© © N O O A W N =

o

Exploring the Utility of Large Language Models in
Improving the Precision of Narrator Name Extraction

Ala Kaymaram Ibrahim Akar Shawn Nassabi
Boston University =~ New York University = New York University
Boston, USA Boston, USA New York, USA

kaymaram@bu.edu abeakar@gmail.com san7522@nyu.edu

Abstract

The precise extraction of hadith narrator names is a critical task in computational
hadith scholarship. This paper explores the utility of Large Language Models
(LLMs) in automating and enhancing the process of hadith narrator name extraction.
We present an analysis of existing methodologies, highlighting their limitations in
handling the complexities of Arabic language nuances and the intricate relationships
between narrators. By leveraging the contextual understanding and generative
capabilities of LLMs, we propose a novel framework that integrates advanced
natural language processing techniques with domain-specific knowledge. Our
experiments demonstrate improvements in accuracy and efficiency compared to
traditional machine learning methods.

1 Related Work

Computational techniques are increasingly being applied to the study of hadith literature, with a key
area of focus being isnad analysis, which investigates the chain of narrations. Saloot et al. provide
a foundational comparative analysis of Hadith classification methods prior to the advent of large
language models [Saloot et al.| (2016). Their study re-implemented and evaluated various traditional
machine learning techniques, including Naive Bayes, Support Vector Machines, and Neural Networks,
on a constructed dataset from Sahih Al-Bukhari. The work establishes a quantitative baseline for
Hadith classification, with a focus on matn (content) classification, to the exclusion of the structural
analysis of the isnad (chain of narrators) and the use of modern deep learning and transformer models.

In the domain of isnad analysis, Alam and Schneider’s work has systematically applied Social
Network Analysis (SNA) to the narrator chains of Sahih Bukhari|/Alam & Schneider (2020). Their
research models the isnad as a social graph and employs well-established centrality measures, such
as PageRank, Betweenness centrality, and Degree Centrality to quantitatively identify influential
narrators and key transmission hubs. This approach moves beyond simple textual analysis to provide
novel insights into the propagation patterns, pinpointing central figures and revealing geographical
shifts in knowledge transmission over time. Sumaira Saeed et al. also apply Social Network Analysis
(SNA) to Hadith isnad, but their work uniquely focuses on the complete text of Sahih Muslim, a larger
dataset from previous studies [Saeed et al.[|(2022). A key contribution of their work is a proposed
custom ranking formula that combines the number of narrations with the number of connections a
narrator possess, which they validate with a Spearman correlation test. This research also resulted in
a developed tool for Hadith network analysis, providing researchers with a practical system. While
the study effectively uses centrality measures to identify influential narrators and provides a valuable
comparison with the Sahih Bukhari network, it shares a common limitation with similar works: it
does not incorporate the deep domain knowledge of Usul al-Hadith and is still reliant on manual data
curation due to the lack of clean, digital Rijali sources.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68

69
70
71
72
73
74

75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Another approach has been the application of knowledge graphs. Building on the concept of
knowledge representation, Kamran et al. present SemanticHadith, an ontology-driven knowledge
graph designed to formally model and publish the Hadith corpus. This work is a pioneering effort in
creating a unified, machine-readable representation of Hadith by defining a comprehensive ontology
of core structural concepts, including narrators and their chains, and publishing six major Hadith
collections in a standardized RDF format|Kamran et al.|(2023)). This approach’s primary strength
lies in its ability to enable semantic search capabilities and facilitate knowledge discovery through
structured data. However, the methodology heavily relies on a manually curated, rule-based ontology
design and does not integrate more advanced machine learning techniques for entity extraction or
validation on a large scale. This work serves as a foundational step toward a more integrated digital
representation of Islamic knowledge, but its reliance on formal modeling limits its immediate utility
for dealing with unstructured hadith corpus data. In graph-based representations, the main method
involves encoding narrator names as nodes and their relationships as edges and one approach relies
on rule-based processing. We review three prime examples.

[1] Relies on a rule-based pre-processing pipeline to identify and extract narrator entities and their
connections, using a small dataset of 18 Hadith texts |Al-Absi et al.|(2024). Instead of relying on
traditional graph-embedding techniques that tend to produce a cluttered "single cluster” for highly
interconnected networks, the authors propose a unique layout that places narrators on concentric
rings based on their chronological generation. This visual approach effectively translates the abstract,
textual Isnad into a clear, interactive visual tool that can help users, including non-specialists,
understand the flow of Hadith transmission across time. While this work demonstrates the practical
application of graph models for Hadith classification, it is limited by its small-scale dataset and its
dependence on manual, rule-based extraction, which could struggle with the complexities of larger,
more varied datasets and various classical Arabic naming conventions.

[2] Another knowledge-graph-based approach with a focus on visualization is KASHAF, a knowledge-
graph-based search engine that applies novel techniques for Hadith analysis, directly addressing the
limitations of traditional, manual methods |Shafie| (2021)). This approach frames narrator names as
nodes and their relationships as edges, a representation that is then used for Hadith text classification.
The authors’ methodology relies on a rule-based pre-processing pipeline to identify and extract
narrator entities and their connections, using a small dataset of 18 Hadith texts. While this work
demonstrates the practical application of graph models for Hadith classification, it is limited by its
small-scale dataset and its dependence on manual, rule-based extraction, which could struggle with
the complexities of larger, more varied datasets and authentic, classical Arabic naming conventions.

[3] Takes a very domain-specific rule-based approach to mapping and visualizing hadith isnad chains,
which makes it well adapted to Arabic and hadith stylistics, while staying transparent |Azmi &
Bin Badia| (2010). However, its heavy reliance on hand-crafted rules, exact string matching, and
manually built name variant lists prevents it from serving as a robust algorithmic pipeline. Without
fuzzy matching, embeddings, or integration with Rijali sources, the trees it produces can show
structure but can’t offer deeper insights into narrator reliability.

2 Methodology

Our methodology combines large language model (LLM) capabilities with a custom API pipeline to
extract the chain of narrators (sanad) from Arabic hadith text. We designed a modular FastAPI-based
system that ingests hadith data in either plain text or CSV format, preprocesses it into manageable
chunks, and calls LLM endpoints to identify and return the ordered list of narrators. This system was
built for scalability and reproducibility, allowing us to run controlled experiments over large datasets
while managing inference costs. We conducted our experiments using the Kaggle Hadiths dataset
from the Islam & Al repository, which contains 34,441 ahadith from major Sunni collections. Each
record includes the Arabic text of the hadith (text_ar) and a corresponding chain_indx that maps to
narrator metadata in the companion Kaggle Rawis dataset. This structure enables objective evaluation:
extracted narrators from the LLM output are compared against ground-truth narrator names derived
from the dataset’s chain_indx field. Evaluation was carried out using a dedicated testing script that
samples hadiths from the 34,441-record dataset. To achieve at least a 95% confidence level with
a £5% margin of error, we computed the minimum required sample size using Cochran’s formula
with finite population correction, resulting in a threshold of approximately 380 hadiths per test
run. All experiments therefore used sample sizes of 380 or greater. The testing script queries our

91
92
93
94
95
96
97

98
99

101
102
103
104
105

107
108

109

110
111
112
113

114

115

116

117
118

119
120
121
122
123
124
125

126
127

128

129

130
131
132
133
134

135
136

137

138

API in batches and stores structured outputs for reproducibility. Performance was measured using
narrator-level accuracy (correctly extracted narrators divided by the total number of extractions),
unique narrator level accuracy (correctly printed unique names divided by the total number of unique
names), as well as full sanad accuracy (the proportion of hadiths where the complete narrator list was
extracted perfectly). We ran multiple experiments both with and without fixed random seeds: fixed
seeds ensured fair comparisons between models, while varied seeds allowed for robustness testing
over different data subsets.

In the following subsections, we first provide a detailed Dataset Description, outlining the structure,
sources, and suitability of the Kaggle Hadiths and Kaggle Rawis datasets for sanad extraction research.
We then present the System Architecture, describing the FastAPI-based backend, file ingestion
process, text preprocessing, and batch processing design. The LLM Pipeline subsection explains how
prompts are constructed, how the extraction process is run, and how post-processing standardizes
narrator names. Next, the Evaluation Procedure details our statistically grounded sampling approach,
experiment configurations, and API query orchestration. Matching & Verification describes our hybrid
approach for aligning extracted narrators with ground truth, combining deterministic token-subset
matching with LLM-assisted fuzzy matching, along with special handling for Prophet mentions.
Finally, the Metrics subsection defines the performance measures used and explains why these
collectively provide a comprehensive assessment of extraction quality.

2.1 Dataset Description

The dataset, kaggle_hadiths_clean.csv, was sourced from the following GitHub repository:
https://github.com/islamAndAi/QURAN-NLP/tree/master . It contains 34,441 ahadith from the
following books: Sahih Bukhari, Sahih Muslim, Sunan Abi Da’ud, Jami’ al-Tirmidhi, and Sunan
an-Nasa’i. Each record contains information according to the following columns:

* source: The name of the book the hadith is sourced from.
* chapter_n: The chapter number.
* chapter: The name of the chapter.

* chain_indx: Contains a list of indices that are used to identify the corresponding narrators
that make up the hadith’s sanad from the accompanying kaggle_rawis.csv file.
* text_ar: Contains the hadith in Arabic language.

* text_en: Contains the hadith in English language.

The accompanying database, kaggle_rawis.csv, was also sourced from the same GitHub repo. It
contains various information regarding 24,326 narrators. The most significant columns for the purpose
of this study are scholar_indx (used to match scholars to ahadith) and name. The vast quantity of
ahadith present in the kaggle_hadiths_clean.csv dataset, as well as the detailed, structured content
make it highly suitable for this study. The variety of narrators present in the kaggle_rawis.csv file
makes it a great resource for testing model performance since it exposes the LLM to a wide range of
names with different levels of complexity.

2.2 System Architecture
The backend API was built using the Python and FastAPI. The API exposes two endpoints:

* “/upload”: For extracting sanad from .txt files containing ahadith.

* “/upload-csv/”: For extracting sanad from .csv files containing ahadith.

The files are parsed to extract each hadith from the list of ahadith that they contain. The list of ahadith
are then provided to the extract_sanad_batch function in the openai_client.py file which makes an
OpenAl API call for each hadith to extract the sanad. The LLMs are supplied with a catered system
prompt and are instructed to produce structured output according to the following PyDantic model to
ensure consistent results:

* source: String

* chapter_no: String

139

140

141

142

143
144

145

146
147
148
149
150
151
152
153
154

156
157
158
159
160
161

162

163
164
165
166
167
168
169
170
171
172
173

174

175

176
177
178

179
180
181

182
183
184

185
186

* hadith_no: String

* sanad: List of strings containing the narrator’s names in Arabic.

* sanad_sentence: The full segment of the hadith that contains the sanad.
* sanad_english: The list of narrator’s translated to English.

 sanad_sentence_english: The full segment of the hadith that contains the sanad, translated
to English.

2.3 LLM Based Data Extraction

The core of our pipeline is the extract_sanad_batch function, which structures prompts and queries
the LLM to extract sanad information from hadith text. Each hadith entry is passed to the function
along with its metadata (source, chapter_no, hadith_no, and text_ar). These fields are formatted
into a structured prompt that instructs the model to return only the narrators along with the sanad
sentence. When English output is enabled, the model also provides English translations of both the
narrators and the sanad sentence. The prompt design embeds explicit guidance on distinguishing
narrators in the transmission chain from other individuals mentioned in the hadith text. For example,
the system prompt includes illustrative cases where figures like Aisha are narrators (and should be
included) versus cases where she is quoted as part of the hadith content (and should be excluded).
This disambiguation is essential for accurate sanad extraction. Additional instructions also encourage
the model to resolve relative references (e.g., “his father”) into explicit names where possible. The
function uses OpenAl’s structured output parsing (client.responses.parse) to enforce JSON output
matching predefined Pydantic schemas, ensuring consistent results. To increase robustness, calls are
wrapped in an exponential backoff retry mechanism, which automatically retries failed API calls
up to three times. This design allows the pipeline to process batches of hadiths efficiently while
maintaining accuracy and minimizing error propagation.

2.4 Evaluation Procedure

We evaluated sanad extraction accuracy using a dedicated framework (test.py) applied to samples
from the Kaggle Hadiths dataset. Each experiment used at least 380 hadiths—often more for robust-
ness—selected either with fixed seeds for reproducibility or randomly for generalization. Sampled
texts were processed through the API in batches with retry and exponential backoff handling. Ex-
tracted sanad lists were then aligned with ground-truth narrators (from chain_indx and Kaggle Rawis
metadata), and both results and mappings were stored as JSON snapshots for reproducibility. Verifica-
tion employed a two-stage alignment: deterministic token-subset matching for minor text variations,
followed by an LLM-based fallback producing categorical judgments (YES, NO, or PROPHET). The
“Prophet” label excluded references to the Prophet Muhammad (PBUH) from metrics. This hybrid
verification captured both exact and fuzzy matches, including aliases, transliteration variants, and
bin/ibn differences.

2.5 Maetrics

We evaluated model performance using three complementary metrics tailored to sanad extraction.

* Narrator-level accuracy measures the proportion of correctly extracted narrators out of all
narrators output by the model. This reflects how often each extracted name corresponds to a
valid ground-truth narrator.

* Unique narrator-level accuracy considers only distinct names, measuring the proportion
of correctly extracted unique narrator names relative to the total number of unique names
produced. This prevents repeated correct extractions from inflating the results.

* Full sanad accuracy captures the stricter case where the entire chain of narrators is extracted
exactly as it appears in the ground-truth dataset. This metric assesses whether the model can
reconstruct the sanad faithfully and in full, beyond partial correctness.

Together, these three measures provide a balanced view of performance, capturing both per-name
precision and the global fidelity of complete chain reconstruction.

187

188
189
190

191
192

193
194
195

197

198
199

200
201

202
203

References

Al-Absi, H. R., Kurup, D. G., Daoud, A., Schneider, J., Zaghouani, W., Al Marri, S. M. H., and
Ait Mou, Y. Al-ahadeeth: A visualization tool of the hadiths’ chain of narrators. In International
Conference on Human-Computer Interaction, pp. 3—8. Springer, 2024.

Alam, T. and Schneider, J. Social network analysis of hadith narrators from sahih bukhari. In 2020
7th International Conference on Behavioural and Social Computing (BESC), pp. 1-5. IEEE, 2020.

Azmi, A. and Bin Badia, N. itree: Automating the construction of the narration tree of hadiths
(prophetic traditions). In 2010 International Conference on Natural Language Processing and
Knowledge Engineering, pp. 1-6. IEEE, 2010. doi: 10.1109/NLPKE.2010.5587810.

Kamran, A. B., Abro, B., and Basharat, A. Semantichadith: An ontology-driven knowledge graph for
the hadith corpus. Journal of Web Semantics, 78:100797, 2023.

Saeed, S., Yousuf, S., Khan, F., and Rajput, Q. Social network analysis of hadith narrators. Journal
of King Saud University-Computer and Information Sciences, 34(6):3766-3774, 2022.

Saloot, M. A., Idris, N., Mahmud, R., Ja’afar, S., Thorleuchter, D., and Gani, A. Hadith data mining
and classification: a comparative analysis. Artificial Intelligence Review, 46:113-128, 2016.

Shafie, O. A. Kashaf: A knowledge-graphs approach search-engine for hadith analysis & flow-
visualization. Master’s thesis, Hamad Bin Khalifa University (Qatar), 2021.

20« A Technical Appendices and Supplementary Material

Table 1: Summary of sanad extraction experiments across different LLM configurations.

Exp.# LLM Model Narrator Acc. Seed Sample Size

1 GPT-40-mini 0.82 100 380
2 GPT-40 0.86 100 360
3 GPT-40-mini 0.86 250 480
4 GPT-40 0.87 250 430
5 GPT-40-mini 0.83 23 380
6 GPT-40-mini 0.84 36 390
7 GPT-40-mini 0.84 56 410
8 GPT-40-mini 0.84 97 440
9 GPT-40-mini 0.84 74 430
10 GPT-40-mini 0.84 40 430
11 GPT-40-mini 0.84 44 430
12 GPT-40 0.86 96 460
13 GPT-40 0.86 84 430
14 GPT-40-mini 0.85 65 400
15 GPT-40-mini 0.85 7 500
16 GPT-40-mini 0.86 97 400
17 GPT-40-mini 0.85 62 460
18 GPT-40-mini 0.83 13 450
19 GPT-40-mini 0.84 39 491
20 GPT-40-mini 0.84 99 500
21 GPT-40-mini 0.85 92 470
22 GPT-40-mini 0.86 86 500
23 GPT-40-mini 0.84 12 470
24 GPT-40-mini 0.84 39 481
25 GPT-40-mini 0.85 0 470

Send Hadith with Prompt,

Send Hadith, FastAPI Backend Receive JSON with Extractions
Receive JSON with Extractions

— <«
Test Script
Query Dataset for True OpenAl API
Narrator Names
Dataset
\————— Verify Sanad Extractions using LLM ol

Figure 1: Architecture diagram showcasing the flow of data between the different components of the
project.

	Related Work
	Methodology
	Dataset Description
	System Architecture
	LLM Based Data Extraction
	Evaluation Procedure
	Metrics

	Technical Appendices and Supplementary Material

