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ABSTRACT
In this paper we present AMPNet, an acoustic abnormality detec-
tion model deployed at ACV Auctions to automatically identify
engine faults of vehicles listed on the ACV Auctions platform. We
investigate the problem of engine fault detection and discuss our
approach of deep-learning based audio classification on a large-
scale automobile dataset collected at ACV Auctions. Specifically, we
discuss our data collection pipeline and its challenges, dataset pre-
processing and training procedures, and deployment of our trained
models into a production setting. We perform empirical evaluations
of AMPNet and demonstrate that our framework is able to success-
fully capture various engine anomalies agnostic of vehicle type.
Finally we demonstrate the effectiveness and impact of AMPNet in
the real world, specifically showing a 20.85% reduction in vehicle
arbitrations on ACV Auctions’ live auction platform.

CCS CONCEPTS
• Hardware→ Failure prediction; • Computing methodologies
→ Neural networks.
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Figure 1: An example condition report of a vehicle sold on the
ACV Auctions platform. After a vehicle condition inspector
created the report, AMPNet detected internal engine noise
in the vehicle’s engine audio recording. The report was then
updated to reflect the serious engine issue to potential buyers.

1 INTRODUCTION
Automobile condition is a critical factor in vehicle purchasing de-
cisions. To assess used vehicle value, a buyer would benefit im-
mensely from a detailed and accurate assessment of the vehicle’s
condition. This is especially true when evaluating vehicles listed
on online auction platforms, where physical inspections are limited
or impractical.

ACV Auctions is an online wholesale automotive marketplace
that specializes in providing a detailed and transparent assessment
of vehicles listed on its auction platform. A detailed and honest
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portrayal of a vehicle’s condition is likely to give buyers greater
confidence in buying a vehicle sight unseen.

The typical vehicle’s lifespan on the ACV Auctions platform is
as follows: A user (seller) decides to list a vehicle on the auction
platform. A trained vehicle condition inspector (VCI) from ACV
Auctions comes to the vehicle to generate a condition report (CR),
which is a unique aggregation of data regarding the vehicle’s current
state. Later, when the vehicle’s auction launches, this condition
report is presented to buyers interested in bidding for the vehicle.

A vehicle’s condition report is a comprehensive review of all of
its characteristics, damages, and faults. It includes over 40 photos
of the exterior, interior, undercarriage, and engine bay, in addition
to metadata such as the VIN number, odometer reading, engine
type, fuel type, and other such information. A key component of the
condition report (which this paper is based upon) is the AudioMotor
Profile [4] (AMP™), which is ACV Auctions’ process of recording a
live audio and accelerometer vibration sample of a vehicle’s engine
in its operating condition. The AMP™ is a 30 second audio and
vibration recording using a microphone and accelerometer placed
on the engine. The VCI starts the recorder placed on the engine
block, then enters the vehicle, turns it on, lets it idle for a period
of time, then depresses the accelerator twice, and finally shuts the
vehicle off. The audio recording portrays the sound emitted from
the engine in each state of operation to allow buyers to assess the
condition of the vehicle’s engine.

When a VCI is creating a condition report, collecting metadata,
and recording the AMP™, they also record any damage or abnor-
malities, including cosmetic and mechanical issues. However, some
abnormalities that may be present in a vehicle are more easily dis-
cernible than others. For example, physical damage such as dents
and scratches on a vehicle’s exterior are relatively easy to identify
and disclose while mechanical faults within the engine can be more
difficult to detect. While these mechanical faults are typically not
visible, they are often audible. If an engine has an internal problem,
it will often emit an anomalous noise that can be discerned by
comparing it to a set of reference non-faulty engine recordings. For
example, a high pitch squealing noise can indicate excessive wear
on a serpentine belt or bearing.

After a VCI records an AMP™, they list any abnormalities that
they hear from the operation of the engine. However, many en-
gine faults are very subtle issues that are often only discernible by
automobile engine experts. As a result, some engine faults of an
anomalous vehicle may be missed by the VCI who created the con-
dition report and the faulty vehicle may be subsequently launched
on the auction platform with the appearance of it being a non-faulty,
problem-free vehicle.

In such cases, buyers may unknowingly buy these anomalous
vehicles. If the buyer finds an undisclosed issue after they receive the
vehicle, they are eligible to file for an arbitration, which is a method
of resolving a dispute over a misadvertised vehicle. ACV Auctions,
according to their arbitration policy, will cover the costs of certain
engine issues with vehicles that are not considered normal wear-
and-tear components. If a buyer proceeds with filing an arbitration
claim, they obtain a repair quote from an independent automotive
mechanic that discloses the exact fault with the vehicle and its

estimated repair cost. ACV Auctions will then cover this repair cost
on behalf of the buyer of the misadvertised vehicle.

However, this arbitration process is avoidable for both parties.
If the vehicle was listed with disclosures of all of its anomalies
and faults, the buyer would not file an arbitration as all issues are
disclosed to the buyer at the time of the auction. Having a system
that can more accurately detect engine faults and disclose them to
buyers before vehicles are sold can directly reduce the amount of
arbitration claims that are processed.

In this paper, we seek to answer the following question: Can we
effectively diagnose faulty automobile engines in an automated fash-
ion at scale? Harnessing this ability would allow for the creation of
more accurate condition reports, removing the need for humans to
label engine faults, and reducing the amount of engine arbitration
claims. It may also be applicable for a variety of other use cases out-
side of the automotive auction domain such as automated machine
condition monitoring and engine repair estimates.

Research in automatic engine fault detection has been exten-
sively explored along multiple directions. Early works such as
[1, 2, 20] use spectral analyses, sound pressure levels, and frequency
intensities to determine engine noises through audio recordings.
Other approaches include using SVM classifiers [17, 31] and deci-
sion trees [28]. Recent works use deep neural networks for classi-
fying engine faults [19, 25, 26].

As an alternative to using audio, some works investigate engine
fault detection through vibration signals. In [28], engine faults
are classified using accelerometer-recorded vibration signals. [13]
uses vibration signals to specifically detect engine misfires. [31]
extends these studies and performs fusion of signals from multiple
vibration sensors mounted on different portions of an engine to
improve detection performance. [3, 7, 12] compare the acoustic and
vibration modalities and quantify their performance on detecting
specific engine faults.

However, many of these works focus on detecting specific engine
faults on a test bed of a single engine in a controlled testing envi-
ronment [17, 19, 28]. Others perform fault detection on small-scale
datasets of a specific type, for example only using diesel engines
[3, 26, 30]. While these methods prove that certain engine faults
can be detected through audio and vibration signals, they do not
scale to a wide range of vehicles and engine types.

In this paper, we describe a production-deployed system that au-
tomatically detects and flags generic engine faults at scale. We intro-
duce Audio Motor Profile Network (AMPNet), a novel multi-label
classification network that predicts engine faults from the fusion
of features extracted from engine audio, accelerometer-recorded
vibration, and tabular metadata of vehicles. We discuss our pipeline
for using AMPNet for detecting undisclosed engine faults after the
creation of automobile condition reports on the ACV Auctions plat-
form. Our experimental results show that we are able to accurately
detect multiple engine faults across a large-scale dataset comprised
of vehicles sold in the United States. We further discuss our process
of deploying AMPNet into a production setting to automatically
flag vehicles with engine faults and the subsequent reduction of
engine-related arbitration claims across the auction platform. Our
contributions in this paper are summarized are as follows:
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• To the best of our knowledge, this is the first large-scale study
investigating the detection of engine faults across various
models of vehicles in the United States.

• We discuss our pipeline for collecting multi-modal data for
engine fault detection across a large collection of vehicle and
engine types.

• We discuss the challenges of acoustic engine fault detection
in terms of data collection and applying deep learningmodels
to the task. Specifically, we discuss the difficulty in sourcing
quality labels for supervised learning and the unconstrained
nature of the recorded data that we collect.

• We introduce our architecture design, AMPNet, which per-
forms engine fault detection through the use of multi-modal
feature fusion of audio, accelerometer-recorded vibration,
and tabular metadata of individual vehicles.

• We conduct extensive experiments with AMPNet on ACV
Auction’s engine fault dataset to show the efficacy of our
model. Further, we investigate AMPNet’s effect on engine-
related arbitration claims after deploying it on the ACV Auc-
tions live auction platform.

2 RELATEDWORKS
2.1 Audio Classification / Audio Tagging
Audio classification is a fundamental task in acoustic signal recog-
nition with the goal of predicting the category of a certain audio
sample. Audio tagging is a similar task of predicting the presence or
absence of certain audio tags or events. Audio classification/tagging
applications range from large-scale audio events [10] to classify-
ing acoustic scenes [18], urban sounds [5, 22], and others. Early
works in audio classification used hand-crafted features such as
Mel-frequency cepstrum coefficients (MFCC) with Hidden Markov
models. [8]. With the advent of convolutional neural networks
(CNNs), researchers have used CNNs to learn features from Mel-
spectrograms and other hand-crafted representations to perform
classification [6, 21]. Further, researchers have investigated classifi-
cation using features learned from the raw audio waveform using
1D CNNs [16, 23]. Others [9, 15, 32] have found that the fusion of
features learned from multiple representations of audio (namely
the raw waveform and Mel-spectrogram) improve audio classifica-
tion performance across a variety of tasks. Recently, researchers
have used the Transformer [29] architecture to create purely self-
attention based classification networks that achieve state-of-the-art
performance [11]. As discussed further in Section 4.1, we frame the
acoustic engine fault detection task as a multi-label audio classi-
fication task. We draw upon these works to construct our audio
classification networks.

3 DATA COLLECTION
In this section, we discuss our methodology for collecting a large
scale dataset for engine fault detection. To train a model to detect
engine faults across a wide variety of vehicles, we needed a training
dataset that covered many makes and models of vehicles with a va-
riety of engine faults. Our data was collected with the collaboration
of over 1,000 VCIs spread across the United States. Before listing a
vehicle on the ACV Auctions platform, a VCI creates a condition re-
port of the vehicle. We subsequently collect these condition reports

Figure 2: AMP™ device used to record audio for the creation
of a vehicle’s condition report and subsequently used for the
creation of our engine fault dataset.

across all vehicles to use as training and evaluation data. From each
instance of a vehicle’s condition report, we utilize three key pieces
of information for detecting engine faults:

3.0.1 Engine audio. All engine audio recordings are created using
ACV Auctions AMP™ device, as shown in Figure 2. The device is
an Apple iPhone X paired with a Zoom IQ6 stereo microphone.
The iPhone and microphone are mounted inside a plastic enclo-
sure with a rubber base to dampen any unwanted rattling of the
device and prevent the device from sliding or falling during the
recording process. The audio is recorded in two channels using
a sampling rate of 44.1𝑘𝐻𝑧. A properly recorded audio recording
has a duration between 25-35 seconds and starts with the vehicle
turned off, followed by the engine start, a period of time where the
vehicle has a sustained idle, then two depressions of the accelerator
where the engine is allowed to fully reach idle between subsequent
revs. Finally, the vehicle is turned off to complete the recording.
This sequence provides insight into every operating point of an
engine and encompasses certain faults that may be only present
in particular conditions (e.g. during startup or in a certain RPM
range).

3.0.2 Accelerometer vibration. Alongside recording the engine au-
dio, we record the accelerometer vibration signal as well to provide
another modality that can be used to predict engine faults. It is
well known in the automotive field that various engine faults can
present themselves as abnormal vibrations generated by an engine
[3, 7, 12, 13, 28, 31]. A second modality such as vibration can also be
used in the case of a failed or poor recording of audio, and vice-versa.
The vibration signal is recorded using the built-in accelerometer on
the iPhone X and is recorded using the accelerometer’s maximum
sampling rate of 100𝐻𝑧. The vibration captures a three-channel
signal that represents the three spatial dimensions. The X axis is
represented across the left and right side of the phone, the Y axis is
across the top and bottom of the phone, and the Z axis is through
the screen and back of the phone. To keep consistency between the

 

2873



KDD ’22, August 14–18, 2022, Washington, DC, USA Dennis Fedorishin et al.

accelerometer and audio recordings, we record the audio and vibra-
tion simultaneously so that they are temporally consistent. This
temporal consistency may be useful in extracting complementary
features from both modalities or uncovering certain correlations of
each modality at different operating points of the engine to improve
fault detection performance.

3.0.3 Tabular metadata. Every inspected vehicle has an associated
set of tabular metadata that describes the vehicle and its character-
istics, for example, the year, make, model, and engine type. It has
been observed that certain vehicles or engine types have "common
problems". An automotive expert can often estimate which faults
are most likely to be present based on just basic vehicle informa-
tion. Tabular metadata in conjunction with audio and vibration
can help uncover common faults among certain makes and models
of vehicles. In addition, some faults may present themselves as
similar signals in the audio and vibration modality, however they
may actually be different faults based upon the type of engine that
produces the noise. We utilize a combination of numerical and cat-
egorical metadata that ranges from generic vehicle information to
specific engine-related properties and diagnostics. General vehicle
information contains the vehicle model, year of production (age
of vehicle), odometer, drivetrain (front, rear, or all-wheel-drive),
and transmission type (manual or automatic transmission). Engine-
specific metadata include engine displacement, properties, fuel type,
and a list of active on-board diagnostic (OBD) codes.

Active OBD codes on a vehicle indicate that the vehicle’s own
diagnostic systems found a vehicle fault, some of which relate to
mechanical engine faults. While some engine faults can be directly
determined from these codes, many faults are not detectable by on-
board sensors and are instead detectable by listening to abnormal
noises. Fusing this information can improve detection performance
of faults that are both detectable and undetectable by the vehicle’s
own diagnostic system. Further, fusing features from audio, vibra-
tion, and metadata can uncover interdependencies between active
OBD codes and captured anomalous signals.

The final metadata component we use is the number of incom-
plete OBD monitors present on the vehicle. In an attempt to obfus-
cate certain engine faults, some vehicle sellers will erase diagnostic
codes and monitors from a vehicle. Although the actual fault is not
fixed, the vehicle’s diagnostic system will not detect these faults
for a period of time. After a sustained driving period, these fault
codes will reappear and monitors will show a "complete" status. If
a large portion of OBD monitors in a vehicle are incomplete, that
vehicle is often biased towards having some active fault.

In Section 5, we experimentally show that the fusion of features
from these three modalities improves the overall performance of
AMPNet across all engine faults.

3.1 Engine Fault Classes
To perform large-scale engine fault detection, we curated a set
of engine faults that are present across a large amount of vehicle
models and engine types. Using hyper-granular engine faults limit
their applicability across all vehicles. Diesel engines can exhibit
specific faults (glow plug failure, for example) that do not occur
with gasoline engines. Our goal is to create a single model that is
able to perform general engine fault detection on any vehicle. As

a result, we selected five generic engine faults that are found on
vehicles agnostic of engine type and vehicle manufacturer:

• Internal engine noise (IEN): Noises that originate from the
internals of a vehicle’s engine. The two main categories of
internal engine noise are ticking and knocking, which are
two similar sounds that present themselves as consistent
tapping. Ticks are often quieter, soft taps that originate from
the valvetrain of an engine. Ticks are often considered less
severe while knocks are often deeper, louder sounds that
originate from the lower internals of the engine and are
almost always an indication of severe engine damage.

• Rough running engine (RR): Instability in the operation of
the engine. This fault encapsulates any abnormal vibrations
that are emitted from the engine, often from unstable idles.
A rough running engine may have an unstable idle when
the engine is unable to maintain a stable rotation rate. In
addition, vehicles where accelerations are delayed or slowed
are also considered as having a rough running engine.

• Timing chain issue (TC): A vehicle that has an issue related to
its timing chain, often presenting itself as a stretched chain
that rattles audibly during a vehicle start. It is important
to note that while most vehicles have timing chains, some
vehicles instead have timing belts, which do not exhibit these
audible faults. However we still deem this as an important
engine fault to predict as it is regarded as a serious fault that
often precedes catastrophic engine damage. In addition, it is
a commonly missed fault by inspectors.

• Engine accessory issue (ACC): These faults are related to acces-
sory components on the engine. For example, power steering
pump whines, serpentine belt squeals, bearing damage, tur-
bocharger issues, and any other anomalous components that
are not internal to the engine block.

• Exhaust noise (EXH): Vehicles that have a cracked or dam-
aged exhaust system near the engine often exhibit a noise
similar to a tapping noise that engine ticks exhibit. While
exhaust noises are considered less severe faults, they are still
a commonly missed fault that requires attention.

When a VCI is recording the condition report of a vehicle, they
label the corresponding vehicle’s engine according to these five
engine faults after they record the audio and vibration samples. We
use the collected data with the five engine fault labels to construct
training, validation, and evaluation datasets for the task of engine
fault detection. In our experiments and discussion, we abbreviate
these engine faults as IEN, RR, TC, ACC, and EXH, respectively.

3.2 Data Challenges
There are several inherent challenges with the data we collect for
engine fault detection. Although VCIs are trained in the specific
data collection process, there are still several variations that may
occur between recorded samples. For example, when recording the
audio and vibration, a recording should contain all of the engine
states: the start, idle, two revs, and shut off. As VCIs manually
perform these steps, the recordings may have slight inconsistencies.
For example, a recording may only have one rev, or the engine
may not reach an idle level before a subsequent rev. There is also
no constraint to the duration and time of each engine state. For
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example, a vehicle’s first acceleration may be 10 seconds or 20
seconds into the recording.

There is also no guarantee of the orientation of the recording
device in relation to the vehicle. We capture tri-axial (x-y-z cardinal
directions) accelerometer data which has a correspondence to the
recording device’s orientation. However, given that the device may
be oriented in any position on any vehicle, we do not know a given
accelerometer recording’s orientation in relation to its vehicle.

The other challenge with the collected data is in regards to the
engine fault labels. As previously described, the arbitration process
occurs when a vehicle is mistakenly labeled as having a non-faulty
engine, even though it in fact does have a fault. For these arbitrated
vehicles, we are able to retroactively re-label the engine fault labels
of the vehicle according to the reason behind its arbitration.

However, only a subset of arbitration-eligible vehicles are in
fact arbitrated. This is due to the fact that arbitration claims are
voluntarily submitted by vehicle buyers. Often a buyer will not
notice a fault themselves, or instead fix the fault without submitting
an arbitration claim. Therefore, there is a subset of faulty vehicles
that were never arbitrated. In these vehicles, their engine fault
labels are considered incorrect. As a result, there is an inherent
label noise in our dataset, where a small set of clean vehicles will
have some unlabeled engine fault. Further, there is also a small
degree of inter-class label confusion, as some faults are difficult
to distinguish from one another on various vehicles. We show in
Section 5 that even with the presence of this inherent label noise,
we are still able to train an accurate classifier for engine faults.

4 APPROACH
4.1 Problem Formulation
We formulate the task of automobile fault detection as a multi-label
classification task. Given a representation of a vehicle 𝑥 , we make a
prediction 𝑦 ∈ {0, 1}𝑐 where 𝑦 is a vector denoting probabilities of
𝑐 different engine faults. Let D𝑡 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 denote a training
dataset of size 𝑁 comprised of vehicle representations 𝑥𝑖 ...𝑁 with
their respective engine fault labels 𝑦𝑖 ...𝑁 . The task of multi-label
classification is to train a classifier 𝑓 (𝑥) = 𝑦 using D𝑡 and a multi-
label classification training loss L such that the aggregate loss∑𝑁
𝑖=1 L(𝑦𝑖 , 𝑦𝑖 ) is minimized, with the goal of 𝑓 (𝑥) becoming an

accurate classifier of engine faults.
We represent a vehicle as the composition of an audio and vi-

bration signal, and tabular metadata. Therefore for every vehicle
representation 𝑥𝑖 , we have 𝑥𝑖𝑎 ∈ R𝑛𝑎 , 𝑥𝑖𝑣 ∈ R𝑛𝑣 , and 𝑥𝑖𝑡 ∈ T𝑛𝑡 ,
where 𝑥𝑖𝑎 , 𝑥𝑖𝑣 , 𝑥𝑖𝑡 denote the audio signal, vibration signal, and tab-
ular metadata respectively. T denotes the set of tabular metadata
used, described in section 3.0.3. 𝑛𝑎 , 𝑛𝑣 , and 𝑛𝑡 denote the respec-
tive lengths of the audio and vibration signals, and the number of
tabular metadata entries. The classification of a vehicle 𝑥𝑖 ’s engine
faults can now be rewritten as 𝑓 (𝑥𝑖𝑎 , 𝑥𝑖𝑣 , 𝑥𝑖𝑡 ) = 𝑦𝑖 . We describe the
construction of the classifier in detail in Section 4.3.

4.2 Dataset
4.2.1 Dataset splits. To evaluate the performance of AMPNet, we
create three large-scale splits of our collected data into train, vali-
dation, and evaluation sets. Each of the three sets are split with the
intent of having a natural distribution of types of vehicles sold in

Table 1: Overview of engine fault class distribution across
the train, validation, and evaluation datasets.

Class Counts Train Validation Evaluation
IEN 16,295 3,357 3,142
RR 3,979 2,259 2,228
TC 1,902 1,123 1,046
ACC 16,668 15,291 14,602
EXH 18,126 8,117 7,611

No Faults (Negative) 11,426 37,206 31,711

the United States. To achieve a natural distribution, we split each
dataset according to time periods of vehicle sales. The validation
and evaluation datasets contain all vehicles that were sold on the
platform in two separate time periods. The train set contains a sub-
set of all vehicles sold, excluding the time periods in the validation
and evaluation sets. Table 1 shows the number of positive cases of
the five engine fault classes in the three datasets, and in addition
the number of samples that are considered non-faulty. The train
dataset contains 45,275 vehicles across 846 different models. The
validation and evaluation set have 59,150 and 52,440 vehicles across
942 and 946 different models, respectively.

4.2.2 Dataset preprocessing. The collected audio recordings are
two-channel signals between 25-35 seconds in duration. The vi-
bration recordings are three-channel signals that have the same
duration as their audio counterpart. We crop all audio and vibration
signals to 30 seconds, with zero padding for samples shorter than
30 seconds. When processing the signals, we utilize audio in mono
format with a sample rate of 22,050𝐻𝑧 and 100𝐻𝑧 for vibration.
After the waveform signals are preprocessed, we generate spectro-
gram representations of each. For audio, we generate a log-scaled
Mel-spectrogram using an FFT window of 1024 units, a stride of
512 units, and 256 Mel-frequency bins. For vibration, we generate
a linearly-scaled spectrogram representation of each channel. The
spectrograms are finally passed through log compression. Note that
we do not use Mel-scale for vibration as it is designed to mimic
human’s non-linear perception of sound. At the very low captured
frequencies of the vibration signals, the Mel-scale carries no signifi-
cant meaning. We instead use a simple linear scale of 128 frequency
bins, an FFT window of 256 units and a stride of 32 units.

The set of metadata for a particular vehicle contains 5 numerical
entries and 6 categorical text entries, which are listed in Section
3.0.3. The 6 text entries are passed through a tokenization operation
for each value independently, which count the occurrence of all
possibilities of each entry. The tokenized vectors of each categorical
entry are concatenated together along with the numerical entries,
which is denoted by 𝑥𝑖𝑡 . The vector 𝑥𝑖𝑡 is then element-wise nor-
malized such that each value has a zero mean and unit standard
deviation, calculated from the statistics across the training dataset.

For the formulation of AMPNet in Section 4.3, we define the
normalized waveforms of audio and vibration of a vehicle 𝑥𝑖 as
𝑥𝑖𝑎 and 𝑥𝑖𝑣 respectively. We present the spectrogram constructions
of the audio and vibration as functions defined as 𝜙𝑎 (𝑥𝑖𝑎 ) and
𝜙𝑣 (𝑥𝑖𝑣 ) respectively. We also present the metadata tokenization
and normalization as a function defined as 𝜙𝑡 (𝑥𝑖𝑡 ).
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Figure 3: Overview of AMPNet. Features from the audio, vibration, and metadata modalities are extracted independently, then
concatenated and fused for final multi-label classification of the five engine faults.

4.3 Proposed Model
Our model performs multi-label engine fault classification through
the multi-modal feature fusion of features extracted from audio,
vibration, and metadata. Figure 3 depicts the design of our model.
We build uponworks in literature that have shown that the fusion of
multiple representations of the same signal improves classification
performance on a variety of tasks [9, 15, 32]. For both the audio and
vibration modalities, we extract features from their waveform and
spectrogram representations simultaneously. The waveform and
spectrogram features from each independent modality are initially
fused, then the multi-modal features of the audio, vibration, and
metadata are concatenated together for final classification.

The audio fusion CNN, 𝑓𝑎 , extracts features from the audio
waveform 𝑥𝑖𝑎 and Mel-spectrogram 𝜙𝑎 (𝑥𝑖𝑎 ) using two separate
CNN networks. The network for the spectrogram is comprised of
repeating blocks of a 2D convolution layer, batch normalization,
LeakyReLU non-linear activation, and a max pooling layer. This
block is repeated four times and the resulting feature response is
global-average-pooled into a feature vector of 1024 units, denoted
by 𝑙𝑎𝑠 . Similarly, the waveform network is comprised of the same
blocks, except that 1D convolutions are used. We also replace the
first layer of the waveform network with learnable parameterized
Sinc filters [24], which has been shown to be useful in multiple au-
dio understanding tasks [9, 24]. The resulting feature vector of 1024
units from the waveform network is denoted as 𝑙𝑎𝑤 . Once features
from the audio waveform and spectrogram representations are ex-
tracted, they are fused together using element-wise summation,
denoted by 𝑙𝑎 = (𝑙𝑎𝑤 + 𝑙𝑎𝑠 ).

The construction of the vibration fusion CNN, 𝑓𝑣 , follows a sim-
ilar construction as 𝑓𝑎 . Both the waveform and spectrogram net-
works are created with repeating blocks of 1D and 2D convolution

layers, batch normalization, LeakyReLU activation, and max pool-
ing, respectively. For the vibrationwaveform network, the first layer
is a 1D convolution that takes the 3-channel waveform. The result-
ing 1024-unit feature vectors from both networks are element-wise
summed, denoted by 𝑙𝑣 = (𝑙𝑣𝑤 + 𝑙𝑣𝑠 ), where 𝑙𝑣𝑤 is the extracted fea-
tures of the vibration waveform 𝑥𝑖𝑣 and 𝑙𝑣𝑠 is the extracted features
of the vibration spectrogram 𝜙𝑣 (𝑥𝑖𝑣 ).

The metadata dense network, 𝑓𝑡 , is a network constructed of
linear layers to extract intermediate features from the tokenized
metadata𝜙𝑡 (𝑥𝑖𝑡 ). Specifically, 𝑓𝑡 is constructed of 2 repeating blocks
of linear, LeakyReLU activation, batch normalization, and dropout
layers. We denote the resulting metadata feature vector as 𝑙𝑡 .

After obtaining 𝑙𝑎 , 𝑙𝑣 , and 𝑙𝑡 , we 𝐿2 normalize each vector, re-
sulting in 𝑙 ′𝑎 , 𝑙 ′𝑣 , and 𝑙 ′𝑡 . We perform 𝐿2 normalization to scale each
vector to the same range, which aids in the prevention of one modal-
ity’s features overpowering another during fusion. We denote the
𝐿2 normalization of a vector 𝑧 as 𝑧′ → 𝑧/∥𝑧∥2.

To perform the final classification, we construct a classification
dense network, 𝑓𝑐 , that takes the concatenated features from each
modality [𝑙 ′𝑎, 𝑙 ′𝑣, 𝑙 ′𝑡 ] and outputs logits of each engine fault class. 𝑓𝑐 is
constructed in a similar fashion as 𝑓𝑡 , where it contains 2 repeating
blocks of linear, LeakyReLU activation, batch normalization, and
dropout layers followed by a final linear layer that outputs class-
wise logits. Finally, the model outputs are passed through a sigmoid
activation to project the outputs of 𝑓𝑐 into class-wise probabilities.
We denote the sigmoid activation of a vector 𝑧 as 𝜎 (𝑧).

Combining each stage, we construct the final AMPNet model 𝑓 :

𝑓 (𝑥𝑖𝑎 , 𝑥𝑖𝑣 , 𝑥𝑖𝑡 ) = 𝜎 (𝑓𝑐 ( [𝑙 ′𝑎, 𝑙 ′𝑣, 𝑙 ′𝑡 ])) (1)
= 𝜎 (𝑓𝑐 [𝑓𝑎 (𝑥𝑖𝑎 , 𝜙𝑎 (𝑥𝑖𝑎 ))′, 𝑓𝑣 (𝑥𝑖𝑣 , 𝜙𝑣 (𝑥𝑖𝑣 ))′,

𝑓𝑡 (𝜙𝑡 (𝑥𝑖𝑡 ))′])
(2)
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Table 2: Summary of engine fault detection performance of each component of AMPNet.

Macro-Average Class-Wise ROC AUC Class-Wise AP
Methods mROC mAP IEN RR TC ACC EXH IEN RR TC ACC EXH
Audio Only 0.716 0.269 0.796 0.700 0.690 0.655 0.740 0.367 0.103 0.050 0.431 0.393
Vibration Only 0.627 0.188 0.600 0.734 0.603 0.591 0.608 0.101 0.254 0.031 0.349 0.204
Audio+Vibration 0.741 0.313 0.806 0.773 0.699 0.668 0.758 0.376 0.268 0.057 0.443 0.419
Metadata Only 0.806 0.336 0.749 0.864 0.948 0.703 0.767 0.148 0.288 0.490 0.429 0.326
Audio+Vibration+Metadata 0.844 0.454 0.853 0.877 0.951 0.729 0.812 0.410 0.383 0.515 0.489 0.476

We train the model using the training configuration described
in Section 4.4 paired with binary cross-entropy loss:

L(𝑦𝑖 , 𝑦𝑖 ) = −1
c

c∑︁
𝑖=1

𝑦𝑖 log 𝑦𝑖 + (1 − 𝑦𝑖 )log (1 − 𝑦𝑖 ) (3)

Further details about the exact construction of the feature ex-
tractors and classification network are described in Appendix A.3.

4.4 Training Configuration
All models are trained with the SGD optimizer with a learning rate
scheduled by the 1cycle policy described in [27]. The 1cycle policy
starts the optimizer’s learning rate at a small value, then anneals it
to a maximum learning rate 𝜆𝑚𝑎𝑥 , and subsequently anneals it back
to a small value over the entire training procedure. We also follow
a learning rate range test introduced by [27] to automatically find
the 𝜆𝑚𝑎𝑥 parameter for the learning rate scheduler. Appendix A.1.1
describes in detail the range test that is used. During training, all
models are trained for 20 epochs with a batch size of 16.

4.4.1 Data augmentations. During training, we perform data aug-
mentations on both the audio and vibration modalities. For both
audio and vibration, we perform random time shifting which ran-
domly shifts the audio and vibration representations forwards and
backwards along the time axis. The samples that are randomly
shifted are rolled over. For example, if the representation is shifted
𝑘 samples forward, the last 𝑘 samples are rolled to the beginning of
the representation. We perform time shifting on both the waveform
and spectrogram representations of both audio and vibration. We
also perform random shuffling of the channels of both the vibration
waveform and spectrograms. The waveforms and spectrograms
are shuffled independently, such that the x-y-z orientation of the
waveforms may not necessarily align with the spectrograms for a
given sample. Since we have no knowledge of the accelerometer
orientation in relation to a vehicle for a given sample, we perform
this augmentation to aid the model in becoming invariant to the
orientation. Similarly we perform random time shifting to improve
invariance towards the variations in the unconstrained nature of
audio recordings, explained in Section 3.2.

4.5 Evaluation Protocol
The main goal of deploying AMPNet is to reduce engine-related
arbitration claims across the auction platform. However, as ex-
plained in Section 3.2, only a subset of arbitration-eligible vehicles
are in fact arbitrated. As a result, using the number of arbitrations
caught in a historical month is a noisy and inaccurate measure of
engine fault detection models. Instead, we use receiver operating

characteristic area-under-curve (ROC AUC) and average precision
(AP) scores as proxies for arbitrations. The stronger classifier (high
ROC and AP scores) will inherently catch more arbitration-eligible
vehicles. An arbitrated vehicle is equivalent to a vehicle with a
positive engine fault class, which is inherently captured in the ROC
and AP metrics. ROC AUC is defined as the calculated area un-
der the ROC curve, which is a plotted curve of the true positive
rate against the false positive rate of a binary classifier. AP is de-
fined as the area under the precision-recall (PR) curve, which is
created by plotting the precision versus recall of a binary classi-
fier at various thresholds. In our experiments, we show ROC AUC
and AP scores for each engine fault class. We further calculate the
macro-averaged scores of ROC AUC and AP across each class. The
calculated macro-averaged ROC AUC score of 𝑐 classes, denoted
by𝑚𝑅𝑂𝐶 , is 1/𝑐∑𝑐

𝑖=1 𝑅𝑂𝐶𝐴𝑈𝐶 (𝑐𝑖 ). Similarly the macro-averaged
AP score, denoted by 𝑚𝐴𝑃 is 1/𝑐∑𝑐

𝑖=1 𝑃𝑅𝐴𝑈𝐶 (𝑐𝑖 ). We use these
metrics to quantify engine fault detection performance.

5 EXPERIMENTS
Table 2 shows the engine fault detection performance when incre-
mentally adding each component of our described model to inves-
tigate each component’s respective contribution to performance.
Each method depicted in Table 2 is constructed by removing the
other respective feature extractors, while using the same dense clas-
sification network 𝑓𝑐 . For example, the audio only model rewrites
(2) to be 𝑓 (𝑥𝑖𝑎 ) = 𝜎 (𝑓𝑐 ( [𝑙 ′𝑎])). Similarly the vibration only and
metadata only models are rewritten as 𝑓 (𝑥𝑖𝑣 ) = 𝜎 (𝑓𝑐 ( [𝑙 ′𝑣])) and
𝑓 (𝑥𝑖𝑡 ) = 𝜎 (𝑓𝑐 ( [𝑙 ′𝑡 ])) respectively. The audio and vibration fusion
model is rewritten as 𝑓 (𝑥𝑖𝑎 , 𝑥𝑖𝑣 ) = 𝜎 (𝑓𝑐 ( [𝑙 ′𝑎, 𝑙 ′𝑣])).

We see that the fusion of audio, vibration, and metadata features
achieved a performance of 0.844mROC and 0.454mAP, significantly
outperforming any individual components both in terms of mROC
andmAP. Looking at each individual component’s class-wise perfor-
mance, we notice that certain modalities become strong classifiers
on certain engine fault classes over others. For example, the audio
modality is significantly better than any other single modality for
capturing IEN, while the vibration modality outperforms audio in
capturing RR. We infer that the disparity in performance is because
IEN is often diagnosed through audible tapping, while RR often
presents itself as a shaking and vibrating engine that isn’t necessar-
ily audible. When fusing audio and vibration features, we see that
the IEN and RR performance outperforms any individual modality.
It is interesting to note that although one modality is able to capture
more significant features than the other for a specific engine fault,
fusing them together still provides complementary features that
improves detection performance.
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Figure 4: Overview of our deployed pipeline. Vehicle condition reports are passed into AMPNet for a multi-label classification
of possible engine faults. If certain classes of faults detected exceed a threshold 𝜏 , the condition report is flagged with the fault
and undergoes secondary human review before the vehicle auction is launched.

Table 3: Comparison of AMPNet audio classification network
against several baseline models.

Model Comparison mROC mAP # Params
CNN14 [15] 0.713 0.265 79.7M
AST [11] 0.662 0.227 87.4M
Wavegram-Logmel-CNN14 [15] 0.718 0.269 80.2M
Our Model (Audio Only) 0.716 0.269 2.4M

We also see that the audio and vibration modalities perform
poorly on the detection of TC, while the metadata information
significantly outperforms them. We infer that because timing chain
issues occur only at the vehicle start for a very short duration, they
are difficult to detect in the recorded signals. Vehicle engines with
timing chains also often have diagnostic sensors that can detect
these faults, which are captured in the metadata of the vehicle.
However, we see that the fusion of all three modalities still im-
proves TC performance over metadata alone, meaning there are
still complementary features being learned in the audio and vibra-
tion modalities. Further we see that adding metadata information
to audio and vibration improves detection performance across all
classes, from which we infer that the information captured in a
vehicle’s metadata helps uncover various biases towards each of
the engine faults that significantly improve performance. While
the training dataset discussed and used in this paper is a subset of
all available training data, training on larger collections of vehicles
further increase ROC and AP performance across all engine faults.

5.1 Audio Network Comparison
We also compare our waveform-spectrogram fusion network de-
sign against other well-known audio classification networks in
literature to show its relative effectiveness for our task of engine
fault detection. Specifically, we compare against the Audio Spec-
trogram Transformer [11] and CNN14 [15] that utilize the audio
spectrogram. Additionally, we compare against Wavegram-Logmel-
CNN14 [15], a network that similarly performs fusion of features
from the waveform and spectrogram representations of audio. The
networks in [11, 15] have previously shown state of the art perfor-
mance on large scale audio classification datasets such as Audioset

Table 4: Relative vehicle engine arbitration amounts on the
ACV Auctions platform of various time periods.

Time Period AMPNet
Status

Relative
Arbitration Amount

Jan. 2021 - April 2021 OFF 0.00%
May 2021 - June 2021 ON -20.85%
July 2021 - Sept. 2021 OFF -1.15%

[10]. As shown in Table 3, we see that our audio classification net-
work outperforms the various methods and is comparable to the
Wavegram-Logmel-CNN14 network [15]. In addition, our audio
classification network has significantly fewer parameters compared
to the models introduced in [11, 15]. Given the strong performance
of our audio classification network design, we follow the same net-
work strategy for extracting features from the vibration modality.
Further details about the training configurations of each of these
comparisons are found in Appendix A.4.

6 DEPLOYMENT CASE STUDY
We conduct an online A/B test of AMPNet by deploying it into ACV
Auctions’ live auction platform. As depicted in Figure 4, we pass
all recorded condition reports of vehicles through AMPNet, where
AMPNet predicts whether the vehicle’s engine has any engine
faults that have not been previously disclosed by the inspector who
created the condition report. For deployment, we tune class-wise
thresholds, denoted by 𝜏𝑖,...,𝑐 , such that if a predicted engine fault
exceeds its class threshold, the vehicle is subsequently flagged with
the corresponding engine fault. If a secondary human reviewer
agrees with AMPNet, these faults are presented on the condition
report when the vehicle is launched on the auction platform, shown
in Figure 1. We tune the thresholds to favor very precise predictions,
at the expense of recall, as wewant to avoid falsely labeling a vehicle
as having a faulty engine when in fact it is clean. We hypothesized
that having AMPNet actively detect engine faults across all vehicles
will reduce engine-related arbitration claims, as a smaller amount
of vehicle condition reports will have missed engine faults (i.e.
reducing the number of arbitration-eligible vehicles). Table 4 shows
the relative percent of arbitrations of given time periods where
AMPNet is active and inactive. Activating AMPNet for two months,
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May and June 2021, resulted in a 20.85% reduction in total engine
arbitrations compared to the previous time period. After these two
months, we disabled AMPNet and saw that engine arbitrations
increased to about the same level as the first time period. From
this test we infer that AMPNet is able to significantly reduce the
number of vehicle engine arbitrations across the auction platform.

7 CONCLUSIONS
We presented AMPNet, a large-scale engine fault detection pipeline
for the automatic detection of vehicle engine faults. We described
our process for collecting data from condition reports of vehicles
recorded across the United States that is used to train and evaluate
AMPNet. We presented the construction, training, and evaluation
process of our models and further experimentally demonstrated
that AMPNet is able to accurately capture engine faults agnostic of
the type of vehicle. We further investigated the uses and quantified
individual performance of multiple modalities of information for
engine fault detection, specifically audio and vibration signals, and
tabular metadata. We finally show the effects of deploying AMPNet
into the ACV Auctions live auction platform, showing a signifi-
cant 20.85% decline in engine-related arbitration claims across the
platform. With AMPNet, we have the ability to significantly assist
human inspectors to detect and list all engine faults of a vehicle and
simultaneously improve the quality and consistency of condition
reports of vehicles sold on the auction platform. With this work we
show that automatic engine diagnosis is possible at scale, and we
believe this work is a step in the direction of improving machine
condition monitoring techniques.
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A APPENDIX
A.1 Training Configuration
A.1.1 Learning rate range test. We construct a modified version
of the learning rate range test introduced in [27] where 𝑛 learning
rate values 𝜆1, 𝜆2, ..., 𝜆𝑛 are uniformly sampled and used within a
single forward pass of the model to find the learning rate which
produces the lowest batch-wise loss. The lowest batch-wise loss
learning rate, 𝜆𝑘 , divided by a factor of 10 is selected as the optimal
learning rate. We further run this test𝑚 times and take the median
𝜆𝑘 to account for any outliers in selected learning rates due to batch
stochasticity. The final 𝜆𝑚𝑎𝑥 is calculated from:

𝜆𝑚𝑎𝑥 =
𝑚𝑒𝑑𝑖𝑎𝑛(𝜆𝑘1 , 𝜆𝑘2 , ..., 𝜆𝑘𝑚 )

10
(4)

We found that using the 1cycle learning rate policy paired with
the above described learning rate range test performs well across
our engine fault detection models. For example, the 𝜆𝑚𝑎𝑥 calculated
for the model described in Figure 3 is 0.027.

After each epoch of training, we validate the current model
against the validation set. At the end of the training sequence, we
evaluate the trained model on the evaluation set at the checkpoint
where the model achieved the highest macro-averaged average
precision score on the validation set.

A.1.2 Data augmentations. As previously mentioned in Section
4.4.1, we perform time shifting of the waveform and spectrogram
representations of both the audio and vibration. For the audio and
vibration waveform, we randomly time shift up to 95% of the size
of each respective waveform. For the audio spectrogram, we select
the shifting factor randomly from a normal distribution with a
mean of 100 samples and standard devation of 400 samples. For
the vibration spectrogram, the shifting factor is also sampled from
a normal distribution with a mean of 10 samples and standard
deviation of 40 samples. Note that each of the shifting factors are
sampled independently such that the waveforms and spectrograms
are shifted by varying degrees, meaning that they are no longer
temporally aligned.

A.2 Dataset Preprocessing
Table 5 describes the parameters of the audio and vibration spectro-
gram construction, in addition to the final shapes of each modality
that AMPNet consumes. Both the audio and vibration waveforms
are normalized to the range (−1, 1). Similarly the audio and vibra-
tion spectrograms are normalized using Z-score normalization such
that each spectrogram has zero mean and unit standard deviation.

A.3 Proposed Model
Tables 6, 7, and 8 show the detailed construction of the spectrogram,
waveform, andmetadata feature extractor networks that are defined
in Section 4.3, respectively. For the Sinc layer in the audio waveform
network, we use the official implementation of SincNet 1 introduced
by [24]. Further, Table 9 shows the detailed construction of the final
classification network that takes the extracted multi-modal features
and performs multi-label classification of the five engine faults. The
complete AMPNet model, illustrated in Figure 3, has a total of 4.7
1https://github.com/mravanelli/SincNet

Table 5: Description of the inputs to AMPNet.

Modality FFT
Window Stride Frequency

Bins Shape

Audio Spectrogram 1024 512 256 [1, 256, 1292]
Vibration Spectrogram 256 32 128 [3, 128, 94]
Audio Waveform [1, 661500]
Vibration Waveform [3, 3000]
Tokenized Metadata [1, 82]

million parameters. The training time of AMPNet on an RTX6000
GPU for 20 epochs with a batch size of 16 takes 8 hours to complete.

A.4 Audio Network Comparison
A.4.1 CNN14 [15]. We use the official implementation of CNN14 2.
For the audio spectrogram input, we follow the same procedure in
Section 4.2.2. The network is trained using the training procedure
described in [15], specifically using the Adam [14] optimizer with
a learning rate of 0.001.

A.4.2 AST [11]. We use the official implementation of the Audio
Spectrogram Transformer (AST) 3. We use a stride of 20 samples in
both the time and frequency dimension for splitting the input spec-
trogram into patches. We construct the input spectrograms using
the procedure in Section 4.2.2 and follow the training procedure of
AST in [11].

A.4.3 Wavegram-Logmel-CNN14 [15]. Similarly to CNN14, we use
the official implementation of Wavegram-Logmel-CNN142 and the
training procedure described in [15]. However, to use the default
structure of the network, we utilize the spectrogram construction
parameters used in [15]. Specifically, we use an FFT window size
of 2048 samples, stride of 320 samples, and 128 Mel frequency bins.

Note that we experimented with multiple training configurations
of different optimizers and learning rates, including the configu-
ration used for AMPNet to find each network’s best performance.
The above described training configurations were found to perform
the best for each respective network.

2https://github.com/qiuqiangkong/audioset_tagging_cnn
3https://github.com/YuanGongND/ast
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Table 6: Construction of the audio and vibration spectrogram feature extractor networks.

Component
Channel Input

(Audio
/ Vibration)

Channel Response
(Audio

/ Vibration)

Kernel
Size Padding Stride

Input
(Audio

/ Vibration)

Output
(Audio

/ Vibration)
Conv Block 1 1 / 3 32 𝜙𝑎 (𝑥𝑖𝑎 )/𝜙𝑣 (𝑥𝑖𝑣 )

2D Convolution 32 3x3 1x1 1x1
Batch Normalization 32

LeakyReLU Activation
Max Pooling 32 2x2 0 2x2

Conv Block 2 32 64
Conv Block 3 64 128
Conv Block 4 128 256
Conv Block 5 256 256

Global Average Pooling 𝑙𝑎𝑠 /𝑙𝑣𝑠

Table 7: Construction of the audio and vibration waveform feature extractor networks.

Component
(Audio

/ Vibration)

Channel Input
(Audio

/ Vibration)

Channel
Response

Kernel Size
(Audio

/ Vibration)
Padding

Stride
(Audio

/ Vibration)

Input
(Audio

/ Vibration)

Output
(Audio

/ Vibration)
Conv Block 1 1 / 3 32 𝑥𝑖𝑎/𝑥𝑖𝑣

Sinc Layer / 1D Convolution 1 / 3 32 251 125 1
Batch Normalization 32 32

LeakyReLU Activation
Max Pooling 32 32 8 / 3 0 8 / 3

Conv Block 2 32 64
1D Convolution 32 64 7 3 1

Batch Normalization 64 64
LeakyReLU Activation

Max Pooling 64 64 8 / 3 0 8 / 3
Conv Block 3 64 128
Conv Block 4 128 256
Conv Block 5 256 256

Global Average Pooling 𝑙𝑎𝑤 /𝑙𝑣𝑤

Table 8: Construction of the tabular metadata feature extractor network.

Component Feature Input Feature Output Dropout 𝑝 Input Output
Dense Block 1 82 226 𝜙𝑡 (𝑥𝑖𝑡 )

Linear Layer 82 226
LeakyReLU Activation
Batch Normalization 226 226

Dropout 0.3
Dense Block 2 226 36 𝑙𝑡

Table 9: Construction of the final engine fault classification network.

Component Feature Input Feature Output Dropout 𝑝 Input Output
Dense Block 1 2084 512 [𝑙 ′𝑎, 𝑙 ′𝑣, 𝑙 ′𝑡 ]

Linear Layer 2084 512
LeakyReLU Activation
Batch Normalization 512 512

Dropout 0.3
Dense Block 2 512 256

Classification Linear Layer 256 5 𝑦𝑖
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