
Under review as a conference paper at ICLR 2023

CROMA: CROSS-MODALITY DOMAIN ADAPTATION
FOR MONOCULAR BEV PERCEPTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Incorporating multiple sensor modalities and closing the domain gap between
training and deployment are two challenging yet critical topics for self-driving.
Existing adaption work only focuses on the visual-level domain gap, overlook-
ing the sensor-type gap which exists in reality. A model trained with a collection
of sensor modalities may need to run on another setting with less types of sen-
sors available. In this work, we propose a Cross-Modality Adaptation (CroMA)
framework to facilitate the learning of a more robust monocular bird’s-eye-view
(BEV) perception model, which transfers the point clouds knowledge from a Li-
DAR sensor during the training phase to the camera-only testing scenario. The ab-
sence of LiDAR during testing negates the usage of it as model input. Hence, our
key idea lies in the design of (i) a LiDAR-teacher and Camera-student knowledge
distillation model, and (ii) a multi-level adversarial learning mechanism, which
adapts and aligns the features learned from different sensors and domains. This
work results in the first open analysis of cross-domain perception and cross-sensor
adaptation for monocular 3D tasks in the wild. We benchmark our approach on
large-scale datasets under a wide range of domain shifts and show state-of-the-art
results against various baselines.

1 INTRODUCTION

In recent years, multi-modality 3D perception has shown outstanding performance and robustness
over its single-modality counterpart, achieving leading results for various 3D perception tasks (Vora
et al., 2020; Qi et al., 2020; Jaritz et al., 2020; Park et al., 2021; Weng et al., 2020) on large-scale
multi-sensor 3D datasets (Caesar et al., 2020; Kesten et al., 2019; Sun et al., 2020). Despite the su-
periority in information coverage, the introduction of more sensor modalities also poses additional
challenges to the perception system. On one hand, generalizing the model between datasets becomes
hard because each sensor has its unique domain gap, such as field-of-view (FoV) for cameras, den-
sity for LiDAR, etc. On the other hand, the operation of the model is conditioned on the presence
and function of more sensors, making it hard to work on autonomous agents with less sensor types
or under sensor failure scenarios.

More specifically, transferring knowledge among different data domains is still an open problem
for autonomous agents in the wild. In the self-driving scenario, training the perception models
offline in a source domain with annotations while deploying the model in another target domain
without annotations is very common in practice. As a result, the model will have to consider the
domain gap between source and target environments or datasets, which usually involves different
running locations, different sensor specifications, different illumination and weather conditions, etc.

Meanwhile, the domain shift lies not only in the visual perspective, but also in the sensor-modality
perspective. Previous methods assume a less realistic setting where all sensors are available during
training, validation, and deployment time, which is not always true in reality. Due to the cost and
efficiency trade-off, or sensor missing and failure, in many scenarios we can have fewer sensors
available in the target domain during testing than what we have in the source domain during training.
A typical scenario is having camera and LiDAR sensors in the large-scale training phase while only
having cameras for testing, as shown in Figure 1. It is not clear how to facilitate the camera-only 3D
inference with the help of a LiDAR sensors only in the source domain during training.

The challenges above raise an important question and task: Can we achieve robust 3D perception
under both the visual domain gap and sensor modality shift?
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Figure 1: Left & Middle: Existing models assume fixed sensor modalities during training and testing phases.
Right: We introduce a more realistic setting which considers possible cross-modality domain shift between
model training and deployment. Surprisingly, using source-only LiDAR as depth supervision leads to worse
performance (6.3 in IoU) than the image-only model (6.7). Thus, we propose CroMA to reduce the domain
discrepancy with knowledge distillation and feature alignment, achieving state-of-the-art performance (17.0).

This task is challenging for several main reasons. (1) Ill-posed. The monocular 3D perception in
the target domain is inherently ill-posed, due to the lack of direct 3D measurement from the camera-
only sensor input. (2) Partial availability of LiDAR data. Most prior work on multi-modal 3D
perception (Vora et al., 2020; Man et al., 2021) and 3D domain adaptation (Zhang et al., 2021; Yang
et al., 2021) makes LiDAR point clouds the input signals to their models for providing accurate
range measurement. However, these methods fail when the LiDAR sensor is unavailable during
the evaluation, as no LiDAR data can be used as input into the model. Hence, our new setting
requires a model to leverage information from the LiDAR point clouds without making it an input
to the model. (3) Naive LiDAR supervision leads to worse performance. It is generally believed
in the community that introducing additional sensors is bound to increase the overall performance.
Surprisingly, our experiments showed 0.3 IoU decrease when we naively introducing LiDAR to
supervise the depth estimation. This is because the source and target domain gap becomes larger
with the additional sensor-type shift. As we will discuss in Sec. 3.2, our new problem setting requires
novel methodology in using LiDAR without increasing the domain discrepancy.

To tackle the above challenges, we propose CroMA, a cross-modality domain adaptation framework
for bird’s-eye-view (BEV) perception. Our model addresses the monocular 3D perception task be-
tween different domains, and utilizes additional modalities in the source domain to facilitate the
evaluation performance. Motivated by the fact that image and BEV frames are bridged with 3D rep-
resentation, we first design an efficient backbone to perform 3D depth estimation followed by a BEV
projection. Then, to learn from point clouds without explicitly taking them as model inputs, we pro-
pose an implicit learning strategy, which distills 3D knowledge from a LiDAR-Teacher to help the
Camera-Student learn better 3D representation. Finally, in order to address the visual domain shift,
we introduce adversarial learning on the student to align the features learned from source and target
domains. Supervision from the teacher and feature discriminators are designed at multiple layers to
ensure an effective knowledge transfer. By considering the domain gap and effectively leveraging
LiDAR point clouds in the source domain, our proposed method is able to work reliably in more
complicated, uncommon, and even unseen environments. Our model achieves state-of-the-art per-
formance in four very different domain shift settings. Extensive ablation studies are conducted to
investigate the contribution of our proposed components, the robustness under different changes, as
well as other design choices.

The main contributions of this paper are as follows. (1) We introduce modality mismatch, an over-
looked but realistic problem setting in 3D domain adaptation in the wild, leading to a robust camera-
only 3D model that works in complicated and dynamic scenarios with minimum sensors available.
(2) We propose a novel LiDAR-Teacher and Camera-Student knowledge distillation model, which
considerably outperforms state-of-the-art LiDAR supervision methods. (3) Extensive experiments
in challenging domain shift settings demonstrate the capability of our methods in leveraging source
domain point cloud information for accurate monocular 3D perception.

2 RELATED WORK

2.1 MULTI-MODALITY AND CROSS-MODALITY 3D PERCEPTION

Considerable research has examined leveraging signals from multiple modalities, especially images
and point clouds, for 3D perception tasks. Frustum PointNet (Qi et al., 2018) uses 2D detection
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on images to generate bounding boxes, which further guide the 3D detection with point clouds.
Ku et al. (2018); Chen et al. (2017); Liang et al. (2019) project point clouds to BEV frame, and
then fuse 2D RGB features with BEV features to generate proposals and regress bounding boxes.
Alternatively, Pointpainting (Vora et al., 2020) proposes to augment point clouds with image seman-
tic segmentation results to leverage color information. Recent work (Zhu et al., 2021; Yoo et al.,
2020) starts to explore deep feature-level fusion between points and images. CLOCs (Pang et al.,
2020) proposes a post-detection fusion mechanism to combine the candidate boxes from RGB and
LiDAR inputs. Ye et al. (2020) propose to use feature alignment between point clouds and im-
ages to improve monocular 3D object detection. Under the umbrella of the cross-modality setting,
2DPASS (Yan et al., 2022) transfers features learned from images to the Lidar during training to
help the Lidar model to perform 3D semantic segmentation during inference. BEVDepth (Li et al.,
2022) proposes to obtain reliable depth estimation for 3D object detection by exploiting the camera
parameters together with the image features during training. On the contrary, our method explores
a more realistic yet challenging setting, where we use Lidar during training to help the camera-only
model in 3D perception. Despite outperforming single-modality methods, most prior work assumes
identical domain distribution during training and inference, which is not always true in reality. As a
result, the actual usefulness of additional sensors is still unclear when domain shift exists.

2.2 CROSS-DOMAIN 3D PERCEPTION

While extensive research has been conducted on domain adaptation for 2D tasks, the field of domain
adaptation for 3D perception in the real world has relatively small literature. Some prior work
adapts depth estimation from synthetic to real image domains (Kundu et al., 2018; Zhao et al.,
2019). Working on point clouds, Qin et al. (2019) design a multi-scale adaptation model for 3D
classification. For 3D semantic segmentation, Wu et al. (2019) project the point clouds to 2D view,
while some other work (Jaritz et al., 2020; Peng et al., 2021; Gong et al., 2021) proposes to leverage
point clouds and images data together. Recent work (Zhang et al., 2021; Yang et al., 2021; Luo et al.,
2021) starts to explore cross-domain 3D object detection from point clouds. Tarvainen & Valpola
(2017) employ Mean Teacher to generate pseudo-label for the target domain. SRDAN (Zhang et al.,
2021) employs adversarial learning to align the features between different domains. Although prior
work (Jaritz et al., 2020; Li et al., 2021) explores various domain adaptation techniques for different
sensor modalities, these methods only adopt the same modalities to learn the domain shift between
source and target data. In contrast, our approach achieves robust 3D perception in a more general
scenario, where the model can perform accurate 3D inference in the target domain by adapting
information encoded in source-exclusive modalities.

2.3 3D INFERENCE IN BIRD’S-EYE-VIEW FRAME

Inferring 3D scenes from the BEV perspective has recently received a large amount of interest due to
its effectiveness. MonoLayout (Mani et al., 2020) estimates the layout of urban driving scenes from
images in the BEV frame and uses an adversarial loss to enhance the learning of hidden objects.
Can et al. (2021) propose to employ graphical representation and temporal aggregation for better
inference in the driving scenarios using on-board cameras. Recently, using BEV representation to
merge images from multiple camera sensors has become a popular approach (Hendy et al., 2020;
Pan et al., 2020). Following the monocular feature projection proposed by Orthographic Feature
Transform (OFT) (Roddick et al., 2018), Lift-Splat-Shoot (Philion & Fidler, 2020) disentangles
feature learning and depth inference by learning a depth distribution over pixels to convert camera
image features into BEV. Unlike the above work performing BEV analysis in settings with more
controlled premises, we are the first to explore cross-domain and cross-sensor settings, leading to a
more robust and more realistic 3D inference methodology.

3 APPROACH

In this work, we consider the task of learning BEV representation of scenes with domain shift and
modality mismatch. Specifically, the model will be given annotated LiDAR point clouds and cam-
eras images in the source domain, but only unannotated camera images in the target domain. And
the model seeks to achieve highest performance on the unsupervised target domain. This problem
setting is common and worthwhile, especially considering the existence of many existing public
multi-modality datasets and the rise of many camera-only vehicle scenarios.

Formally, for the source domain, we are given labeled data with Ns multi-modality samples,
Ds = {(Xs

i ,P
s
i ,y

s
i )}N

s

i=1, where s represents the source domain. Here Xs
i = {xs

k}nk=1 consists of
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Figure 2: Overview of our CroMA framework. CroMA includes three components. (1) LiDAR-
Teacher uses voxelized LiDAR point clouds to transform the image features to BEV frame. It pro-
vides essential knowledge on how to guide image learning given LiDAR information. (2) Camera-
Student leverages the same architecture as the teacher, but the depth is estimated. It is supervised
by teacher model as well as the LiDAR ground truth. (3) Discriminators are used to align features
from source and target domains.

n camera images xs
k ∈ R3×H×W . The number of cameras n can take any integer as small as one,

depending on the dataset used or cameras deployed on the vehicle. In addition, each camera image
has an intrinsic matrix and an extrinsic matrix. P s

i is a point cloud containing multiple unordered
points p ∈ R3 represented by 3D coordinate values. And label ys

i represents rasterized representa-
tion of the scenes in the BEV coordinate. For the target domain, we are given unlabeled data with
N t single-modality (image) samples, Dt = {Xt

i}N
t

i=1, where t represents the target domain, and we
would like to estimate {yt

i}N
t

i=1, the BEV representation of the scenes in the target domain.

An overview of our method CroMA is illustrated in Figure 2. CroMA is designed to extract features
from monocular images and project the features into BEV frame (Section 3.1), using estimated or
ground truth 3D depth information. The model is composed of a LiDAR-teacher and a Camera-
student (Section 3.2), where the teacher encodes how to learn better representation given LiDAR
point clouds, and transfers that knowledge to the camera-only student using multi-level teacher-
student supervision. Finally, to bridge the domain gap between source and target domains, we lever-
age adversarial discriminators at different feature layers to align the distributions across two domains
in the camera-student model (Section 3.3). Finally, we describe the overall learning objective and
loss designs (Section 3.4).

3.1 LEARNING BEV FROM IMAGES

In order to achieve 3D perception under the cross-modality setting, our first challenge is to unify
the image coordinates, point cloud coordinates, and BEV coordinates into a joint space. We follow
LSS (Philion & Fidler, 2020) to transform the image features from its perspective view into the
BEV view. More specifically, we tackle this problem by constructing a 3D voxel representation of
the scene for each input image. We discretize the depth axis into Nd bins and lift each pixel of the
images into multiple voxels (frustums), where each voxel is represented by the 3D coordinate of its
center location. For a given pixel px = (h,w) on one of the camera image, it corresponds to a set
of Nd voxels at different depth bins.

Vpx = {vi = M−1[dih, diw, di]
T |i ∈ {1, 2, · · · , Nd}}, (1)

where M is camera matrix and di is the depth of the i-th depth bin. The feature vector of each
voxel vi in Vpx is the base feature fpx of pixel px scaled by the depth value αi. More specifically,
fvi∈Vpx = αi · fpx, where the pixel feature fpx is extracted by an image encoder. And the depth
value αi is obtained either from LiDAR point clouds or by estimation, in the teacher and student
model, respectively. The acquirement of αi is introduced in Sec. 3.2.

After getting the features for each of the voxels, we project the voxels onto the BEV and aggregate
the features to get the BEV feature map. The BEV frame is rasterized into (X,Y ) 2D grids, and for
each grid, its feature is constructed from the features of all the 3D voxels projected into it using mean
pooling. This projection allows us to transform arbitrary number of camera images into a unified
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BEV frame. Finally, we obtain an image-like BEV feature embedding, which is used to estimate the
final representation using a convolutional neural network (CNN) decoder.

This architecture design bridges the image and LiDAR modalities through an intermediate 3D vox-
elized representation. Hence, we can input LiDAR point clouds into the model to directly guide the
BEV projection without having to change the overall pipeline. This further enables the distillation
of knowledge from the point clouds to images using a teacher-student model.

3.2 CROSS-MODALITY TRANSFER WITH TEACHER-STUDENT DISTILLATION

The co-existence of domain and modality gaps poses additional challenges to the adaptation task.
Although the Lidar sensor in the source domain provides 3D knowledge to the model, it also in-
creases the domain discrepancy between the source and the target, which could hurt the model
adaptation (as we will see in Sec. 4.3 and Table 5) 1. Hence, the unique difficulty of our work lies in
exploiting the Lidar point clouds during training to guide the camera model for better 3D estimation.

Depth Supervision by Point Clouds. The main advantage of point clouds over the image modality
is the accurate 3D positional information coming from the depth measurement. Due to the lack of
LiDAR during evaluation, we cannot use point clouds as direct input of the model. Hence, one
alternative approach to use point clouds is to supervise the depth estimation in the model. As in
Eq. 1, for each pixel, our model calculates the feature of its corresponding voxels by multiplying
the pixel voxel with a depth value αi. We use another depth head to predict a depth distribution
αpx = {α1, α2, · · · , αNd

} over Nd depth bins for each pixel px.

The ground truth depth supervision for this estimation task is generated by LiDAR point clouds as
follows: When projected to the image frame, the points corresponding to one pixel can have three
conditions. If the pixel has, (1) no point inside: the ground truth depth distribution of it is omitted.
(2) only one point inside: the ground truth depth distribution of this point is a one-hot vector, with
value one being in the voxel that the point lies in. (3) multiple points inside: the ground truth depth
distribution αi of this point is calculated by counting the number of points in each depth bin, and
dividing them by the total number of points: αi =

Number of points in depth bin vi
Total number of points in Vpx

.

Using a distribution-based depth representation effectively accounts for the ambiguity when objects
of different depth occur in one pixel. This happens at the boundary of the objects, and becomes more
severe when images get downsampled and pixels become large during feature encoding. Moreover,
a probabilistic depth representation considers uncertainty during depth estimation, and degenerates
to pseudo-LiDAR methods (Weng & Kitani, 2019) if the one-hot constraint is added.

Learning from LiDAR-Teacher. Despite being intuitive and straightforward, direct depth su-
pervision is not optimal for two reasons. First, LiDAR supervision is only on the intermediate
feature layer, providing no supervision on the second half of the model. Also, while LiDAR pro-
vides accurate depth measurement, “depth estimation” is still different from our overall objective
on BEV representation. Motivated by this, as shown in Figure 2, we propose to use a pretrained
LiDAR oracle model to supervise the image model at the final BEV feature embedding, such that
the supervision of LiDAR is provided to the whole model, and is closer to the final objective. We
call the model using ground truth point cloud information “LiDAR-Teacher,” and the model to be
supervised “Camera-Student.” This boils down to a knowledge distillation problem where the 3D
inference knowledge of the LiDAR-teacher is distilled to the camera-only student. Note that the
classic problem of “better teacher, worse student” (Cho & Hariharan, 2019; Mirzadeh et al., 2020;
Zhu & Wang, 2021) in knowledge distillation due to capacity mismatch does not exist in this model,
because the LiDAR-Teacher and Camera-Student models in CroMA are almost identical.

Overall, this teacher-student mechanism allows the camera model to learn better 3D representation
from the point clouds, achieving more complete LiDAR supervision at different stages, while still
keeping the model image-centric for image-only inference.

3.3 CROSS-DOMAIN ADAPTATION WITH ADVERSARIAL FEATURE ALIGNMENT

Since the BEV annotations and the LiDAR ground truth are only available in the source data, the
model will be heavily biased to the source distribution during teacher-student supervision. Hence,
we bridge the target and source domains using adversarial training. Specifically, we place one

1We provide a more detailed analysis over this perspective in the Appendix.
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discriminator D1 at BEV decoder CNN blocks, and another D2 at the image encoder CNN blocks,
to align the features of two domains by optimizing over discriminator losses. While the final-layer
discriminator D1 is constantly useful to align features learned from the LiDAR-Teacher and final
ground truth, we find that the middle-layer discriminator D2 is exceptionally effective under certain
domain gaps where images have great changes but LiDAR remains robust.

To achieve adversarial learning, given a feature encoder E and input sample X , a domain discrim-
inator D is used to discriminate whether the feature E(X) comes from the source domain or the
target domain. The target and source domain samples are given the label d = 1 and d = 0, re-
spectively. And D(E(X)) outputs the probability of the sample X belonging to the target domain.
Hence, the discriminator loss is formulated by a cross-entropy loss:

Ldis = d logD(E(X)) + (1− d) log(1−D(E(X))). (2)

Moreover, in order to learn domain-invariant features, our feature encoder E should try to extract
features that fool the discriminator D, while the discriminator D tries to distinguish the right domain
label of the samples. This adversarial strategy can be formulated as a “min-max” optimization
problem: LD = minE maxD Ldis. The “min-max” problem is achieved by a Gradient Reverse
Layer (GRL) (Ganin & Lempitsky, 2015), which produces reverse gradient from the discriminator
D to learn the domain-invariant encoder E. The loss form is the same for both D1 and D2.

3.4 FULL OBJECTIVE AND INFERENCE

The overall objective of our model is composed of the supervision from the BEV ground truth,
the LiDAR-Teacher, and the domain alignment discriminators. Given the output rasterized BEV
representation map y ∈ RX×Y×C , the ground truth (GT) loss term LGT can be formulated as a
cross-entropy loss between the estimated source domain BEV map ỹs and the GT label ys:

LGT(ỹ
s,ys) = −

X∑
i=1

Y∑
j=i

C∑
k=1

ys
(i,j,k) log ỹ

s
(i,j,k), (3)

The supervision from the LiDAR-Teacher is composed of a direct depth estimation loss Ldp
and a teacher feature supervision LT. As described in Sec. 3.1, given the 3D depth volume
α ∈ RH×W×Nd , the direct depth supervision term Ldp is formulated as a cross entropy loss between
the estimated 3D depth distribution volume α̃s in the source domain, and the GT depth volume αs

calculated from LiDAR point clouds as described in Sec. 3.2:

Ldp(α̃
s,αs) = −

H∑
i=1

W∑
j=i

Nd∑
k=1

αs
(i,j,k) log α̃

s
(i,j,k), (4)

And for the LiDAR-Teacher feature supervision: LT(F
te,F st) = L2(F

te,F st) is an L2 loss,
where F te and F st are the feature maps of teacher and student models, respectively. Finally, the
domain adaptation loss contains LD1 and LD2 with the form described in Eq. 2.

The final objective is formulated as a multi-task optimization problem:
LCroMA = LF + λTLT + λdpLdp + λD1LD1 + λD2LD2 , (5)

where λT, λdp, λD1
, and λD2

are weights for the corresponding loss terms. The CroMA model is
trained end-to-end using the loss term in Eq. 5. During inference, target samples go into the Camera-
Student model to output the final BEV representation. More training details are provided in Sec. 4.

4 EXPERIMENTS

4.1 DATASETS AND DOMAIN SETTINGS

We evaluate CroMA with four unique domain shift settings, constructed from two large-scale
datasets, nuScenes (Caesar et al., 2020) and Lyft (Kesten et al., 2019). The first three domain set-
tings are subsampled from the nuScenes dataset, including city-to-city, day-to-night, and dry-to-rain
adaptation. In addition, we also perform another inter-dataset domain transfer: dataset-to-dataset
adaptation, where the source and target domain data are from nuScenes and Lyft datasets. All adap-
tation settings follow the assumption that the source has access to cameras and Lidar sensors, while
the target only has cameras. We use all six cameras provided by the nuScenes dataset. We also
analyze surprising observations on cross-modality performance in the ablation study. More details
regarding the domain settings and dataset splits are in the Appendix Sec. B.
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Table 1: CroMA achieves best performance on all classes under city-to-city domain gaps in IoU. DA and CM
denote whether a model considers domain adaptation and cross-modality in design.

Boston → Singapore DA CM Vehicle Road Lane
MonoLayout (Mani et al., 2020) ✗ ✗ 14.2 35.9 7.5
OFT (Roddick et al., 2018) ✗ ✗ 16.8 37.9 9.6
LSS (Philion & Fidler, 2020) ✗ ✗ 17.6 38.2 10.6
Wide-range Aug. ✓ ✗ 17.9 40.5 12.4
Vanilla DA ✓ ✗ 13.0 31.4 9.1
Depth-Supv DA ✓ ✓ 19.0 42.8 14.9
Input-fusion Teacher ✓ ✓ 18.6 42.7 14.1
CroMA (ours) ✓ ✓ 20.5 43.1 15.6

Singapore. → Boston DA CM Vehicle Road Lane
MonoLayout (Mani et al., 2020) ✗ ✗ 14.4 38.7 8.4
OFT (Roddick et al., 2018) ✗ ✗ 16.1 41.8 10.0
LSS (Philion & Fidler, 2020) ✗ ✗ 19.5 42.3 10.7
Wide-range Aug. ✓ ✗ 19.9 43.7 11.5
Vanilla DA ✓ ✗ 21.2 45.7 12.5
Depth-Supv DA ✓ ✓ 22.5 47.1 12.9
Input-fusion Teacher ✓ ✓ 22.0 47.5 13.1
CroMA (ours) ✓ ✓ 25.4 48.9 14.4

Table 2: CroMA leads to significant improvements under day-to-night domain shift, and also achieves best
results under dry-to-rain domain shift in IoU.

Day → Night DA CM Vehicle Road Lane
MonoLayout Mani et al. (2020) ✗ ✗ 5.9 37.7 5.9
OFT (Roddick et al., 2018) ✗ ✗ 6.6 40.5 6.0
LSS (Philion & Fidler, 2020) ✗ ✗ 6.7 41.2 7.1
Wide-range Aug. ✓ ✗ 10.3 46.0 10.4
Vanilla DA ✓ ✗ 11.2 48.8 11.1
Depth-Supv DA ✓ ✓ 15.7 50.5 14.2
Input-fusion Teacher ✓ ✓ 14.9 48.8 13.1
CroMA (ours) ✓ ✓ 17.0 51.8 16.9

Dry → Rain DA CM Vehicle Road Lane
MonoLayout (Mani et al., 2020) ✗ ✗ 20.6 68.7 13.1
OFT (Roddick et al., 2018) ✗ ✗ 24.1 79.8 16.2
LSS (Philion & Fidler, 2020) ✗ ✗ 27.8 71.0 16.8
Wide-range Aug. ✓ ✗ 28.2 71.2 17.2
Vanilla DA ✓ ✗ 29.1 70.8 18.3
Depth-Supv DA ✓ ✓ 29.6 71.8 19.1
Input-fusion Teacher ✓ ✓ 29.5 71.0 18.8
CroMA (ours) ✓ ✓ 29.6 71.9 19.5

4.2 RESULTS AND COMPARISONS

Baselines We compare our method with state-of-the-art BEV 3D layout perception work MonoLay-
out (Mani et al., 2020), OFT (Roddick et al., 2018), LSS (Philion & Fidler, 2020), as well as other
baseline methods in domain adaptation and cross-modality learning. Wide-range Aug. means using
a wide range of random scaling augmentation which potentially includes the target domain scale.
For Vanilla DA, we adapt camera-only DA-Faster (Chen et al., 2018) to our BEV perception setting.
Depth-Supv DA stands for depth supervised domain adaptation. We use source domain LiDAR as
ground truth to supervise the depth estimation during training, without LiDAR-Teacher supervision
(only Ldp without LT). Input-fusion Teacher is an alternative way of designing the LiDAR-Teacher,
where we directly fuse point (x, y, z) coordinates into their corresponding image pixels as additional
channels in the teacher model, similar to Pointpainting (Vora et al., 2020). We use DA and CM to
denote whether a model considers domain adaptation and cross-modality in design. Results are
reported on vehicle, drivable roads, and lane marking classes using intersection-over-union (IoU).

City-to-City Adaptation As shown in Table 1, we observe that our CroMA model achieves the best
performance on all classes for two inter-city transfer settings. Without domain adaptation, baseline
approaches MonoLayout, OFT, and LSS all suffer from performance degradation. By considering
the visual domain shift, wide-range augmentation and vanilla domain adaptation methods improve
the baseline up to 11.2. Direct depth supervision and alternative input-fusion teacher models do
not bring as much improvement as CroMA. The results clearly demonstrate the effectiveness of our
method by distilling and aligning the LiDAR information for cross-modality domain adaptation 3D
BEV perception.

Day-to-Night Adaptation As shown in Table 2 on the left, we observe that our CroMA model
achieves the best performance in all classes. Different from the previous setting, we notice that
the improvement on Day → Night setting is exceptionally high. This is because the initial domain
gap between day and night scenarios is very large in the camera modality space. Moreover, the
LiDAR sensor is robust under illumination changes due to its active imaging mechanism as opposed
to camera’s passive one. Thus, incorporating LiDAR point cloud information helps the model to
learn a more robust illumination-invariant representation from the image inputs.

Dry-to-Rain Adaptation As shown in Table 2 on the right, under this setting we also observe
that our CroMA model achieves the best performance on all classes. However, we notice that the
improvement under Dry → Rain setting is not as big as previous settings, and is only on par with
other alternative cross-modality baselines. This is because the domain gap between dry and rain
scenarios is not big in image modality. Hence, baseline methods OFT and LSS are already able to
obtain decent results even without domain adaptation. Furthermore, rainy weather is known to cause
great domain shift in the LiDAR modality (Xu et al., 2021). As a result, the knowledge learned from
source-exclusive LiDAR suffers from an unknown domain shift which can be larger than the image
modality domain shift. This can potentially cancel out the benefit of 3D information learned from
point clouds and explains for the smaller improvement.
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Table 3: Our model achieves the best perfor-
mance under dataset-to-dataset domain gaps.

nuScenes → Lyft DA CM Vehicle
MonoLayout (Mani et al., 2020) ✗ ✗ 11.8
OFT (Roddick et al., 2018) ✗ ✗ 16.5
LSS (Philion & Fidler, 2020) ✗ ✗ 19.9
Wide-range Aug. ✓∗ ✗ 21.9
Vanilla DA ✓ ✗ 22.5
Depth-Supv DA ✓ ✓ 23.4
Input-fusion Teacher ✓ ✓ 22.8
CroMA (ours) ✓ ✓ 24.4

Table 4: Our proposed LiDAR-Teacher also leads
to the best performance without domain shift, which
demonstrate the robustness of our CroMA model.

w/o domain shift CM Vehicle Road Lane
MonoLayout (Mani et al., 2020) ✗ 24.3 69.0 13.1
FishingNet (Hendy et al., 2020) ✗ 30.0 - -
OFT (Roddick et al., 2018) ✗ 30.1 72.2 16.9
LSS (Philion & Fidler, 2020) ✗ 32.1 74.1 18.8
Depth-Supv ✓ 34.8 75.8 19.1
Input-fusion Teacher ✓ 35.1 76.5 18.7
CroMA (ours) ✓ 35.8 76.8 20.5

Vanilla DA Depth-Supv DA CroMA (Ours) Ground Truth

Front-Left Cam Front Cam Front-Right Cam

Back-Left Cam Back Cam Back-Right Cam

Figure 3: Qualitative Results in Day → Night setting (model is trained with daytime data, and validated
with night data). We notice that CroMA performs significantly better than other baselines for vehicles, drivable
roads, and lane marking classes. From left to right: (1) Vanilla adversarial learning; (2) LiDAR as depth
supervision with adversarial learning; (3) our CroMA model; (4) Ground Truth. Best viewed in color.

Dataset-to-Dataset Adaptation As shown in Table 3, we can also observe that our CroMA model
achieves best performance in nuScenes → Lyft setting. Following Philion & Fidler (2020), because
Lyft does not provide road segment and lane marking information in the HD map, we report results
on the vehicle class. Note that there is not pre-defined train and validation data split for Lyft, so we
choose a new split and report the number of our re-implemented results for the baselines. Compared
with baselines with and without domain adaptation or cross-modality learning, our CroMA model
does a better job in leveraging and adapting LiDAR information. We include Lyft → nuScenes
results in the Appendix Sec. C.

Qualitative Results As shown in Figure 3, under Day → Night domain shift setting, our model
achieves significantly better monocular 3D perception than the vanilla DA and Depth-Supv DA
baselines. We observe that CroMA provides more clearly defined road boundaries and lane mark-
ings. The depth and size of the vehicles and the road on the right side are also predicted more
accurately. CroMA only misses some vehicles that are hardly visible in camera due to occlusion
and distance. Overall, the qualitative results validate the effectiveness of CroMA in closing the gap
between data domains and leveraging point clouds information for better 3D inference.

4.3 ANALYSIS OVER SURPRISING OBSERVATIONS AND ABLATION STUDY

Naive Usage of More Sensors Leads to Worse Performance It is naturally believed that introduc-
ing multiple sensors in the perception model is bound to increase the model performance. Surpris-
ingly, experiments shown in Table 5 negates this naive intuition. When we introduce LiDAR sensor
in the source domain as depth supervision, the result decreases for 0.3. As we described in Sec. 3.2,
the domain distribution divergence increases after introducing the sensor-modality shift. As a result,
we propose multiple components in CroMA to account for the visual and sensor domain shift. Ex-
periments show that while wide augmentation strategy and adversarial discriminator both achieve
better results than baseline (11.2 vs. 6.7 in IoU), our LiDAR-Teacher further boosts the result to
17.0 by leveraging effective LiDAR knowledge distillation and alignment.

8
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Table 5: Ablation study shows that our proposed components all contribute to the final state-of-the-art perfor-
mance. We report results on vehicle class under day-to-night domain gap in IoU.

Backbone Wide
Augmentation

Adversarial
Discriminators

LiDAR
Supervision LiDAR-Teacher Results

✓ 6.7
✓ ✓ 6.4 (-0.3)
✓ ✓ 10.3 (+3.6)
✓ ✓ ✓ 11.2 (+4.5)
✓ ✓ ✓ ✓ 15.7 (+9.0)
✓ ✓ ✓ ✓ ✓ 17.0 (+10.3)

Figure 4: The proposed progressive learning strategy effec-
tively addresses the challenge caused by mixed domain gap
scenario (Boston-to-Singapore mixed with day-to-night)
on nuScenes. This shows that CroMA can function in a
more realistic domain shift setting.

Mixed Domain Gap Vehicle Road Lane
Direct Inference 17.6 38.2 10.6
Vanilla DA 13.0 31.4 9.1
Progressive DA 18.8 41.5 13.2
CroMA (ours) 20.5 43.1 15.6

20

22
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28

30

32

0 1 2 3 4 5

  Oracle - Target with LiDAR

  CroMA

  Input-Fusion Teacher

  Depth-Superv Only

  No LiDAR Baseline

Figure 5: Results of CroMA improve as the
number of LiDAR sweeps increases.

Dealing with Mixed Domain Shift Another common but underexplored question we observe in
the 3D domain adaption setting is the mixed domain shift problem, where multiple types of gaps
between source and target domains often occur concurrently. For example, in the nuScenes dataset,
the Boston data is only captured during the day, while the Singapore data is captured both day and
night. This leads to the fact that some of the data in the Singapore domain only has a city-wise
gap to the source, while the other part data has both city-wise and illumination-wise gaps. As
shown in Table 4, we find that directly leveraging adversarial discriminator in this scenario leads to
worse performance than direct inference (model trained without domain adaptation), because mixed
domain in the target domain confuses the domain discriminator. Hence, we propose a progressive
learning mechanism, where we first perform adaptation with city-wise data for 100K steps, and then
train the model on the full target domain dataset for another 150K steps. This effectively alleviates
the mixed domain shift problem, and helps CroMA achieve leading results than other baselines.

Results within Same Domain In addition to the domain shift setting, we further validate that our
proposed LiDAR-Teacher is able to distill knowledge and achieve the best performance within the
same domain. As shown in Table 4, the results are obtained in the original nuScenes train/val split.

Effect on LiDAR Density & Comparison with Oracle Model As shown in Figure 5, we vali-
date that our model can achieve higher performance when denser LiDAR is available. This can be
achieved by grouping continuous scans of LiDAR point clouds (from 1 to 5) into a whole, to have
a denser 3D representation of the scene. We observe that other cross-modality baselines including
Input-Fusion Teacher and Depth-Supv models cannot effectively leverage the LiDAR knowledge,
even with dense point clouds available. We also compare our model with the LiDAR oracle model
(target domain also has LiDAR modality) and find that the gap between the upper bound result
and No-LiDAR baseline is significantly reduced. The remaining performance gap is caused by the
unknown LiDAR domain gap which we hope to further reduce in future work.

More results in Sec. C We also find that the different types of domain gaps react unevenly to
different model designs, and conduct more ablation on model designs, including depth ground truth
signals and LiDAR-Teacher. These can be found in the Appendix.

5 CONCLUSION

In this paper, we proposed CroMA to estimate 3D scene representation in BEV under domain shift
and modality change. To achieve this, we construct a LiDAR-Teacher and distill knowledge from
it into an Camera-Student by feature supervision. And we further propose to align feature space
between the domains using multi-stage adversarial learning. Results on large-scale datasets with
various challenging domain gaps demonstrated the effectiveness of our approach, which marks a
significant step towards robust 3D scene perception in the wild.
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APPENDIX

A VISUALIZATION WITH VIDEO CLIPS

For video visualization, please see the ICLR-supp-video.mp4 in the supplementary files.

B DATASET AND IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS

Following Philion & Fidler (2020), we use EfficientNet (Tan & Le, 2019) pretrained on Ima-
geNet (Deng et al., 2009) as our image encoder backbone. Two heads are applied to estimate pixel
features and pixel-wise depth distribution from the 8× downsampled feature map. The 3D feature
maps are projected to the bird’s-eye-view frame using mean pooling. For the bird’s-eye-view de-
coder we use ResNet-18 (He et al., 2016) as backbone, and upsample the features learned from the
first three meta-layers of ResNet to the final BEV output. The D1 and D2 domain discriminators
are applied to the output feature layers of EfficientNet and ResNet backbone, respectively. We use
a light weight discriminator architecture, which is composed of a global averaging pooling layer,
followed by two fully connected layers, and outputs the domain label. For input, we resize and crop
input images to size 128× 352. For output, we consider a 100 meters × 100 meters range centered
at the ego-vehicle, with the grid size set to be 0.5 meters × 0.5 meters. The depth bin is set to be
1.0 meter between 4.0 meters and 45.0 meters range. The whole model is trained end-to-end, with
λT = 1.0, λdp = 0.05, λD1

= 0.1, λD2
= 0.01. We train CroMA using the Adam (Kingma &

Ba, 2014) optimizer with learning rate 0.001 and weight decay 1e-7 for 50K steps for the teacher
model, and 200K for the student model. We use horizontal flipping, random cropping, rotation, and
color jittering augmentation during training. The whole model is implemented using the PyTorch
framework (Paszke et al., 2019).

B.2 DATASET DETAILS

For this section, we explain our dataset split in more details. For our experiments, we always split
the target domain into two subsets for fair comparison. One of them can be accessed during training
for adversarial learning and domain alignment, and the other is held out exclusively for validation.

We follow existing Lidar-based domain adaptation work, including SRDAN (Zhang et al., 2021),
ST3D (Yang et al., 2021), UDA3D (Luo et al., 2021), and xMUDA (Jaritz et al., 2020), to create the
domain split strategies. Specifically, for the day-to-night, city-to-city, and dry-to-rain settings, as
described in prior approaches, we use the sentence in the nuScenes dataset and filter the keywords
to split the dataset into corresponding subsets. For the dataset-to-dataset setting, we use the official
split of the nuScenes dataset, and the split provided in ST3D (Yang et al., 2021) for the Lyft dataset.
More details are provides as follows.

City to City Adaptation For the city-to-city adaptation scenario, we sub-sample the trainval split
of the large-scale dataset nuScenes (Caesar et al., 2020) captured in Boston and Singapore city. We
treat one city as the source domain and the other as the target domain. The Boston part of data has
467 scenes in total, which is separated into 350 scenes for training and 117 scenes for validation.
And the Singapore part of data has 383 scenes in total, which is separated into 287 scenes for training
and 96 scenes for validation.

Day to Night Adaptation For the day-to-night adaptation scenario, we also sub-sample the trainval
split of the large-scale dataset nuScenes (Caesar et al., 2020). Every scene in the nuScenes dataset
has a sentence of description, which can be parsed and used to categorize it into certain class. In
this way, we create a day scene subset and a night scene subset out of the whole dataset. We treat
day as the source domain and night as the target domain, because the night subset has significantly
fewer samples than the day subset. The day split has 751 scenes which are all used for training. And
the night part has 99 scenes in total, which is separated into 74 scenes for training and 25 scenes for
validation.
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Table 6: CroMA achieves great inference time compared with the baseline methods.

#Params (M) Frame-per-Second (FPS)

OFT (Roddick et al., 2018) 22 25
LSS (Philion & Fidler, 2020) 14 35
CroMA (Ours) 15 33

Dry to Rain Adaptation For the dry-to-rain adaptation scenario, we also sub-sample the trainval
split of the large-scale dataset nuScenes (Caesar et al., 2020). Similarly, using the scene description
sentence, we create a dry (non-rainy) scene subset and a rainy scene subset out of the whole dataset.
We treat dry as the source domain and rain as the target domain, because the rain subset has sig-
nificantly fewer samples than the dry subset. The dry split has 685 scenes which are all used for
training. And the rain part of data has 165 scenes in total, which is separated into 124 scenes for
training and 41 scenes for validation.

Dataset to Dataset Adaptation For the dataset-to-dataset adaptation scenario, we use the two
large-scale autonomous driving datasets nuScenes (Caesar et al., 2020) and Lyft (Kesten et al., 2019).
We treat one dataset as the source domain and the other as the target domain. For the nuScenes
dataset, we use the original train and validation split, which has 700 scenes and 150 scenes, respec-
tively. The Lyft dataset does not have an original split, so we sub-sample 132 scenes for training and
48 scenes for validation.

B.3 COMPUTATIONAL COMPLEXITY

Table 6 summarizes the number of parameters and inference speed for prior baselines and our model.
We can see that our Lidar-Teacher distillation and multi-level adversarial learning modules do not
affect the inference efficiency of CroMA compared with the baseline model. Our total number of
parameters is 15M, and our inference time is 33 Frame-per-Second (FPS) on a V100 GPU, which is
on par with the baseline LSS (Philion & Fidler, 2020). The training time for our model is around 20
hours on 4×V100 GPUs.

C ADDITIONAL RESULTS AND ANALYSIS

Unique Challenge due to Problem Formulation We provide another perspective to understand the
challenges brought by the co-existence of cross-modality and cross-domain gaps, and thus further
motivating the design of our architecture. It is proved that in domain adaptation, the target domain
error ϵt(h) can be upper-bounded by the inequality (Ben-David et al., 2010):

ϵt(h) ≤ ϵs(h) + dH∆H
(
P s
X , P t

X

)
+ C, (6)

where the bound is composed of the source-domain error ϵs(h), source-target distribution divergence
dH∆H (P s

X , P t
X), and another term which is considered constant in our case. Existing domain adap-

tation work mostly focuses on reducing the source-domain error. However, while the introduction
of LiDAR sensor reduces the first term, it increases the second term, because the source and
target domains have an additional sensor-type gap. It is also demonstrated in Sec. 4 that naively us-
ing source domain Lidar can even hinder the target performance rather than improve it. Hence, the
unique difficulty of our work lies in leveraging Lidar to reduce the source-domain error ϵs(h), and
in the meanwhile, preventing distribution divergence dH∆H (P s

X , P t
X) from increasing too much.

Different Depth GT Signal Generation Methods As shown in Table 7, we validate CroMA’s de-
sign choice in depth ground truth signal generation (Eq. 2 in main file) by comparing with different
alternative methods. Note that all the methods have the same output when there is no point or only
one point projected to a pixel. The difference only comes from the behaviour when multiple points
are projected to one pixel.

• Majority Voting means to generate a one-hot GT vector by assigning “1” to the depth bin
with the most number of points inside, and random select one bin when more than one bin
with the most number of points.
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Table 7: We validate the design choices of CroMA by comparing with various depth GT generation methods
and different choices of teacher supervision signals. Results show that depth supervision generated by Point
Number Distribution (Eq. 2 in main file), and feature-level supervision from LiDAR-Teacher help the model
achieve the best performance.

Design choices in Day → Night Setting Vehicle Road Lane

Depth Ground Truth Signal
(From Point Clouds)

No LiDAR 11.2 48.8 11.1
Majority Voting 14.1 50.0 13.7
Random Selection 13.8 49.5 12.6
Softmax Point Number Distribution 13.1 49.9 11.9
Point Number Distribution (Ours) 17.0 51.8 16.9

LiDAR-Teacher Supervision
No LiDAR-Teacher 15.7 50.5 14.2
Soft-label Supervision 15.2 50.7 13.9
Feature Supervision (Ours) 17.0 51.8 16.9

Table 8: CroMA model achieves best performance on all classes under Lyft-to-nuScenes domain gaps in IoU.
DA and CM means domain adaptation and cross modality.

Lyft → nuScenes DA CM Vehicle
MonoLayout (Mani et al., 2020) ✗ ✗ 7.1
OFT (Roddick et al., 2018) ✗ ✗ 11.9
LSS (Philion & Fidler, 2020) ✗ ✗ 13.8
Wide-range Aug. ✓ ✗ 14.6
Vanilla DA ✓ ✗ 15.1
Depth-Supv DA ✓ ✓ 16.5
Input-fusion Teacher ✓ ✓ 15.1
CroMA (ours) ✓ ✓ 19.2

• Random Selection means to generate a one-hot GT vector by randomly selecting one of all
the projected points, and assigning “1” to the depth bin in which the selected point lies.

• Softmax Point Number Distribution means to count the number of points inside every depth
bin, and then use softmax to turn this vector into a distribution.

Finally, in CroMA we use direct Point Number Distribution, where we count the number of points
inside every depth bin, and divide the vector by the total number of points to get a depth distribu-
tion. Results show that direct point number distribution outperforms other counterparts in ground
truth generation. One possible reason is because CroMA downsamples the feature map 8× when
estimating the 3D depth volume. This makes it much more common for multiple points with dif-
ferent depth values to fall in the same pixel. By contrast, the other two methods, Majority Voting
and Random Selection, will lose valuable information in these cases. On the other hand, softmax
activate over-smooth the distribution, and also assign small values to zero bins (depth bins with no
point inside). Hence, we find that preserving the native depth distribution of the points is a better
way to supervise CroMA in 3D evaluation.

Different LiDAR-Teacher Supervision Design As shown in Table 7, we also validate CroMA’s
design choice a LiDAR-Teacher Supervision by comparing with different alternative methods. In
addition to the feature-level supervision used in CroMA, another commonly used teacher supervi-
sion is the soft label output. Specifically, Soft-label Supervision means to use the class distribution
output of the teacher model as the supervision of the student model, as opposed to the one-hot vec-
tor from the ground truth annotation. We find that feature-level supervision performs better than the
soft-label supervision. One reason is because we use a small number of classes, which makes the
supervision from the soft-label less informative. Moreover, because the teacher and student models
in CroMA have almost identical architecture and capacity, enforcing the corresponding feature level
similarity between the teacher and student model provides a stronger supervision than the soft-label
output, without harming the model learning. As future work, we will explore whether soft-label may
be more useful when the number of classes in the model is larger.

Lyft to nuScenes Adaptation Due to page limit, Table 3 in the main file only shows the results
under the nuScenes → Lyft setting. Here we also present the results under the Lyft → nuScenes
adaptation setting for completeness. As shown in Table 8, we can also observe that our CroMA
model achieves the best performance. Like previous scenarios, baseline approach MonoLayout,
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Table 9: Different types of domain gaps react unevenly to different model designs. Direct depth supervision
and the middle layer feature alignment block provide a larger improvement under Day → Night setting than
Dry → Rain setting.

CroMA Designs Day → Night Dry → Rain
Image-only Baseline 11.2 28.3
LiDAR Teacher Feature Supervision 14.9 (+3.7) 29.5 (+1.2)
LiDAR Teacher Feature + Depth Supervision 17.0 (+5.8) 29.6 (+1.3)
Without Domain Alignment 7.1 28.1
Feature Alignment at Final layer 12.2 (+5.1) 29.6 (+1.5)
Feature Alignment at Mid + Final layer 17.0 (+9.9) 29.3 (+1.2)

Table 10: CroMA model achieves great performance with scaling augmentation and FoV matching for
nuScenes-to-Lyft domain gaps in vehicle IoU.

nuScenes → Lyft Scaling Augmentation Match FoV Vehicle IoU
None 23.5
with scaling augmentation ✓ 23.8
with both ✓ ✓ 24.4

OFT, and LSS without domain adaptation suffer from performance degradation due to domain shift.
And compared with other baselines with domain adaptation or cross-modality learning, our CroMA
does a better job in leveraging and adapting LiDAR information.

Effect of Different Designs on Different Domain Gaps We find in our experiments that different
types of domain gaps react unevenly to different model designs. As shown in Table 9, for Day →
Night setting which has less domain shift in LiDAR point cloud modality than camera modality,
the depth supervision, and the middle layer feature alignment block provide a large improvement
on top of other modules. As opposed to Dry → Rain setting, where domain gap is larger for point
clouds than images, and no significant improvement is achieved by using these two components.
This further validates the necessity of using multiple modalities under domain adaptation settings,
which can effectively improve the algorithm robustness under different domain shifts.

Solving Scale Problem Scaling ambiguity is an inherent problem for monocular depth estimation.
We solve this problem by using the random cropping, scaling augmentation strategy during training,
and also by matching the FoV (Field-of-View) of two domains using their intrinsic matrices. The
augmentation increases the robustness of the depth prediction model in scale difference. And the
FoV matching scales the images in the target domain to match the FoV of the source domain. This
makes sure that one object looks approximately the same size in images, if it is of the same distance
to the ego vehicle in source and target domains, thus reducing the scale ambiguity. In Table 10, we
provide an ablation study of scale augmentation and FoV matching in nuScenes-to-Lyft adaptation.
As we can see, they both improve our final model performance.

From Table 10, we also notice that even without the two methods mentioned above, the model still
performs fairly well, compared with the baseline methods in Table 3. This is because in driving
scenarios, the camera FoV, the context in the images and the depth distribution of the images have a
relatively strong prior – they do not have a strong discrepancy even across different driving scenarios
(domains). This is different to more general depth estimation scenarios, where objects can have
drastically different depth distribution and the intrinsic matrix can have big differences from image
to image.

Ablation in Semantic Segmentation and Depth Prediction From the task perspective, there are
two domain gaps in this task, one in the semantic segmentation task and the other in the depth
prediction task. In Table 11, we show the result of depth estimation and semantic segmentation
alone in the Day to Night scenario.

For depth estimation, we report the cross entropy error (CEE) with the ground truth we described
in Sec 3.2, because each pixel will have multiple depth values. For this task the Lidar teacher
supervision refers to Ldp in our main pipeline. We observe that the method we propose significantly
improves the depth estimation metrics by 44.9%.
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Table 11: Our proposed modules achieve great performance in both depth estimation and semantic segmentation
tasks.

Day → Night Depth Estimation (CEE) Semantic Segmentation (IoU)
Direct Inference 2.56 27.5
Adversarial Learning (AL) 1.97 31.8
Lidar-Teacher Supervision + AL 1.41 32.1

Table 12: Naı̈ve LiDAR supervision cannot help the final perception under cross-domain and cross-modality
scenario.

Method Boston → Singapore Dry → Rain nuScenes→Lyft
LSS (Philion & Fidler, 2020) Baseline 17.5 27.9 20.6
Baseline + naı̈ve LiDAR supervision 17.5 (-0.0) 28.2 (+0.3) 20.3 (-0.2)
CroMA (Full Model) 20.5 (+3.0) 29.6 (+1.7) 24.4 (+3.9)

For semantic segmentation, we report the IoU for vehicle class. To remove the effect of depth
estimation, we use a pre-trained depth estimation model and fix its weight. For this task the Lidar
teacher supervision refers to LT in our main pipeline. We observe that the CroMA architecture also
improves the baseline method by 16.7%.

Results of Naı̈ve LiDAR Supervision Under Other Adaptation Settings In Table 12, we present
the ablation study of direct Lidar supervision under different adaptation scenarios. We observe that
in all scenarios, naı̈ve Lidar supervision cannot lead to better performance against the baseline.

When the source and target domains have large visual gaps (Day→Night, nuScenes→Lyft),
the naive supervision leads to worse results, and when the gap is smaller (Boston→Singapore,
Dry→Rain), the Lidar supervision results in on-par or only slightly better performance. The reason
is that although the Lidar sensor in the source domain provides 3D knowledge to the model, it also
increases the domain discrepancy between the source and the target (the model has to adapt to the
additional modality shift), which hurts the model performance instead.

D VISUALIZATION ON FAILURE CASES

As shown in Figure 6, we visualize the failure cases of our CroMA model. We can notice that
most failure cases come from far distance, or heavy occlusion (which are typical failure cases for
baselines as well). Faraway objects are known to be typically hard cases for monocular 3D percep-
tion (Xu & Chen, 2018; Wang et al., 2019; Brazil & Liu, 2019; Wang et al., 2021; 2022), because
the ambiguity of object depth from images becomes larger as the distance increases. This can be
potentially alleviated by using a smaller downsampling rate when extracting the image features. As
for objects inside the red dashed boxes in Figure 6, they can be seen in the LiDAR sensor due to the
higher deployment position. But in cameras, the objects are almost invisible due to the occlusion of
vegetation, structures, or other vehicles. The occlusion problem can be potentially addressed if we
have access to additional sensors during evaluation. As future work, we will also try to alleviate the
occlusion problem in monocular settings by leveraging temporal information.
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CroMA (Ours) Ground Truth
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CroMA (Ours) Ground Truth

Figure 6: Visualization of failure cases of CroMA (model is trained with daytime data, and validated with
night data). We notice that major failure cases of CroMA are Far distance and Occlusions of objects and
regions.
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