING ALGORITHM

The magnitude pruning algorithm (Han et al., 2015a) is one of the simplest and most widely used methods
for reducing the size of neural networks. It operates by pruning weights based on their absolute magnitude:
weights with smaller absolute values are considered less critical to the model’s performance and are pruned,
while larger weights are retained. The typical approach involves setting a global threshold—determined by
the desired sparsity ratio—below which weights are set to zero. Magnitude pruning is unstructured, meaning
it can prune individual weights from any part of the model, leading to irregular sparsity patterns.

Advantages: Magnitude pruning is computationally inexpensive and fast. Evaluating weights based on their
magnitude requires minimal computational overhead and can be applied to any layer of the network without
complex calculations or additional data. This method is also versatile, as it can be used across different types
of neural network architectures.

Limitations: Despite its simplicity, magnitude pruning has inherent drawbacks in terms of accuracy degra-
dation and the resulting sparsity patterns. Since the algorithm considers only the magnitude of individual
weights, it may inadvertently remove important connections, potentially leading to significant loss in model
accuracy. Additionally, the unstructured nature of the resulting sparsity leads to irregular memory access
patterns, making it challenging to achieve computational speed-ups on standard hardware due to poor cache
utilization and inefficient parallelization.

To address these limitations, researchers have explored more structured versions of the algorithm that target
specific parts of the network—such as entire filters, channels, or blocks—rather than individual weights (Li
et al., 2017). Structured pruning results in more regular sparsity patterns that are better suited for hardware
acceleration. Moreover, combining magnitude pruning with retraining or fine-tuning steps can help mitigate
accuracy loss by allowing the model to adjust to the pruned architecture (Han et al., 2015a).

2.2.2 THE SPARSEGPT PRUNING ALGORITHM

The SparseGPT pruning algorithm (Frantar & Alistarh, 2023a) is an advanced method specifically designed
to handle large language models like GPT. It employs a gradient-based approach, utilizing gradient infor-
mation during pruning to identify and remove less important connections in the model. By calculating the
gradients of the loss function with respect to network weights, SparseGPT assesses the significance of each
weight, allowing for more informed pruning decisions.

SparseGPT adopts an iterative pruning strategy, gradually increasing sparsity while minimizing accuracy
loss at each step. In each iteration, a subset of weights with the least impact on the model’s performance is
pruned based on gradient evaluations. This progressive approach enables the algorithm to carefully balance
the trade-off between model size and accuracy.

An essential feature of SparseGPT is its encouragement of block-sparse structures, where entire blocks or
groups of weights are pruned together. Block sparsity results in regular sparsity patterns that are more
hardware-friendly and can be efficiently leveraged by modern high-performance computing architectures.
This makes SparseGPT particularly suitable for hardware acceleration and allows it to take advantage of
libraries optimized for such sparsity patterns.
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SparseGPT achieves high levels of sparsity with minimal accuracy degradation, making it ideal for com-
pressing large-scale models. Its ability to maintain performance while significantly reducing model size
addresses the challenges associated with deploying large language models in resource-constrained environ-
ments.

Limitations: Despite its advantages, SparseGPT has limitations related to computational expense and com-
plexity. The iterative nature of the algorithm, coupled with the necessity to compute gradients during the
pruning process, increases computational overhead compared to simpler methods like magnitude pruning.
SparseGPT requires careful management of hyperparameters—such as pruning rates and the number of
iterations—and multiple passes through the data to achieve optimal results. This complexity can make im-
plementation and integration more challenging.

Potential Optimizations: Optimizing SparseGPT involves reducing computational overhead during the iter-
ative pruning process. Techniques such as approximating gradient calculations using estimations or using
fewer iterations while striving to preserve sparsity patterns could enhance efficiency. Incorporating layer-
wise pruning strategies may also refine performance by allowing for differential pruning rates across layers
based on their importance or sensitivity.

2.2.3 THE WANDA PRUNING ALGORITHM

The WANDA (Weights and Activations) pruning algorithm(Sun et al., 2024a) introduces an importance-
aware approach to pruning by considering both weight magnitudes and activation statistics. By integrating
activation information, WANDA makes more informed pruning decisions based on the relative importance
of weights to the network’s output.

The algorithm begins with a calibration phase, where the model processes a small calibration dataset to
collect activation data. This data is used to normalize the weight magnitudes within each row of the weight
matrices, effectively weighting the importance of each connection based on both its inherent strength and
its activation impact. This normalization allows WANDA to identify and retain weights that contribute most
significantly to the model’s performance.

WANDA can be applied in both unstructured and structured pruning settings. In unstructured pruning,
individual weights are pruned, leading to irregular sparsity patterns. In structured pruning, entire filters,
channels, or neurons are pruned, resulting in regular sparsity patterns that are more conducive to hardware
acceleration. This flexibility allows WANDA to be utilized across various models and hardware configura-
tions.

By considering activation statistics alongside weight magnitudes, WANDA achieves better accuracy-sparsity
trade-offs compared to traditional magnitude-based pruning. Empirical results have demonstrated that
WANDA maintains higher model accuracy at comparable levels of sparsity(Sun et al., 2024a).

Potential Optimizations: To further enhance WANDA’s efficiency, the calibration phase could be streamlined
by employing smaller datasets or more efficient methods for collecting activation statistics. Additionally,
combining WANDA with other pruning techniques, such as gradient-based methods, may yield even better
accuracy and sparsity outcomes. For example, integrating gradient information could help in identifying
weights that are critical for minimizing the loss function.

2.2.4 PRUNING IN GENERAL

Beyond the aforementioned methods, several other pruning algorithms have been proposed in the litera-
ture, each with unique approaches and trade-offs. Structured pruning, for example, targets entire neurons,
channels, or filters rather than individual weights, offering more predictable reductions in computation.
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Techniques like Taylor-based pruning(Molchanov et al., 2017b) use first-order approximations to evaluate
the impact of pruning each weight or filter, allowing for more fine-tuned control over sparsity.

2.2.5 COMPARISON TO OUR WORK

MAMA (Movement And Magnitude Analysis) pruning is fundamentally different from existing pruning
methods in its approach to identifying and preserving important neural connections. Unlike magnitude-
based pruning, which simply removes weights below a certain threshold, or methods like SparseGPT that
use gradient information, MAMA employs a novel three-step process that considers both the magnitude and
the dynamic behavior of weights during training. We will describe our proposed methods in detail in the
following sections.

3 OUR CONTRIBUTIONS

In this paper, we study large model pruning that attempt to achieve a good trade-off between model size and
performance. Our main contributions are as follows:

1. We describe an approach called MAMA that can perform much better over previous SOTAs;

2. We design a unified automatic evaluation framework for pruning technique evaluation;

3. We perform an comprehensive experimental evaluation over different datasets, models and metrics;

4. We compare human designed algorithms to AIGC generated algorithms by industry leading models,
concluding the strengths and weaknesses from both sides in complex tasks such as ”code generation for
optimization”.

4 OUR PROPOSED METHOD: MAMA PRUNING

MAMA Pruning is grounded in a systematic approach that identifies and preserves dynamically significant
weights by redistributing less important weights to more critical connections within the network. This
ensures the maintenance of overall information flow and network adaptability, even under high pruning
ratios. The methodology encompasses three core steps:

1. Identify the pruned weights. The first step involves identifying weights eligible for pruning based
on both their magnitude and dynamic behavior during training. This dual analysis ensures that weights
contributing minimally to the network’s performance are targeted for pruning.

2. Redistribute weights to related neurons. Following the identification of prunable weights, MAMA
Pruning undertakes a redistribution phase, wherein the values of unimportant weights are ”moved” to more
significant connections within the same layer. This strategic redistribution ensures the preservation of the
network’s information flow and compensates for the pruned weights.

3. Execute the pruning. The final step involves pruning the identified weights to achieve the desired sparsity
level within the model. This step actualizes the reduction in model parameters, preparing the network for
deployment or further optimization.

5 EXPERIMENTAL RESULTS

Table 2 and Figure 2 presents the effectiveness of the Weights as major pruning indicator measured by
perplexity. Below are the key observations:
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1. Low Pruning Levels (0.01 - 0.20)

• ”Prune by Weights” produces very low perplexity values at these levels, but it’s unavailable (”NA”)
at the 0.01 and 0.05 pruning levels. This could mean the method is ineffective or unapplicable at
extremely low pruning levels.

• ”Prune by -Weights” shows relatively higher perplexity (e.g., 24377.635 at 0.01), indicating that this
method has a larger impact on performance early on, potentially making the model less effective in
terms of perplexity.

2. Medium Pruning Levels (0.30 - 0.50)

• At these levels, ”Prune by Weights” continues to have low perplexity values (e.g., 6.669 at 0.30,
17.285 at 0.50), suggesting it maintains good performance even as pruning increases.

• ”Prune by -Weights” perplexity remains significantly higher (e.g., 335747.406 at 0.30, 227413.484
at 0.50), indicating a larger negative impact on model performance.

3. Higher Pruning Levels (0.60 - 0.80)

• At 0.60, both methods show a noticeable increase in perplexity, but ”Prune by Weights” sees a
much steeper rise (559.987 compared to 185086.078 for ”Prune by -Weights”). This might indicate
that ”Prune by Weights” starts to struggle at this point, although it still outperforms the alternative
in perplexity.

• By 0.80, ”Prune by Weights” perplexity has jumped to 132175.578, while ”Prune by -Weights”
starts to plateau at 188488.000. This suggests that both methods show diminishing returns in terms
of perplexity improvement at these high pruning levels.

4. Very High Pruning Levels (0.90 - 0.99)

• ”Prune by Weights” still yields results (e.g., 317879.250 at 0.90), though the perplexity is extremely
high. This is expected, as models pruned this heavily often perform worse.

• ”Prune by -Weights” is unavailable at the highest pruning levels (0.95 and 0.99), suggesting that
the method becomes inapplicable or irrelevant as the model becomes excessively sparse.

• Interestingly, ”Prune by Weights” is still operational even at 0.99, albeit with a high perplexity of
222543.047, implying that this method retains some function even in extreme pruning cases.

5. In general, the table suggests that ”Prune by Weights” is generally more stable and effective at various
pruning levels, particularly if maintaining low perplexity is critical. However, the rapid increase in perplexity
at higher pruning levels indicates that careful tuning is still needed to optimize performance.

Table 3 and Figure 1 presents perplexity results for pruned model (Llama-7B) from domain human experts.
Below are the key observations:

1. General Trend with Pruning

• As the pruning level increases, i.e., a higher fraction of the model’s parameters are removed, the
perplexity values generally increase for all methods. This trend is expected as a greater loss of
parameters typically leads to a degradation in model performance.

2. High Pruning Levels (0.50 - 0.90)

• From 0.50 onward, the differences between the methods become more pronounced. SparseGPT and
Wanda maintain significantly lower perplexity scores compared to Magnitude and MAMA, which
exhibit a rapid increase in perplexity.

9
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Table 2: Effectiveness of the pruning indicator Weights.

Pruned Level Prune by Weights Prune by -Weights

0.00 5.677 5.677
0.10 5.806 104948.891
0.20 6.020 352772.500
0.30 6.669 335747.406
0.40 8.601 260632.641
0.50 17.285 227413.484
0.60 559.987 185086.078
0.70 48414.551 273153.688
0.80 132175.578 188488.000
0.90 317879.250 185304.016

• At 0.70 pruning, for instance, SparseGPT has a perplexity of 27.214, while Magnitude and MAMA
reach over 48,000 and 51,000 respectively.

3. Extreme Pruning Levels (0.95 and 0.99)

• All methods show significantly higher perplexity values, yet SparseGPT and Wanda continue to
outperform Magnitude and MAMA by a large margin.

• At 0.99 pruning, SparseGPT has a perplexity of ∼16,869, whereas Magnitude and MAMA exhibit
perplexities of ∼222,543 and ∼214,966 respectively.

4. In general

• SparseGPT and Wanda consistently outperform Magnitude and MAMA pruning methods, espe-
cially at medium to high pruning levels (0.60 and above).

• Magnitude and MAMA pruning methods exhibit significant degradation in performance (higher
perplexity) at more aggressive pruning levels.

• SparseGPT is the most resilient pruning method across varying pruning levels, maintaining the
lowest perplexity even at extreme pruning levels (0.90 and 0.95).

• SparseGPT (and Wanda to some extent) seem to be the preferred methods when applying aggressive
pruning to large models, as they better preserve performance as indicated by perplexity.

Table 4 presents perplexity results for pruned model (Llama-7B) from domain machine expert (o1). Specifi-
cally, Figure 3 put a direct comparizon between human and machine designed pruning technique. Below are
some of the key observations:

1. The human expert algorithms are much more effective at pruning the model while maintaining lower
perplexity, especially as pruning becomes more aggressive. This suggests that, at least for now, human
expertise outperforms machine-generated pruning strategies.

2. Please note that AIGC-Gen Alg with number 1,4,7,8,9 and 10 can NOT pass the one-pass code generation
test. We will NOT report those numbers here. Alg 5 is the the exactly the same as Alg 6 so that we will
ONLY report numbers for Alg 6.

Table 6 presents one-pass code generation results for the model o1. Below are the key observations:

10
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Table 3: Perplexity on pruned model (Llama-7B) from domain human experts.

Pruned Level Wanda SparseGPT Magnitude MAMA

0.00 5.677 5.677 5.677 5.677
0.50 7.257 7.234 17.285 17.247
0.60 10.691 10.442 559.987 554.727
0.70 84.905 27.214 48414.551 51841.121
0.80 5782.432 182.463 132175.578 135494.797
0.90 19676.668 3198.101 317879.250 301472.500
0.95 28309.178 4088.413 273552.281 273629.750
0.99 108234.484 16869.203 222543.047 214966.484

Table 4: Perplexity on pruned model (Llama-7B) from domain machine expert (o1).

Pruned Level AIGC-Gen Alg 2 AIGC-Gen Alg 3 AIGC-Gen 6

0.00 5.677 5.677 5.677
0.50 193740.406 266826.094 294350.188
0.60 110879.422 244139.875 138577.469
0.70 174815.859 453267.031 171725.375
0.80 287734.844 570346.750 186493.797
0.90 157028.844 384411.375 298142.469
0.95 90220.781 455298.469 187259.063
0.99 991519.125 206585.391 70452.703

1. The model finds it difficult to generate effective algorithms in one go in the creative application scenario
of ”core algorithm generation,” despite our clear understanding of the context and the knowledge domain
involved during the experiment.

2. The model did not demonstrate the exceptional capabilities of ”slow thinking,” ”outstanding mathematical
logic reasoning,” and ”programming ability” that were emphasized during its promotion and dissemination,
at least in our innovation application scenario, as these traits were not significantly quantifiable by scientific
metrics.

3. The result suggest some important future work: (1) Investigating the reasons why the algorithm cannot
be generated and successfully run in one go. (2) A horizontal comparison of the effectiveness of AIGC-
generated algorithms versus those designed by human algorithm engineers. (3) Expanding the evaluation
from ”code generation” by generative AI to more comprehensive assessments such as ”text generation,”
”image generation,” and ”video generation.” (4) Adding a horizontal comparison of models such as GPT-4
and Gemini Pro in vertical domains.

6 CONCLUSION

In this paper, we introduced MAMA pruning algorithm for model pruning in large language and vision
models. Our methods estimate the likelihood of neurons producing expected results by leveraging diverse
neuron features, collections, and query statistics. By comparing our approach with the other typical meth-
ods, we demonstrated significant improvements over prior work. Further, we compare human designed
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Table 5: Perplexity on pruned model (Llama-13B) from domain machine expert (o1).

Pruned Level AIGC-Gen Alg 2 AIGC-Gen Alg 3 AIGC-Gen 6

0.00 Eearly Termination Eearly Termination Eearly Termination
0.50 Eearly Termination Eearly Termination Eearly Termination
0.60 Eearly Termination Eearly Termination Eearly Termination
0.70 Eearly Termination Eearly Termination Eearly Termination
0.80 Eearly Termination Eearly Termination Eearly Termination
0.90 59447.305 134509.875 128350.227
0.95 60122.586 110021.789 55667.176
0.99 472500.469 100298.625 113332.750

Table 6: One-pass code generation for downstream task.

Number Core Idea Status Usage Scenario

01 Gradient Sensitive Pruning Error Pruning
02 L1 Norm Pruning OK Pruning
03 Structured Pruning OK Pruning
04 K-means Clustering Pruning Error Pruning
05 Random Pruning OK Pruning
06 Random Pattern Pruning OK Pruning
07 Variational Dropout Pruning Error Pruning
08 Gradient based Pruning Error Pruning
09 Elastic Weight Consolidation Pruning Error Pruning
10 Dynamic Pruning with Reinforcement Learning Error Pruning

algorithms to AIGC generated algorithms, concluding the strengths and weaknesses for complex tasks such
as optimization code generation.

For the future, we plan several extensions. This includes conducting experiments with other language mod-
els, such as GPT-4 and BERT, which may potentially achieve even better pruning performance. We also aim
to further optimize our approach by exploring hybrid methods that combine our likelihood estimation with
existing pruning techniques.

Additionally, we plan to study the trade-off between model size and query cost under different cost mod-
els and actual query processing algorithms. This research holds promise for enhancing the efficiency and
performance of large language and vision models through more effective pruning techniques. By reducing
model sizes without sacrificing performance, our work could significantly lower computational costs and
enable faster inference times in practical applications.
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