

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DEL-RANKING: RANKING-CORRECTION DENOISING FRAMEWORK FOR ELUCIDATING MOLECULAR AFFINI- TIES IN DNA-ENCODED LIBRARIES

Anonymous authors

Paper under double-blind review

ABSTRACT

DNA-encoded library (DEL) screening has revolutionized protein–ligand binding detection by enabling efficient exploration of vast chemical spaces through read count analysis. Despite its transformative potential, two critical challenges limit its effectiveness: (1) stochastic noise in low copy number regimes, where Poisson fluctuations significantly distort binding signals, and (2) systematic biases between observed read counts and actual binding affinities due to experimental artifacts and amplification variability. We introduce DEL-Ranking, a comprehensive framework that addresses these dual challenges through targeted innovations. To mitigate stochastic noise, we incorporate a dual-perspective ranking mechanism that prioritizes stable relative ordering relationships over volatile absolute counts. To bridge the read count-affinity gap, our Chemical-Referenced Correction (CRC) module identifies critical binding-related functional groups and leverages these structure-activity insights to guide precise count adjustments. A key contribution is our release of three novel DEL datasets featuring 2D molecular sequences, 3D conformational data, and functionally-derived activity labels—addressing a significant resource gap in the field and enabling more robust method development. Rigorous validation across multiple datasets reveals that DEL-Ranking consistently outperforms existing methods, achieving a remarkable 28% improvement in Spearman correlation even under high-noise conditions. Our framework both enhances identification of high-affinity compounds and reveals novel functional motifs—Pyrimidine Sulfonamide, beyond known Benzene Sulfonamide groups. These interpretable insights accelerate therapeutic candidate discovery while advancing understanding of molecular recognition mechanisms.

1 INTRODUCTION

DNA-encoded library (DEL) technology has revolutionized protein-ligand binding detection by enabling parallel screening of vast compound collections against biological targets (Franzini et al., 2014; Neri & Lerner, 2018; Peterson & Liu, 2023; Ma et al., 2023). Unlike traditional high-throughput methods that screen compounds individually, DEL technology links each small molecule to a unique DNA barcode, allowing simultaneous evaluation of billions of compounds in a single experiment (Brenner & Lerner, 1992; Goodnow Jr & Davie, 2017; Yuen & Franzini, 2017). The DEL screening process (shown in Figure 1) generates read count data that serves as a proxy for binding affinity (Machutta et al., 2017; Foley et al., 2021). Specifically, these read counts represent the frequency of each compound detected after target binding and processing, with higher counts generally suggesting stronger binding. Experiments typically generate two types of counts: matrix counts (from control samples without target protein) and target counts (from samples with the target protein) (Favalli et al., 2018).

Despite DEL’s potential for accelerating drug discovery (Satz et al., 2022; Neri & Lerner, 2017), two fundamental challenges limit its effectiveness and accuracy: 1) **Distribution Noise**: Read counts are highly variable, especially for compounds with few copies in the library. These compounds are subject to significant Poisson statistical fluctuations, distorting the relationship between counts and actual binding properties (Kuai et al., 2018; Favalli et al., 2018). 2) **Distribution Shift**: Systematic biases exist between observed read counts and actual binding affinities due to factors including

Figure 1: Illustration of the DEL screening process. **Cycling**: Creating unique compounds, each tagged with a distinctive DNA sequence. **Binding**: These compounds are then exposed to the target protein. **Wash, Elute and Amplify**: Compounds that bind to the target are retained, while others are washed away. The DNA tags of the bound compounds are then amplified and analyzed using sequencing techniques. **Sequence & Counting**: This process results in a distribution of read counts for target-bound samples and control samples.

synthesis efficiency and amplification variability (Yung-Chi & Prusoff, 1973; Kuai et al., 2018). This creates a fundamental gap between enrichment measurements and true binding strength.

Early computational approaches addressed these challenges through threshold-based filtering of enrichment factors (target/matrix count ratios) (Gu et al., 2008; Kuai et al., 2018). While computationally efficient, these methods ignored molecular structure information. More recent machine learning approaches captured non-linear relationships between molecular structures and count data (McCloskey et al., 2020; Ma et al., 2021), later enhanced with distribution constraints and molecular embeddings (Lim et al., 2022; Hou et al., 2023). DEL-Dock (Shmilovich et al., 2023) further improved performance by incorporating 3D conformational information with Zero-Inflated Poisson (ZIP) modeling.

Despite these advances, limitations persist. Current methods focus predominantly on absolute read count values rather than more stable relative rankings. Additionally, while certain **functional groups** correlate strongly with binding activity (Hou et al., 2023; Blevins et al., 2024), existing systems underutilize these structure-activity relationships (Wichert et al., 2024). To overcome these limitations, we propose DEL-Ranking, a comprehensive framework with several key contributions:

- **Novel Methodology:** Our approach addresses both challenges through complementary innovations: (1) a Dual-Perspective Ranking Strategy that mitigates Distribution Noise by prioritizing stable relative ordering over volatile absolute counts through Pair-wise Soft Rank (PSR) and List-wise Global Rank (LGR) constraints; and (2) a Chemical-Referenced Correction (CRC) module that addresses Distribution Shift by leveraging **functional group information as binary labels** to bridge the gap between read counts and binding affinities.
- **Comprehensive Datasets:** We release three novel DEL datasets that address a critical resource gap in the field. Unlike existing public DEL datasets that typically contain only molecular structures and read counts, our datasets uniquely combine 2D molecular sequences, 3D conformational data, read counts, and—critically—binary affinity labels derived from functional group analysis. These comprehensive resources provide the research community with multi-target datasets that enable more robust method development and validation.
- **Validated Performance:** Experiments across five diverse DEL datasets demonstrate consistent improvements over state-of-the-art methods, including a 28% increase in Spearman correlation under high-noise conditions. Our framework not only enhances identification of high-affinity compounds but also reveals novel binding-relevant functional motifs, such as Pyrimidine Sulfonamide groups, extending beyond the established Benzene Sulfonamide structures previously known to correlate with binding activity.

2 RELATED WORKS

Traditional Approaches include QSAR models (Martin et al., 2017) and molecular docking simulations (Jiang et al., 2015; Wang et al., 2015), which offer interpretability and mechanistic insights

Figure 2: Overview of DEL-Ranking framework. The model directly fuses molecule binding poses and fingerprints as input features. CRC employs target effects and binding affinity to enhance read count prediction. The ranking-based loss incorporates target effects and matrix effects for noise removal, improving the correlation between predicted read counts and true binding affinities.

into protein-ligand interactions. DEL-specific techniques such as data aggregation (Satz, 2016) and normalized z-score metrics (Faver et al., 2019) were developed to address the unique challenges of DEL screening data. Despite their theoretical foundations, these approaches often struggle with scalability and capturing complex, non-linear relationships in large-scale DEL datasets.

Machine Learning Methods including Random Forest, Gradient Boosting Models, and Support Vector Machines, were used to improve DEL data analysis (Li et al., 2018; Ballester & Mitchell, 2010). These approaches, particularly when combined with Bayesian Optimization (Hernández-Lobato et al., 2017), offer enhanced scalability and better capture the non-linear relationships in high-dimensional DEL data. While outperforming traditional methods, they remain limited by their dependence on extensive training data and lack of interpretability when modeling complex biochemical systems.

Deep Learning Approaches, especially Graph Neural Networks (GNNs), have significantly advanced protein-ligand interaction predictions in DEL screening. GNN-based models effectively predict enrichment scores while accommodating technical variations (Stokes et al., 2020; Ma et al., 2021), and Graph Convolutional Neural Networks (GCNNs) enhance detection of complex molecular substructures (McCloskey et al., 2020; Hou et al., 2023). Recent innovations include DEL-Dock (Shmilovich et al., 2023), which combines 3D conformational information with 2D molecular fingerprints, address noise from truncated library products and sequencing errors (Kómár & Kalinic, 2020). Large-scale prospective studies have validated these AI-driven approaches, confirming improved hit rates and specific inhibitory activities against protein targets (Gu et al., 2024).

3 METHOD

To address **Distribution Noise** and **Distribution Shift**, we present DEL-Ranking framework by directly denoising read count values and incorporating novel activity information. 3.1 formulates the DEL denoising task; 3.2 and 3.3 introduce our innovative modules to address **Distribution Noise** and **Distribution Shift**; 3.4 and 3.5 introduce the overall training objective and framework architectures.

3.1 PROBLEM FORMULATION AND PRELIMINARIES

DEL Prediction Framework. Given a DEL dataset $\mathcal{D} = \{(\mathbf{f}_i, \mathbf{p}_i, M_i, R_i, y_i)\}_{i=1}^N$, where $\mathbf{f}_i \in \mathbb{R}^d$ denotes the molecular fingerprint, $\mathbf{p}_i \in \mathbb{R}^m$ represents the binding pose, $M_i \in \mathbb{R}$ is the matrix count derived from control experiments without protein targets, $R_i \in \mathbb{R}$ is the target count obtained from experiments involving protein target binding, and $y_i \in \{0, 1\}$ indicates the **functional group label**. We propose a joint multi-task learning framework $\mathcal{F} : \mathbb{R}^d \times \mathbb{R}^m \rightarrow \mathbb{R} \times \mathbb{R} \times [0, 1]$ such that:

$$\mathcal{F}(\mathbf{f}_i, \mathbf{p}_i) = (\hat{M}_i, \hat{R}_i, \hat{p}_i) \quad (1)$$

162 where \hat{M}_i and \hat{R}_i represent the predicted matrix count and target count; and \hat{p}_i is the predicted
 163 likelihood of the functional group label. The primary focus of this framework lies in predicting
 164 accurate read count values that strongly correlate with the actual binding affinity (K_i values).

165 **Zero-Inflated Poisson Distribution (ZIP) & ZIP Loss.** Zero-Inflated Poisson Distribution was
 166 applied to address **Distribution Noise** (Shmilovich et al., 2023; Lim et al., 2022), effectively modeling
 167 read counts M_i and R_i as Poisson distributions characterized by an excess frequency of zeros. By
 168 defining $r_i \in \{M_i, R_i\}$ and $\hat{r}_i \in \{\hat{M}_i, \hat{R}_i\}$ as the ground-truth and model's predicted read count
 169 values, we can express ZIP as:

$$171 \quad P(X = r_i | \lambda, \pi) = \begin{cases} \pi + (1 - \pi)e^{-\lambda}, & \text{if } r_i = 0 \\ (1 - \pi) \frac{\lambda^{r_i} e^{-\lambda}}{r_i!}, & \text{if } r_i > 0 \end{cases} \quad (2)$$

174 where π denotes the probability of excess zeros, and λ denotes the mean parameter of the Poisson
 175 component. In (Shmilovich et al., 2023), the ZIP distributions of M_i and R_i are modeled using
 176 different π values (π_M and π_R), based on their respective orders of magnitude. The regression is
 177 achieved by minimizing the Negative Log-Likelihood (NLL) for all predicted read counts \hat{M}_i and
 178 \hat{R}_j :

$$179 \quad \mathcal{L}_{\text{ZIP}} = - \sum_i \log[P(\hat{M}_i | \lambda_M, \pi_M)] - \sum_j \log[P(\hat{R}_j | \lambda_R, \pi_R)] \quad (3)$$

181 where λ_M and λ_R represent Poisson mean parameters for matrix and target counts, and π_M and π_R
 182 denote their respective zero-excess probabilities. This joint regression of target and control counts
 183 enable the model to learn the differential behavior of ligands in the presence and absence of targets,
 184 thereby potentially capturing the binding affinity.

185 **K_i Estimation.** DEL read count prediction aims to estimate compound-target binding affinities (K_i
 186 values) for drug candidate identification. We assess performance using Spearman rank correlation
 187 (ρ_s) between predicted read counts and experimental K_i values: $\rho_s = 1 - \frac{6 \sum_{i=1}^n d_i^2}{n(n^2-1)}$, where n is
 188 the sample number and d_i is the difference between the ranks of corresponding values in the two
 189 variables. Ideally, K_i values and read counts are negatively correlated, as lower K_i values indicate
 190 stronger binding affinity, which should correspond to higher read counts.

192 **LambdaRank** (Burges et al., 2006) Consider a ranking list with items $i = 1, \dots, N$, relevance
 193 labels $y_i \in \mathbb{R}$ (larger is better), and model scores $s_i \in \mathbb{R}$. Sorting scores in descending order gives a
 194 permutation π_s with $s_{\pi_s(1)} \geq \dots \geq s_{\pi_s(N)}$; let $\Omega(i)$ be the rank position of item i in π_s .

196 **Discounted cumulative gain.** Given a gain function $G : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, the discounted cumulative gain
 197 (DCG) of a permutation π is

$$198 \quad \text{DCG}(\pi; y) = \sum_{k=1}^N \frac{G(y_{\pi(k)})}{\log_2(1+k)}. \quad (4)$$

200 The “ideal” permutation π^* is obtained by sorting items in non-increasing order of y_i , and its DCG,

$$202 \quad \text{IDCG}(y) = \text{DCG}(\pi^*; y), \quad (5)$$

203 is the maximum achievable DCG for the given labels. The normalized DCG (NDCG) of scores s is
 204 then defined as

$$206 \quad \text{NDCG}(s, y) = \frac{\text{DCG}(\pi_s; y)}{\text{IDCG}(y)} \in [0, 1], \quad (6)$$

207 where π_s is the permutation induced by s . For items i and j , $\Delta\text{NDCG}_{ij}(s, y)$ denotes the change in
 208 NDCG when swapping their positions in π_s .

210 **Pairwise objective.** For each pair (i, j) with $y_i > y_j$, LambdaRank uses the RankNet logistic model
 211 with pairwise probability

$$212 \quad P_{ij}(s) = \sigma(s_i - s_j) = \frac{1}{1 + \exp(-(s_i - s_j))}, \quad (7)$$

214 and pairwise loss

$$215 \quad \ell_{ij}(s) = -\log P_{ij}(s) = \log(1 + \exp(-(s_i - s_j))). \quad (8)$$

216 The corresponding lambda-gradients are obtained by rescaling the RankNet gradients with the
 217 absolute NDCG change:
 218

$$219 \quad \lambda_{ij} = |\Delta \text{NDCG}_{ij}(s, y)| \frac{\partial \ell_{ij}}{\partial s_i}, \quad \lambda_{ji} = -\lambda_{ij}, \quad (9)$$

220 and the total gradient for item i is $\lambda_i = \sum_j \lambda_{ij}$. By construction, there exists an implicit loss whose
 221 gradient with respect to s_i is λ_i , and minimizing this loss directly promotes improvements in NDCG.
 222

223 **ListMLE** (Xia et al., 2008) Let π^* be the ground-truth permutation induced by y_i (items sorted in
 224 non-increasing y_i). The Plackett–Luce probability of a permutation π under scores s is
 225

$$226 \quad P(\pi \mid s) = \prod_{k=1}^N \frac{\exp(s_{\pi(k)})}{\sum_{j=k}^N \exp(s_{\pi(j)})}. \quad (10)$$

227 ListMLE minimizes the negative log-likelihood of π^* :

$$228 \quad L_{\text{ListMLE}}(s; \pi^*) = -\log P(\pi^* \mid s) = -\sum_{k=1}^N \left[s_{\pi^*(k)} - \log \sum_{j=k}^N \exp(s_{\pi^*(j)}) \right]. \quad (11)$$

229 In the next two subsections, we adapt these classical pairwise (LambdaRank) and listwise (ListMLE)
 230 formulations to DEL read-count data by taking model outputs \hat{r}_i as scores s_i and introducing
 231 DEL-specific weights and normalizations.
 232

233 3.2 RANKING-BASED DISTRIBUTION NOISE REMOVAL

234 To effectively mitigate **Distribution Noise** in DEL read count data, we propose a novel ranking-based
 235 loss function $\mathcal{L}_{\text{rank}}$. This loss function integrates both local and global read count perspectives to
 236 fit the rank ordering of count values, resulting in a well-ordered ZIP that effectively captures the
 237 underlying read count pattern.

$$238 \quad \mathcal{L}_{\text{rank}} = \beta \mathcal{L}_{\text{PSR}} + (1 - \beta) \mathcal{L}_{\text{LGR}} \quad (12)$$

239 where $\beta \in [0, 1]$ is a balancing hyperparameter that controls the relative contribution of the two
 240 components. \mathcal{L}_{PSR} (PSR Loss) addresses local pairwise comparisons between compounds, while
 241 \mathcal{L}_{LGR} (LGR Loss) captures global ranking information across the entire dataset. Together, they
 242 facilitate a well-ordered ZIP distribution for read count values. To establish the effectiveness of our
 243 ranking-based approach, we provide the following theoretical justification:

244 **Lemma 3.1.** *Given a set of feature-read count pairs $\{(x_i, r_i)\}_{i=1}^n$, where x_i is the fused representation of sample i derived from molecular fingerprint f_i and binding pose p_i , and a well-fitted ZIP model $f_{\text{ZIP}}(r|x)$, the ranking loss $\mathcal{L}_{\text{rank}}$ provides positive information gain over the zero-inflated loss \mathcal{L}_{ZIP} :*

$$245 \quad I(\mathcal{L}_{\text{rank}} \mid \mathcal{L}_{\text{ZIP}}) = H(R \mid \mathcal{L}_{\text{ZIP}}) - H(R \mid \mathcal{L}_{\text{ZIP}}, \mathcal{L}_{\text{rank}}) > 0$$

246 where $H(R \mid \cdot)$ denotes the conditional entropy of read counts R .
 247

248 Building upon this information gain, we can further demonstrate that our combined approach, which
 249 incorporates both the zero-inflated and ranking losses, outperforming the standard zero-inflated model
 250 in terms of expected regression error. This enhancement is formalized in the following theorem:

251 **Theorem 3.2.** *Given a sufficiently large dataset $\{(x_i, r_i)\}_{i=1}^n$ of feature-read-count pairs, let L_{ZIP}
 252 denote the loss function of the standard zero-inflated model and let L_{rank} be a non-negative ranking
 253 loss. Let \hat{r}^{ZIP} be the predictor that minimizes the expected ZIP loss and assume that the ranking loss
 254 is non-trivial at this predictor, i.e.*

$$255 \quad \mathbb{E}[L_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)] > 0.$$

256 For any $\alpha \in (0, 1)$, define the combined loss

$$257 \quad L_C(\hat{r}) = \alpha L_{\text{ZIP}}(\hat{r}) + (1 - \alpha) L_{\text{rank}}(\hat{r}).$$

258 Let \hat{r}^C be a minimizer of the expected combined loss $\mathbb{E}[L_C(\hat{r})]$. Then there exists $\alpha^* \in (0, 1)$ such
 259 that

$$260 \quad \mathbb{E}[L_C(\hat{r}^C)] < \mathbb{E}[L_{\text{ZIP}}(\hat{r}^{\text{ZIP}})]. \quad (13)$$

261 In particular, any constant predictor cannot minimize L_C , since its ranking loss is strictly positive.
 262

270 These theoretical results demonstrate that incorporating ranking information effectively aligns read
 271 counts across compounds, mitigating experimental biases in DEL screening data. The combined
 272 loss function consistently outperforms the standard ZIP approach in expected performance. Detailed
 273 proofs and analyses are provided in Sections A.1 and A.2.

274

275 3.2.1 PAIRWISE SOFT RANKING LOSS

276

277 To better model the relationships between compound pairs and handle read count noise, we introduce
 278 \mathcal{L}_{PSR} inspired by LambdaRank (Burges et al., 2006). Compared to LambdaRank, it enables
 279 differentiable ranking between compounds, which is formulated as:

$$280 \quad \mathcal{L}_{\text{PSR}}(\hat{r}_i, \dots, \hat{r}_N, T) = - \sum_{i=1}^N \sum_{j \neq i, r_i > r_j} [\Delta_{ij} \cdot \sigma_{ij}(T)] \quad (14)$$

$$283 \quad \sigma_{ij} = \frac{1}{1 + e^{-|r_i - r_j|/T}}, \quad \Delta_{ij} = \frac{\Delta G_{ij} \cdot \Delta D_{ij}}{Z}$$

285 where \hat{r}_i and \hat{r}_j represent the predicted read count values for compounds i and j , respectively. σ_{ij}
 286 reflects the absolute ranking differences between each compound pair, and T denotes the temperature
 287 to scale the difference. For ranking changes, we introduce a pairwise importance term Δ_{ij} between
 288 compounds i and j , comprising a gain function $G_i = \text{softplus}(r_i)$ for compound relevance and a
 289 rank-based discount function $D_i = 1/(\log_2(\text{rank}_i + 1) + \epsilon)$

$$290 \quad \Delta G_{ij} = G_i - G_j = \text{softplus}(r_i) - \text{softplus}(r_j) \quad (15)$$

$$292 \quad \Delta D_{ij} = D_i - D_j = \frac{1}{(\log_2(\text{rank}_i + 1) + \epsilon)} - \frac{1}{(\log_2(\text{rank}_j + 1) + \epsilon)} \quad (16)$$

294 , where ϵ ensures numerical stability; rank_i denotes the predicted rank of sample i according to
 295 read-count values in each training batch. We then employ a normalization factor derived from the
 296 top-K predicted values per batch ($K < N$), improving computational efficiency and eliminating
 297 ranking noise from zero-value predictions.

$$299 \quad Z = \sum_{k=1}^K \frac{\text{softplus}(\hat{r}_{[k]})}{\log_2(k + 1) + \epsilon} \quad (17)$$

301 where $\hat{r}_{[k]}$ represents the k -th highest predicted read count in descending order; ϵ is set to $1e - 8$ to
 302 avoid division by zero. This normalization factor adaptively adjusts the loss scale across different
 303 dataset sizes and read count distributions, ensuring robust model training regardless of data variations.
 304 \mathcal{L}_{PSR} extends LambdaRank by using continuous DEL read counts and Top-K-normalized NDCG
 305 weights, making the pairwise ranking robust to zero inflation and noisy count scales.

306

307 3.2.2 LISTWISE GLOBAL RANKING LOSS

308

309 We further propose \mathcal{L}_{LGR} inspired by ListMLE (Xia et al., 2008) as a complement to \mathcal{L}_{PSR} . Compared
 310 to ListMLE, it is equipped with an additional loss term to distinguish excessive zero read-counts in
 311 DEL datasets. The LGR loss captures global ranking information as:

$$312 \quad \mathcal{L}_{\text{LGR}}(\hat{r}, \tau, T) = - \sum_{i=1}^N \log \frac{\exp(\hat{r}_{\Omega(i)}/T)}{\sum_{j=i}^N \exp(\hat{r}_{\Omega(j)}/T)} + \sigma \sum_{i=1}^N \sum_{j>i} \mathcal{L}_{\text{con}}(\hat{r}_i, \hat{r}_j, \tau) \quad (18)$$

315 where Ω_i denotes the rank of compound i ; τ represents the minimal margin between predicted read
 316 count pairs (r_i, r_j) ; T is a temperature parameter that rescales scores to sharpen the predicted read-
 317 count distribution; and \mathcal{L}_{con} denotes a contrastive loss component that captures local relationships
 318 between ranking scores, weighted by parameter σ .

319 The contrastive loss function \mathcal{L}_{con} is specifically designed to enhance discrimination between varying
 320 levels of biological activity, especially for samples with zero or identical read count values. Let
 321 $f : \mathbb{R} \rightarrow \mathbb{R}$ be the descending sorting function and $\tau > 0$ a fixed threshold. We define $\mathcal{L}_{\text{con}} : \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ as:

$$323 \quad \mathcal{L}_{\text{con}}(\hat{r}_i, \hat{r}_j, \tau) = \max\{0, \tau - (f(\hat{r}_i) - f(\hat{r}_j))\} \quad (19)$$

This loss function is positive if and only if $f(\hat{r}_i) - f(\hat{r}_j) < \tau$, effectively enforcing a minimum margin τ between differently ranked samples. The constant gradients $\partial\mathcal{L}_{\text{con}}/\partial f(\hat{r}_i) = -1$ and $\partial\mathcal{L}_{\text{con}}/\partial f(\hat{r}_j) = 1$ when $f(\hat{r}_i) - f(\hat{r}_j) < \tau$ promote robust and stable ranking relationships, particularly beneficial for compounds with similar readouts but different underlying activities. *L_{LGR}* extends ListMLE by adding a contrastive margin term that explicitly pushes high-count compounds above zero/near-zero ones, improving separation of truly active vs inactive DEL molecules.

3.3 CHEMICAL-REFERENCED DISTRIBUTION CORRECTION FRAMEWORK

To address **Distribution Shifts** in DEL, we propose the CRC framework, which enhances the read-count distribution by the functional group distribution alignment. We apply the Refinement-Correction optimization process (details in Algorithm1).

In the Refinement Stage, we apply dual information streams—chemical functional group labels and read counts—that respectively capture overall binding potential and binding strength. we adopt an iterative mechanism inspired by self-training techniques (Zoph et al., 2020) to update 2D SMILES embeddings and combined 2D-3D embeddings. Through multiple rounds of updates, the bidirectional feedback loop merge the information of the two representations.

In the Correction Stage, we introduce a consistency loss function to mitigate error accumulation and align predictions with underlying biological signals. Drawing on insights from (Hou et al., 2023), we leverage a key observation: specific functional groups within our dataset exhibit strong correlations with compound affinity, enabling us to define corresponding chemical group function labels. This labeling approach provides effective supervision for both read count regression and novel functional group discovery (Section 4.2). Importantly, this mechanism addresses discrepancies where compounds exhibit low read counts but high activity. Formally, the consistency loss is defined as:

$$\mathcal{L}_{\text{consist}}(r_i, \hat{r}_i, y_i, \hat{p}_i) = \|\hat{p}_i - y_i\| + \max \left(0, \left\| \hat{y}_i - \frac{\hat{r}_i}{\max_{i \in \{1, \dots, N\}} \hat{r}_i} \right\|_2^2 - \left\| y_i - \frac{r_i}{\max_{i \in \{1, \dots, N\}} r_i} \right\|_2^2 \right) \quad (20)$$

where N denotes batch size. The first term regresses functional group labels, while the second term constrains the consistency between normalized read counts and activity predictions. **Unlike generic iterative self-training, CRC jointly refines the read-count and functional-group heads via a batch-wise consistency loss on fused 2D/3D embeddings, and Table 3, together with Appendix D.2, shows that disabling CRC or its refinement steps consistently reduces performance, especially under high noise.**

3.4 TOTAL TRAINING OBJECTIVE

The total training objective integrates the ZIP loss, the ranking loss, and the consistency loss, which is formulated as:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{ZIP}} + \rho \mathcal{L}_{\text{rank}} + \gamma \mathcal{L}_{\text{consist}} \quad (21)$$

where ρ and γ are hyperparameters that control the relative contribution of the ranking and consistency losses, respectively. These weights are tuned to balance the order of magnitude of each component for optimal performance across different experimental settings.

3.5 MODEL ARCHITECTURE

The DEL-Ranking framework consists of three components (Figure 2, Algorithm 3). The Fingerprint Encoder converts 2048-bit Morgan fingerprints to dense embeddings via residual MLP, capturing chemical substructure information. The Pose Encoder uses a pretrained 3D CNN from GNINA (McNutt et al., 2021) to encode protein-ligand complexes from 9-20 docked binding poses per compound. The Fusion Module combines pose and fingerprint information through self-attention, automatically prioritizing relevant poses without pose-level supervision. The model predicts matrix effects from fingerprint embeddings alone, while binding affinity and target effects use the fused representation. This design reflects that matrix binding depends primarily on molecular properties, whereas target binding requires specific 3D protein-ligand interactions. Implementation follows DEL-Dock (Shmilovich et al., 2023) architectural principles and hyperparameters.

378
 379 **Table 1:** Comparison of our framework DEL-Ranking with existing DEL affinity predictions on CA2
 380 & CA12 datasets. Results in **bold** and underlined are the top-1 and top-2 performances, respectively.

Metric	3p3h (CA2)		4kp5-A (CA12)		4kp5-OA (CA12)		5fl4-9p (CA9)		5fl4-20p (CA9)	
	Sp	SubSp								
Mol Weight	-0.250	-0.125	-0.101	0.020	-0.101	0.020	-0.121	-0.028	-0.121	-0.074
Benzene	0.022	0.072	-0.054	0.035	-0.054	0.035	-0.174	-0.134	-0.199	-0.063
Smina Docking	<u>-0.174</u> <u>±0.002</u>	<u>-0.017</u> <u>±0.003</u>	<u>0.025</u> <u>±0.001</u>	<u>0.150</u> <u>±0.003</u>	<u>0.025</u> <u>±0.001</u>	<u>0.150</u> <u>±0.003</u>	<u>-0.114</u> <u>±0.009</u>	<u>-0.055</u> <u>±0.007</u>	<u>-0.279</u> <u>±0.044</u>	<u>-0.091</u> <u>±0.061</u>
RF-Enrichment	-0.017 <u>±0.026</u>	-0.042 <u>±0.025</u>	-0.029 <u>±0.036</u>	-0.005 <u>±0.048</u>	<u>-0.101</u> <u>±0.009</u>	<u>-0.087</u> <u>±0.010</u>	-0.064 <u>±0.126</u>	-0.144 <u>±0.024</u>	-0.064 <u>±0.126</u>	-0.144 <u>±0.024</u>
RF-ZIP	0.027 <u>±0.139</u>	-0.005 <u>±0.071</u>	0.035 <u>±0.094</u>	-0.026 <u>±0.111</u>	0.006 <u>±0.095</u>	-0.021 <u>±0.122</u>	0.040 <u>±0.022</u>	-0.011 <u>±0.042</u>	0.054 <u>±0.094</u>	0.026 <u>±0.111</u>
MLP-ZIP	-0.095 <u>±0.051</u>	-0.085 <u>±0.115</u>	-0.072 <u>±0.054</u>	-0.058 <u>±0.093</u>	-0.003 <u>±0.079</u>	0.020 <u>±0.053</u>	-0.029 <u>±0.094</u>	-0.085 <u>±0.116</u>	-0.055 <u>±0.066</u>	-0.049 <u>±0.102</u>
Dos-DEL	-0.048 <u>±0.036</u>	-0.011 <u>±0.035</u>	-0.016 <u>±0.029</u>	-0.017 <u>±0.021</u>	-0.003 <u>±0.030</u>	-0.048 <u>±0.034</u>	-0.115 <u>±0.065</u>	-0.036 <u>±0.010</u>	-0.231 <u>±0.007</u>	-0.091 <u>±0.012</u>
DEL-QSVR	-0.228 <u>±0.021</u>	<u>-0.171</u> <u>±0.033</u>	-0.004 <u>±0.178</u>	0.018 <u>±0.139</u>	0.070 <u>±0.134</u>	-0.076 <u>±0.116</u>	-0.086 <u>±0.060</u>	-0.036 <u>±0.074</u>	-0.298 <u>±0.005</u>	-0.075 <u>±0.011</u>
DEL-Dock	-0.255 <u>±0.009</u>	-0.137 <u>±0.012</u>	-0.242 <u>±0.011</u>	-0.263 <u>±0.012</u>	0.015 <u>±0.020</u>	<u>-0.105</u> <u>±0.034</u>	-0.308 <u>±0.000</u>	-0.169 <u>±0.000</u>	-0.320 <u>±0.009</u>	-0.166 <u>±0.017</u>
DEL-Ranking	-0.286 <u>±0.002</u>	-0.177 <u>±0.005</u>	-0.268 <u>±0.012</u>	-0.277 <u>±0.016</u>	-0.289 <u>±0.025</u>	-0.233 <u>±0.021</u>	-0.323 <u>±0.015</u>	-0.175 <u>±0.000</u>	-0.330 <u>±0.007</u>	-0.187 <u>±0.013</u>

4 EXPERIMENT

393 **Datasets. CA9 Dataset** From the original data containing 108,529 DNA-barcoded molecules
 394 targeting human carbonic anhydrase IX (CA9) (Gerry et al., 2019), we derived two separate datasets.
 395 The first, denoted as **5fl4-9p**, uses 9 docked poses that we generated ourselves. The second, **5fl4-20p**,
 396 employs 20 docked poses using the 5fl4 structure. Both datasets lack chemical functional group
 397 labels. **CA2 and CA12 Datasets** From the CAS-DEL library (Hou et al., 2023), we generated three
 398 datasets comprising 78,390 molecules selected from 7,721,415 3-cycle peptide compounds. We
 399 performed docking to create 9 poses per molecule for each dataset. The CA2-derived dataset uses
 400 the 3p3h PDB structure (denoted as **3p3h**), while two CA12-derived datasets use the 4kp5 PDB
 401 structure: **4kp5-A** for normal expression and **4kp5-OA** for overexpression. The binary chemical
 402 functional group label is set to 1 when there is benzene sulfonamide (BB3-197) in the compound
 403 (Hou et al., 2023). **Validation Dataset** from ChEMBL (Zdrazil et al., 2024) includes 12,409 small
 404 molecules with affinity measurements for CA9, CA2, and CA12. Molecules have compatible atom
 405 types, molecular weights from 25 to 1000 amu, and inhibitory constants (K_i) from 90 pM to 0.15 M.
 406 A subset focusing on the 10-90th percentile range of the training data’s molecular weights provides a
 407 more challenging test scenario. **Virtual Docking** details for ligand poses are shown in Appendix C.1.

408 **Evaluation Metrics and hyper-parameters.** We evaluate our framework on the ChEMBL dataset
 409 (Zdrazil et al., 2024) using two Spearman correlations: overall correlation (ρ_{overall}) between predicted
 410 read counts and experimental K_i values across all validation data, and subset correlation (ρ_{subset})
 411 for compounds with molecular weights between 10th-90th percentiles of training data. Detailed
 412 hyper-parameter settings are provided in Appendix C.2.

413 **Baselines.** We examine the performance of existing binding affinity predictors. Traditional methods
 414 based on binding poses and fingerprints include Molecule Weight, Benzene Sulfonamide, Smina
 415 Docking (Koes et al., 2013), and Dos-DEL(Gerry et al., 2019). AI-aided methods dependent on
 416 read count values and molecule information include RF-Enrichment, RF-ZIP (Random Forest for
 417 Log-enrichment, \mathcal{L}_{ZIP}), DEL-QSVR, and DEL-Dock (Lim et al., 2022; Shmilovich et al., 2023).

4.1 BENCHMARKING DENOISING CAPABILITY

420 **Benchmark Comparison.** We conducted comprehensive experiments across five diverse datasets:
 421 3p3h, 4kp5-A, 4kp5-OA, and two variants of 5fl4. For each dataset, we performed five runs to ensure
 422 statistical robustness. As shown in Table 1, our method consistently achieves state-of-the-art results
 423 in both Spearman (**Sp**) and subset Spearman (**SubSp**) coefficients across all datasets.

424 Our analysis reveals several key insights: (1) **Experimental Adaptability:** DEL-Ranking shows
 425 consistent advantages across diverse datasets, with notable gains in challenging conditions. It
 426 maintains improvements even in lower-noise environments like purified protein datasets (3p3h
 427 and 5fl4), versatility highlighting DEL-Ranking’s adaptability to various experimental setups. (2)
 428 **Noise Resilience:** DEL-Ranking excels in high-noise scenarios, particularly in membrane protein
 429 experiments. Its exceptional results on the 4kp5 dataset, especially the challenging 4kp5-OA variant,
 430 demonstrate this. Where baseline methods struggle, our approach effectively distinguishes signal from
 431 noise in complex experimental conditions. (3) **Structural Flexibility:** Our approach effectively uses
 432 structural information, as shown in the 5fl4 dataset. Increasing poses from 9 to 20 improves model

432
 433 Table 2: Zero-shot Generalization Results Comparison evaluated on 3p3h, 4kp5-A, and 4kp5-OA
 434 datasets.

435	3p3h (CA2)		4kp5-A (CA12)		4kp5-OA (CA12)		
	Metric	Sp	SubSp	Sp	SubSp	Sp	SubSp
436	Mol Weight	-0.121	-0.028	-0.121	-0.028	-0.121	-0.028
437	Benzene	-0.174	-0.134	-0.174	-0.134	-0.174	-0.134
438	Smina Docking	-0.114 \pm 0.009	-0.055 \pm 0.007	-0.114 \pm 0.009	-0.055 \pm 0.007	-0.114 \pm 0.009	-0.055 \pm 0.007
439	RF-Enrichment	0.020 \pm 0.014	-0.031 \pm 0.057	-0.034 \pm 0.013	-0.034 \pm 0.029	-0.044 \pm 0.005	-0.085 \pm 0.006
440	RF-ZIP	0.037 \pm 0.059	0.013 \pm 0.017	0.036 \pm 0.024	-0.002 \pm 0.016	0.049 \pm 0.012	-0.007 \pm 0.013
441	Dos-DEL	-0.115 \pm 0.065	-0.036 \pm 0.010	-0.115 \pm 0.065	-0.036 \pm 0.010	-0.115 \pm 0.065	-0.036 \pm 0.010
442	DEL-QSVR	-0.300 \pm 0.020	-0.257\pm0.022	-0.236\pm0.038	-0.223\pm0.030	0.108 \pm 0.089	0.130 \pm 0.070
443	DEL-Dock	-0.272 \pm 0.013	-0.118 \pm 0.005	-0.211 \pm 0.007	-0.118 \pm 0.010	0.065 \pm 0.021	-0.125 \pm 0.034
444	DEL-Ranking	-0.310\pm0.005	-0.120 \pm 0.011	-0.228 \pm 0.010	-0.127 \pm 0.018	-0.300\pm0.026	-0.129\pm0.021

445
 446
 447 performance, highlighting our method’s ability to utilize additional structural data. This underscores
 448 DEL-Ranking’s effectiveness in extracting insights from comprehensive structural information. (4)
 449 **Dual Analysis Capability:** DEL-Ranking’s consistent performance in both Sp and SubSp metrics
 450 shows its versatility in drug discovery. This enables effective broad-spectrum screening and detailed
 451 subset analysis, enhancing its utility across various stages of drug discovery.

452
 453 **Zero-shot Generalization.** We evaluated models’ zero-shot generalization on CA9 by training
 454 them on CA2 and CA12 targets across three datasets (3p3h, 4kp5-A, and 4kp5-OA). Detailed in
 455 Table 2, DEL-Ranking consistently outperformed DEL-Dock. Notably, on the 4kp5-OA dataset
 456 with substantially different protein targets, DEL-Ranking maintained strong predictive performance,
 457 demonstrating its generalization capability to novel targets. Notably, DEL-QSVR exhibited superior
 458 zero-shot performance, suggesting that simpler molecular representations and loss functions might be
 459 more conducive to target generalization. This superior performance might be attributed to the fact
 460 that incorporating pose information could potentially limit zero-shot generalization capability.

461
 462 Table 3: Ablation Study Results of DEL-Ranking on 3p3h, 4kp5-A, and 4kp5-OA datasets.

463	3p3h (CA2)		4kp5-A (CA12)		4kp5-OA (CA12)		
	Metric	Sp	SubSp	Sp	SubSp	Sp	SubSp
464	w/o All	-0.255 \pm 0.004	-0.137 \pm 0.012	-0.242 \pm 0.011	-0.263 \pm 0.012	0.015 \pm 0.029	-0.105 \pm 0.034
465	w/o \mathcal{L}_{PSR}	-0.273 \pm 0.012	-0.155 \pm 0.013	-0.251 \pm 0.015	-0.271 \pm 0.011	0.015 \pm 0.028	-0.105 \pm 0.033
466	w/o \mathcal{L}_{LGR}	-0.280 \pm 0.011	-0.168 \pm 0.015	-0.256 \pm 0.023	-0.273 \pm 0.016	-0.269 \pm 0.024	-0.209 \pm 0.034
467	w/o \mathcal{L}_{con}	-0.283 \pm 0.004	-0.172 \pm 0.007	-0.260 \pm 0.018	-0.273 \pm 0.014	-0.273 \pm 0.024	-0.218 \pm 0.034
468	w/o Temp	-0.279 \pm 0.011	-0.166 \pm 0.015	-0.247 \pm 0.022	-0.265 \pm 0.014	-0.256 \pm 0.033	-0.181 \pm 0.046
469	w/o CRC	-0.284 \pm 0.007	-0.174 \pm 0.010	-0.260 \pm 0.015	-0.272 \pm 0.012	-0.269 \pm 0.023	-0.223 \pm 0.045
470	DEL-Ranking	-0.286 \pm 0.002	-0.177 \pm 0.005	-0.268 \pm 0.012	-0.277 \pm 0.016	-0.289 \pm 0.025	-0.233 \pm 0.021

471
 472 4.2 DISCOVERY OF POTENTIAL HIGH AFFINITY FUNCTIONAL GROUP473
 474 To evaluate DEL-Ranking’s capability in identifying potent compounds, we conducted an in-depth
 475 analysis of the Top-50 compounds predicted by our model across five datasets. These compounds
 476 were selected based on their predicted target counts in decreasing order.477
 478 Our primary objective was to examine the K_i values of these selected compounds to demonstrate that
 479 DEL-Ranking effectively identifies ligands with high binding affinity. Additionally, we performed a
 480 comparative analysis with DEL-Dock to highlight our model’s enhanced ability to discover promising
 481 ligand candidates. Notably, our analysis revealed certain functional groups associated with low K_i
 482 values that were previously unreported by researchers in the 3p3h, 4kp5-A, and 4kp5-OA datasets.
 483 This finding demonstrates that our functional label approach and Consistency Regression Correction
 484 (CRC) mechanism extend beyond simply injecting known chemical biases such as Benzene Sulfon-
 485 amide. As detailed in Figure 3, the selected compounds consistently exhibited low K_i values across

486 all datasets, confirming the model’s effectiveness in prioritizing high-affinity compounds from large
 487 DEL libraries.

488 **Benzene Sulfonamide Accuracy.** DEL-
 489 Ranking shows expectational accuracy in de-
 490 tecting benzene sulfonamide, a key high-affinity
 491 group for carbonic anhydrase inhibitors (Hou
 492 et al., 2023). From Figure 3, the model achieved
 493 high detection rates on five datasets, demon-
 494 strating that our CRC framework effectively in-
 495 corporates biological prior knowledge into model
 496 prediction. To further explore the potential high-
 497 affinity compounds, we conducted the same
 498 study of DEL-Dock (Shmilovich et al., 2023)
 499 in Appendix D.3.

500 **Novel Group Discovery** Our analysis of the
 501 3p3h and 5f14 datasets revealed a significant find-
 502 ing: 20% (10/50) of high-ranking compounds in 3p3h and 10% (5/50) in 5f14 lack the expected
 503 benzene sulfonamide group. Remarkably, all these compounds contain a common functional group -
 504 **Pyrimidine Sulfonamide** - which shares high structural similarity with benzene sulfonamide.

505 Further investigation through case-by-case K_i value determination yielded compelling results. Five
 506 compounds from 3p3h and five from 5f14 containing pyrimidine sulfonamide exhibited K_i values
 507 comparable to or even surpassing those of benzene sulfonamide-containing compounds. This
 508 finding profoundly validates DEL-Ranking’s dual capability: successfully incorporating chemical
 509 functional group label information, while simultaneously leveraging multi-level information along
 510 with integrated ranking orders to uncover potential high-activity functional groups. Notably, this
 511 discovery reveals DEL-Ranking’s ability to identify unexplored scaffolds, showing potential to
 512 improve compound prioritization and accelerate hit-to-lead optimization in early-stage drug discovery.
 513 Detailed visualization of Top-50 samples and selected Pyrimidine Sulfonamide cases are shown in
 514 Sections D.5 and G. We anticipate that with increased sampling sizes, DEL-Ranking will demonstrate
 515 enhanced capability to identify additional affinity-determining functional groups that contribute
 516 significantly to binding interactions.

517 4.3 ABLATION STUDY

518 To further explore the effectiveness of our enhancement, we compare DEL-Ranking with some
 519 variants on 3p3h, 4kp5-A, and 4kp5-OA datasets. We can observe from Table 3 that (1) \mathcal{L}_{PSR} and
 520 \mathcal{L}_{LGR} contribute most significantly to model performance across all datasets. (2) The impact of
 521 \mathcal{L}_{PSR} is more pronounced in datasets with higher noise levels, as evidenced by the larger relative
 522 performance drop in the 3p3h dataset. (3) Temperature adjustment and $\mathcal{L}_{consist}$ help improve the
 523 performance by correcting the predicted distributions, but count less than ranking-based denoising.

524 Furthermore, we conducted ablation studies on both loss weight and structure information weight (See
 525 details in Sections D.1 and D.2). Also, due to multiple hyperparameters, we provide hyperparameter
 526 selection criteria in AppendixC.2. The experimental results corroborate the capability of our approach
 527 and the feasibility of our hyperparameter selection criteria.

530 5 CONCLUSION

531 In this paper, we propose DEL-Ranking to address the challenge of noise in DEL screening through
 532 innovative ranking loss and activity-based correction algorithms. Experimental results demon-
 533 strate significant improvements in binding affinity prediction and generalization capability. Additionally,
 534 DEL-Ranking’s ability to identify potential binding affinity determinants advances the field of
 535 DEL screening analysis by offering deeper insights into how molecular structures influence activity.
 536 Current limitations primarily stem from acquiring, integrating, and analyzing high-quality multi-
 537 modal molecular data at scale. Future work will focus on refining multi-modal data integration and
 538 expanding the model’s interpretability to further advance DEL-based drug discovery and accelerate
 539 structure–activity relationship exploration.

502 Figure 3: Quantitative analysis of Top-50 selection,
 503 including K_i distribution and accuracy.

540 REFERENCES
541

542 Pedro J Ballester and John BO Mitchell. A machine learning approach to predicting protein–ligand
543 binding affinity with applications to molecular docking. *Bioinformatics*, 26(9):1169–1175, 2010.

544 Andrew Blevins, Ian K Quigley, Brayden J Halverson, Nate Wilkinson, Rebecca S Levin, Agastya
545 Pulapaka, Walter Reade, and Addison Howard. Neurips 2024 - predict new medicines with belka.
546 <https://kaggle.com/competitions/leash-BELKA>, 2024. Kaggle.

547 Sydney Brenner and Richard A Lerner. Encoded combinatorial chemistry. *Proceedings of the
548 National Academy of Sciences*, 89(12):5381–5383, 1992.

549 Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost functions.
550 *Advances in neural information processing systems*, 19, 2006.

551 Nicolas Favalli, Gabriele Bassi, Jörg Scheuermann, and Dario Neri. Dna-encoded chemical libraries:
552 achieving the screenable chemical space. *FEBS letters*, 592(12):2168–2180, 2018.

553 John C Faver, Kevin Riehle, David R Lancia Jr, Jared BJ Milbank, Christopher S Kollmann, Nicholas
554 Simmons, Zhifeng Yu, and Martin M Matzuk. Quantitative comparison of enrichment from
555 dna-encoded chemical library selections. *ACS combinatorial science*, 21(2):75–82, 2019.

556 Timothy L Foley, Woodrow Burchett, Qiuxia Chen, Mark E Flanagan, Brendon Kapinos, Xianyang Li,
557 Justin I Montgomery, Anokha S Ratnayake, Hongyao Zhu, and Marie-Claire Peakman. Selecting
558 approaches for hit identification and increasing options by building the efficient discovery of
559 actionable chemical matter from dna-encoded libraries. *SLAS DISCOVERY: Advancing the Science
560 of Drug Discovery*, 26(2):263–280, 2021.

561 Raphael M Franzini, Dario Neri, and Jorg Scheuermann. Dna-encoded chemical libraries: advancing
562 beyond conventional small-molecule libraries. *Accounts of chemical research*, 47(4):1247–1255,
563 2014.

564 Christopher J Gerry, Mathias J Wawer, Paul A Clemons, and Stuart L Schreiber. Dna barcoding a
565 complete matrix of stereoisomeric small molecules. *Journal of the American Chemical Society*,
566 141(26):10225–10235, 2019.

567 Robert A Goodnow Jr and Christopher P Davie. Dna-encoded library technology: a brief guide to its
568 evolution and impact on drug discovery. In *Annual Reports in Medicinal Chemistry*, volume 50,
569 pp. 1–15. Elsevier, 2017.

570 Chunbin Gu, Mutian He, Hanqun Cao, Guangyong Chen, Chang-yu Hsieh, and Pheng Ann Heng.
571 Unlocking potential binders: Multimodal pretraining del-fusion for denoising dna-encoded libraries.
572 *arXiv preprint arXiv:2409.05916*, 2024.

573 Kangxia Gu, Hon Keung Tony Ng, Man Lai Tang, and William R Schucany. Testing the ratio of
574 two poisson rates. *Biometrical Journal: Journal of Mathematical Methods in Biosciences*, 50(2):
575 283–298, 2008.

576 José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán Aspuru-Guzik.
577 Bayesian optimization for synthetic gene design. *arXiv preprint arXiv:1712.07037*, 2017.

578 Rui Hou, Chao Xie, Yuhan Gui, Gang Li, and Xiaoyu Li. Machine-learning-based data analysis
579 method for cell-based selection of dna-encoded libraries. *ACS omega*, 2023.

580 Hao Jiang, Connor W Coley, and William H Green. Advances in the application of molecular docking
581 for the design of dna-encoded libraries. *Journal of chemical information and modeling*, 55(7):
582 1297–1308, 2015.

583 David Ryan Koes, Matthew P Baumgartner, and Carlos J Camacho. Lessons learned in empirical
584 scoring with smina from the csar 2011 benchmarking exercise. *Journal of chemical information
585 and modeling*, 53(8):1893–1904, 2013.

586 Péter Kómár and Marko Kalinic. Denoising dna encoded library screens with sparse learning. *ACS
587 Combinatorial Science*, 22(8):410–421, 2020.

594 Letian Kuai, Thomas O’Keeffe, and Christopher Arico-Muendel. Randomness in dna encoded
595 library selection data can be modeled for more reliable enrichment calculation. *SLAS DISCOVERY: Advancing the Science of Drug Discovery*, 23(5):405–416, 2018.
596

597 Jiao Li, Aoqin Fu, and Le Zhang. Machine learning approaches for predicting compounds that
598 interact with therapeutic and admet related proteins. *Journal of pharmaceutical sciences*, 107(6):
599 1543–1553, 2018.
600

601 Katherine S Lim, Andrew G Reidenbach, Bruce K Hua, Jeremy W Mason, Christopher J Gerry,
602 Paul A Clemons, and Connor W Coley. Machine learning on dna-encoded library count data using
603 an uncertainty-aware probabilistic loss function. *Journal of chemical information and modeling*,
604 62(10):2316–2331, 2022.
605

606 Peixiang Ma, Shuning Zhang, Qianping Huang, Yuang Gu, Zhi Zhou, Wei Hou, Wei Yi, and Hongtao
607 Xu. Evolution of chemistry and selection technology for dna-encoded library. *Acta Pharmaceutica
608 Sinica B*, 2023.

609 Ralph Ma, Gabriel HS Dreiman, Fiorella Ruggiu, Adam Joseph Riesselman, Bowen Liu, Keith
610 James, Mohammad Sultan, and Daphne Koller. Regression modeling on dna encoded libraries. In
611 *NeurIPS 2021 AI for Science Workshop*, 2021.
612

613 Carl A Machutta, Christopher S Kollmann, Kenneth E Lind, Xiaopeng Bai, Pan F Chan, Jianzhong
614 Huang, Lluis Ballell, Svetlana Belyanskaya, Gurdyal S Besra, David Barros-Aguirre, et al. Prioritizing
615 multiple therapeutic targets in parallel using automated dna-encoded library screening.
616 *Nature communications*, 8(1):16081, 2017.
617

618 Eric J Martin, Valery R Polyakov, Lan Zhu, and Lu Zhao. Quantitative analysis of molecular
619 recognition in dna-encoded libraries. *Journal of chemical information and modeling*, 57(9):
620 2077–2088, 2017.
621

622 Kevin McCloskey, Eric A Sigel, Steven Kearnes, Ling Xue, Xia Tian, Dennis Moccia, Diana Gikunju,
623 Sana Bazzaz, Betty Chan, Matthew A Clark, et al. Machine learning on dna-encoded libraries: a
624 new paradigm for hit finding. *Journal of Medicinal Chemistry*, 63(16):8857–8866, 2020.
625

626 Andrew T McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
627 Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep learning.
628 *Journal of cheminformatics*, 13(1):43, 2021.
629

630 Dario Neri and Richard A Lerner. Dna-encoded chemical libraries: a selection system based on
631 endowing organic compounds with amplifiable information. *Annual review of biochemistry*, 86:
632 813–838, 2017.
633

634 Dario Neri and Richard A Lerner. Dna-encoded chemical libraries: a selection system based on
635 endowing organic compounds with amplifiable information. *Annual review of biochemistry*, 87:
636 479–502, 2018.
637

638 Alexander A Peterson and David R Liu. Small-molecule discovery through dna-encoded libraries.
639 *Nature Reviews Drug Discovery*, 22(9):699–722, 2023.
640

641 Alexander L Satz. Simulated screens of dna encoded libraries: the potential influence of chemical
642 synthesis fidelity on interpretation of structure–activity relationships. *ACS combinatorial science*,
643 18(7):415–424, 2016.
644

645 Alexander L Satz, Andreas Brunschweiger, Mark E Flanagan, Andreas Gloger, Nils JV Hansen,
646 Letian Kuai, Verena BK Kunig, Xiaojie Lu, Daniel Madsen, Lisa A Marcaurelle, et al. Dna-encoded
647 chemical libraries. *Nature Reviews Methods Primers*, 2(1):3, 2022.
648

649 Kirill Shmilovich, Benson Chen, Theofanis Karaletsos, and Mohammad M Sultan. Del-dock:
650 Molecular docking-enabled modeling of dna-encoded libraries. *Journal of Chemical Information
and Modeling*, 63(9):2719–2727, 2023.
651

648 Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
649 Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
650 Deep learning-based prediction of protein-ligand interactions. *Proceedings of the National
651 Academy of Sciences*, 117(32):19338–19348, 2020.

652 Lingle Wang, Yujie Wu, Yuqing Deng, Byungchan Kim, Levi Pierce, Goran Krilov, Dmitry Lupyan,
653 Shaughnessy Robinson, Markus K Dahlgren, Jeremy Greenwood, et al. Accurate and reliable
654 prediction of relative ligand binding potency in prospective drug discovery by way of a modern
655 free-energy calculation protocol and force field. *Journal of the American Chemical Society*, 137
656 (7):2695–2703, 2015.

657 Moreno Wichert, Laura Guasch, and Raphael M Franzini. Challenges and prospects of dna-encoded
658 library data interpretation. *Chemical Reviews*, 2024.

660 Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning
661 to rank: theory and algorithm. In *Proceedings of the 25th international conference on Machine
662 learning*, pp. 1192–1199, 2008.

663 Lik Hang Yuen and Raphael M Franzini. Dna-encoded chemical libraries: advances and applications.
664 *Pflügers Archiv-European Journal of Physiology*, 469:213–225, 2017.

666 Cheng Yung-Chi and William H Prusoff. Relationship between the inhibition constant (ki) and
667 the concentration of inhibitor which causes 50 per cent inhibition (i50) of an enzymatic reaction.
668 *Biochemical pharmacology*, 22(23):3099–3108, 1973.

669 Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Corbett,
670 Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, et al. The chembl
671 database in 2023: a drug discovery platform spanning multiple bioactivity data types and time
672 periods. *Nucleic acids research*, 52(D1):D1180–D1192, 2024.

674 Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le.
675 Rethinking pre-training and self-training. *Advances in neural information processing systems*, 33:
676 3833–3845, 2020.

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A THEORETICAL ANALYSIS

704 A.1 PROOF OF LEMMA AND THEOREM

706 *Proof. [Proof of Lemma 3.1]* Let (Ω, \mathcal{F}, P) be a probability space and $(X, R) : \Omega \rightarrow \mathcal{X} \times \mathbb{R}$
 707 be random variables representing features and read counts respectively. Define $f_{\text{ZIP}}(r|x)$ as the
 708 probability mass function of a well-fitted Zero-Inflated Poisson model.

709 Define:

$$\begin{aligned} 711 \hat{R}(x) &= E[R|X = x] = \sum_{r=0}^{\infty} r \cdot f_{\text{ZIP}}(r|x) \\ 712 \mathcal{L}_{\text{ZIP}}(f_{\text{ZIP}}, \mathcal{D}) &= - \sum_{(x,r) \in \mathcal{D}} \log f_{\text{ZIP}}(r|x) \\ 713 \mathcal{L}_{\text{rank}}(\hat{R}, \mathcal{D}) &= \sum_{(x_i, r_i), (x_j, r_j) \in \mathcal{D}: r_i > r_j} \max(0, \hat{R}(x_j) - \hat{R}(x_i) + \delta) \end{aligned}$$

718 where \mathcal{D} is the observed dataset and $\delta > 0$.

720 We aim to prove $I(\mathcal{L}_{\text{rank}}|\mathcal{L}_{\text{ZIP}}) > 0$, where $I(\cdot|\cdot)$ denotes conditional mutual information.

721 Consider $(x_i, r_i), (x_j, r_j) \in \mathcal{D}$ with $r_i > r_j$. It's possible that $\hat{R}(x_i) \leq \hat{R}(x_j)$ due to the nature of
 722 likelihood optimization in the ZIP model. This occurs because ZIP optimization focuses on absolute
 723 likelihood values rather than preserving relative ordering between samples.

724 In such a case where observed ordering and predicted ordering disagree:

$$\begin{aligned} 726 \mathcal{L}_{\text{ZIP}}(f_{\text{ZIP}}, \{(x_i, r_i), (x_j, r_j)\}) &= -\log f_{\text{ZIP}}(r_i|x_i) - \log f_{\text{ZIP}}(r_j|x_j) \\ 727 \mathcal{L}_{\text{rank}}(\hat{R}, \{(x_i, r_i), (x_j, r_j)\}) &= \max(0, \hat{R}(x_j) - \hat{R}(x_i) + \delta) > 0 \end{aligned}$$

729 The ranking loss is positive specifically when the predicted ordering contradicts the observed ordering.
 730 During optimization, minimizing $\mathcal{L}_{\text{rank}}$ will push the model to correct such inversions, ensuring
 731 $\hat{R}(x_i) > \hat{R}(x_j)$ when $r_i > r_j$. This directly improves the model's ability to preserve ordering
 732 relationships.

734 Therefore, when both losses are used together:

$$735 P(R_i > R_j | \mathcal{L}_{\text{ZIP}}, \mathcal{L}_{\text{rank}}) > P(R_i > R_j | \mathcal{L}_{\text{ZIP}})$$

737 This inequality occurs because $\mathcal{L}_{\text{rank}}$ specifically penalizes ordering violations that \mathcal{L}_{ZIP} alone might
 738 permit. Consequently, the conditional entropy decreases:

$$740 H(R | \mathcal{L}_{\text{ZIP}}, \mathcal{L}_{\text{rank}}) < H(R | \mathcal{L}_{\text{ZIP}})$$

742 Therefore, $I(\mathcal{L}_{\text{rank}}|\mathcal{L}_{\text{ZIP}}) = H(R|\mathcal{L}_{\text{ZIP}}) - H(R|\mathcal{L}_{\text{ZIP}}, \mathcal{L}_{\text{rank}}) > 0$. \square

743 *Proof. [Proof of Theorem 3.2]* Given Lemma 3.1, we first prove that there exists a set of predictions
 744 \hat{r}^C and a sufficiently small $\gamma_0 > 0$ such that for all $\gamma \in (0, \gamma_0)$:

$$746 E[\mathcal{L}_{\text{ZIP}}(\hat{r}^C, R)] - E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{ZI}, R)] < \frac{1-\gamma}{\gamma} (E[\mathcal{L}_{\text{rank}}(\hat{r}^{ZI}, R)] - E[\mathcal{L}_{\text{rank}}(\hat{r}^C, R)])$$

749 Define the combined loss function $L_C(\hat{r}, R; \alpha) = \alpha \mathcal{L}_{\text{ZIP}}(\hat{r}, R) + (1-\alpha) \mathcal{L}_{\text{rank}}(\hat{r}, R)$, where $\alpha \in (0, 1)$.
 750 Let $\hat{r}^C(\alpha)$ be the minimizer of L_C :

$$752 \hat{r}^C(\alpha) = \arg \min_{\hat{r}} E[L_C(\hat{r}, R; \alpha)]$$

754 By the definition of $\hat{r}^C(\alpha)$, for any $\alpha \in (0, 1)$, we have:

$$755 E[L_C(\hat{r}^C(\alpha), R; \alpha)] \leq E[L_C(\hat{r}^{ZI}, R; \alpha)]$$

756 Expanding this inequality:

$$757 \quad \alpha E[\mathcal{L}_{\text{ZIP}}(\hat{r}^C(\alpha), R)] + (1 - \alpha) E[\mathcal{L}_{\text{rank}}(\hat{r}^C(\alpha), R)] \leq \alpha E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}}, R)] + (1 - \alpha) E[\mathcal{L}_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)]$$

759
760 Let $\Delta\mathcal{L}_{\text{ZIP}}(\alpha) = E[\mathcal{L}_{\text{ZIP}}(\hat{r}^C(\alpha), R)] - E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}}, R)]$ and $\Delta\mathcal{L}_{\text{rank}}(\alpha) = E[\mathcal{L}_{\text{rank}}(\hat{r}^C(\alpha), R)] - E[\mathcal{L}_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)]$. Rearranging the inequality:

$$762 \quad \alpha\Delta\mathcal{L}_{\text{ZIP}}(\alpha) \leq (1 - \alpha)\Delta\mathcal{L}_{\text{rank}}(\alpha)$$

764
765 From Lemma 3.1, we established that $I(\mathcal{L}_{\text{rank}} | \mathcal{L}_{\text{ZIP}}) > 0$, meaning $\mathcal{L}_{\text{rank}}$ provides information not
766 captured by \mathcal{L}_{ZIP} . This additional information allows the combined model to better preserve ranking
767 relationships. Consequently, there exists $\alpha_1 \in (0, 1)$ such that for all $\alpha \in (0, \alpha_1]$, $\Delta\mathcal{L}_{\text{rank}}(\alpha) > 0$.

768 This positive $\Delta\mathcal{L}_{\text{rank}}(\alpha)$ occurs because the combined model $\hat{r}^C(\alpha)$ incorporates ordering constraints
769 that directly improve ranking performance compared to the ZIP-only model \hat{r}^{ZIP} .

770 Now, consider the function:

$$771 \quad f(\alpha) = (1 - \alpha)\Delta\mathcal{L}_{\text{rank}}(\alpha) - \alpha\Delta\mathcal{L}_{\text{ZIP}}(\alpha)$$

773
774 We know that $f(\alpha) \geq 0$ for all $\alpha \in (0, 1)$ from the earlier inequality. Moreover, $f(0) = \Delta\mathcal{L}_{\text{rank}}(0) >$
775 0 . This inequality holds at $\alpha = 0$ because the pure ranking model optimizes solely for order
776 preservation, significantly outperforming the ZIP model in terms of ranking metrics.

777 By the continuity of $f(\alpha)$ and since $f(0) > 0$, there exists $\alpha_0 \in (0, \alpha_1]$ such that for all $\alpha \in (0, \alpha_0]$:

$$778 \quad f(\alpha) > 0$$

780 This implies:

$$781 \quad (1 - \alpha)\Delta\mathcal{L}_{\text{rank}}(\alpha) > \alpha\Delta\mathcal{L}_{\text{ZIP}}(\alpha)$$

783 Dividing both sides by $\alpha(1 - \alpha)$ (which is positive for $\alpha \in (0, 1)$):

$$784 \quad \frac{\Delta\mathcal{L}_{\text{rank}}(\alpha)}{\alpha} > \frac{\Delta\mathcal{L}_{\text{ZIP}}(\alpha)}{1 - \alpha}$$

787 This is equivalent to:

$$788 \quad \Delta\mathcal{L}_{\text{ZIP}}(\alpha) < \frac{1 - \alpha}{\alpha}\Delta\mathcal{L}_{\text{rank}}(\alpha)$$

790 Substituting back the definitions of $\Delta\mathcal{L}_{\text{ZIP}}(\alpha)$ and $\Delta\mathcal{L}_{\text{rank}}(\alpha)$:

$$792 \quad E[\mathcal{L}_{\text{ZIP}}(\hat{r}^C(\alpha), R)] - E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}}, R)] < \frac{1 - \alpha}{\alpha}(E[\mathcal{L}_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)] - E[\mathcal{L}_{\text{rank}}(\hat{r}^C(\alpha), R)])$$

794 Let $\hat{r}^C = \hat{r}^C(\alpha_0)$, where α_0 represents the optimal trade-off between ZIP fidelity and ranking
795 performance. At this value, we have:

$$797 \quad E[\mathcal{L}_{\text{ZIP}}(\hat{r}^C, R)] - E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}}, R)] < \frac{1 - \alpha}{\alpha}(E[\mathcal{L}_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)] - E[\mathcal{L}_{\text{rank}}(\hat{r}^C, R)])$$

800 Rearranging this inequality:

$$801 \quad \alpha E[\mathcal{L}_{\text{ZIP}}(\hat{r}^C, R)] + (1 - \alpha) E[\mathcal{L}_{\text{rank}}(\hat{r}^C, R)] < \alpha E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}}, R)] + (1 - \alpha) E[\mathcal{L}_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)]$$

803 The left-hand side of this inequality is $E[L_C(\hat{r}^C)]$ by definition. The right-hand side is strictly greater
804 than $E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}})]$ since $E[\mathcal{L}_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)] > 0$ for any non-trivial ranking loss and $\alpha < 1$.

805 Therefore:

$$807 \quad E[L_C(\hat{r}^C)] < \alpha E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}}, R)] + (1 - \alpha) E[\mathcal{L}_{\text{rank}}(\hat{r}^{\text{ZIP}}, R)] < E[\mathcal{L}_{\text{ZIP}}(\hat{r}^{\text{ZIP}})]$$

809 This completes the proof, showing that our combined model achieves lower expected loss than the
810 standard ZIP model by effectively balancing distribution modeling and ranking preservation. \square

810 A.2 GRADIENT ANALYSIS
811812 We analyze the composite ranking loss function $\mathcal{L}_{\text{rank}}$, which combines Pairwise Soft Ranking Loss
813 and Listwise Global Ranking Loss. The gradient of $\mathcal{L}_{\text{rank}}$ with respect to \hat{r}_i is:
814

815
$$\frac{\partial \mathcal{L}_{\text{rank}}}{\partial \hat{r}_i} = \beta \frac{\partial \mathcal{L}_{\text{PSR}}}{\partial \hat{r}_i} + (1 - \beta) \frac{\partial \mathcal{L}_{\text{LGR}}}{\partial \hat{r}_i} \quad (22)$$

816

817
$$\frac{\partial \mathcal{L}_{\text{PSR}}}{\partial \hat{r}_i} = - \left(\sum_{j \neq i} (\Delta_{ij} \cdot \sigma_{ij}) - \sum_{j \neq i} (\Delta_{ji} \cdot \sigma_{ji}) \right) - \hat{r}_i \sum_{j \neq i} \Delta_{ij} \cdot \frac{\partial \sigma_{ij}}{\partial \hat{r}_i} + \hat{r}_i \sum_{j \neq i} \Delta_{ji} \cdot \frac{\partial \sigma_{ji}}{\partial \hat{r}_i} \quad (23)$$

818

819 where
820

821
$$\frac{\partial \sigma_{ij}}{\partial \hat{r}_i} = \frac{\text{sign}(\hat{r}_i - \hat{r}_j)}{T} \sigma_{ij} (1 - \sigma_{ij}) \quad (24)$$

822

823 The gradient $\frac{\partial \mathcal{L}_{\text{PSR}}}{\partial \hat{r}_i}$ is primarily determined by Δ_{ij} and σ_{ij} , which represent pairwise comparisons
824 between item i and other items j . Δ_{ij} captures the NDCG impact of swapping items i and j , while
825 σ_{ij} adjusts this impact based on the difference between \hat{r}_i and \hat{r}_j . This formulation ensures that \mathcal{L}_{PSR}
826 focuses on local ranking relationships, particularly between adjacent or nearby items.
827

828
$$\frac{\partial \mathcal{L}_{\text{LGR}}}{\partial \hat{r}_i} = -\frac{1}{T} \sum_{k=i}^n \left(\frac{\exp(\hat{r}_{\pi(k)}/T)}{\sum_{j=k}^n \exp(\hat{r}_{\pi(j)}/T)} - \mathbb{1}[\pi(k) = i] \right) + \frac{\partial \mathcal{L}_{\text{con}}}{\partial \hat{r}_i} \quad (25)$$

829

830 The gradient $\frac{\partial \mathcal{L}_{\text{LGR}}}{\partial \hat{r}_i}$ incorporates information from all items ranked from position i to n . Through its
831 softmax formulation, it considers the position of item i relative to all items ranked below it. This
832 allows \mathcal{L}_{LGR} to capture global ranking information.
833834 B DETAILED ALGORITHM OF CRC
835836 **Algorithm 1** Refinement Stage for Chemical-Referenced Correction (CRC) Algorithm
837838 **Require:** Pose structure embeddings \mathbf{h}_p , Fingerprint sequence embeddings \mathbf{h}_f , Sequence-structure
839 balancing weight ς , num_iterations \mathbf{n} , use_feedback
840
841 1: $x \leftarrow \text{PostAddLayer}(\varsigma \mathbf{h}_p + \mathbf{h}_f)$
842 2: $\hat{M} \leftarrow \text{MatrixHead}(\mathbf{h}_f)$
843 3: Initialize $\hat{R} \leftarrow \mathbf{0}$, $\hat{y} \leftarrow \mathbf{0}$
844 4: **for** $i = 1$ to \mathbf{n} **do**
845 5: **if** use_feedback **then**
846 6: $\hat{R} \leftarrow [x; \hat{p}]$, $\hat{p} \leftarrow [x; \hat{R}]$
847 7: **else**
848 8: $\hat{R} \leftarrow x$, $\hat{p} \leftarrow x$
849 9: **end if**
850 10: $\hat{R} \leftarrow \text{EnrichmentHead}(\text{ReadHead}(\hat{R}))$
851 11: $\hat{p} \leftarrow \text{ActHead}(\hat{p})$
852 12: **end for**
853 13: **Return** $\hat{M}, \hat{R}, \hat{p}$ 854 PostAddLayer, MatrixHead, EnrichmentHead, ReadHead, and ActHead are Multi-
855 layer Perceptrons (MLP) that map latent embeddings into corresponding predicted count values and
856 activities. The architectures are consistent with DEL-Dock (Shmilovich et al., 2023).
857858 C EXPERIMENTAL SETTINGS
859860 C.1 VIRTUAL DOCKING FOR DATASET CONSTRUCTION
861862 We employed molecular docking to define the three-dimensional conformations of molecules within
863 our DEL datasets. This method was applied to both the training and evaluation sets, generating
864

864 ligand binding poses for all molecules. We concentrated on three pivotal carbonic anhydrase proteins:
 865 Q16790 (CAH9_HUMAN), P00918 (CAH2_HUMAN), and O43570 (CAH12_HUMAN).
 866

867 For the Q16790 target, we sourced the 5fl4 and 2hkf PDB structures from the PDBbind database and
 868 utilized the Gerry dataset (Gerry et al., 2019), which comprised 108,529 molecules, generating up to
 869 nine potential poses per molecule. For the targets P00918 and O43570, we selected 127,500 SMILES
 870 strings from the DEL-MAP dataset (Hou et al., 2023) and conducted self-docking using the 3p3h and
 871 5doh PDB structures for P00918, and 4kp5 and 4ht2 for O43570, as sourced from PDBbind. For the
 872 validation set, we applied the same docking methodology to the corresponding ligands of CA9, CA2,
 873 and CA12, involving 3,324, 6,395, and 2,690 ligands respectively.
 874

875 In the specific docking procedures, initial 3D conformations of ligands were created using RDKit.
 876 The binding sites in the protein-ligand complexes were identified using 3D structural data of known
 877 binding ligands from PDBbind as reference points. Targeted docking was performed by defining
 878 the search space as a 22.5 Å cube centered on the reference ligand in the corresponding PDBbind
 879 complex. Using SMINA docking software, we generated 9 potential poses for each protein-ligand
 880 pair.
 881

880 C.2 HYPERPARAMETER SETTING

882 The model was trained using the Adam optimizer with mini-batches of 64 samples. The network
 883 architecture employed a hidden dimension of 128. The self-correction mechanism was applied for 3
 884 iterations. All experiments were conducted on a single NVIDIA RTX 3090 GPU with 24GB memory.
 885 The implementation utilized PyTorch-Lightning version 1.9.0 to streamline the training process and
 886 enhance reproducibility. The hyperparameter settings for different datasets, including loss function
 887 weights, temperature, and margin, are detailed in Table C.2.
 888

889 **Hyper-parameter Selection** The hyperparameter configuration in the appendix requires clarifi-
 890 cation regarding the weight settings. The key parameters include $\mathcal{L}_{\text{rank}}$ weight, \mathcal{L}_{PSR} weight, \mathcal{L}_{LGR}
 891 weight, and CRC weight. The $\mathcal{L}_{\text{rank}}$ weight is logarithmically distributed between 1e9 and 1e11 to
 892 align with the magnitude of ZIP loss. \mathcal{L}_{PSR} and \mathcal{L}_{LGR} weights are calibrated to maintain appropriate
 893 balance among different ranking objectives. Given that CRC loss naturally aligns with ZIP loss
 894 magnitude, its weight is simply set to 1.0 or 0.1.
 895

896 Temperature settings are determined by the characteristics of DEL read count data distribution, with
 897 denser distributions requiring lower temperatures. A detailed analysis of read count distribution and
 898 supporting theoretical proposition are provided in the Section D.1. Besides, the contract weight and
 899 margin serve as penalty terms for \mathcal{L}_{LGR} , with the weight selected based on \mathcal{L}_{LGR} ’s relative magnitude.
 900 Detailed in Table C.2, these values remain stable and consistent across experiments.
 901

901 Table 4: Hyperparameter Settings for DEL-Ranking on Different Datasets

	3p3h	4kp5-A	4kp5-OA	5fl4-9p	5fl4-20p
$\mathcal{L}_{\text{consist}}$ weight γ	1	0.1	0.1	–	–
$\mathcal{L}_{\text{rank}}$ weight ρ	1e11	1e9	1e10	1e8	1e8
\mathcal{L}_{PSR} weight β	0.5	0.91	0.91	0.67	0.5
\mathcal{L}_{LGR} weight $1-\beta$	0.5	0.09	0.09	0.33	0.5
Temperature T	0.8	0.3	0.2	0.9	0.2
\mathcal{L}_{con} weight σ	1e -3	1e -3	1e -3	1e -4	1e -3
Margin τ	1e -3				

911 **Proposition C.1.** As $T \rightarrow 0$, the model simultaneously achieves: (1) **Distributional Consistency** en-
 912 sures high predicted read counts align with true binding affinities, identifying top-ranked compounds
 913 with the strongest binding potential; (2) **Increased robustness** mitigates the impact of small noise
 914 perturbations in experimental data.
 915

916 Based on the Proposition, the adaptive-ranking model would obtain more consistent identification
 917 of high-affinity compounds, reducing errors due to random fluctuations. Also, it achieves enhanced
 918 robustness against common DEL experimental noises such as PCR bias and sequencing errors. While
 919

lowering the temperature leads to a more deterministic ranking with high-affinity sensitivity and noise resistance, there exists overlooking of compounds with slightly lower rankings when the temperature goes to extremely low. In experiments, we demonstrate that [0.1, 0.4] should be a proper range for the distribution sharpening.

D EXPERIMENTAL RESULTS

Table 5: Comparison of different hyper-parameters on binding affinity prediction performance. The best performance within one set of hyperparameter group is set **bold**.

Parameter	Value	3p3h (CA2)		4kp5-A (CA12)		4kp5-OA (CA12)	
Metric		Sp	SubSp	Sp	SubSp	Sp	SubSp
$\mathcal{L}_{\text{consist}}$ weight γ	0.1	-0.275 \pm 0.011	-0.163 \pm 0.017	-0.268\pm0.012	-0.277\pm0.016	-0.289\pm0.025	-0.233\pm0.021
	1	-0.286\pm0.002	-0.177\pm0.005	-0.266 \pm 0.008	-0.238 \pm 0.008	-0.287 \pm 0.005	-0.213 \pm 0.014
	10	-0.276 \pm 0.010	-0.163 \pm 0.015	-0.258 \pm 0.019	-0.239 \pm 0.010	-0.278 \pm 0.024	-0.227 \pm 0.040
$\mathcal{L}_{\text{rank}}$ weight ρ	1e9	-0.266 \pm 0.011	-0.151 \pm 0.016	-0.268\pm0.012	-0.277\pm0.016	-0.152 \pm 0.045	-0.225 \pm 0.023
	1e10	-0.269 \pm 0.006	-0.151 \pm 0.009	-0.257 \pm 0.005	-0.189 \pm 0.016	-0.289\pm0.025	-0.233\pm0.021
	1e11	-0.286\pm0.002	-0.177\pm0.005	-0.135 \pm 0.012	-0.060 \pm 0.036	-0.084 \pm 0.095	-0.058 \pm 0.077
\mathcal{L}_{LGR} weight β	0.09	-0.277 \pm 0.009	-0.165 \pm 0.013	-0.268\pm0.012	-0.277\pm0.016	-0.289\pm0.025	-0.233\pm0.021
	0.5	-0.286\pm0.002	-0.177\pm0.005	-0.267 \pm 0.033	-0.240 \pm 0.016	-0.288 \pm 0.025	-0.247 \pm 0.019
	0.91	-0.275 \pm 0.011	-0.160 \pm 0.019	-0.173 \pm 0.054	-0.089 \pm 0.038	-0.279 \pm 0.007	-0.222 \pm 0.033
Temperature T	0.2	-0.280 \pm 0.021	-0.173 \pm 0.029	-0.267 \pm 0.013	-0.247 \pm 0.009	-0.289\pm0.025	-0.233\pm0.021
	0.5	-0.279 \pm 0.009	-0.169 \pm 0.014	-0.266 \pm 0.014	-0.236 \pm 0.012	-0.275 \pm 0.013	-0.216 \pm 0.005
	0.8	-0.286\pm0.002	-0.177\pm0.005	-0.268 \pm 0.010	-0.222 \pm 0.010	-0.275 \pm 0.035	-0.220 \pm 0.029
	1	-0.279 \pm 0.011	-0.166 \pm 0.015	-0.247 \pm 0.022	-0.265 \pm 0.014	-0.256 \pm 0.033	-0.181 \pm 0.046

D.1 ABLATION STUDY ON HYPER-PARAMETERS

In order to evaluate the robustness of our method, we conduct a comprehensive analysis of four critical hyperparameters: the consistency loss weight γ , ranking loss weight ρ , LGR loss weight β , and temperature T across three datasets (3p3h, 4kp5-A, and 4kp5-OA). As shown in Table 5, we employ logarithmic search spaces for all loss-related hyperparameters to align the magnitudes of ranking and consistency losses with the ZIP loss, while adopting a linear search space for temperature.

The empirical results demonstrate that our selected hyperparameters consistently achieve optimal performance across all search spaces. The model exhibits strong stability, with performance variations remaining minimal under most hyperparameter adjustments. Nevertheless, we observe dataset-specific sensitivities: the 4kp5-OA dataset shows increased sensitivity to ranking loss weight variations, potentially due to elevated read count noise levels. Similarly, the 4kp5-A dataset exhibits performance fluctuations at higher values of ranking loss and \mathcal{L}_{LGR} weights, which we attribute to magnitude imbalances in the numerical representations.

The performance progression with respect to temperature demonstrates a consistent linear relationship, providing empirical support for our distribution sharpening hypothesis. These findings collectively indicate that while our model maintains robustness across the hyperparameter search space with well-justified parameter selections, its sensitivity can be influenced by dataset-specific characteristics, particularly read count distribution noise and magnitude disparities in the underlying data.

D.2 ABLATION STUDY ON STRUCTURE INFORMATION

To assess the value of structural information from docking software and its complementarity with sequence features, we performed an ablation study focusing on the additive combination of structure and fingerprint embeddings in the CRC algorithm. We applied varying scaling factors (0, 0.3, 0.6, 1.0, 1.5, and 2.0) to the structure embedding across three datasets (3p3h, 4kp5-A, and 4kp5-OA) with five random seeds. Table 6 shows that incorporating structural information significantly improves

972
 973 Table 6: Parameter value comparison for structure scaling factor. The best performance within one
 974 set of hyperparameter group is set **bold**.

975 Value ς	976 3p3h (CA2)		977 4kp5-A (CA12)		978 4kp5-OA (CA12)	
979 Metric	980 Sp	981 SubSp	982 Sp	983 SubSp	984 Sp	985 SubSp
986 0	987 -0.236 ± 0.010	988 -0.112 ± 0.013	989 -0.253 ± 0.012	990 -0.218 ± 0.017	991 -0.195 ± 0.044	992 -0.103 ± 0.055
993 0.3	994 -0.262 ± 0.008	995 -0.145 ± 0.012	996 -0.265 ± 0.017	997 -0.227 ± 0.017	998 -0.124 ± 0.146	999 -0.062 ± 0.090
1.0	0.286 ± 0.002	-0.177 ± 0.005	-0.268 ± 0.012	-0.277 ± 0.016	-0.289 ± 0.025	-0.233 ± 0.021
1.5	-0.270 ± 0.011	-0.155 ± 0.016	-0.244 ± 0.022	-0.252 ± 0.022	-0.152 ± 0.156	-0.139 ± 0.104
2.0	-0.271 ± 0.012	-0.155 ± 0.015	-0.191 ± 0.089	-0.216 ± 0.060	-0.230 ± 0.038	-0.152 ± 0.051

986 model performance. The analysis revealed higher model sensitivity in the noise-prone 4kp5-OA
 987 dataset, while performance degradation was observed in 4kp5-A when scaling factors exceeded
 988 1.0. These results indicate that while structural information enhances model performance, excessive
 989 weighting of potentially uncertain structural data can impair predictions. Nevertheless, our chosen
 990 parameterization demonstrates consistent performance across all datasets.

991 D.3 COMPARISON RESULT OF TOP-50 SELECTION CASES BY DEL-DOCK

992 In evaluating the performance of DEL-Dock,
 993 a clear trend emerges across different datasets,
 994 driven largely by how each method—docking-
 995 based versus ranking-based—responds to vary-
 996 ing noise levels and read counts. In the 3p3h
 997 dataset, DEL-Dock’s ability to exploit direct
 998 protein–ligand interaction data helped it surpass
 999 DEL-Ranking in identifying compounds with
 1000 low K_i values and benzenesulfonamide func-
 1001 tionalities. In more moderate datasets, such as
 1002 4kp5-A and 5fl4-9p, both methods performed
 1003 comparably, indicating that when the complex-
 1004 ity and noise of the library remain at manageable
 1005 levels, structure-based docking can achieve re-
 1006 sults on par with label-guided, ranking-focused
 1007 algorithms. However, in the higher-noise 4kp5-OA and 5fl4-20p datasets, DEL-Ranking excelled—a
 1008 finding consistent with theoretical expectations that label-driven methods, alongside increased read
 1009 counts, are more robust to noisy environments.

1010 D.4 TRAINING TIME COMPARISON

1011 We evaluate the computational efficiency by comparing the training time per epoch on a single
 1012 NVIDIA RTX 3090 GPU. DEL-Dock and DEL-Ranking exhibit comparable time complexity;
 1013 however, both incur higher computational costs than MLP-ZIP. This difference arises because MLP-
 1014 ZIP bypasses the computationally intensive pose structure processing and fusion mechanisms.

1015 Table 7: Comparison for training time per epoch.

1016 Method	1017 Time (min)
1018 MLP-ZIP	1.88
1019 DEL-Dock	2.31
1020 DEL-Ranking	2.50

1021 Figure 4: Quantitative analysis of Top-50 selection,
 1022 including K_i distribution and accuracy for DEL-
 1023 Dock (Shmilovich et al., 2023).

1024 D.5 VISUALIZATION OF TOP-50 SELECTION OF DEL-RANKING

1026 Further reinforcing these observations is the dis-
 1027covery of thiocarbonyl and sulfonamide scaf-
 1028folds with K_i values below 10.0, despite lack-
 1029ing the benzenesulfonamide functional group.
 1030 DEL-Dock’s success in identifying these struc-
 1031turally distinct, high-affinity compounds illus-
 1032trates the capacity of docking-based approaches
 1033to uncover novel chemical scaffolds when
 1034protein-ligand interactions are well captured.
 1035 Meanwhile, DEL-Ranking’s aptitude for recog-
 1036nizing functional motifs analogous to benzene-
 1037sulfonamides demonstrates how label guidance
 1038can extend to related binding groups. These
 1039combined insights point to a complementary dy-
 1040namic between the two techniques: while direct
 1041docking may excel in less noisy settings or when
 1042the underlying structural biology is well-defined,
 1043ranking-based methods can leverage label data
 1044and higher read counts to maintain performance
 1045under more complex, noise-prone conditions.
 1046 Below are the visualizations of the top-50 DEL-
 1047Ranking results across the 3p3h(Figure 6), 4kp5-A(Figure 7), 4kp5-OA(Figure 8), 5fl4(9 pose) in
 1048Figure 9, and 5fl4(20 pose) in Figure 10. In these figures, we specifically highlight benzenesul-
 1049fonamide functional groups wherever they appear. While many of the top-ranked compounds do
 1050contain benzenesulfonamides—underscoring the importance of this moiety—there remain notable
 1051high-affinity hits devoid of benzenesulfonamide, suggesting that chemical diversity within the library
 1052can be harnessed to discover alternative active scaffolds in Figure 5 and Figure 4. By emphasizing the
 1053presence (or absence) of benzenesulfonamide in each molecule, these visualizations enable a clearer
 1054structural comparison across different binding poses, highlighting both the value of known functional
 1055groups and the potential for uncovering new ones.

1056

E DISCUSSIONS

1057

E.1 LIMITATIONS

1058

1059 Despite DEL-Ranking’s effectiveness in handling well-ordered read count distributions and its robust-
 1060ness against highly noisy datasets, several limitations merit consideration. First, the method necessi-
 1061tates prior knowledge of affinity-determining functional groups as correlation labels—information
 1062frequently unavailable in many DEL datasets. Second, DEL-Ranking’s computational framework,
 1063which relies on protein-ligand binding poses and molecular fingerprinting, demands substantial
 1064computational resources, limiting its scalability to large-scale DEL libraries. In such cases, DEL-Ranking
 1065must be implemented as a two-stage training framework. Third, the magnitude of ranking loss varies
 1066considerably across different DEL datasets due to inherent differences in read count distributions,
 1067necessitating dataset-specific hyperparameter optimization.

1068

E.2 BOARDER IMPACTS

1069

1070 The DEL-Ranking framework has the potential to accelerate drug discovery by enabling more
 1071accurate identification of high-potency compounds. Additionally, its inherent ranking methodol-
 1072ogy facilitates the discovery of novel affinity-determining functional groups, thereby enhancing
 1073researchers’ biological understanding of diverse protein-ligand systems. Furthermore, our curated
 1074DEL datasets contribute to the advancement of DEL denoising methodologies. Nevertheless, this
 1075framework presents minimal risk of misuse for developing compounds harmful to human health.
 1076 However, the significant computational requirements for dataset construction may exacerbate dispari-
 1077ties between well-resourced and under-resourced research institutions, potentially widening existing
 1078gaps in research capabilities.h

1079

Figure 5: Visualization of Top-50 high affinity cases without benzene sulfonamide.

Ranking results across the 3p3h(Figure 6), 4kp5-A(Figure 7), 4kp5-OA(Figure 8), 5fl4(9 pose) in
 Figure 9, and 5fl4(20 pose) in Figure 10. In these figures, we specifically highlight benzenesul-
 fonamide functional groups wherever they appear. While many of the top-ranked compounds do
 contain benzenesulfonamides—underscoring the importance of this moiety—there remain notable
 high-affinity hits devoid of benzenesulfonamide, suggesting that chemical diversity within the library
 can be harnessed to discover alternative active scaffolds in Figure 5 and Figure 4. By emphasizing the
 presence (or absence) of benzenesulfonamide in each molecule, these visualizations enable a clearer
 structural comparison across different binding poses, highlighting both the value of known functional
 groups and the potential for uncovering new ones.

1080 F DETAILED TRAINING AND INFERENCE ALGORITHM
10811082 F.1 TRAINING PROCESS
10831084 **Algorithm 2** DEL-Ranking Training
1085

1086 **Require:** DEL dataset $\mathcal{D} = \{(f_i, p_i, M_i, R_i, y_i)\}_{i=1}^N$, where $f_i \in \mathbb{R}^d$ is molecular fingerprint,
1087 $p_i \in \mathbb{R}^m$ is binding pose, $M_i \in \mathbb{R}$ is matrix count, $R_i \in \mathbb{R}$ is target count, $y_i \in \{0, 1\}$ is
1088 functional group label
1089 **Require:** Hyperparameters: ρ (ranking weight), γ (consistency weight), β (PSR weight), T (temper-
1090 ature), σ (contrastive weight), τ (margin), learning rate η
1091 **Ensure:** Trained model parameters θ
1092 1: Initialize model parameters θ randomly
1093 2: **for** epoch = 1 to N_{epochs} **do**
1094 3: **for** each batch $\mathcal{B} \subset \mathcal{D}$ **do**
1095 4: **// Forward Pass**
1096 5: Extract fingerprint embeddings: $h_f = \text{FingerprintEncoder}(f_i)$
1097 6: Extract pose embeddings: $h_p = \text{PoseEncoder}(p_i)$
1098 7: Fuse representations: $x = \text{FusionModule}(\varsigma h_p + h_f)$
1099 8: **// Chemical-Referenced Correction (CRC)**
1100 9: $\hat{M}_i = \text{MatrixHead}(h_f)$ ▷ Predict matrix count from fingerprint only
1101 10: Initialize $\hat{R}_i \leftarrow 0$, $\hat{p}_i \leftarrow 0$
1102 11: **for** iteration $k = 1$ to n_{CRC} **do**
1103 12: **if** use_feedback **then**
1104 13: $\hat{R}_i \leftarrow [x; \hat{p}_i]$, $\hat{p}_i \leftarrow [x; \hat{R}_i]$
1105 14: **else**
1106 15: $\hat{R}_i \leftarrow x$, $\hat{p}_i \leftarrow x$
1107 16: **end if**
1108 17: $\hat{R}_i = \text{EnrichmentHead}(\text{ReadHead}(\hat{R}_i))$
1109 18: $\hat{p}_i = \text{ActHead}(\hat{p}_i)$
1110 19: **end for**
1111 20: **// Compute Losses**
1112 21: Compute ZIP loss: $\mathcal{L}_{\text{ZIP}} = -\sum_i \log[P(M_i | \lambda_M, \pi_M)] - \sum_j \log[P(R_j | \lambda_R, \pi_R)]$
1113 22: **// Pairwise Soft Ranking Loss**
1114 23: $\mathcal{L}_{\text{PSR}} = -\sum_{i=1}^N \sum_{j \neq i, r_i > r_j} [\Delta_{ij} \cdot \sigma_{ij}(T)]$
1115 24: where $\sigma_{ij} = \frac{1}{1 + e^{-|r_i - r_j|/T}}$, $\Delta_{ij} = \frac{\Delta G_{ij} \cdot \Delta D_{ij}}{Z}$
1116 25: **// Listwise Global Ranking Loss**
1117 26: $\mathcal{L}_{\text{LGR}} = -\sum_{i=1}^N \log \frac{\exp(\hat{r}_{\Omega(i)}/T)}{\sum_{j=i}^N \exp(\hat{r}_{\Omega(j)}/T)} + \sigma \sum_{i=1}^N \sum_{j > i} \mathcal{L}_{\text{con}}(\hat{r}_i, \hat{r}_j, \tau)$
1118 27: **// Consistency Loss**
1119 28: $\mathcal{L}_{\text{consist}} = \|\hat{p}_i - y_i\| + \max \left(0, \|\hat{y}_i - \frac{\hat{r}_i}{\max_{i \in \{1, \dots, N\}} \hat{r}_i}\|_2^2 - \|y_i - \frac{r_i}{\max_{i \in \{1, \dots, N\}} r_i}\|_2^2 \right)$
1120 29: **// Total Loss**
1121 30: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{ZIP}} + \rho(\beta \mathcal{L}_{\text{PSR}} + (1 - \beta) \mathcal{L}_{\text{LGR}}) + \gamma \mathcal{L}_{\text{consist}}$
1122 31: **// Backward Pass**
1123 32: Compute gradients: $\nabla_{\theta} \mathcal{L}_{\text{total}}$
1124 33: Update parameters: $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{\text{total}}$
1125 34: **end for**
1126 35: **end for**
1127 36: **return** θ

1128
1129
1130
1131
1132
1133

1134 F.2 INFERENCE PROCESS
 1135

1136 **Algorithm 3** DEL-Ranking Inference

1137 **Require:** Test compound with fingerprint f_{test} and binding poses p_{test}
 1139 **Require:** Trained model with parameters θ

1140 **Ensure:** Predicted counts \hat{M}_{test} , \hat{R}_{test} and activity probability \hat{p}_{test}

1141 1: // Extract Features
 1142 2: $h_f = \text{FingerprintEncoder}_{\theta}(f_{\text{test}})$
 1143 3: $h_p = \text{PoseEncoder}_{\theta}(p_{\text{test}})$
 1144 4: $x = \text{FusionModule}_{\theta}(\varsigma h_p + h_f)$
 1145 5: // Predict Matrix Count
 1146 6: $\hat{M}_{\text{test}} = \text{MatrixHead}_{\theta}(h_f)$
 1147 7: // Predict Target Count and Activity
 1148 8: Initialize $\hat{R}_{\text{test}} \leftarrow 0$, $\hat{p}_{\text{test}} \leftarrow 0$
 1149 9: **for** iteration $k = 1$ to n_{CRC} **do**
 1150 10: **if** use_feedback **then**
 1151 11: $\hat{R}_{\text{test}} \leftarrow [x; \hat{p}_{\text{test}}]$, $\hat{p}_{\text{test}} \leftarrow [x; \hat{R}_{\text{test}}]$
 1152 12: **else**
 1153 13: $\hat{R}_{\text{test}} \leftarrow x$, $\hat{p}_{\text{test}} \leftarrow x$
 1154 14: **end if**
 1155 15: $\hat{R}_{\text{test}} = \text{EnrichmentHead}_{\theta}(\text{ReadHead}_{\theta}(\hat{R}_{\text{test}}))$
 1156 16: $\hat{p}_{\text{test}} = \text{ActHead}_{\theta}(\hat{p}_{\text{test}})$
 1157 17: **end for**
 1158 18: // Estimate Binding Affinity
 1159 19: Compute enrichment factor: $E_{\text{test}} = \frac{\hat{R}_{\text{test}}}{\hat{M}_{\text{test}} + \epsilon}$
 1160 20: Rank compounds by \hat{R}_{test} in descending order
 21: **return** \hat{M}_{test} , \hat{R}_{test} , \hat{p}_{test}

1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Figure 6: Visualization of the top-50 DEL-Ranking results on the 3p3h dataset. In molecules containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.

Figure 7: Visualization of the top-50 DEL-Ranking results on the 4kp5-A dataset. In molecules containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.

Figure 8: Visualization of the top-50 DEL-Ranking results on the 4kp5-OA dataset. In molecules containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.

Figure 9: Visualization of the top-50 DEL-Ranking results on the 5fl4(9 pose) dataset. In molecules containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.

Figure 10: Visualization of the top-50 DEL-Ranking results on the 5fl4(20 pose) dataset. In molecules containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.

1458
 1459 **G VISUALIZATION ON SELECTED CASES CONTAINING PYRIMIDINE**
 1460 **SULFONAMIDE**

1481 Figure 11: In 3p3h, THR199 likely forms hydrogen bonds with the ligand, while ASP72 and GLU69
 1482 participate in hydrogen bonding and electrostatic interactions. The corresponding k_i value is 84.0.

1502 Figure 12: In 5fl4, LEU74 contributes through van der Waals forces or hydrophobic interactions,
 1503 HIS94's imidazole side chain potentially forms hydrogen bonds, and THR201 engage in hydrogen
 1504 bonding with the ligand. The corresponding k_i value is 0.5.

1508 **H USAGE OF LANGUAGE MODELS**

1509 We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited
 1510 to editorial tasks, including proofreading for typographical errors, correcting grammar, and improving
 1511 the clarity and readability of the text.