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ABSTRACT

Vector Quantization (VQ) is a well-known technique in deep learning for extract-
ing informative discrete latent representations. VQ-embedded models have shown
impressive results in a range of applications including image and speech genera-
tion. VQ operates as a parametric K-means algorithm that quantizes inputs using a
single codebook vector in the forward pass. While powerful, this technique faces
practical challenges including codebook collapse, non-differentiability and lossy
compression. To mitigate the aforementioned issues, we propose Soft Convex
Quantization (SCQ) as a direct substitute for VQ. SCQ works like a differentiable
convex optimization (DCO) layer: in the forward pass, we solve for the optimal
convex combination of codebook vectors that quantize the inputs. In the back-
ward pass, we leverage differentiability through the optimality conditions of the
forward solution. We then introduce a scalable relaxation of the SCQ optimiza-
tion and demonstrate its efficacy on the CIFAR-10, GTSRB and LSUN datasets.
We train powerful SCQ autoencoder models that significantly outperform matched
VQ-based architectures, observing an order of magnitude better image reconstruc-
tion and codebook usage with comparable quantization runtime.

1 INTRODUCTION

Over the past years, architectural innovations and computational advances have both contributed
to the spectacular progress in deep generative modeling (Razavi et al., 2019; [Esser et al.| [2020;
Rombach et al.l 2021)). Key applications driving this field include image (van den Oord et al., 2017}
Esser et al.| 2020; Rombach et al 2021} and speech (Dhariwal et al.,[2020) synthesis.

State-of-the-art generative models couple autoencoder models for compression with autoregressive
(AR) or diffusion models for generation (van den Oord et al.l 2017;|Chen et al., 2017; [Esser et al.,
2020; Rombach et al) 2021} |Gu et al.| 2022)). The autoencoder models are trained in the first stage
of the generation pipeline and aim to extract compressed yet rich latent representations from the
inputs. The AR or diffusion models are trained in the second stage using latents obtained from the
pre-trained autoencoder and are used for generation. Throughout this work, we refer to the autoen-
coder models as first-stage models while the actual generative models trained on the latent space are
referred to as second-stage models. Therefore, the effectiveness of the entire generation approach
hinges upon the extraction of informative latent codes within the first stage. One of the perva-
sive means of extracting such latent codes is by embedding a vector quantization (VQ) bottleneck
(van den Oord et al.,|[2017;Razavi et al.,[2019) within the autoencoder models.

Motivated by the domain of lossy compression and techniques such as JPEG (Wallace,, [1992)), VQ is
a method to characterize a discrete latent space. VQ operates as a parametric online K-means algo-
rithm: it quantizes individual input features with the “’closest” learned codebook vector. Prior to VQ,
the latent space of variational autoencoders (VAEs) was continuous and regularized to approximate
a normal distribution (Kingma et al., 2014; Kingma & Wellingl |2019). The VQ method was intro-
duced to learn a robust discrete latent space that doesn’t suffer the posterior collapse drawbacks faced
by VAEs regularized by Kullback-Leibler distance (van den Oord et al., 2017). Having a discrete
latent space is also supported by the observation that many real-world objects are in fact discrete:
images appear in categories and text is represented as a set of tokens. An additional benefit of VQ in
the context of generation, is that it accommodates learning complex latent categorical priors. Due to
these benefits, VQ underpins several image generation techniques including vector-quantized vari-
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ational autoencoders (VQVAESs) (van den Oord et al.| |2017; Razavi et al., 2019), vector-quantized
generative adversarial networks (VQGANSs) (Esser et al.,[2020), and vector-quantized diffusion (VQ
Diffusion) (Gu et al., [2022)). Notably it also has application in text-to-image (Ramesh et al., [2021]))
and speech (Dhariwal et al.,|2020) generation.

While VQ has been applied successfully across many generation tasks, there still exist shortcomings
in the method. One practical issue pertains to backpropagation when learning the VQ model: the
discretization step in VQ is non-differentiable. Currently, this is overcome by approximating the
gradient with the straight-through estimator (STE) (Bengio et al., [2013)). The VQ method is also
plagued by the “codebook collapse” problem, where only a few codebook vectors get trained due
to a “rich getting richer” phenomena (Kaiser et al.| 2018]). Here codebook vectors that lie closer to
the distribution of encoder outputs get stronger training signals. This ultimately leads to only a few
codebook vectors being used in the quantization process, which impairs the overall learning process.
Another limitation with VQ is that inputs are quantized with exactly one (nearest) codebook vector
(van den Oord et all 2017). This process is inherently lossy and puts heavy burden on learning
rich quantization codebooks. Several works have aimed at mitigating the aforementioned issues
with heuristics (Jang et al.l 2017; Maddison et al.| 2017; Zeghidour et al., 2021; [Dhariwal et al.,
2020; |[Huh et al.| 2023} |Lee et al.,|2022). While the recent works have demonstrated improvements
over the original VQ implementation, they are unable to fully attain the desired behavior: exact
backpropagation through a quantization step that leverages the full capacity of the codebook.

In view of the above shortcomings of existing VQ techniques, we propose a technique called soft
convex quantization (SCQ). Rather than discretizing encoder embeddings with exactly one codebook
vector, SCQ solves a convex optimization in the forward pass to represent each embedding as a
convex combination of codebook vectors. Thus, any encoder embedding that lies within the convex
hull of the quantization codebook is exactly representable. Inspired by the notion of differentiable
convex optimization (DCO) (Amos & Kolter, [2017; |/Agrawal et al., [2019), this approach naturally
lends itself to effectively backpropagate through the solution of SCQ with respect to the entire
quantization codebook. By the means of this implicit differentiation, stronger training signal is
conveyed to all codebook vectors: this has the effect of mitigating the codebook collapse issue.

We then introduce a scalable relaxation to SCQ amenable to practical codebook sizes and demon-
strate its efficacy with extensive experiments: training 1) VQVAE-type models on CIFAR-10
(Krizhevskyl [2009) and German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al.,
2012) datasets, and 2) VQGAN-type models (Esser et al., [2020) on higher-resolution LSUN (Yu
et al., 2015) datasets. SCQ outperforms state-of-the-art VQ variants on numerous metrics with
faster convergence. More specifically, SCQ obtains up to an order of magnitude improvement in im-
age reconstruction and codebook usage compared to VQ-based models on the considered datasets
while retaining a comparable quantization runtime. We also highlight SCQ’s improved performance
over VQ in low-resolution latent compression, which has the potential of easing the computation
required for downstream latent generation.

2 BACKGROUND

2.1 VECTOR QUANTIZATION NETWORKS

Vector quantization (VQ) has risen to prominence with its use in generative modeling (van den Oord
etal.,2017;|Razavi et al.||[2019;|Rombach et al., 2021)). At the core of the VQ layer is a codebook, i.e.
a set of K latent vectors C := {c¢; } le used for quantization. In the context of generative modeling,
an encoder network Ey(-) with parameters ¢ maps input x into a lower dimensional space to vector
ze = E(x). VQ replaces z. with the closest (distance-wise) vector in the codebook:

zg = Q (2¢) = ¢, where k = argmin ||z, — ¢, (1)
1<G<K
and Q(-) is the quantization function. The quantized vectors z, are then fed into a decoder network
Dy(-) with parameters 6, which aims to reconstruct the input z. Akin to standard training, the
overarching model aims to minimize a task specific empirical risk:
min Eo .. [Cuns(D(Q(E(2))), )] @

I
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where L5k could be a reconstruction (van den Oord et al.|[2017; [Razavi et al [2019) or perceptual
loss (Esser et al., 2020; Rombach et al.,|2021) and Py is the underlying data distribution. Train-
ing is performed using standard first-order methods via backpropagation (Rumelhart et al., |1986).
As differentiation through the discretization step is ill-posed, the straight-through-estimator (STE)
(Bengio et al.,[2013)) is used as a gradient approximation.

To ensure an accurate STE, a commitment loss is introduced to facilitate learning the codebook:

Ecommil<E¢>7c) = (1 - B)d(sg[ZEL zq) + ﬂd(zev sg[ZLI])v (3)

where d(+, -) is a distance metric, 5 > 0 is a hyperparameter and sg[-] is the stop gradient operator.
The first term brings codebook nearer to the encoder embeddings, while the second term optimizes
over the encoder weights and aims to prevent fluctuations between the encoder outputs and its dis-
cretization. Combining Ly, and Leommie Yields a consolidated training optimization:

%Ié ExNPdist [Etask(DQ (Q(E¢ (l‘))), 33) + Ecommil(E¢7 C)] . 4)

sV

A concrete example of this framework is the loss used to train the VQVAE architecture (van den
Oord et al., 2017; Razavi et al., [2019):

Lvq(Ey, Do, C) = [l — &[|3 + (1 = B)llsglze] — 2qll3 + Bllze — s9[2q]3- 5)
where & := Dy (Q(E4(z))) is the reconstruction.

2.2 VECTOR QUANTIZATION CHALLENGES

In the next subsections, we outline some of the main challenges faced by VQ, as well as relevant
methods used to alleviate these.

2.2.1 GRADIENT APPROXIMATION

As mentioned in [2.1] differentiation through the discretization step is required to backpropagate
through a VQ-embedded network. Taking the true gradient through the discretization would yield
zero gradient signal and thus deter any useful model training potential. To this end, the STE is used to
approximate the gradient. From the perspective of the discretization function, the upstream gradient
is directly mapped to the downstream gradient during backpropagation, i.e. the non-differentiable
discretization step is effectively treated as an identity map. While prior work has shown how a well-
chosen coarse STE is positively correlated with the true gradient (Yin et al.,|2019), further effort has
been put into alleviating the non-differentiability issue. InJang et al.|(2017);Maddison et al.| (2017)),
the Gumbel Softmax reparameterization method is introduced. This method reparameterizes a cate-
gorical distribution to facilitate efficient generation of samples from the underlying distribution. Let
a categorical distribution over K discrete values have associated probabilities 7; for ¢ € [K]. Then
we can sample from this distribution via the reparameterization:

sample ~ arg maX{Gi +log m; }, (6)

where G; ~ Gumbel(0, 1) are samples from the Gumbel distribution. Since the arg max operator
is not differentiable, the method approximates it with a Softmax operator during backpropagation.

2.2.2 CODEBOOK COLLAPSE

In the context of VQ, codebook collapse refers to the phenomenon where only a small fraction of
codebook vectors are used in the quantization process (Kaiser et al.,[2018)). While the underlying
cause is not fully understood, the intuition behind this behavior is that codebook vectors that lie
nearer to the encoder embedding distribution receive more signal during training and thus get better
updates. This causes an increasing divergence in distribution between embeddings and underused
codebook vectors. This misalignment is referred to as an internal codebook covariate shift (Huh
et al., [2023). Codebook collapse is an undesired artefact that impairs the overarching model’s per-
formance as the full codebook capacity is not used. Thus, there have been many concerted efforts
to mitigate this issue. One line of work targets a codebook reset approach: replace the dead code-
book vectors with a randomly sampled replacement vector (Zeghidour et al., 2021; Dhariwal et al.,
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2020). This approach requires careful tuning of iterations before the replacement policy is executed.
Another direction of work aims to maintain stochasticity in quantization during the training pro-
cess (Kaiser et al., [2018}; [Takida et al., 2022). This body of work is based on observations that the
quantization is stochastic at the beginning of training and gradually convergences to deterministic
quantization (Takida et al., 2022). In (Huh et al., |2023)), authors introduce an affine reparameter-
ization of the codebook vectors to minimize the divergence of the unused codebook vectors and
embedding distributions.

2.2.3 LOSSY QUANTIZATION

As mentioned in Section VQ-embedded networks are trained with the STE that assume the
underlying quantization function behaves like an identity map. Therefore, effective training relies on
having a good quantization function that preserves as much information as possible of the encoder
embeddings. Given an encoder embedding z., the quantized output can be represented as z; = z.+¢€
where € is a measure of the residual error. Since STE assumes the quantization is an identity map,
the underlying assumption is that e = 0. In practice, however, the quantization process with a finite
codebook is inherently lossy and we have e > 0. Therefore, the underlying quantization function
should make the quantization error as small as possible to guarantee loss minimization with the STE.
For large residuals, no loss minimization guarantees can be made for the STE. Recent work has
proposed an alternating optimization scheme that aims to reduce the quantization error for VQ (Huh
et al.| [2023). In (Lee et al.,[2022)), authors introduce residual quantization (RQ) which performs VQ
at multiple depths to recursively reduce the quantization residual. While RQ has shown improved
empirical performance, it is still plagued with the same core issues as VQ and trades-off additional
computational demands for executing VQ multiple times within the same forward pass.

2.3 DIFFENTIABLE CONVEX OPTIMIZATION (DCO) LAYERS

DCO are an instantiation of implicit layers (Amos & Kolter,|2017) that enable the incorporation of
constrained convex optimization within deep learning architectures. The notion of DCO layers was
introduced in |/Amos & Kolter| (2017) as quadratic progamming (QP) layers with the name OptNet.
QP layers were formalized as

Zyp1 = argmin 2! R(z)z + 2" r(2,)
z€ER™

s.t. A(z,)z+ B(z,) <0,
A(z,)z + B(z,) = 0 (N

where z € R” is the optimization variable and layer output, while R(z,.), r(2,), A(z.), B(2),
A(z,,), B(z,) are optimizable and differentiable functions of the layer input z;. Such layers can
be naturally embedded within a deep learning architecture and the corresponding parameters can
be learned using the standard end-to-end gradient-based training approach prevalent in practice.
Differentiation with respect to the optimization parameters in equation[7)is achieved via implicit dif-
ferentiation through the Karush-Kuhn-Tucker (KKT) optimality conditions (Amos & Kolter, 2017;
Amos et al.,[2017)). On the computational side, Amos & Kolter| (2017) develop custom interior-point
batch solvers for OptNet layers that are able to leverage GPU compute efficiency.

3 METHODOLOGY

In this section, we introduce the soft convex quantization (SCQ) method. SCQ acts as an improved
drop-in replacement for VQ that addresses many of the challenges introduced in Section 2.2}

3.1 SOFT CONVEX QUANTIZATION WITH DIFFERENTIABLE CONVEX OPTIMIZATION

SCQ leverages convex optimization to perform soft quantization. As mentioned previously, SCQ
can be treated as a direct substitute for VQ and its variants. As such, we introduce SCQ as a bot-
tleneck layer within an autoencoder architecture. The method is best described by decomposing its
workings into two phases: the forward pass and the backward pass. The forward pass is summa-
rized in Algorithm [I]and solves a convex optimization to perform soft quantization. The backward
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Algorithm 1 Soft Convex Quantization Algorithm
Design choices: Quantization regularization parameter A > 0, embedding dimension F', code-
book size K o
Input: Encodings Z, € RNV*IXHxW

RN xFx HxW

Return: Convex quantizations Z, €
Parameters: Randomly initialize codebook C' € RP>*K

begin forward o
1. Zganened c RFXNHW — Reshape(Ze)
2. P ¢ REXNHW . yo(detach(Zfatened))
3. P = argminpeRime'v |Zgered — CPIE + AP = Pl + P >0, 1;P = Ly
4 Zﬂattened c RFXNFIW « OP*
)

5. Zq c RNXFX[}XW — Reshape(Zgattened)
end

pass leverages differentiability through the KKT optimality conditions to compute the gradient with
respect to the quantization codebook.

Forward pass. Let X € RVXCXHXW denote an input (e.g. of images) with spatial dimension
H x W, depth (e.g. number of channels) C' and batch size N. The encoder Ey(-) takes X and

returns Z, = E4(X) € RNXFXHXW where F is the embedding dimension and H x W is the
latent resolution. Z, is the input to the SCQ. The SCQ method first runs VQ on Z. and stores the

resulting one-hot encoding as P € REXNAW P is detached from the computational graph and
treated as a constant, i.e. no backpropagation through P. Then Z, is passed into a DCO of the form

P*:= argmin | zMeed _ Ccp|2 4+ )P - P|%

peRKxNITIW

st. P>0,

Pk =15 (8)

where Zlatened ¢ REXNHW jq 5 flattened representation of Z., C € RI*K represents a ran-
domly initialized codebook matrix of K latent vectors, A > 0 is a regularization parameter and

P ¢ REXNHW i 4 matrix we optimize over. SCQ solves convex optimization [8|in the forward
pass: it aims to find weights P* that best reconstruct the columns of Zfatned with a sparse convex
combination of codebook vectors. Sparsity in the weights is induced by the regularization term that

biases the SCQ solution towards the one-hot VQ solution, i.e. we observe that limy_,., P* = P.
The constraints in optimization [§] enforce that the columns of P lie on the unit simplex, i.e. they
contain convex weights. The codebook matrix C'is a parameter of the DCO and is updated with all
model parameters to minimize the overarching training loss. It is randomly initialized before training
and is treated as a constant during the forward pass. The SCQ output is given by Z gmened = CP~.
This is resolved to the original embedding shape and passed on to the decoder model.

Backward pass. During the forward pass SCQ runs VQ and then solves optimization [§] to find
a sparse, soft convex quantization of Z.. The underlying layer parameters C' are treated as con-
stants during the forward pass. C' is updated with each backward pass during training. As C'is a
parameter of a convex optimization, DCO enables backpropagation with respect to C' via implicit
differentiation through the KKT conditions (Agrawal et al.,[2019).

Improved backpropagation and codebook coverage with SCQ. During the forward pass of SCQ,
multiple codebook vectors are used to perform soft quantization on Z.. Optimization [§] selects
a convex combination of codebook vectors for each embedding in Z.. Therefore, SCQ is more
inclined to better utilize the codebook capacity over VQ where individual codebook vectors are
used for each embedding. Furthermore, owing to the DCO structure of SCQ, we can backpropagate
effectively through this soft quantization step, i.e. training signal is simultaneously distributed across
the entire codebook.
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Algorithm 2 Practical Soft Convex Quantization Algorithm

Design choices: Quantization regularization parameter A > 0, number of projection steps m,
embedding dimension F', codebook size K

Input: Encodings Z, € RNV F'xHXW

Return: Convex quantizations Z, € RV*F>H>W

Parameters: Randomly initialize codebook C' € R * X

begin forward -
1. Zganened c REXNHW Reshape(Ze)
2. f) c RKXNFIW — VQ(Zﬁallened)

3. P e REXNHW LinearSystemSolver(CTC + M, Zflatened 1 )\]5)
fori € [m] do
4. P < max(0, P)

5. P« P— %11{, Vk € [NHW)|
end for
6. P+ P

7. Zqﬂattened c RFXNﬁW «— CP*

8. Z, € RNxefIxW - Reshape(Zga“ened)
end

Improved quantization with SCQ. The goal of optimization [§|is to minimize the quantization
error || Z, — C P||% with convex weights in the columns of P. Thus, the optimization characterizes
a convex hull over codebook vectors and can exactly reconstruct Z, embeddings that lie within it.
This intuitively suggests SCQ’s propensity for low quantization errors during the forward pass as
compared to VQ variants that are inherently more lossy.

3.2 SCALABLE SOFT CONVEX QUANTIZATION

As proposed in (Amos & Kolter, 2017), optimization 8| can be solved using interior-point meth-
ods which give the gradients for free as a by-product. Existing software such as CVXPYLayers
(Agrawal et al., [2019) is readily available to implement such optimizations. Solving [8]using such
second-order methods incurs a cubic computational cost of O((N K HW)3). However, for practical

batch sizes of N ~ 100, codebook sizes K =~ 100 and latent resolutions H = W = 50, the cubic
complexity of solving[8]is intractable.

To this end we propose a scalable relaxation of the optimization [§] that remains performant whilst
becoming efficient. More specifically, we approximate[§|by decoupling the objective and constraints.
We propose first solving the regularized least-squares objective with a linear system solver and
then projecting the solution onto the unit simplex. With this approximation, the overall complexity
decreases from O((NKHW)3) for the DCO implementation to O(K?). In practice (K =~ 103)
this linear solve adds negligible overhead to the wall-clock time as compared to standard VQ. This
procedure is outlined in our revised scalable SCQ method shown in Algorithm 2} The projection
onto the unit simplex is carried out by iterating between projecting onto the nonnegative orthant and
the appropriate hyperplane.

4 EXPERIMENTS

This section examines the efficacy of SCQ by training autoencoder models in the context of gen-
erative modeling. Throughout this section we consider a variety of datasets including CIFAR-10
(Krizhevsky, 2009), the German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al.,
2012) and higher-dimensional LSUN (Yu et al.l [2015) Church and Classroom. We run all experi-
ments on 48GB RTX 8000 GPUs.
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4.1 TRAINING VQVAE-TYPE MODELS

We consider the task of training VQVAE-type autoencoder models with different quantization bot-
tlenecks on CIFAR-10 (Krizhevsky, 2009) and GTSRB (Stallkamp et al., [2012). This autoencoder
architecture is still used as a first stage within state-of-the-art image generation approaches such as
VQ Diffusion (Gu et al., 2022). The autoencoder structure is depicted in Figure |[4|in Appendix
and is trained with the standard VQ loss[3]

We compare the performance of SCQ against existing methods VQVAE (van den Oord et al., 2017)),
Gumbel-VQVAE (Jang et al., 2017), RQVAE (Lee et al., 2022), VQVAE with replacement (Zeghi-
dour et al., [2021; [Dhariwal et al., 2020), VQVAE with affine codebook transformation and alter-
nating optimization (Huh et al., 2023)). The autoencoder and quantization hyperparameters used for
each dataset are detailed in Table [3|in Appendix |A] The performance is measured using the recon-
struction mean square error (MSE) and quantization error. The reconstruction error measures the
discrepancy in reconstruction at the pixel level, while the quantization error measures the incurred
MSE between the encoder outputs Z, and quantized counterpart Z,. We also measure the perplexity
of each method to capture the quantization codebook coverage. Larger perplexity indicates better
utilization of the codebook capacity. In this experiment, the results on the test datasets were averaged
over 5 independent training runs for 50 epochs. Table[I|presents the results.

Table 1: Comparison between methods on an image reconstruction task for CIFAR-10 and GTSRB
over 5 independent training runs. The same base architecture is used for all methods. All metrics
are computed and averaged on the test set.

CIFAR-10 GTSRB
Method MSE (10~3)] Quant Error|. Perplexity 1 MSE (10~3)] Quant Error|. Perplexity T
VQVAE 41.19 70.47 6.62 39.30 70.16 8.89
VQVAE + Rep 5.49 4.13 x 1073 106.07 3.91 1.61 x 1073 75.51
VQVAE + Affine + OPT 16.92 25.34 x 1073 8.65 11.49 13.27 x 1073 5.94
VQVAE + Rep + Affine + OPT 5.41 4.81 x 10732 106.62 4.01 1.71 x 1073 7276
Gumbel-VQVAE 445 23.29 x 1073 10.86 56.99 47.53 x 1073 451
RQVAE 4.87 44.98 x 1073 20.68 4.96 38.29 x 1073 10.41
SCQVAE 1.53 0.15 x 10~3 124.11 321 0.24 x 10~3 120.55

SCQVAE outperforms all baseline methods across all metrics on both datasets. We observe in
particular, the significantly improved quantization errors and perplexity measures. The improved
quantization error suggests better information preservation in the quantization process, while im-
proved perplexity indicates that SCQ enables more effective backpropagation that better utilizes the
codebook’s full capacity. These improvements were attained while maintaining training wall-clock
time with the VQ baselines. The RQVAE method, on the other hand, did incur additional training
time (approximately 2x) due to its invoking of multiple VQ calls within a single forward pass.

Figures [I] (a) and (b) illustrate SCQVAE’s improved convergence properties over state-of-the-art
RQVAE (Lee et al .} [2022)) and VQVAE with replacement, affine transformation and alternating opti-
mization (Huh et al.||[2023)). For both datasets, SCQVAE is able to converge to a lower reconstruction
MSE on the test dataset (averaged over 5 training runs).

We next considered the higher-dimensional (256 x 256) LSUN (Yu et al., 2015) Church dataset.
Again Table [3| summarizes the hyperparameters selected for the underlying autoencoder. Figure 2]
visualizes the reconstruction of SCQVAE in comparison with VQVAE |van den Oord et al.| (2017)
and Gumbel-VAE (Jang et al.,|2017; Maddison et al., 2017) on a subset of test images after 1, 10
and 20 training epochs. This visualization corroborates previous findings and further showcases the
rapid minimization of reconstruction MSE with SCQVAE. A similar visualization for CIFAR-10 is
given in Figure[5]in Appendix

SCQ Analysis. To better understand how SCQ improves codebook perplexity, Figure [3] visualizes
image reconstruction of SCQVAE for a varying number of codebook vectors. The SCQVAE is
trained on LSUN Church according to Table |3 More specifically, we restrict the number of code-
book vectors used for soft quantization to the top-S most significant ones with S € [25]. Here
significance is measured by the size of the associated weight in matrix P* of Algorithm [2| We
observe a behavior analogous to principal components analysis (PCA): the reconstruction error re-
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CIFAR-10: Reconstruction Error GTSRB: Reconstruction Error
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Figure 1: SCQVAE’s improved convergence of test reconstruction MSE on CIFAR-10 (a) and GT-
SRB (b).

duces as more codebook vectors are used in the quantization process. This suggests the quantization
burden is carried by multiple codebook vectors and explains the improved perplexity of SCQ seen
in Table I, The number of codebook vectors needed for effective reconstruction depends on the
sparsity induced in SCQ via hyperparameter \.

SCQVAE Reconstruction VQVAE Reconstruction Gumbel-VQVAE Reconstruction
T g =

Epoch1l .

LSUN Church Original Images

Epoch10 |

Epoch 20

Figure 2: Comparison of LSUN 2015) Church reconstruction on the test dataset.

4.2 TRAINING VQGAN-TYPE MODELS

In this section, we focus on training first-stage models used within image synthesis methods such
as unconditional latent diffusion models (LDM). We use the LSUN Church and
Classroom datasets and train VQGAN-type architectures trained with the associated VQGAN loss
(2020). When using the SCQ quantizer, we refer to the aforementioned architectures as
SCQGAN models.

To truncate training time, we use 5x 10* randomly drawn samples from the LSUN Church and Class-
room datasets to train VQGAN and SCQGAN models. Table @] summarizes the
hyperparameter configuration used for both the VQ and SCQGAN architectures. The performance
of both archictures was measured on the test set with the VQGAN loss [2020) referred
to as Lvgcan, and LPIPS (Zhang et a1.|, 2018). To examine the efficacy of both methods at dif-
ferent latent compression resolutions we train different architectures that compress the 256 x 256
images to 64 x 64, 32 x 32 and 16 x 16 dimensional latent resolutions. Tab1e|2| summarizes the
results. SCQGAN outperforms VQGAN on both datasets across both metrics on all resolutions.
This result highlights the efficacy of SCQ over VQ in preserving information during quantization -
especially at smaller resolution latent spaces (greater compression). This result is particularly ex-
citing for downstream tasks such as generation that leverage latent representations. More effective
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Figure 3: SCQ reconstruction performance with a varying number of codebook vectors on the LSUN
Church dataset.

compression potentially eases the computational burden on the downstream tasks whilst maintaining
performance levels. Figures in Appendix [B| further illustrate faster convergence for SCQGAN
on both metrics across all resolutions.

Table 2: Comparison between SCQGAN and VQGAN on LSUN image reconstruction tasks. The
same base architecture is used for all methods and metrics are computed on the test set.

LSUN Church LSUN Classroom
Method Lvocan (10751 LPIPS (107 1)) | Lvooan (107H)  LPIPS (10~ 1|
VQGAN (64-d Latents) 4.76 4.05 3.50 3.28
SCQGAN (64-d Latents) 3.93 3.88 3.29 3.23
VQGAN (32-d Latents) 6.60 6.22 8.01 7.62
SCQGAN (32-d Latents) 5.53 5.48 6.76 6.53
VQGAN (16-d Latents) 8.32 8.18 9.87 9.68
SCQGAN (16-d Latents) 7.86 7.84 9.19 9.15

5 CONCLUSION

This work proposes soft convex quantization (SCQ): a novel soft quantization method that can be
used as a direct substitute for vector quantization (VQ). SCQ is introduced as a differentiable con-
vex optimization (DCO) layer that quantizes inputs with a convex combination of codebook vectors.
SCQ is formulated as a DCO and naturally inherits differentiability with respect to the entire quan-
tization codebook. This enables overcoming issues such as inexact backpropagation and codebook
collapse that plague the VQ method. Moreover, SCQ is able to exactly represent inputs that lie
within the convex hull of the codebook vectors, which mitigates lossy compression. Experimen-
tally, we demonstrate that a scalable relaxation of SCQ facilitates improved learning of autoencoder
models as compared to baseline VQ variants on CIFAR-10, GTSRB and LSUN datasets. SCQ gives
up to an order of magnitude improvement in image reconstruction and codebook usage compared to
VQ-based models on the aforementioned datasets while retaining comparable quantization runtime.
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A FURTHER DETAILS ON VQVAE EXPERIMENTS

In Figure 4] we illustrate the autoencoder architecture used in experiments described in Section
[.1] The hyperparameters described in [van den Oord et al| (2017) were adjusted for the consid-
ered datasets. Table [3] describes the hyperparameters used in the experiment. Figure [3] visualizes
the reconstruction of CIFAR-10 (Krizhevsky, [2009) test images by the SCQVAE, VQVAE (van den
Oord et al 2017) and Gumbel-VQVAE (Jang et al.| 2017; [Maddison et al., [2017) architectures.
The visualization shows significantly improved reconstruction performance of SCQVAE over the
baselines.

11


https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://openreview.net/forum?id=Skh4jRcKQ
https://openreview.net/forum?id=Skh4jRcKQ
https://doi.org/10.1109/TASLP.2021.3129994
https://doi.org/10.1109/TASLP.2021.3129994

Under review as a conference paper at ICLR 2024

Conv + ReLU

Residual Block

Image—> —» —> —_> —>

-

Encoder

Figure 4:

Residual Block

Quantizer ————>»

ConvTranspose +
ReLU

—> Reconstuction

-

Decoder

Autoencoder architecture for the reconstruction experiments on the CIFAR-10

(Krizhevskyl, 2009) and GTSRB (Stallkamp et al.,|2012) datasets.

Table 3: Hyperparameters of autoencoder used for CIFAR-10 (Krizhevsky, [2009), GTSRB (Stal-
lkamp et al.,2012) and LSUN (Yu et al.,|2015) Church experiments. A and m are only applicable to

the SCQ architecture.

CIFAR-10 GTSRB LSUN Church
Image size 32 x 32 48 x 48 256 X 256
Latent size 16 x 16 24 x 24 64 x 64
B (def. in equation 5) 0.25 0.25 0.25
Batch size 128 128 128
Conv channels 32 32 128
Residual channels 16 16 64
Nr of residual blocks 2 2 2
Codebook size 128 128 128
Codebook dimension 16 16 32
A (in Algorithm [2) 0.1 0.1 0.1
m (in Algorithm Ei 20 20 20
Training steps 19550 10450 7850

B FURTHER DETAILS ON VQGAN EXPERIMENTS

Table 4: Hyperparameters of VQ/SCQGAN models trained on the LSUN (Yu et al., 2015) Church
and Classroom datasets. Images were center-cropped to a size 256 x 256. Models were trained to
compress latents to different resolutions. A and m are only applicable to the SCQ architecture.

16 x 16 Latents

| 32 x 32 Latents | 64 x 64 Latents

B (def. in equation
Batch size

Base residual channels (C)
Residual channels at different resolutions
Nr of residual blocks
Codebook size

Codebook dimension

A (in Algorithm [2)

m (in Algorithm2)

Total Params (10°)
Training steps

0.25

64

128

[C, 2C, 4C, 8C, 8C]

2

512

10

0.1
2

339

9384

0.25 0.25
64 64
128 128

[C, 2C, 4C, 8C] [C, 2C, 4C]

2 2

512 1024
8 3
0.1 0.1
2 2
225 58

9384 9384
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Figure 5: Comparison of CIFAR-10 (Krizhevsky}, 2009) reconstruction on the validation dataset.
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Figure 6: SCQGAN outperforms VQGAN on Lyggan (AE loss) and LPIPs on the LSUN Church
(a) and Classroom (b) datasets. These results are for a latent resolution of 64 x 64.
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Figure 7: SCQGAN outperforms VQGAN on Lyggan (AE loss) and LPIPs on the LSUN Church
(a) and Classroom (b) datasets. These results are for a latent resolution of 32 x 32.
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Figure 8: SCQGAN outperforms VQGAN on Lyggan (AE loss) and LPIPs on the LSUN Church
(a) and Classroom (b) datasets. These results are for a latent resolution of 16 x 16.
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