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Abstract

In situ real-time monitoring of ECG signal at wearable and implantable devices
such as smart watch, ILR, Pacemaker etc. are crucial for early clinical intervention
of Cardio-Vascular diseases. Existing deep learning based techniques are not suit-
able to run on such low-power, low-memory, battery driven devices. In this paper,
we have designed and implemented a Reservoir based SNN & a Feed-forward SNN,
and compared their performances for ECG pattern classification along with a new
Peak-based spike encoder and two other spike encoders. Feed-forward SNN cou-
pled with Peak-based encoder is observed to deliver the best performance spending
least computational effort and thus minimal power consumption. Therefore, this
SNN based system running on Neuromorphic Computing (NC) platforms can be a
suitable solution for ECG pattern classification at the wearable edge.

1 Introduction

The electrocardiogram (ECG) is most common tool that is used by doctors to diagnose Cardio-
Vascular diseases (CVD) such as atrial fibrillation (AF), ventricular ectopics etc [27, 18]. The ECG
morphology consists of the P-wave, QRS-complex and T-wave [32]. Cardiologists look at these
morphological features, their spatial and temporal interplay to make ECG based diagnosis. In modern
smart healthcare, complementing manual interpretation of ECG done by expert physicians with
automated screening done by AI-enabled diagnostic tools is common and it helps in increasing
overall speed and accuracy of the diagnostic system. However, continuous monitoring and analysis
of ECG on wearable and implantable edge devices (such as smart watch, implantable loop recorders
(ILR), pacemakers etc.), without sacrificing their battery life, would enable life saving alerts and early
clinical intervention.

In last few years, several deep learning based ECG classification models [3, 20, 15, 25] have been
developed that can classify ECG signals with quite high accuracy based on features like heart
rhythms. However, these deep learning based models for ECG classification, being heavy in terms
of computational complexity, memory and power requirement, are not fit to run on aforementioned
memory constrained battery driven low-power edge devices.

Few attempts have been made so far to perform ECG analysis at edge [23]. AliveCor’s KardiaMo-
bile [1, 17] captures ECG data via a smart wearable band but analyses the data in cloud. Such
platforms may fail to handle & transport large volume of data generated from continuous ECG
monitoring with weak or no network connection. Techniques like pruning and compressing have also
been tried on existing deep learning models to make them fit to run on edge devices. Ukil et. al [31]
have shown that, a compressed ResNet based ECG classifier [30] can achieve similar accuracy as that
of the original ResNet model but using much less memory.

Spiking Neural Networks (SNNs), a 3rd generation ML framework [22], coupled with non-von
Neumann Neuromorphic Computing (NC) platforms such as Intel Loihi [19], Brainchip Akida [2]
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etc. can be another alternative for ECG time series classification at edge. Owing to (i) event based
asynchronous data processing in form of spikes, (ii) collocation of memory and compute in spiking
neurons and (iii) natural ability of temporal feature extraction, SNN-NC combo is inherently a very
low-power & low-compute approach. However, real valued ECG signal needs to be encoded into
spike format before being processed by SNNs. Rana et. al [24] used binarized weight based SNN to
classify ECG patterns. but have not achieved high accuracy. Corradi et. al [9] have tried continuous
on-device ECG monitoring using recurrent SNN on a custom VLSI neuromorphic processor achieving
95% accuracy on MIT-BIH dataset [21]. Balaji et. al [5] have shown converting a complex CNN into
SNN can reduce computational effort without compromising much on the accuracy.

In this paper, we have designed and implemented two SNN architectures - one based upon recurrent
reservoirs and the other being Feed-forward. We also have proposed a Peak based spike encoding
scheme for ECG time series data. Unlike existing SNN-based works, we have tested classification
accuracy of our SNNs coupled with the proposed peak encoder and two other popular spike encoders
on five single lead ECG datasets namely ECG200, ECG5000, ECGFiveDays [11], PhysioNet
2017 [8] and MIT-BIH [21]. It is observed that Peak Encoding coupled with Feed forward SNN
achieves highest accuracy for all 5 datasets and indicates to consume least power when implemented
on NC platforms.

2 Proposed System Workflow

The workflow of the proposed system is depicted in Fig. 1 The incoming ECG data is first encoded
into spike trains (aka events) via the spike encoding technique. Then the spike train is passed into the
SNN for feature extraction and learning. Neuronal activities are then presented to a simple linear
classifier for final classification.

Figure 1: Spiking network architectures: (a) Reservoir based, (b) Feed forward.

Spike Encoders: Mainly two types of spike encoders, namely rate encoder and temporal encoder are
used in SNN domain. Timing precision based temporal encoder works better for time series data than
the number of spike based rate encoder [13]. Three such temporal encoding schemes are described
and compared below:

(i) Gaussian encoder, a neuron-population based temporal encoding scheme [6], is frequently used
due to its ability to capture granular details of the input signal. Here, multiple neurons encode
different segments of the input range. It encodes one input-value into a time magnified spike train.
Dey et al. [12] have proposed the encoder as better suited for time series classification tasks.

(ii) Delta modulator is an ECG specific spike encoder where the change in value of ECG signal
between two consecutive timesteps is encoded as spike events (ON or OFF based on positive or
negative change) if the difference is above a certain threshold. Threshold will determine the sparsity
and pattern of encoded spike train. Corradi et. al [9] have shown its efficacy with respect to MIT-BIH
dataset using a recurrent SNN. The on-demand nature of the encoding (i.e. if input signal is not
changing, no output spikes are produced) increases its efficiency.

(iii) Peak encoding is our proposed new temporal encoder for ECG signal where traditional ECG peak
detection algorithm [14] is used. The peaks, onsets and offsets of ECG components (i.e. P-waves,
QRS complex and T-waves) [32] are detected and their precise timings are taken as spike event
times. For each of these components, we get a separate spike trains but the temporal correlation is
maintained in spike domain.

Fig. 2a shows a small segment of a ECG signal of length 300 timesteps. As shown in Fig. 2b, a
15-neuron Gaussian encoder represents the original ECG signal as a dense spike train (15 times
magnified in time scale) resulting in more number of computations and processing time. On the other
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(a) Sample ECG signal. (b) Spike train generated by Gaussian encoder

(c) Spike train generated by Delta-modulator (d) Spike train generated by Peak encoder

Figure 2: Different spike encoding techniques applied on ECG signal

hand, the Delta modulator encoder (refer Fig. 2c) encodes the ECG signal into two representative
ON/OFF spike trains. Our proposed Peak encoder processes only the peaks and waves which are
relevant for understanding the ECG signature. As a result, the number of spikes are very low and
sparsely distributed in the time axis (refer Fig. 2d). While spike trains from both Gaussian and Delta
modulator encoder have more granular information about the ECG signal, they may also include
redundant noise that might hamper the final classification task. However, Peak encoder stresses upon
ECG signal morphology instead of concentrating each and every value in the signal.

Spiking Networks: The encoded spike trains corresponding to ECG signal are then fed into the
spiking network. The SNNs are created using the Leaky-Integrate and Fire (LIF) [7] neuron model as
it is computationally easier to simulate and work with. Here, We have used two different types of
network architectures as explained below:

(i) Reservoir: The reservoir is a recurrently connected population of excitatory and inhibitory
neurons. The connectivity between neurons are sparse, probabilistic and remain within the same
population so that dynamical stability of the network is ensured. This neuronal population is very
efficient in extracting spatio-temporal features from time series. Recurrent weights with directed
cycles act as a non-linear random projection of the sparse input feature space to a higher dimensional
spatio-temporal embedding, thereby generating explicit temporal features. These embeddings are
captured in the form of neuronal traces of the reservoir neurons.

(ii) Feed forward: It is a simple network topology where the neurons connected across consecutive
layers but not within same layer. Here we have used full connectivity. Once the input spike train is
fed into the network, these connections learn via STDP rule [29]. Post training, the network captures
the learned features (aka corresponding neuronal activities) in neuronal trace values.

Classifier: For both architectures, the neuronal trace values of the excitatory reservoir neurons
or the feed forward neurons are fed into a Logistic Regression based classifier that is trained with
corresponding class labels. Once training is done, the neuronal trace values corresponding to testing
data are fed into this classifier to get the final classification output.

3 Datasets, Experimental Setup and Results
Datasets: The system has been validated with ECG Atrial Fibrillation datasets with different
attributes and complexity. First, it was validated with UCR datasets [11], namely ECG200, ECG5000,
ECGFiveDays. Each of these datasets contains ECG of people from different age group, gender
recorded over different time period and having different features. The 2017 PhysioNet Challenge
dataset [8] provides ECG recording (between 30 sec and 60 sec in length), where the recording shows
4 classes i.e. normal sinus rhythm, atrial fibrillation (AF), an alternative rhythm, or is too noisy
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Table 1: Classification accuracy for different ECG dataset

Dataset Train
Size

Length
of

Timeseries

Num
Classes

Test
Size

SoA
Accuracy

(%)

Gaussian
+Reservoir
Accuracy

(%)

Delta-mod
+Reservoir
Accuracy

(%)

Peak
Encoder

+Reservoir
Accuracy (%)

Peak
Encoder

+FF
Accuracy (%)

ECG200 100 96 2 100 89 [26] 81 84 83 81
ECG5000 500 140 5 4500 99 [30] 89.71 91.7 93.1 92

ECGFiveDays 23 136 2 861 98.2 [4] 80 82.7 86.6 88.9
PhysioNet2017 6822 2K to 9K 4 1705 83 [10] 69 72 78.5 77

MIT-BIH 13K 3K 4 3.1K 95.6 [9] 91.6 94.1 93.5 94.3

Table 2: SOP comparison for different architectures on 5 datasets
Dataset Gaussian + Reservoir Delta-mod + Reservoir Peak Encoding + Reservoir Peak Encoding+FF
ECG200 19/ts 21/ts 21/ts 18/ts

ECG5000 29/ts 26/ts 24/ts 24/ts
ECGFiveDays 23/ts 20/ts 22/ts 17/ts

PhysioNet 2017 32/ts 36/ts 32/ts 28/ts
MIT-BIH 45/ts 41/ts 37/ts 33/ts

to be classified. The last one is widely known Massachusetts Institute of Technology arrhythmia
database(MIT-BIH) [21] having 48 half hour long two-channel ECG recordings of 47 participants.

Experimental Setup: The workflow has been implemented using a GPU based SNN simulator,
BindsNet [16]. For each of the datasets, both the networks are tuned with parameters such as number
of neurons & connections, neuronal model parameters etc. to obtain the best performance. The details
of the network hyper-parameters are discussed below. An undersampling technique has been used to
mitigate the class imbalance problem for PhysioNet and MIT-BIH datasets.

Network parameters: The stability and performance of a spiking network depends heavily on
careful tuning of different network parameters. Here, this tuning for both the networks have been
conducted using a Grid Search method [28] for each dataset.

For the Reservoir architecture, the major parameters we tuned are number of excitatory and inhibitory
neurons (Nex & Ninhi, respectively), number of recurrent connections (Nrec) and various connectiv-
ity parameters like input encoder outdegree(Inputoutdegree) which controls the connection between
the spike encoder and the reservoir. Moreover, a 5-tuple of weight scalar values of (input-to-excitatory,
excitatory-to-input, inhibitory-to-excitatory, inihibitory-to-inihibitory) are tuned and fixed for the
inter-population network connections. We have kept Nrec = (Nex)/3 for all the cases.

For the Feed forward architecture, NFF is the number of neurons in the SNN layer. For both the
network architectures, the threshold voltage = -55.0 and resting potential = -65.0 for LIF neuron
model. The membrane time constant(τm) of LIF controls the decay of the neuronal membrane
potential and has been set to different values for different cases. Table 3 below captures the details of
values of above mentioned parameters.

Results & Discussion: Reservoir network is expected to better understand the dynamics of the
temporally varying ECG data. However, the classification accuracy of Reservoir, irrespective of spike
encoding scheme used, is observed to be lower than that of existing deep learning based best state of
the arts (refer Table 1). Gaussian encoder, instead of focusing on specific ECG wave signatures (or
sequences), magnifies the whole ECG signal in temporal spike domain. As a result, a lot of spike
enters into the Reservoir network and the neuronal activities of Reservoir start to overlap for different
classes, thereby reducing the accuracy. Delta modulator encoder improves the accuracy of Reservoir
to some extent thanks to on-demand encoding and resulting sparsity in spikes. Coupled with Peak
encoder, the Reservoir network achieves better or at par accuracy compared to other two encoders.

Upon replacing the Reservoir with a computationally light Feed-forward SNN (with Peak encoder),
the accuracy does not degrade too much; instead, it improves in some cases. For both, Reservoir
and Feed-forward, Peak encoder achieves highest accuracy across all five datasets having variety in
terms of size of training & testing dataset, data complexity, length of each sample ECG time series
and number of classes (last two columns of Table 1). To note, if the Feed-forward network is tried
on Physionet data to classify “normal” and “abnormal AF” classes only, then it has achieved 92%
accuracy. Peak encoder performs best because of efficient ECG morphology specific spike encoding.
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Table 3: Network parameters for our experiments
Dataset ECG200 ECG5000 ECGFiveDays PhysioNet 2017 MIT-BIH

Gaussian + Reservoir
Nex 2000 3000 3000 4000 3000
Ninhi 1000 1000 500 1000 1000

Inputoutdegree 500 500 300 500 500

WeightScalar
(2.0, 0.7, 1.8,

0.3, 0.9)
(2.0, 1.4, 0.3,

0.7, 1.1)
(2.0, 1.5, 0.7,

0.5, 1.5)
(2.0, 1.0, 0.1,

0.9, 1.7)
(2.0, 1.7, 0.4,

0.8, 1.2)
τm 20 25 20 30 25

Delta Modulator + Reservoir
Nex 3000 2000 2000 4000 2000
Ninhi 1000 1000 500 1000 1000

Inputoutdegree 500 300 300 300 300

WeightScalar
(2.0, 1.6, 0.9,

0.6, 1.4)
(2.0, 1.1, 0.3,

0.9, 1.2)
(2.0, 0.9, 0.1,

0.5, 1.8)
(2.0, 1.9, 0.1,

0.3, 1.2)
(2.0, 1.2, 0.4,

0.3, 0.8)
τm 20 30 20 30 25

Peak Encoder + Reservoir
Nex 2000 2000 2000 3000 2000
Ninhi 500 1000 1000 1000 1000

Inputoutdegree 300 500 300 300 500

WeightScalar
(2.0, 0.6, 1.9,

0.5, 1.8)
(2.0, 1.7, 0.9,

0.1, 1.4)
(2.0, 0.3, 1.1,

0.9, 1.1)
(2.0, 0.9, 1.3,

1.1, 1.9)
(2.0, 1.5, 0.3,

0.2, 0.9)
τm 30 35 25 30 25

Peak Encoder + Feed Forward
NFF 1000 1000 2000 2000 1000
τm 30 25 20 35 30

Overall classification performance of the spiking networks may not be highest compared to SoA but
are acceptable. However, the real benefit comes when computational cost and energy consumption
is looked into. Energy requirement of an SNN is directly proportional to total number of synaptic
operations (SOP) executed during runtime. Usually, number of SOP is considered as the average
number of spikes per timestep for the entire training and inference. Here, for all four network-
encoder combinations and for all five datasets, we have compared SOP per timestep that indicates
an estimated energy consumption on NC platforms. Table 2 shows the best estimates for number
of SOP per timestep. As expected, owing to large spike activity, Gaussian encoder with reservoir
is computationally most expensive whereas Peak encoder with Feed forward is the least thanks to
sparse spike encoding and less number of neurons in network.

Conclusion, Limitation & Future works: In this work, we have proved the efficacy of a new Peak
based encoder along with different spiking networks for ECG classification by testing them on five
widely varying ECG datasets. Encoding performance of Peak encoder can be improved by removing
the noise peaks in ECG signal by correlating the signal from another auxiliary low energy sensor like
an accelerometer. Our SNNs are not tested on real NC hardware such as Brainchip Akida [2] and
Intel Loihi [19]. Our future goal is to benchmark the SNNs and encoders on those hardware.
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