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ABSTRACT

DNA-encoded library (DEL) screening has revolutionized protein–ligand binding
detection by enabling efficient exploration of vast chemical spaces through read
count analysis. Despite its transformative potential, two critical challenges limit
its effectiveness: (1) stochastic noise in low copy number regimes, where Poisson
fluctuations significantly distort binding signals, and (2) systematic biases between
observed read counts and actual binding affinities due to experimental artifacts and
amplification variability. We introduce DEL-Ranking, a comprehensive framework
that addresses these dual challenges through targeted innovations. To mitigate
stochastic noise, we incorporate a dual-perspective ranking mechanism that pri-
oritizes stable relative ordering relationships over volatile absolute counts. To
bridge the read count-affinity gap, our Chemical-Referenced Correction (CRC)
module identifies critical binding-related functional groups and leverages these
structure-activity insights to guide precise count adjustments. A key contribution is
our release of three novel DEL datasets featuring 2D molecular sequences, 3D con-
formational data, and functionally-derived activity labels—addressing a significant
resource gap in the field and enabling more robust method development. Rigorous
validation across multiple datasets reveals that DEL-Ranking consistently outper-
forms existing methods, achieving a remarkable 28% improvement in Spearman
correlation even under high-noise conditions. Our framework both enhances identi-
fication of high-affinity compounds and reveals novel functional motifs–Pyrimidine
Sulfonamide, beyond known Benzene Sulfonamide groups. These interpretable
insights accelerate therapeutic candidate discovery while advancing understanding
of molecular recognition mechanisms.

1 INTRODUCTION

DNA-encoded library (DEL) technology has revolutionized protein-ligand binding detection by
enabling parallel screening of vast compound collections against biological targets (Franzini et al.,
2014; Neri & Lerner, 2018; Peterson & Liu, 2023; Ma et al., 2023). Unlike traditional high-throughput
methods that screen compounds individually, DEL technology links each small molecule to a unique
DNA barcode, allowing simultaneous evaluation of billions of compounds in a single experiment
(Brenner & Lerner, 1992; Goodnow Jr & Davie, 2017; Yuen & Franzini, 2017). The DEL screening
process (shown in Figure 1) generates read count data that serves as a proxy for binding affinity
(Machutta et al., 2017; Foley et al., 2021). Specifically, these read counts represent the frequency of
each compound detected after target binding and processing, with higher counts generally suggesting
stronger binding. Experiments typically generate two types of counts: matrix counts (from control
samples without target protein) and target counts (from samples with the target protein) (Favalli et al.,
2018).

Despite DEL’s potential for accelerating drug discovery (Satz et al., 2022; Neri & Lerner, 2017), two
fundamental challenges limit its effectiveness and accuracy: 1) Distribution Noise: Read counts
are highly variable, especially for compounds with few copies in the library. These compounds are
subject to significant Poisson statistical fluctuations, distorting the relationship between counts and
actual binding properties (Kuai et al., 2018; Favalli et al., 2018). 2) Distribution Shift: Systematic
biases exist between observed read counts and actual binding affinities due to factors including
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Figure 1: Illustration of the DEL screening process. Cycling: Creating unique compounds, each
tagged with a distinctive DNA sequence. Binding: These compounds are then exposed to the target
protein. Wash, Elute and Amplify: Compounds that bind to the target are retained, while others
are washed away. The DNA tags of the bound compounds are then amplified and analyzed using
sequencing techniques. Sequence & Counting: This process results in a distribution of read counts
for target-bound samples and control samples.

synthesis efficiency and amplification variability (Yung-Chi & Prusoff, 1973; Kuai et al., 2018). This
creates a fundamental gap between enrichment measurements and true binding strength.

Early computational approaches addressed these challenges through threshold-based filtering of
enrichment factors (target/matrix count ratios) (Gu et al., 2008; Kuai et al., 2018). While compu-
tationally efficient, these methods ignored molecular structure information. More recent machine
learning approaches captured non-linear relationships between molecular structures and count data
(McCloskey et al., 2020; Ma et al., 2021), later enhanced with distribution constraints and molec-
ular embeddings (Lim et al., 2022; Hou et al., 2023). DEL-Dock (Shmilovich et al., 2023) further
improved performance by incorporating 3D conformational information with Zero-Inflated Poisson
(ZIP) modeling.

Despite these advances, limitations persist. Current methods focus predominantly on absolute read
count values rather than more stable relative rankings. Additionally, while certain functional groups
correlate strongly with binding activity (Hou et al., 2023; Blevins et al., 2024), existing systems
underutilize these structure-activity relationships (Wichert et al., 2024). To overcome these limitations,
we propose DEL-Ranking, a comprehensive framework with several key contributions:

• Novel Methodology: Our approach addresses both challenges through complementary
innovations: (1) a Dual-Perspective Ranking Strategy that mitigates Distribution Noise by
prioritizing stable relative ordering over volatile absolute counts through Pair-wise Soft
Rank (PSR) and List-wise Global Rank (LGR) constraints; and (2) a Chemical-Referenced
Correction (CRC) module that addresses Distribution Shift by leveraging functional group
information as binary labels to bridge the gap between read counts and binding affinities.

• Comprehensive Datasets: We release three novel DEL datasets that address a critical
resource gap in the field. Unlike existing public DEL datasets that typically contain only
molecular structures and read counts, our datasets uniquely combine 2D molecular se-
quences, 3D conformational data, read counts, and–critically–binary affinity labels derived
from functional group analysis. These comprehensive resources provide the research commu-
nity with multi-target datasets that enable more robust method development and validation.

• Validated Performance: Experiments across five diverse DEL datasets demonstrate con-
sistent improvements over state-of-the-art methods, including a 28% increase in Spearman
correlation under high-noise conditions. Our framework not only enhances identification of
high-affinity compounds but also reveals novel binding-relevant functional motifs, such as
Pyrimidine Sulfonamide groups, extending beyond the established Benzene Sulfonamide
structures previously known to correlate with binding activity.

2 RELATED WORKS

Traditional Approaches include QSAR models (Martin et al., 2017) and molecular docking simu-
lations (Jiang et al., 2015; Wang et al., 2015), which offer interpretability and mechanistic insights
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Figure 2: Overview of DEL-Ranking framework. The model directly fuses molecule binding poses
and fingerprints as input features. CRC employs target effects and binding affinity to enhance read
count prediction. The ranking-based loss incorporates target effects and matrix effects for noise
removal, improving the correlation between predicted read counts and true binding affinities.

into protein-ligand interactions. DEL-specific techniques such as data aggregation (Satz, 2016) and
normalized z-score metrics (Faver et al., 2019) were developed to address the unique challenges
of DEL screening data. Despite their theoretical foundations, these approaches often struggle with
scalability and capturing complex, non-linear relationships in large-scale DEL datasets.

Machine Learning Methods including Random Forest, Gradient Boosting Models, and Support
Vector Machines, were used to improve DEL data analysis (Li et al., 2018; Ballester & Mitchell, 2010).
These approaches, particularly when combined with Bayesian Optimization (Hernández-Lobato et al.,
2017), offer enhanced scalability and better capture the non-linear relationships in high-dimensional
DEL data. While outperforming traditional methods, they remain limited by their dependence on
extensive training data and lack of interpretability when modeling complex biochemical systems.

Deep Learning Approaches, especially Graph Neural Networks (GNNs), have significantly advanced
protein-ligand interaction predictions in DEL screening. GNN-based models effectively predict
enrichment scores while accommodating technical variations (Stokes et al., 2020; Ma et al., 2021),
and Graph Convolutional Neural Networks (GCNNs) enhance detection of complex molecular
substructures (McCloskey et al., 2020; Hou et al., 2023). Recent innovations include DEL-Dock
(Shmilovich et al., 2023), which combines 3D conformational information with 2D molecular
fingerprints, address noise from truncated library products and sequencing errors (Kómár & Kalinic,
2020). Large-scale prospective studies have validated these AI-driven approaches, confirming
improved hit rates and specific inhibitory activities against protein targets (Gu et al., 2024).

3 METHOD

To address Distribution Noise and Distribution Shift, we present DEL-Ranking framework by
directly denoising read count values and incorporating novel activity information. 3.1 formulates the
DEL denoising task; 3.2 and 3.3 introduce our innovative modules to address Distribution Noise and
Distribution Shift; 3.4 and 3.5 introduce the overall training objective and framework architectures.

3.1 PROBLEM FORMULATION AND PRELIMINARIES

DEL Prediction Framework. Given a DEL dataset D = {(fi,pi,Mi, Ri, yi)}Ni=1, where fi ∈ Rd

denotes the molecular fingerprint, pi ∈ Rm represents the binding pose, Mi ∈ R is the matrix count
derived from control experiments without protein targets, Ri ∈ R is the target count obtained from
experiments involving protein target binding, and yi ∈ {0, 1} indicates the functional group label.
We propose a joint multi-task learning framework F : Rd × Rm → R× R× [0, 1] such that:

F(fi,pi) = (M̂i, R̂i, p̂i) (1)

3
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where M̂i and R̂i represent the predicted matrix count and target count; and p̂i is the predicted
likelihood of the functional group label. The primary focus of this framework lies in predicting
accurate read count values that strongly correlate with the actual binding affinity (Ki values).

Zero-Inflated Poisson Distribution (ZIP) & ZIP Loss. Zero-Inflated Poisson Distribution was
applied to address Distribution Noise (Shmilovich et al., 2023; Lim et al., 2022), effectively modeling
read counts Mi and Ri as Poisson distributions characterized by an excess frequency of zeros. By
defining ri ∈ {Mi, Ri} and r̂i ∈ {M̂i, R̂i} as the ground-truth and model’s predicted read count
values, we can express ZIP as:

P (X = ri|λ, π) =

{
π + (1− π)e−λ, if ri = 0

(1− π)λ
rie−λ

ri!
, if ri > 0

(2)

where π denotes the probability of excess zeros, and λ denotes the mean parameter of the Poisson
component. In (Shmilovich et al., 2023), the ZIP distributions of Mi and Ri are modeled using
different π values (πM and πR), based on their respective orders of magnitude. The regression is
achieved by minimizing the Negative Log-Likelihood (NLL) for all predicted read counts M̂i and
R̂j :

LZIP = −
∑
i

log[P (M̂i|λM , πM )]−
∑
j

log[P (R̂j |λM + λR, πR)] (3)

where λM and λR represent Poisson mean parameters for matrix and target counts, and πM and πR

denote their respective zero-excess probabilities. This joint regression of target and control counts
enable the model to learn the differential behavior of ligands in the presence and absence of targets,
thereby potentially capturing the binding affinity.

Ki Estimation. DEL read count prediction aims to estimate compound-target binding affinities (Ki

values) for drug candidate identification. We assess performance using Spearman rank correlation
(ρs) between predicted read counts and experimental Ki values: ρs = 1 − 6

∑n
i=1 d2

i

n(n2−1) , where n is
the sample number and di is the difference between the ranks of corresponding values in the two
variables. Ideally, Ki values and read counts are negatively correlated, as lower Ki values indicate
stronger binding affinity, which should correspond to higher read counts.

LambdaRank (Burges et al., 2006) Consider a ranking list with items i = 1, . . . , N , relevance
labels yi ∈ R (larger is better), and model scores si ∈ R. Sorting scores in descending order gives a
permutation πs with sπs(1) ≥ · · · ≥ sπs(N); let Ω(i) be the rank position of item i in πs.

Discounted cumulative gain. Given a gain function G : R→ R≥0, the discounted cumulative gain
(DCG) of a permutation π is

DCG(π; y) =

N∑
k=1

G
(
yπ(k)

)
log2(1 + k)

. (4)

The “ideal” permutation π⋆ is obtained by sorting items in non-increasing order of yi, and its DCG,

IDCG(y) = DCG(π⋆; y), (5)

is the maximum achievable DCG for the given labels. The normalized DCG (NDCG) of scores s is
then defined as

NDCG(s, y) =
DCG(πs; y)

IDCG(y)
∈ [0, 1], (6)

where πs is the permutation induced by s. For items i and j, ∆NDCGij(s, y) denotes the change in
NDCG when swapping their positions in πs.

Pairwise objective. For each pair (i, j) with yi > yj , LambdaRank uses the RankNet logistic model
with pairwise probability

Pij(s) = σ(si − sj) =
1

1 + exp
(
−(si − sj)

) , (7)

and pairwise loss
ℓij(s) = − logPij(s) = log

(
1 + exp

(
−(si − sj)

))
. (8)
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The corresponding lambda-gradients are obtained by rescaling the RankNet gradients with the
absolute NDCG change:

λij =
∣∣∆NDCGij(s, y)

∣∣ ∂ℓij
∂si

, λji = −λij , (9)

and the total gradient for item i is λi =
∑

j λij . By construction, there exists an implicit loss whose
gradient with respect to si is λi, and minimizing this loss directly promotes improvements in NDCG.

ListMLE (Xia et al., 2008) Let π⋆ be the ground-truth permutation induced by yi (items sorted in
non-increasing yi). The Plackett–Luce probability of a permutation π under scores s is

P (π | s) =
N∏

k=1

exp
(
sπ(k)

)∑N
j=k exp

(
sπ(j)

) . (10)

ListMLE minimizes the negative log-likelihood of π⋆:

LListMLE(s;π
⋆) = − logP (π⋆ | s) = −

N∑
k=1

sπ⋆(k) − log

N∑
j=k

exp
(
sπ⋆(j)

) . (11)

In the next two subsections, we adapt these classical pairwise (LambdaRank) and listwise (ListMLE)
formulations to DEL read-count data by taking model outputs r̂i as scores si and introducing
DEL-specific weights and normalizations.

3.2 RANKING-BASED DISTRIBUTION NOISE REMOVAL

To effectively mitigate Distribution Noise in DEL read count data, we propose a novel ranking-based
loss function Lrank. This loss function integrates both local and global read count perspectives to
fit the rank ordering of count values, resulting in a well-ordered ZIP that effectively captures the
underlying read count pattern.

Lrank = βLPSR + (1− β)LLGR (12)
where β ∈ [0, 1] is a balancing hyperparameter that controls the relative contribution of the two
components. LPSR (PSR Loss) addresses local pairwise comparisons between compounds, while
LLGR (LGR Loss) captures global ranking information across the entire dataset. Together, they
facilitate a well-ordered ZIP distribution for read count values. To establish the effectiveness of our
ranking-based approach, we provide the following theoretical justification:
Lemma 3.1. Given a set of feature-read count pairs {(xi, ri)}ni=1, where xi is the fused represen-
tation of sample i derived from molecular fingerprint fi and binding pose pi, and a well-fitted ZIP
model fZIP(r|x), the ranking loss Lrank provides positive information gain over the zero-inflated loss
LZIP:

I(Lrank|LZIP) = H(R|LZIP)−H(R|LZIP,Lrank) > 0

where H(R|·) denotes the conditional entropy of read counts R.

Building upon this information gain, we can further demonstrate that our combined approach, which
incorporates both the zero-inflated and ranking losses, outperforming the standard zero-inflated model
in terms of expected regression error. This enhancement is formalized in the following theorem:
Theorem 3.2. Given a sufficiently large dataset {(xi, ri)}ni=1 of feature–read-count pairs, let LZIP

denote the loss function of the standard zero-inflated model and let Lrank be a non–negative ranking
loss. Let r̂ZIP be the predictor that minimizes the expected ZIP loss and assume that the ranking loss
is non–trivial at this predictor, i.e.

E
[
Lrank(r̂

ZIP, R)
]
> 0.

For any α ∈ (0, 1), define the combined loss

LC(r̂) = αLZIP(r̂) + (1− α)Lrank(r̂).

Let r̂C be a minimizer of the expected combined loss E[LC(r̂)]. Then there exists α⋆ ∈ (0, 1) such
that

E
[
LC(r̂

C)
]
< E

[
LZIP(r̂

ZIP)
]
. (13)

In particular, any constant predictor cannot minimize LC , since its ranking loss is strictly positive.
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These theoretical results demonstrate that incorporating ranking information effectively aligns read
counts across compounds, mitigating experimental biases in DEL screening data. The combined
loss function consistently outperforms the standard ZIP approach in expected performance. Detailed
proofs and analyses are provided in Sections A.1 and A.2.

3.2.1 PAIRWISE SOFT RANKING LOSS

To better model the relationships between compound pairs and handle read count noise, we intro-
duce LPSR inspired by LambdaRank (Burges et al., 2006). Compared to LambdaRank, it enables
differentiable ranking between compounds, which is formulated as:

LPSR(r̂i, ..., r̂N , T ) = −
N∑
i=1

∑
j ̸=i,ri>rj

[∆ij · σij(T )]

σij =
1

1 + e−|ri−rj |/T
, ∆ij =

∆Gij ·∆Dij

Z

(14)

where r̂i and r̂j represent the predicted read count values for compounds i and j, respectively. σij

reflects the absolute ranking differences between each compound pair, and T denotes the temperature
to scale the difference. For ranking changes, we introduce a pairwise importance term ∆ij between
compounds i and j, comprising a gain function Gi = softplus(ri) for compound relevance and a
rank-based discount function Di = 1/(log2(ranki + 1) + ϵ)

∆Gij = Gi −Gj = softplus(ri)− softplus(rj) (15)

∆Dij = Di −Dj =
1

(log2(ranki + 1) + ϵ)
− 1

(log2(rankj + 1) + ϵ)
(16)

, where ϵ ensures numerical stability; ranki denotes the predicted rank of sample i according to
read-count values in each training batch. We then employ a normalization factor derived from the
top-K predicted values per batch (K < N), improving computational efficiency and eliminating
ranking noise from zero-value predictions.

Z =

K∑
k=1

softplus(r̂[k])
log2(k + 1) + ϵ

(17)

where r̂[k] represents the k-th highest predicted read count in descending order; ϵ is set to 1e− 8 to
avoid division by zero. This normalization factor adaptively adjusts the loss scale across different
dataset sizes and read count distributions, ensuring robust model training regardless of data variations.
LPSR extends LambdaRank by using continuous DEL read counts and Top-K–normalized NDCG
weights, making the pairwise ranking robust to zero inflation and noisy count scales.

3.2.2 LISTWISE GLOBAL RANKING LOSS

We further propose LLGR inspired by ListMLE (Xia et al., 2008) as a complement to LPSR. Compared
to ListMLE, it is equipped with an additional loss term to distinguish excessive zero read-counts in
DEL datasets. The LGR loss captures global ranking information as:

LLGR(r̂, τ, T ) = −
N∑
i=1

log
exp(r̂Ω(i)/T )∑N
j=i exp(r̂Ω(j)/T )

+ σ

N∑
i=1

∑
j>i

Lcon(r̂i, r̂j , τ) (18)

where Ωi denotes the rank of compound i; τ represents the minimal margin between predicted read
count pairs (ri, rj); T is a temperature parameter that rescales scores to sharpen the predicted read-
count distribution; and Lcon denotes a contrastive loss component that captures local relationships
between ranking scores, weighted by parameter σ.

The contrastive loss function Lcon is specifically designed to enhance discrimination between varying
levels of biological activity, especially for samples with zero or identical read count values. Let
f : R → R be the descending sorting function and τ > 0 a fixed threshold. We define Lcon :
R× R× R>0 → R≥0 as:

Lcon(r̂i, r̂j , τ) = max{0, τ − (f(r̂i)− f(r̂j))} (19)

6
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This loss function is positive if and only if f(r̂i) − f(r̂j) < τ , effectively enforcing a minimum
margin τ between differently ranked samples. The constant gradients ∂Lcon/∂f(r̂i) = −1 and
∂Lcon/∂f(r̂j) = 1 when f(r̂i) − f(r̂j) < τ promote robust and stable ranking relationships,
particularly beneficial for compounds with similar readouts but different underlying activities. LLGR

extends ListMLE by adding a contrastive margin term that explicitly pushes high-count compounds
above zero/near-zero ones, improving separation of truly active vs inactive DEL molecules.

3.3 CHEMICAL-REFERENCED DISTRIBUTION CORRECTION FRAMEWORK

To address Distribution Shifts in DEL, we propose the CRC framework, which enhances the read-
count distribution by the functional group distribution alignment. We apply the Refinement-Correction
optimization process (details in Algorithm1).

In the Refinement Stage, we apply dual information streams—chemical functional group labels and
read counts—that respectively capture overall binding potential and binding strength. we adopt an
iterative mechanism inspired by self-training techniques (Zoph et al., 2020) to update 2D SMILES
embeddings and combined 2D-3D embeddings. Through multiple rounds of updates, the bidirectional
feedback loop merge the information of the two representations.

In the Correction Stage, we introduce a consistency loss function to mitigate error accumulation
and align predictions with underlying biological signals. Drawing on insights from (Hou et al.,
2023), we leverage a key observation: specific functional groups within our dataset exhibit strong
correlations with compound affinity, enabling us to define corresponding chemical group function
labels. This labeling approach provides effective supervision for both read count regression and novel
functional group discovery (Section 4.2). Importantly, this mechanism addresses discrepancies where
compounds exhibit low read counts but high activity. Formally, the consistency loss is defined as:

Lconsist(ri, r̂i, yi, p̂i) = ∥p̂i−yi∥+max
(
0, ∥ŷi−

r̂i
maxi∈{1,...,N} r̂i

∥22−∥yi−
ri

maxi∈{1,...,N} ri
∥22
)

(20)
where N denotes batch size. The first term regresses functional group labels, while the second term
constrains the consistency between normalized read counts and activity predictions. Unlike generic
iterative self-training, CRC jointly refines the read-count and functional-group heads via a batch-wise
consistency loss on fused 2D/3D embeddings, and Table 3, together with Appendix D.2, shows that
disabling CRC or its refinement steps consistently reduces performance, especially under high noise.

3.4 TOTAL TRAINING OBJECTIVE

The total training objective integrates the ZIP loss, the ranking loss, and the consistency loss, which
is formulated as:

Ltotal = LZIP + ρLrank + γLconsist (21)

where ρ and γ are hyperparameters that control the relative contribution of the ranking and consistency
losses, respectively. These weights are tuned to balance the order of magnitude of each component
for optimal performance across different experimental settings.

3.5 MODEL ARCHITECTURE

The DEL-Ranking framework consists of three components (Figure 2, Algorithm 3). The Fingerprint
Encoder converts 2048-bit Morgan fingerprints to dense embeddings via residual MLP, capturing
chemical substructure information. The Pose Encoder uses a pretrained 3D CNN from GNINA
(McNutt et al., 2021) to encode protein-ligand complexes from 9-20 docked binding poses per
compound. The Fusion Module combines pose and fingerprint information through self-attention,
automatically prioritizing relevant poses without pose-level supervision. The model predicts matrix
effects from fingerprint embeddings alone, while binding affinity and target effects use the fused
representation. This design reflects that matrix binding depends primarily on molecular properties,
whereas target binding requires specific 3D protein-ligand interactions. Implementation follows
DEL-Dock (Shmilovich et al., 2023) architectural principles and hyperparameters.

7
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Table 1: Comparison of our framework DEL-Ranking with existing DEL affinity predictions on CA2
& CA12 datasets. Results in bold and underlined are the top-1 and top-2 performances, respectively.

3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12) 5fl4-9p (CA9) 5fl4-20p (CA9)

Metric Sp SubSp Sp SubSp Sp SubSp Sp SubSp Sp SubSp

Mol Weight -0.250 -0.125 -0.101 0.020 -0.101 0.020 -0.121 -0.028 -0.121 -0.074
Benzene 0.022 0.072 -0.054 0.035 -0.054 0.035 -0.174 -0.134 -0.199 -0.063
Smina Docking -0.174±0.002 -0.017±0.003 0.025±0.001 0.150±0.003 0.025±0.001 0.150±0.003 -0.114±0.009 -0.055±0.007 -0.279±0.044 -0.091±0.061

RF-Enrichment -0.017±0.026 -0.042±0.025 -0.029±0.038 -0.005±0.048 -0.101±0.009 -0.087±0.010 -0.064±0.126 -0.144±0.024 -0.064±0.126 -0.144±0.024

RF-ZIP 0.027±0.139 -0.005±0.071 0.035±0.094 -0.026±0.111 0.006±0.095 -0.021±0.122 0.040±0.022 -0.011±0.042 0.054±0.094 0.026±0.111

MLP-ZIP -0.095±0.051 -0.085±0.115 -0.072±0.054 -0.058±0.093 -0.003±0.079 0.020±0.033 -0.029±0.094 -0.085±0.116 -0.055±0.066 -0.049±0.102

Dos-DEL -0.048±0.036 -0.011±0.035 -0.016±0.029 -0.017±0.021 -0.003±0.030 -0.048±0.034 -0.115±0.065 -0.036±0.010 -0.231±0.007 -0.091±0.012

DEL-QSVR -0.228±0.021 -0.171±0.033 -0.004±0.178 0.018±0.139 0.070±0.134 -0.076±0.116 -0.086±0.060 -0.036±0.074 -0.298±0.005 -0.075±0.011

DEL-Dock -0.255±0.009 -0.137±0.012 -0.242±0.011 -0.263±0.012 0.015±0.029 -0.105±0.034 -0.308±0.000 -0.169±0.000 -0.320±0.009 -0.166±0.017

DEL-Ranking -0.286±0.002 -0.177±0.005 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021 -0.323±0.015 -0.175±0.000 -0.330±0.007 -0.187±0.013

4 EXPERIMENT

Datasets. CA9 Dataset From the original data containing 108,529 DNA-barcoded molecules
targeting human carbonic anhydrase IX (CA9) (Gerry et al., 2019), we derived two separate datasets.
The first, denoted as 5fl4-9p, uses 9 docked poses that we generated ourselves. The second, 5fl4-20p,
employs 20 docked poses using the 5fl4 structure. Both datasets lack chemical functional group
labels. CA2 and CA12 Datasets From the CAS-DEL library (Hou et al., 2023), we generated three
datasets comprising 78,390 molecules selected from 7,721,415 3-cycle peptide compounds. We
performed docking to create 9 poses per molecule for each dataset. The CA2-derived dataset uses
the 3p3h PDB structure (denoted as 3p3h), while two CA12-derived datasets use the 4kp5 PDB
structure: 4kp5-A for normal expression and 4kp5-OA for overexpression. The binary chemical
functional group label is set to 1 when there is benzene sulfonamide (BB3-197) in the compound
(Hou et al., 2023). Validation Dataset from ChEMBL (Zdrazil et al., 2024) includes 12,409 small
molecules with affinity measurements for CA9, CA2, and CA12. Molecules have compatible atom
types, molecular weights from 25 to 1000 amu, and inhibitory constants (Ki) from 90 pM to 0.15 M.
A subset focusing on the 10-90th percentile range of the training data’s molecular weights provides a
more challenging test scenario. Virtual Docking details for ligand poses are shown in Appendix C.1.

Evaluation Metrics and hyper-parameters. We evaluate our framework on the ChEMBL dataset
(Zdrazil et al., 2024) using two Spearman correlations: overall correlation (ρoverall) between predicted
read counts and experimental Ki values across all validation data, and subset correlation (ρsubset)
for compounds with molecular weights between 10th-90th percentiles of training data. Detailed
hyper-parameter settings are provided in Appendix C.2.

Baselines. We examine the performance of existing binding affinity predictors. Traditional methods
based on binding poses and fingerprints include Molecule Weight, Benzene Sulfonamide, Smina
Docking (Koes et al., 2013), and Dos-DEL(Gerry et al., 2019). AI-aided methods dependent on
read count values and molecule information include RF-Enrichment, RF-ZIP (Random Forest for
Log-enrichment, LZIP), DEL-QSVR, and DEL-Dock (Lim et al., 2022; Shmilovich et al., 2023).

4.1 BENCHMARKING DENOISING CAPABILITY

Benchmark Comparison. We conducted comprehensive experiments across five diverse datasets:
3p3h, 4kp5-A, 4kp5-OA, and two variants of 5fl4. For each dataset, we performed five runs to ensure
statistical robustness. As shown in Table 1, our method consistently achieves state-of-the-art results
in both Spearman (Sp) and subset Spearman (SubSp) coefficients across all datasets.

Our analysis reveals several key insights: (1) Experimental Adaptability: DEL-Ranking shows
consistent advantages across diverse datasets, with notable gains in challenging conditions. It
maintains improvements even in lower-noise environments like purified protein datasets (3p3h
and 5fl4), versatility highlighting DEL-Ranking’s adaptability to various experimental setups. (2)
Noise Resilience: DEL-Ranking excels in high-noise scenarios, particularly in membrane protein
experiments. Its exceptional results on the 4kp5 dataset, especially the challenging 4kp5-OA variant,
demonstrate this. Where baseline methods struggle, our approach effectively distinguishes signal from
noise in complex experimental conditions. (3) Structural Flexibility: Our approach effectively uses
structural information, as shown in the 5fl4 dataset. Increasing poses from 9 to 20 improves model
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Table 2: Zero-shot Generalization Results Comparison evaluated on 3p3h, 4kp5-A, and 4kp5-OA
datasets.

3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)

Metric Sp SubSp Sp SubSp Sp SubSp

Mol Weight -0.121 -0.028 -0.121 -0.028 -0.121 -0.028
Benzene -0.174 -0.134 -0.174 -0.134 -0.174 -0.134
Smina Docking -0.114±0.009 -0.055±0.007 -0.114±0.009 -0.055±0.007 -0.114±0.009 -0.055±0.007

RF-Enrichment 0.020±0.014 -0.031±0.057 -0.034±0.013 -0.034±0.029 -0.044±0.005 -0.085±0.006

RF-ZIP 0.037±0.059 0.013±0.017 0.036±0.024 -0.002±0.016 0.049±0.012 -0.007±0.013

Dos-DEL -0.115±0.065 -0.036±0.010 -0.115±0.065 -0.036±0.010 -0.115±0.065 -0.036±0.010

DEL-QSVR -0.300±0.020 -0.257±0.022 -0.236±0.038 -0.223±0.030 0.108±0.089 0.130±0.070

DEL-Dock -0.272±0.013 -0.118±0.005 -0.211±0.007 -0.118±0.010 0.065±0.021 -0.125±0.034

DEL-Ranking -0.310±0.005 -0.120±0.011 -0.228±0.010 -0.127±0.018 -0.300±0.026 -0.129±0.021

performance, highlighting our method’s ability to utilize additional structural data. This underscores
DEL-Ranking’s effectiveness in extracting insights from comprehensive structural information. (4)
Dual Analysis Capability: DEL-Ranking’s consistent performance in both Sp and SubSp metrics
shows its versatility in drug discovery. This enables effective broad-spectrum screening and detailed
subset analysis, enhancing its utility across various stages of drug discovery.

Zero-shot Generalization. We evaluated models’ zero-shot generalization on CA9 by training
them on CA2 and CA12 targets across three datasets (3p3h, 4kp5-A, and 4kp5-OA). Detailed in
Table 2, DEL-Ranking consistently outperformed DEL-Dock. Notably, on the 4kp5-OA dataset
with substantially different protein targets, DEL-Ranking maintained strong predictive performance,
demonstrating its generalization capability to novel targets. Notably, DEL-QSVR exhibited superior
zero-shot performance, suggesting that simpler molecular representations and loss functions might be
more conducive to target generalization. This superior performance might be attributed to the fact
that incorporating pose information could potentially limit zero-shot generalization capability.

Table 3: Ablation Study Results of DEL-Ranking on 3p3h, 4kp5-A, and 4kp5-OA datasets.
3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)

Metric Sp SubSp Sp SubSp Sp SubSp

w/o All -0.255±0.004 -0.137±0.012 -0.242±0.011 -0.263±0.012 0.015±0.029 -0.105±0.034

w/o LPSR -0.273±0.012 -0.155±0.013 -0.251±0.015 -0.271±0.011 0.015±0.028 -0.105±0.033

w/o LLGR -0.280±0.011 -0.168±0.015 -0.256±0.023 -0.273±0.016 -0.269±0.024 -0.209±0.034

w/o Lcon -0.283±0.004 -0.172±0.007 -0.260±0.018 -0.273±0.014 -0.273±0.024 -0.218±0.034

w/o Temp -0.279±0.011 -0.166±0.015 -0.247±0.022 -0.265±0.014 -0.256±0.033 -0.181±0.046

w/o CRC -0.284±0.007 -0.174±0.010 -0.260±0.015 -0.272±0.012 -0.269±0.023 -0.223±0.045

DEL-Ranking -0.286±0.002 -0.177±0.005 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

4.2 DISCOVERY OF POTENTIAL HIGH AFFINITY FUNCTIONAL GROUP

To evaluate DEL-Ranking’s capability in identifying potent compounds, we conducted an in-depth
analysis of the Top-50 compounds predicted by our model across five datasets. These compounds
were selected based on their predicted target counts in decreasing order.

Our primary objective was to examine the Ki values of these selected compounds to demonstrate that
DEL-Ranking effectively identifies ligands with high binding affinity. Additionally, we performed a
comparative analysis with DEL-Dock to highlight our model’s enhanced ability to discover promising
ligand candidates. Notably, our analysis revealed certain functional groups associated with low Ki
values that were previously unreported by researchers in the 3p3h, 4kp5-A, and 4kp5-OA datasets.
This finding demonstrates that our functional label approach and Consistency Regression Correction
(CRC) mechanism extend beyond simply injecting known chemical biases such as Benzene Sulfon-
amide. As detailed in Figure 3, the selected compounds consistently exhibited low Ki values across
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all datasets, confirming the model’s effectiveness in prioritizing high-affinity compounds from large
DEL libraries.

3p
3h

4k
p5

-A

4k
p5

-O
A

5f
l4-

9p

5f
l4-

20
p

100

101

102

103

Ki
 V

al
ue

 (
nM

)

Top-50 Ki Value Distribution 
 of DEL-Ranking

3p
3h

4k
p5

-A

4k
p5

-O
A

5f
l4-

9p

5f
l4-

20
p

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.80

1.00 1.00 1.00

0.90

Accuracy Comparison of 
 Benzene Sulfonamide Detection

Figure 3: Quantitative analysis of Top-50 selection,
including Ki distribution and accuracy.

Benzene Sulfonamide Accuracy. DEL-
Ranking shows expectational accuracy in de-
tecting benzene sulfonamide, a key high-affinity
group for carbonic anhydrase inhibitors (Hou
et al., 2023). From Figure 3, the model achieved
high detection rates on five datasets, demonstrat-
ing that our CRC framework effectively incor-
porates biological prior knowledge into model
prediction. To further explore the potential high-
affinity compounds, we conducted the same
study of DEL-Dock (Shmilovich et al., 2023)
in Appendix D.3.

Novel Group Discovery Our analysis of the
3p3h and 5fl4 datasets revealed a significant find-
ing: 20% (10/50) of high-ranking compounds in 3p3h and 10% (5/50) in 5fl4 lack the expected
benzene sulfonamide group. Remarkably, all these compounds contain a common functional group -
Pyrimidine Sulfonamide - which shares high structural similarity with benzene sulfonamide.

Further investigation through case-by-case Ki value determination yielded compelling results. Five
compounds from 3p3h and five from 5fl4 containing pyrimidine sulfonamide exhibited Ki values
comparable to or even surpassing those of benzene sulfonamide-containing compounds. This
finding profoundly validates DEL-Ranking’s dual capability: successfully incorporating chemical
functional group label information, while simultaneously leveraging multi-level information along
with integrated ranking orders to uncover potential high-activity functional groups. Notably, this
discovery reveals DEL-Ranking’s ability to identify unexplored scaffolds, showing potential to
improve compound prioritization and accelerate hit-to-lead optimization in early-stage drug discovery.
Detailed visualization of Top-50 samples and selected Pyrimidine Sulfonamide cases are shown in
Sections D.5 and G. We anticipate that with increased sampling sizes, DEL-Ranking will demonstrate
enhanced capability to identify additional affinity-determining functional groups that contribute
significantly to binding interactions.

4.3 ABLATION STUDY

To further explore the effectiveness of our enhancement, we compare DEL-Ranking with some
variants on 3p3h, 4kp5-A, and 4kp5-OA datasets. We can observe from Table 3 that (1) LPSR and
LLGR contribute most significantly to model performance across all datasets. (2) The impact of
LPSR is more pronounced in datasets with higher noise levels, as evidenced by the larger relative
performance drop in the 3p3h dataset. (3) Temperature adjustment and Lconsist help improve the
performance by correcting the predicted distributions, but count less than ranking-based denoising.

Furthermore, we conducted ablation studies on both loss weight and structure information weight (See
details in Sections D.1 and D.2). Also, due to multiple hyperparameters, we provide hyperparameter
selection criteria in AppendixC.2. The experimental results corroborate the capability of our approach
and the feasibility of our hyperparameter selection criteria.

5 CONCLUSION

In this paper, we propose DEL-Ranking to address the challenge of noise in DEL screening through
innovative ranking loss and activity-based correction algorithms. Experimental results demonstrate
significant improvements in binding affinity prediction and generalization capability. Additionally,
DEL-Ranking’s ability to identify potential binding affinity determinants advances the field of
DEL screening analysis by offering deeper insights into how molecular structures influence activity.
Current limitations primarily stem from acquiring, integrating, and analyzing high-quality multi-
modal molecular data at scale. Future work will focus on refining multi-modal data integration and
expanding the model’s interpretability to further advance DEL-based drug discovery and accelerate
structure–activity relationship exploration.
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A THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA AND THEOREM

Proof. [Proof of Lemma 3.1] Let (Ω,F , P ) be a probability space and (X,R) : Ω → X × R
be random variables representing features and read counts respectively. Define fZIP(r|x) as the
probability mass function of a well-fitted Zero-Inflated Poisson model.

Define:

R̂(x) = E[R|X = x] =

∞∑
r=0

r · fZIP(r|x)

LZIP(fZIP,D) = −
∑

(x,r)∈D

log fZIP(r|x)

Lrank(R̂,D) =
∑

(xi,ri),(xj ,rj)∈D:ri>rj

max(0, R̂(xj)− R̂(xi) + δ)

where D is the observed dataset and δ > 0.

We aim to prove I(Lrank|LZIP) > 0, where I(·|·) denotes conditional mutual information.

Consider (xi, ri), (xj , rj) ∈ D with ri > rj . It’s possible that R̂(xi) ≤ R̂(xj) due to the nature of
likelihood optimization in the ZIP model. This occurs because ZIP optimization focuses on absolute
likelihood values rather than preserving relative ordering between samples.

In such a case where observed ordering and predicted ordering disagree:

LZIP(fZIP, {(xi, ri), (xj , rj)}) = − log fZIP(ri|xi)− log fZIP(rj |xj)

Lrank(R̂, {(xi, ri), (xj , rj)}) = max(0, R̂(xj)− R̂(xi) + δ) > 0

The ranking loss is positive specifically when the predicted ordering contradicts the observed ordering.
During optimization, minimizing Lrank will push the model to correct such inversions, ensuring
R̂(xi) > R̂(xj) when ri > rj . This directly improves the model’s ability to preserve ordering
relationships.

Therefore, when both losses are used together:

P (Ri > Rj |LZIP,Lrank) > P (Ri > Rj |LZIP)

This inequality occurs because Lrank specifically penalizes ordering violations that LZIP alone might
permit. Consequently, the conditional entropy decreases:

H(R|LZIP,Lrank) < H(R|LZIP)

Therefore, I(Lrank|LZIP) = H(R|LZIP)−H(R|LZIP,Lrank) > 0.

Proof. [Proof of Theorem 3.2] Given Lemma 3.1, we first prove that there exists a set of predictions
r̂C and a sufficiently small γ0 > 0 such that for all γ ∈ (0, γ0):

E[LZIP(r̂
C , R)]− E[LZIP(r̂

ZI , R)] <
1− γ

γ
(E[Lrank(r̂

ZI , R)]− E[Lrank(r̂
C , R)])

Define the combined loss function LC(r̂, R;α) = αLZIP(r̂, R)+(1−α)Lrank(r̂, R), where α ∈ (0, 1).
Let r̂C(α) be the minimizer of LC :

r̂C(α) = argmin
r̂

E[LC(r̂, R;α)]

By the definition of r̂C(α), for any α ∈ (0, 1), we have:

E[LC(r̂
C(α), R;α)] ≤ E[LC(r̂

ZIP, R;α)]
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Expanding this inequality:

αE[LZIP(r̂
C(α), R)]+(1−α)E[Lrank(r̂

C(α), R)] ≤ αE[LZIP(r̂
ZIP, R)]+(1−α)E[Lrank(r̂

ZIP, R)]

Let ∆LZIP(α) = E[LZIP(r̂
C(α), R)] − E[LZIP(r̂

ZIP, R)] and ∆Lrank(α) = E[Lrank(r̂
ZIP, R)] −

E[Lrank(r̂
C(α), R)]. Rearranging the inequality:

α∆LZIP(α) ≤ (1− α)∆Lrank(α)

From Lemma 3.1, we established that I(Lrank|LZIP) > 0, meaning Lrank provides information not
captured by LZIP. This additional information allows the combined model to better preserve ranking
relationships. Consequently, there exists α1 ∈ (0, 1) such that for all α ∈ (0, α1], ∆Lrank(α) > 0.

This positive ∆Lrank(α) occurs because the combined model r̂C(α) incorporates ordering constraints
that directly improve ranking performance compared to the ZIP-only model r̂ZIP.

Now, consider the function:

f(α) = (1− α)∆Lrank(α)− α∆LZIP(α)

We know that f(α) ≥ 0 for all α ∈ (0, 1) from the earlier inequality. Moreover, f(0) = ∆Lrank(0) >
0. This inequality holds at α = 0 because the pure ranking model optimizes solely for order
preservation, significantly outperforming the ZIP model in terms of ranking metrics.

By the continuity of f(α) and since f(0) > 0, there exists α0 ∈ (0, α1] such that for all α ∈ (0, α0]:

f(α) > 0

This implies:
(1− α)∆Lrank(α) > α∆LZIP(α)

Dividing both sides by α(1− α) (which is positive for α ∈ (0, 1)):

∆Lrank(α)

α
>

∆LZIP(α)

1− α

This is equivalent to:

∆LZIP(α) <
1− α

α
∆Lrank(α)

Substituting back the definitions of ∆LZIP(α) and ∆Lrank(α):

E[LZIP(r̂
C(α), R)]− E[LZIP(r̂

ZIP, R)] <
1− α

α
(E[Lrank(r̂

ZIP, R)]− E[Lrank(r̂
C(α), R)])

Let r̂C = r̂C(α0), where α0 represents the optimal trade-off between ZIP fidelity and ranking
performance. At this value, we have:

E[LZIP(r̂
C , R)]− E[LZIP(r̂

ZIP, R)] <
1− α

α
(E[Lrank(r̂

ZIP, R)]− E[Lrank(r̂
C , R)])

Rearranging this inequality:

αE[LZIP(r̂
C , R)] + (1− α)E[Lrank(r̂

C , R)] < αE[LZIP(r̂
ZIP, R)] + (1− α)E[Lrank(r̂

ZIP, R)]

The left-hand side of this inequality is E[LC(r̂
C)] by definition. The right-hand side is strictly greater

than E[LZIP(r̂
ZIP)] since E[Lrank(r̂

ZIP, R)] > 0 for any non-trivial ranking loss and α < 1.

Therefore:

E[LC(r̂
C)] < αE[LZIP(r̂

ZIP, R)] + (1− α)E[Lrank(r̂
ZIP, R)] < E[LZIP(r̂

ZIP)]

This completes the proof, showing that our combined model achieves lower expected loss than the
standard ZIP model by effectively balancing distribution modeling and ranking preservation.
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A.2 GRADIENT ANALYSIS

We analyze the composite ranking loss function Lrank, which combines Pairwise Soft Ranking Loss
and Listwise Global Ranking Loss. The gradient of Lrank with respect to r̂i is:

∂Lrank

∂r̂i
= β

∂LPSR

∂r̂i
+ (1− β)

∂LLGR

∂r̂i
(22)

∂LPSR

∂r̂i
= −

∑
j ̸=i

(∆ij · σij)−
∑
j ̸=i

(∆ji · σji)

− r̂i
∑
j ̸=i

∆ij ·
∂σij

∂r̂i
+ r̂i

∑
j ̸=i

∆ji ·
∂σji

∂r̂i
(23)

where
∂σij

∂r̂i
=

sign(r̂i − r̂j)

T
σij(1− σij) (24)

The gradient ∂LPSR
∂r̂i

is primarily determined by ∆ij and σij , which represent pairwise comparisons
between item i and other items j. ∆ij captures the NDCG impact of swapping items i and j, while
σij adjusts this impact based on the difference between r̂i and r̂j . This formulation ensures that LPSR
focuses on local ranking relationships, particularly between adjacent or nearby items.

∂LLGR

∂r̂i
= − 1

T

n∑
k=i

(
exp(r̂π(k)/T )∑n
j=k exp(r̂π(j)/T )

− ⊮[π(k) = i]

)
+

∂Lcon

∂r̂i
(25)

The gradient ∂LLGR
∂r̂i

incorporates information from all items ranked from position i to n. Through its
softmax formulation, it considers the position of item i relative to all items ranked below it. This
allows LLGR to capture global ranking information.

B DETAILED ALGORITHM OF CRC

Algorithm 1 Refinement Stage for Chemical-Referenced Correction (CRC) Algorithm
Require: Pose structure embeddings hp, Fingerprint sequence embeddings hf , Sequence-structure

balancing weight ς , num iterations n, use feedback
1: x← PostAddLayer(ςhp + hf )

2: M̂ ← MatrixHead(hf )

3: Initialize R̂← 0, ŷ ← 0
4: for i = 1 to n do
5: if use feedback then
6: R̂← [x; p̂], p̂← [x; R̂]
7: else
8: R̂← x, p̂← x
9: end if

10: R̂← EnrichmentHead(ReadHead(R̂))
11: p̂← ActHead(p̂)
12: end for
13: Return M̂, R̂, p̂

PostAddLayer, MatrixHead, EnrichmentHead, ReadHead, and ActHead are Multi-
layer Perceptrons (MLP) that map latent embeddings into corresponding predicted count values and
activities. The architectures are consistent with DEL-Dock (Shmilovich et al., 2023).

C EXPERIMENTAL SETTINGS

C.1 VIRTUAL DOCKING FOR DATASET CONSTRUCTION

We employed molecular docking to define the three-dimensional conformations of molecules within
our DEL datasets. This method was applied to both the training and evaluation sets, generating
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ligand binding poses for all molecules. We concentrated on three pivotal carbonic anhydrase proteins:
Q16790 (CAH9 HUMAN), P00918 (CAH2 HUMAN), and O43570 (CAH12 HUMAN).

For the Q16790 target, we sourced the 5fl4 and 2hkf PDB structures from the PDBbind database and
utilized the Gerry dataset (Gerry et al., 2019). which comprised 108,529 molecules, generating up to
nine potential poses per molecule. For the targets P00918 and O43570, we selected 127,500 SMILES
strings from the DEL-MAP dataset (Hou et al., 2023) and conducted self-docking using the 3p3h and
5doh PDB structures for P00918, and 4kp5 and 4ht2 for O43570, as sourced from PDBbind. For the
validation set, we applied the same docking methodology to the corresponding ligands of CA9, CA2,
and CA12, involving 3,324, 6,395, and 2,690 ligands respectively.

In the specific docking procedures, initial 3D conformations of ligands were created using RDKit.
The binding sites in the protein-ligand complexes were identified using 3D structural data of known
binding ligands from PDBbind as reference points. Targeted docking was performed by defining
the search space as a 22.5 Å cube centered on the reference ligand in the corresponding PDBbind
complex. Using SMINA docking software, we generated 9 potential poses for each protein-ligand
pair.

C.2 HYPERPARAMETER SETTING

The model was trained using the Adam optimizer with mini-batches of 64 samples. The network
architecture employed a hidden dimension of 128. The self-correction mechanism was applied for 3
iterations. All experiments were conducted on a single NVIDIA RTX 3090 GPU with 24GB memory.
The implementation utilized PyTorch-Lightning version 1.9.0 to streamline the training process and
enhance reproducibility. The hyperparameter settings for different datasets, including loss function
weights, temperature, and margin, are detailed in Table C.2.

Hyper-parameter Selection The hyperparameter configuration in the appendix requires clarifi-
cation regarding the weight settings. The key parameters include Lrank weight, LPSR weight, LLGR
weight, and CRC weight. The Lrank weight is logarithmically distributed between 1e9 and 1e11 to
align with the magnitude of ZIP loss. LPSR and LLGR weights are calibrated to maintain appropriate
balance among different ranking objectives. Given that CRC loss naturally aligns with ZIP loss
magnitude, its weight is simply set to 1.0 or 0.1.

Temperature settings are determined by the characteristics of DEL read count data distribution, with
denser distributions requiring lower temperatures. A detailed analysis of read count distribution and
supporting theoretical proposition are provided in the Section D.1. Besides, the contract weight and
margin serve as penalty terms for LLGR, with the weight selected based on LLGR’s relative magnitude.
Detailed in Table C.2, these values remain stable and consistent across experiments.

Table 4: Hyperparameter Settings for DEL-Ranking on Different Datasets
3p3h 4kp5-A 4kp5-OA 5fl4-9p 5fl4-20p

Lconsist weight γ 1 0.1 0.1 – –
Lrank weight ρ 1e11 1e9 1e10 1e8 1e8
LPSR weight β 0.5 0.91 0.91 0.67 0.5
LLGR weight 1-β 0.5 0.09 0.09 0.33 0.5
Temperature T 0.8 0.3 0.2 0.9 0.2
Lcon weight σ 1e− 3 1e− 3 1e− 3 1e− 4 1e− 3
Margin τ 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3

Proposition C.1. As T → 0, the model simultaneously achieves: (1)Distributional Consistency en-
sures high predicted read counts align with true binding affinities, identifying top-ranked compounds
with the strongest binding potential; (2) Increased robustness mitigates the impact of small noise
perturbations in experimental data.

Based on the Proposition, the adaptive-ranking model would obtain more consistent identification
of high-affinity compounds, reducing errors due to random fluctuations. Also, it achieves enhanced
robustness against common DEL experimental noises such as PCR bias and sequencing errors. While
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lowering the temperature leads to a more deterministic ranking with high-affinity sensitivity and noise
resistance, there exists overlooking of compounds with slightly lower rankings when the temperature
goes to extremely low. In experiments, we demonstrate that [0.1, 0.4] should be a proper range for
the distribution sharping.

D EXPERIMENTAL RESULTS

Table 5: Comparison of different hyper-parameters on binding affinity prediction performance. The
best performance within one set of hyperparameter group is set bold.
Parameter Value 3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)

Metric Sp SubSp Sp SubSp Sp SubSp

0.1 -0.275±0.011 -0.163±0.017 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

Lconsist weight γ 1 -0.286±0.002 -0.177±0.005 -0.266±0.008 -0.238±0.008 -0.287±0.005 -0.213±0.014

10 -0.276±0.010 -0.163±0.015 -0.258±0.019 -0.239±0.010 -0.278±0.024 -0.227±0.040

1e9 -0.266±0.011 -0.151±0.016 -0.268±0.012 -0.277±0.016 -0.152±0.045 -0.225±0.023

Lrank weight ρ 1e10 -0.269±0.006 -0.151±0.009 -0.257±0.005 -0.189±0.016 -0.289±0.025 -0.233±0.021

1e11 -0.286±0.002 -0.177±0.005 -0.135±0.012 -0.060±0.036 -0.084±0.095 -0.058±0.077

0.09 -0.277±0.009 -0.165±0.013 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

LLGR weight β 0.5 -0.286±0.002 -0.177±0.005 -0.267±0.033 -0.240±0.016 -0.288±0.025 -0.247±0.019

0.91 -0.275±0.011 -0.160±0.019 -0.173±0.054 -0.089±0.038 -0.279±0.007 -0.222±0.033

0.2 -0.280±0.021 -0.173±0.029 -0.267±0.013 -0.247±0.009 -0.289±0.025 -0.233±0.021

Temperature T 0.5 -0.279±0.009 -0.169±0.014 -0.266±0.014 -0.236±0.012 -0.275±0.013 -0.216±0.005

0.8 -0.286±0.002 -0.177±0.005 -0.268±0.010 -0.222±0.010 -0.275±0.035 -0.220±0.029

1 -0.279±0.011 -0.166±0.015 -0.247±0.022 -0.265±0.014 -0.256±0.033 -0.181±0.046

D.1 ABLATION STUDY ON HYPER-PARAMETERS

In order to evaluate the robustness of our method, we conduct a comprehensive analysis of four
critical hyperparameters: the consistency loss weight γ, ranking loss weight ρ, LGR loss weight β,
and temperature T across three datasets (3p3h, 4kp5-A, and 4kp5-OA). As shown in Table 5, we
employ logarithmic search spaces for all loss-related hyperparameters to align the magnitudes of
ranking and consistency losses with the ZIP loss, while adopting a linear search space for temperature.

The empirical results demonstrate that our selected hyperparameters consistently achieve optimal per-
formance across all search spaces. The model exhibits strong stability, with performance variations re-
maining minimal under most hyperparameter adjustments. Nevertheless, we observe dataset-specific
sensitivities: the 4kp5-OA dataset shows increased sensitivity to ranking loss weight variations,
potentially due to elevated read count noise levels. Similarly, the 4kp5-A dataset exhibits performance
fluctuations at higher values of ranking loss and LLGR weights, which we attribute to magnitude
imbalances in the numerical representations.

The performance progression with respect to temperature demonstrates a consistent linear relationship,
providing empirical support for our distribution sharpening hypothesis. These findings collectively
indicate that while our model maintains robustness across the hyperparameter search space with
well-justified parameter selections, its sensitivity can be influenced by dataset-specific characteristics,
particularly read count distribution noise and magnitude disparities in the underlying data.

D.2 ABLATION STUDY ON STRUCTURE INFORMATION

To assess the value of structural information from docking software and its complementarity with
sequence features, we performed an ablation study focusing on the additive combination of structure
and fingerprint embeddings in the CRC algorithm. We applied varying scaling factors (0, 0.3, 0.6,
1.0, 1.5, and 2.0) to the structure embedding across three datasets (3p3h, 4kp5-A, and 4kp5-OA) with
five random seeds. Table 6 shows that incorporating structural information significantly improves
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Table 6: Parameter value comparison for structure scaling factor. The best performance within one
set of hyperparameter group is set bold.

Value ς 3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)

Metric Sp SubSp Sp SubSp Sp SubSp

0 -0.236±0.010 -0.112±0.013 -0.253±0.012 -0.218±0.017 -0.195±0.044 -0.103±0.055

0.3 -0.262±0.008 -0.145±0.012 -0.265±0.017 -0.227±0.017 -0.124±0.146 -0.062±0.090

0.6 -0.263±0.008 -0.146±0.011 -0.250±0.017 -0.231±0.019 -0.210±0.040 -0.121±0.047

1 -0.286±0.002 -0.177±0.005 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

1.5 -0.270±0.011 -0.155±0.016 -0.244±0.022 -0.252±0.022 -0.152±0.156 -0.139±0.104

2 -0.271±0.012 -0.155±0.015 -0.191±0.089 -0.216±0.060 -0.230±0.038 -0.152±0.051

model performance. The analysis revealed higher model sensitivity in the noise-prone 4kp5-OA
dataset, while performance degradation was observed in 4kp5-A when scaling factors exceeded
1.0. These results indicate that while structural information enhances model performance, excessive
weighting of potentially uncertain structural data can impair predictions. Nevertheless, our chosen
parameterization demonstrates consistent performance across all datasets.

D.3 COMPARISON RESULT OF TOP-50 SELECTION CASES BY DEL-DOCK
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Figure 4: Quantitative analysis of Top-50 selection,
including Ki distribution and accuracy for DEL-
Dock (Shmilovich et al., 2023).

In evaluating the performance of DEL-Dock,
a clear trend emerges across different datasets,
driven largely by how each method—docking-
based versus ranking-based—responds to vary-
ing noise levels and read counts. In the 3p3h
dataset, DEL-Dock’s ability to exploit direct
protein–ligand interaction data helped it surpass
DEL-Ranking in identifying compounds with
low Ki values and benzenesulfonamide func-
tionalities. In more moderate datasets, such as
4kp5-A and 5fl4-9p, both methods performed
comparably, indicating that when the complex-
ity and noise of the library remain at manageable
levels, structure-based docking can achieve re-
sults on par with label-guided, ranking-focused
algorithms. However, in the higher-noise 4kp5-OA and 5fl4-20p datasets, DEL-Ranking excelled—a
finding consistent with theoretical expectations that label-driven methods, alongside increased read
counts, are more robust to noisy environments.

D.4 TRAINING TIME COMPARISON

We evaluate the computational efficiency by comparing the training time per epoch on a single
NVIDIA RTX 3090 GPU. DEL-Dock and DEL-Ranking exhibit comparable time complexity;
however, both incur higher computational costs than MLP-ZIP. This difference arises because MLP-
ZIP bypasses the computationally intensive pose structure processing and fusion mechanisms.

Table 7: Comparison for training time per epoch.
Method Time (min)
MLP-ZIP 1.88
DEL-Dock 2.31
DEL-Ranking 2.50

D.5 VISUALIZATION OF TOP-50 SELECTION OF DEL-RANKING
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Figure 5: Visualization of Top-50 high affinity
cases without benzene sulfonamide.

Further reinforcing these observations is the dis-
covery of thiocarbonyl and sulfonamide scaf-
folds with Ki values below 10.0, despite lack-
ing the benzenesulfonamide functional group.
DEL-Dock’s success in identifying these struc-
turally distinct, high-affinity compounds illus-
trates the capacity of docking-based approaches
to uncover novel chemical scaffolds when
protein–ligand interactions are well captured.
Meanwhile, DEL-Ranking’s aptitude for recog-
nizing functional motifs analogous to benzene-
sulfonamides demonstrates how label guidance
can extend to related binding groups. These
combined insights point to a complementary dy-
namic between the two techniques: while direct
docking may excel in less noisy settings or when
the underlying structural biology is well-defined,
ranking-based methods can leverage label data
and higher read counts to maintain performance
under more complex, noise-prone conditions.
Below are the visualizations of the top-50 DEL-
Ranking results across the 3p3h(Figure 6), 4kp5-A(Figure 7), 4kp5-OA(Figure 8), 5fl4(9 pose) in
Figure 9, and 5fl4(20 pose) in Figure 10. In these figures, we specifically highlight benzenesul-
fonamide functional groups wherever they appear. While many of the top-ranked compounds do
contain benzenesulfonamides—underscoring the importance of this moiety—there remain notable
high-affinity hits devoid of benzenesulfonamide, suggesting that chemical diversity within the library
can be harnessed to discover alternative active scaffolds in Figure 5 and Figure 4. By emphasizing the
presence (or absence) of benzenesulfonamide in each molecule, these visualizations enable a clearer
structural comparison across different binding poses, highlighting both the value of known functional
groups and the potential for uncovering new ones.

E DISCUSSIONS

E.1 LIMITATIONS

Despite DEL-Ranking’s effectiveness in handling well-ordered read count distributions and its robust-
ness against highly noisy datasets, several limitations merit consideration. First, the method necessi-
tates prior knowledge of affinity-determining functional groups as correlation labels—information
frequently unavailable in many DEL datasets. Second, DEL-Ranking’s computational framework,
which relies on protein-ligand binding poses and molecular fingerprinting, demands substantial com-
putational resources, limiting its scalability to large-scale DEL libraries. In such cases, DEL-Ranking
must be implemented as a two-stage training framework. Third, the magnitude of ranking loss varies
considerably across different DEL datasets due to inherent differences in read count distributions,
necessitating dataset-specific hyperparameter optimization.

E.2 BOARDER IMPACTS

The DEL-Ranking framework has the potential to accelerate drug discovery by enabling more
accurate identification of high-potency compounds. Additionally, its inherent ranking methodol-
ogy facilitates the discovery of novel affinity-determining functional groups, thereby enhancing
researchers’ biological understanding of diverse protein-ligand systems. Furthermore, our curated
DEL datasets contribute to the advancement of DEL denoising methodologies. Nevertheless, this
framework presents minimal risk of misuse for developing compounds harmful to human health.
However, the significant computational requirements for dataset construction may exacerbate dispari-
ties between well-resourced and under-resourced research institutions, potentially widening existing
gaps in research capabilities.h
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F DETAILED TRAINING AND INFERENCE ALGORITHM

F.1 TRAINING PROCESS

Algorithm 2 DEL-Ranking Training
Require: DEL dataset D = {(fi, pi,Mi, Ri, yi)}Ni=1, where fi ∈ Rd is molecular fingerprint,

pi ∈ Rm is binding pose, Mi ∈ R is matrix count, Ri ∈ R is target count, yi ∈ {0, 1} is
functional group label

Require: Hyperparameters: ρ (ranking weight), γ (consistency weight), β (PSR weight), T (temper-
ature), σ (contrastive weight), τ (margin), learning rate η

Ensure: Trained model parameters θ
1: Initialize model parameters θ randomly
2: for epoch = 1 to Nepochs do
3: for each batch B ⊂ D do
4: // Forward Pass
5: Extract fingerprint embeddings: hf = FingerprintEncoder(fi)
6: Extract pose embeddings: hp = PoseEncoder(pi)
7: Fuse representations: x = FusionModule(ςhp + hf )
8: // Chemical-Referenced Correction (CRC)
9: M̂i = MatrixHead(hf ) ▷ Predict matrix count from fingerprint only

10: Initialize R̂i ← 0, p̂i ← 0
11: for iteration k = 1 to nCRC do
12: if use feedback then
13: R̂i ← [x; p̂i], p̂i ← [x; R̂i]
14: else
15: R̂i ← x, p̂i ← x
16: end if
17: R̂i = EnrichmentHead(ReadHead(R̂i))
18: p̂i = ActHead(p̂i)
19: end for
20: // Compute Losses
21: Compute ZIP loss: LZIP = −

∑
i log[P (Mi|λM , πM )]−

∑
j log[P (Rj |λM + λR, πR)]

22: // Pairwise Soft Ranking Loss

23: LPSR = −
N∑
i=1

∑
j ̸=i,ri>rj

[∆ij · σij(T )]

24: where σij =
1

1+e−|ri−rj |/T
, ∆ij =

∆Gij ·∆Dij

Z

25: // Listwise Global Ranking Loss

26: LLGR = −
N∑
i=1

log
exp(r̂Ω(i)/T )∑N

j=i exp(r̂Ω(j)/T )
+ σ

N∑
i=1

∑
j>i

Lcon(r̂i, r̂j , τ)

27: // Consistency Loss
28: Lconsist = ∥p̂i − yi∥+max

(
0, ∥ŷi − r̂i

maxi∈{1,...,N} r̂i
∥22 − ∥yi − ri

maxi∈{1,...,N} ri
∥22
)

29: // Total Loss
30: Ltotal = LZIP + ρ(βLPSR + (1− β)LLGR) + γLconsist
31: // Backward Pass
32: Compute gradients: ∇θLtotal
33: Update parameters: θ ← θ − η∇θLtotal
34: end for
35: end for
36: return θ
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F.2 INFERENCE PROCESS

Algorithm 3 DEL-Ranking Inference
Require: Test compound with fingerprint ftest and binding poses ptest
Require: Trained model with parameters θ
Ensure: Predicted counts M̂test, R̂test and activity probability p̂test

1: // Extract Features
2: hf = FingerprintEncoderθ(ftest)
3: hp = PoseEncoderθ(ptest)
4: x = FusionModuleθ(ςhp + hf )
5: // Predict Matrix Count
6: M̂test = MatrixHeadθ(hf )
7: // Predict Target Count and Activity
8: Initialize R̂test ← 0, p̂test ← 0
9: for iteration k = 1 to nCRC do

10: if use feedback then
11: R̂test ← [x; p̂test], p̂test ← [x; R̂test]
12: else
13: R̂test ← x, p̂test ← x
14: end if
15: R̂test = EnrichmentHeadθ(ReadHeadθ(R̂test))
16: p̂test = ActHeadθ(p̂test)
17: end for
18: // Estimate Binding Affinity
19: Compute enrichment factor: Etest =

R̂test

M̂test+ϵ

20: Rank compounds by R̂test in descending order
21: return M̂test, R̂test, p̂test
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Figure 6: Visualization of the top-50 DEL-Ranking results on the 3p3h dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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Figure 7: Visualization of the top-50 DEL-Ranking results on the 4kp5-A dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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Figure 8: Visualization of the top-50 DEL-Ranking results on the 4kp5-OA dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1 2 3 4 5

11 12 13 14 15

6 7 8 9 10

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

Figure 9: Visualization of the top-50 DEL-Ranking results on the 5fl4(9 pose) dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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Figure 10: Visualization of the top-50 DEL-Ranking results on the 5fl4(20 pose) dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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G VISUALIZATION ON SELECTED CASES CONTAINING PYRIMIDINE
SULFONAMIDE

Figure 11: In 3p3h, THR199 likely forms hydrogen bonds with the ligand, while ASP72 and GLU69
participate in hydrogen bonding and electrostatic interactions. The corresponding ki value is 84.0.

Figure 12: In 5fl4, LEU74 contributes through van der Waals forces or hydrophobic interactions,
HIS94’s imidazole side chain potentially forms hydrogen bonds, and THR201 engage in hydrogen
bonding with the ligand. The corresponding ki value is 0.5.

H USAGE OF LANGUAGE MODELS

We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited
to editorial tasks, including proofreading for typographical errors, correcting grammar, and improving
the clarity and readability of the text.
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