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Abstract

The rapid growth of large language models (LLMs) in high-performance computing
(HPC) data centers necessitates a shift from purely energy-efficient to carbon-aware
control for liquid cooling systems. We introduce a novel multi-agent framework
that leverages LLM-powered agents to achieve autonomous, carbon-aware thermal
management. Our architecture features eight specialized agents coordinated via a
hybrid Redis and Model Control Protocol (MCP) backbone for real-time operation.
We validate our approach on a high-fidelity digital twin of the Frontier supercom-
puter’s cooling system, focusing on a core contribution: a hybrid Reinforcement
Learning (RL) and LLM control strategy. Experimental results show that our ‘RL
→ LLM‘ hybrid model significantly outperforms traditional baselines and other
LLM configurations, achieving the lowest average blade temperatures (28.29°C)
and the lowest carbon emissions (11.1 kg/hr), while maintaining operational sta-
bility. This work presents a practical blueprint for deploying agentic AI to create
sustainable, efficient, and explainable control systems for complex cyber-physical
infrastructure.

1 Introduction

The growth of AI workloads and large language models (LLMs) in data centers creates significant
thermal and energy challenges, necessitating liquid cooling as power densities rise [1, 2, 3, 4].
Optimizing for energy efficiency alone, however, overlooks the substantial carbon footprint. A
critical shift towards carbon-aware, multi-objective optimization is required, balancing energy,
thermal performance, and sustainability by scheduling workloads to align with renewable energy and
addressing the total life-cycle carbon impact [5, 6, 7, 8, 9, 10]. To address this, we propose a control
framework using agentic AI systems for proactive management [11, 12, 13, 14]. By integrating
multi-agent reinforcement learning (RL) with LLMs, our approach overcomes the poor adaptability
and lack of explainability in current systems for carbon reduction [15, 16]. Our agentic architecture
uses specialized LLM-agents to manage liquid cooling systems, facilitating scalable, carbon-aware
optimization and explainable decision-making through natural language, outperforming conventional
controllers in reducing the environmental impact of HPC data centers [17, 18, 19].

2 LLM Driven Holistic Control Architecture

We adopt a multi-agent approach that leverages Large Language Model (LLM)-powered agents
to introduce autonomy into our liquid cooling system. The architecture integrates a Redis-based
message bus for sub-millisecond inter-agent communication with the Model Control Protocol (MCP)
for structured mathematical operations. This hybrid design enables real-time thermal management,
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Figure 1: AI Agent implementation of the Liquid Cooling Digital Twin. Video of the Agentic AI
prototype implementation: https://tinyurl.com/llm-agentic-demo

ensuring system safety and stability while improving operational energy efficiency.
The framework consists of eight specialized agents, including a Control Agent that employs LLM
reasoning to generate thermal control actions and a Maintenance Agent that monitors equipment.
While the system provides a comprehensive blueprint, our experiments validate the core logic of the
Control Agent. By testing controller configurations on a high-fidelity digital twin of the Frontier
supercomputer, we demonstrate the effectiveness of our primary contribution: the hybrid RL-LLM
strategy serving as the agent’s intelligent core.

2.1 Multi-Agent Design

The framework consists of eight specialized agents 1 grouped into categories. Control agents manage
thermal stability and reliability: the SensorAgent processes raw data, the ControlAgent uses LLM
reasoning for thermal actions, and the MaintenanceAgent predicts failures. Coordination agents
ensure consistent operation: the OrchestrationAgent resolves conflicts, the AgentMonitor tracks
performance, and the ConfigurationAgent manages system parameters. Finally, support agents
enhance usability: the VisualizationAgent provides analytics and the MathToolboxAgent executes
validated computations.

2.2 Hybrid Communication Backbone

The communication architecture combines Redis and MCP, each optimized for distinct roles. Redis
facilitates agent-to-agent messaging with sub-millisecond latency, publish–subscribe design, and
throughput exceeding 100,000 messages per second. This layer is critical for high-frequency monitor-
ing, emergency stop propagation, and thermal alerts. MCP, by contrast, standardizes tool calls for
LLM integration, providing type-safe mathematical computations and schema validation. The hybrid
design enables Redis to handle fast coordination while MCP supports structured reasoning tasks such
as thermal modeling and predictive maintenance.

2.3 System Description

We demonstrate our method on the open-source Modelica model of the Frontier Supercomputer [20],
a framework simulating the thermo-fluidic dynamics of a liquid-cooled exascale data center. The
system, illustrated in Figure 2 presents several coupled control problems which we target with our
approach.

The first problem domain is the CDU-Rack Loop, which consists of 25 pairs of server cabinets and
Cooling Distribution Units (CDUs). The control objective here is twofold: 1) to manage the coolant
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Figure 2: Frontier’s Cooling System [20]

flow rate and temperature within each CDU, and 2) to actuate manifold valves that distribute coolant
to server racks according to their thermal load. Heat from the CDUs is transferred to a central system
and ultimately rejected by the Cooling Tower (CT) Loop. The second control problem is to optimize
the CT’s leaving water temperature setpoint. This setpoint critically determines the data center’s total
cooling capacity and the CT fan’s energy consumption, which is influenced by the ambient wet-bulb
temperature and the incoming thermal load. To apply LLM inspired control, we wrap the entire
simulation model in a Gymnasium environment, enabling control over both the CDU-cabinet and
cooling tower subsystems.

3 LLM Integration and Specialization

3.1 Control Agent: Intelligent Thermal Management

At the core of the system lies the ControlAgent, which employs LLM reasoning to generate safe and
efficient thermal actions. Sensor inputs are translated into structured outputs specifying cabinet-level
setpoints, valve positions, and cooling tower actuation. Safety-critical rules are enforced: when blade
temperatures fall below 30◦C, the system biases toward positive temperature adjustments and reduced
fan operation; when temperatures exceed this threshold, more aggressive cooling responses are
triggered. Near-target states are corrected through fine-grained adjustments on the order of ±0.1◦C.

To improve robustness, the agent supports multiple prompting strategies, including chain-of-thought
reasoning for stepwise thermal analysis, few-shot learning for optimal policy recall, extended reason-
ing for complex dynamics, and agent-specific custom prompts.

3.2 Predictive Maintenance

The SystemHealthAgent quantifies equipment reliability by analyzing sensor-derived thermal pat-
terns. A composite health score is defined as: Health Score = 1.0− αPfailure − β Tmaint

Tmax
− γStemp

where Pfailure denotes the predicted failure probability, Tmaint the elapsed time since last maintenance,
Tmax the maximum recommended maintenance interval, and Stemp a stability measure of thermal
fluctuations. This formulation enables proactive scheduling of maintenance tasks while minimizing
downtime.

3.3 Real-Time Operation and Live Configuration

The system supports zero-downtime live configuration updates, which are safety-validated, atomically
distributed via Redis, and monitored with safety rollbacks. Configurable elements include models,
inference parameters, update intervals, reasoning strategies, and routing. Integrated monitoring tracks
key performance metrics: thermal stability (±2◦C), emergency response latency (< 5 ms), uptime
(> 99%), energy efficiency gains (10%), and reduced maintenance downtime (20%).
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4 Results

4.1 Experiment 1: LLM explanation. guidance and validity

Observation and action tuples from the trained RL policy for the CDU-Cabinet Blade Group are
formatted into a structured prompt. For cabinet 1, the observation tuple includes temperatures (T1j)
and heat generation rates (P1j) for each of the three blade groups (j = 1, 2, 3). The corresponding
action tuple contains the valve actuations (v1,j), coolant temperature setpoint (T1,cdu), and pump
differential pressure (Q1,cdu). Overall, we notice that the LLM can provide a limited but relevant
explanation and guidance for most of the actions, and the system expert generally agrees with the
intuitions.

LLM Explainability and Guidance Example
Obs: (307.2, 306.74, 309.77, 21567.55, 44779.22, 33672.41), Act: (0.19, 0.61, 0.2, 22.39, 25.52)
Explanation: Branch 2 remains relatively cool, allowing the controller to redistribute cooling capacity
toward more loaded or hotter branches. A setpoint of 22.39 and a controlled flow of 25.52 signify this
adaptive behavior. The decision not only maximizes performance-per-watt but also aligns with global
decarbonization efforts. It is recommended to reduce branch 1 coolant allocation to 0.1 and to allocate
the rest to branch 3 since it has a higher workload
Validity: 1) Human Expert Evaluation: "This is one of the better examples where the agent is explaining
the actions for all three blade groups. It however, provides a good way of reifining the RL valve actions"

4.2 Experiment 2: Hybrid RL-LLM Ablation Study

As detailed in Table 1, the RL → LLM strategy demonstrates the best performance, achieving the
best operational score in the 20–40oC range with lower blade temperature and minimal power draw.
While other models like LLM (Qwen FT + Few-shot) also performed strongly, the LLM Base
(LLaMA) + Few-shot was notably ineffective, failing to operate within the target temperature range.

Table 1: Performance comparison of different LLM and LLM-RL hybrid control strategies. Lower
blade temperature and cooling tower power, along with a higher percentage of temperature steps
between 20–40oC, indicate better performance. Experiment uses N=1 tower, m=2 cells per tower,
C=5 cabinets with B=3 blade groups per cabinet

Method Avg. Blade Temp
(C)

Cooling Tower Power
(W)

% Steps
20–40oC

CO2(kg/hr)

ASHRAE (Baseline) 32.26 26731.31 76.92 12.7
RL 30.65 24131.52 93.28 11.46
LLM Base (LLaMA) + Few-shot 31.42 26500.00 91.25 12.59
LLM Base (Qwen) + Few-shot 30.99 25100.00 93.75 11.92
LLM (LLaMA Fine Tuned by RL traces) 30.20 24001.14 95.33 11.4
LLM (Qwen Fine Tuned by RL traces) 30.01 23378.22 95.97 11.1
LLM (LLaMA FT + Few-shot) 29.72 24689.92 95.12 11.73
LLM (Qwen FT + Few-shot) 29.37 23750.74 96.08 11.28
LLM (Qwen FT) → RL Hybrid 30.31 26759.77 93.97 12.71
RL → LLM (Qwen FT) Hybrid 28.29 23371.92 96.80 11.1

5 Conclusion

This paper introduced a carbon-aware, multi-agent control system for liquid-cooled HPC data
centers. Our experiments, conducted on a high-fidelity digital twin of the Frontier exascale system,
demonstrated that our ‘RL → LLM‘ approach is highly effective. It successfully minimized carbon
footprint and blade temperatures while ensuring operational stability. The system’s architecture,
built on a fast and reliable communication backbone, proves the feasibility of using agentic AI
for complex, real-time decision-making and provides a valuable mechanism for generating human-
readable explanations for control actions. Our findings provide a robust blueprint for developing the
next generation of autonomous, sustainable, and transparent control systems for critical infrastructure.
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