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Abstract

In recent dialogue systems, the integration001
of multimodal responses, rather than relying002
solely on text-based interactions, unlocks the003
potential to convey ideas through a rich array004
of modalities. This enrichment not only en-005
hances the overall communicative efficacy but006
also elevates the quality of the conversational007
experience. In the context of sharing images008
within conversations, prior research has treated009
this as a dialogue-to-image retrieval task. How-010
ever, the effectiveness of current methods is011
constrained by the capabilities of pre-trained012
vision language models (VLMs), which suf-013
fer from comprehending complex dialogues for014
accurate image retrieval. Therefore, this pa-015
per introduces a novel approach that leverages016
the powerful reasoning capabilities of large017
language models (LLMs) to provide precise018
dialogue-associated visual descriptors, thereby019
connecting with images. Through extensive ex-020
periments conducted on benchmark data, our021
proposed approach proves its ability to derive022
concise and accurate visual descriptors, result-023
ing in a substantial enhancement in dialogue-024
to-image retrieval performance. Furthermore,025
our findings demonstrate the method’s general-026
izability to diverse types of visual cues and to027
a wide range of LLMs, affirming its practical-028
ity and potential impact in real-world applica-029
tions.1030

1 Introduction031

In recent years, the landscape of online conversa-032

tions has undergone a significant transformation033

thanks to the proliferation of instant messaging034

tools. Unlike the past, when these exchanges were035

confined to text alone, today’s conversations have036

evolved into a multimodal experience, incorporat-037

ing elements like images and speech. The various038

communication modes not only enhances engage-039

ment but also proves invaluable for conveying com-040

1The source code will be available once accepted.

plex information that can be challenging to com- 041

municate solely through text. Sun et al. (2022) 042

highlighted the advantages of integrating images 043

into conversations. For example, when discussing a 044

topic with someone who may not grasp the concept, 045

sharing an image can provide visual clarity for bet- 046

ter comprehension. Additionally, when precision 047

is required to convey specific details about a sub- 048

ject, relevant images can be a more effective means 049

of communication than text alone. Consequently, 050

the ability to generate responses using images is a 051

crucial area of research in enhancing automatic dia- 052

logue systems. To equip these systems with the ca- 053

pacity to respond using images, a common method 054

involves text-image retrieval, as demonstrated by 055

previous work (Liao et al., 2018; Zang et al., 2021). 056

In this approach, a model selects an appropriate 057

image from a pre-compiled image repository based 058

on the context of the ongoing conversation. 059

As storage costs decline and computational 060

power advances, vision foundation models pre- 061

trained on large-scale, open-domain image-text 062

pairs have emerged (Radford et al., 2021; Jia 063

et al., 2021; Yuan et al., 2021). These models 064

have demonstrated outstanding performance in text- 065

image retrieval tasks, excelling in both zero-shot 066

and fully-trained scenarios. However, despite their 067

impressive capabilities, these pre-trained vision- 068

language models (VLMs) still come with some 069

limitations. One significant limitation is their sub- 070

optimal design for handling complete dialogue con- 071

texts effectively. Often, they suffer from extracting 072

key information comprehensively from the entire 073

conversation. Table 1 presents an illustrative exam- 074

ple, where a dialogue-to-image model fine-tuned 075

from CLIP (Radford et al., 2021) fails to correctly 076

interpret the dialogue’s intent. This highlights the 077

challenge of dialogue comprehension, a task for 078

which pre-trained VLMs may not be adequately 079

equipped. Additionally, most existing VLMs typ- 080

ically impose input text length constraints during 081
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Dialogue context
B: how are you doing?
A: I’m doing good. Just out at a restaurant taking
pictures for customers.
B: congratulations
A: It’s hilarious watching people try to use chop-
sticks
B: i’m really happy for you friend
B: yeah, its really funny
A: Yeah, it’s better than most gigs I get
B: even i still try to try to find a way around that
thing
A: I give up and ask for a fork. I want that rice in
my mouth!!!!!
A: (share a photo)

Ground-truth Retrieved top-1

Dialogue-associated visual cues
• main subject: customers
• foreground objects: chopsticks, table, food
• background scene: restaurant
• events: eating food

Table 1: An example of a dialogue and the shared image;
the fine-tuned CLIP model fails to retrieve the correct
one. Red indicates the missing elements, blue indicates
a perfect match, and orange suggests a partial match.

their pre-training stages, preventing them from pro-082

cessing the entirety of the dialogue context directly.083

This constraint can lead to the loss of crucial con-084

textual information, potentially undermining the085

model’s overall performance.086

Inspired by Menon and Vondrick (2022), we087

leverage the reasoning capabilities of large lan-088

guage models (LLMs) to generate the visual de-089

scriptor for the dialogue context. These descrip-090

tors encapsulate speculations about the image that091

the speaker intends to share, aiming to provide092

concise and precise cues for better text-image re-093

trieval. Our objective is to address the aforemen-094

tioned limitations and enhance task performance.095

Given that most vision models excel at identifying096

objects, scenes, and other visual elements in im-097

ages (Kuznetsova et al., 2020; Zang et al., 2021),098

we employ a set of visually-focused queries, such099

as main subject and background scene, to bridge100

the gap between the ongoing dialogue and the pool101

of potential image candidates. These queries serve102

as templates for the LLM to predict correspond-103

ing visual cues based on the dialogue context. We104

then utilize these queries and their resulting an- 105

swers as dialogue-associated visual descriptors, as 106

illustrated in the bottom part of Table 1. Our ex- 107

periments on the benchmark dataset showcase the 108

exceptional performance of our approaches, sur- 109

passing all previous results. In addition to demon- 110

strating the effectiveness of our LLM-generated vi- 111

sual descriptor, we compare it with other descriptor 112

creation methods and conduct an in-depth analysis 113

to evaluate the efficacy of each proposed query. 114

Our contributions can be summarized as 3-fold: 115

• This paper introduces a novel approach for 116

retrieving associated photos in dialogue sys- 117

tems, leveraging the reasoning capabilities of 118

LLMs to generate visually-focused cues for 119

improved image retrieval. 120

• We design a series of visually-focused queries 121

based on common image features, employ- 122

ing them to construct conversation descriptors. 123

Our experiments validate the effectiveness of 124

these designed queries. 125

• The proposed approach achieves the state-of- 126

the-art performance on the benchmark dataset, 127

PhotoChat (Zang et al., 2021). 128

2 Related Work 129

Multimodal Dialogue Systems Recent years 130

have witnessed a notable shift in research towards 131

multimodal dialogues, moving beyond the confines 132

of text-only interactions (Liu et al., 2022). While 133

the exploration of image-grounded conversations, 134

where textual dialogues are generated from im- 135

ages, has gained traction (Yang et al., 2021; Shuster 136

et al., 2021), an increasing number of studies are 137

delving into the incorporation of multimodal re- 138

sponses within dialogue systems. This multimodal 139

evolution enables human-machine conversations 140

to reflect real-life human-human interactions and 141

communicate concepts that are difficult to convey 142

through text alone. For instance, Liao et al. (2018) 143

introduced a task-oriented multimodal dialogue sys- 144

tem featuring a taxonomy-based learning module 145

that captures nuanced visual semantics and em- 146

ploys reinforcement learning to ensure response 147

coherence. Moreover, Sun et al. (2022) intro- 148

duced a framework capable of directly generating 149

multimodal responses via a text-to-target-modality 150

generator. In contrast, rather than directly gen- 151

erating multimodal responses, Zang et al. (2021) 152

achieve multimodal responses by employing im- 153

age retrieval models to select appropriate images 154
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Dialogue Context
User 1: What’s up?

User 2: I am with friends 

…

Visually-Focused Queries
Based on the dialogue context, please describe the 

photograph shared by User 1:

Queries: main subject, background …

Dialogue-Associated Visual Descriptors
The main subject of the photo is a group of friends.

The background scene of the photo is a bar.

…

Photo

Objects in the Photo
wine, tableware, woman, …

Pretrained 

VLM Image 

Encoder

LLM

Pretrained 

VLM Text 

Encoder

Pre-constructed 

Image Repository

Scene-Aligned 

Score

Vision-Aligned 

Score

Figure 1: The framework of our proposed method. We employ the text encoder from a pre-trained VLM to encode
both the descriptor and the object list. This yields two distinctive features, namely the descriptor embedding (edesc)
and the object list feature (eobj). Additionally, we utilize the VLM’s image encoder to process and encode the image,
resulting in the image embedding (eimg). The final retrieval score is then computed by aggregating a scene-aligned
score and a vision-aligned score.

from a pre-existing image repository. For better155

practicality, our paper centers on the same task—156

recommending a suitable image from the user’s157

image repository based on the ongoing dialogue158

context.159

External Knowledge of LLMs for Visual Tasks160

Many studies have showcased that the common-161

sense knowledge and reasoning capabilities in large162

language models (LLMs) can significantly aug-163

ment the performance of visual tasks. For in-164

stance, Tsimpoukelli et al. (2021) confirmed that165

by projecting image encodings into the embedding166

space of an LLM, it becomes possible to harness167

the rich knowledge contained within the LLM for168

few-shot visual question answering (VQA) tasks.169

Similarly, Zeng et al. (2022) introduced Socratic170

Models, which leverages multiple pre-trained large171

models trained on data from diverse domains. By172

translating non-language domain information into173

textual prompts, Socratic Models achieve state-of-174

the-art results in zero-shot image captioning and175

video-to-text retrieval tasks. Furthermore, Menon176

and Vondrick (2022) took a novel approach by177

obtaining visual features for different categories178

through queries to GPT-3 (Brown et al., 2020)179

using category names. These textual descriptors180

are then employed as internal representations for181

zero-shot visual classification and text-to-image re-182

trieval tasks. Our work centers on harnessing the183

reasoning capabilities of LLMs to derive contex-184

tually relevant visual descriptions for shared pho-185

tos within the dialogue context. Different from186

the prior work based on non-language domains 187

or single sentences, our approach focuses on the 188

nuanced domain of photo sharing within conver- 189

sations, which presents unique challenges due to 190

its reliance on commonsense knowledge and an 191

understanding of human-human interactions. 192

3 Methodology 193

Our objective is to select an image from a pre- 194

compiled photo set {(vj , oj)}mj=1 given a dialogue 195

context D, where vj represents an image candidate 196

and oj lists the objects appearing in vj . Note that 197

the object lists can be obtained through object de- 198

tection in the pre-processing stage, and we treat 199

this object information as given data. 200

Figure 1 illustrates the proposed framework, 201

which introduces an innovative approach to es- 202

timate retrieval scores for each image candidate 203

within a dialogue context. These scores are based 204

on two criteria: scene-aligned and vision-aligned 205

scores, both relying on visual descriptors. The 206

scene-aligned score assesses whether the specu- 207

lated visual cues align with the image-associated 208

objects in a textual format. In contrast, the vision- 209

aligned score evaluates the alignment between 210

the visual description and the image using vision- 211

language models. 212

3.1 Dialogue-Associated Visual Descriptor 213

Considering that visual descriptors can signifi- 214

cantly enhance the understanding of visual con- 215

tent (Menon and Vondrick, 2022), we focus on 216
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Visual Features Descriptions Examples

Main subject the photo-focused objects for conveying a particular theme people, cakes, buildings

Prominent objects in the
foreground

objects in addition to the main subject convey signal for
photo understanding.

a bar counter and bottles in a
photo taken at a bar

Background scene the background scene in the photo restaurants, bars, outdoors

Events activities or events currently captured in the photo weddings, birthdays, eating
food

Materials and attributes finer details about the photo teapot made of ceramic, black
and white feathers

Table 2: All designed descriptors used in the proposed method.

generating dialogue-associated visual descriptors217

to improve image retrieval capabilities. To cre-218

ate high-quality visual descriptors that can connect219

with visual elements in the photo, we define a set220

of visually-focused queries, denoted as Q = {qi}.221

These queries encompass various visual attributes222

related to an image, such as main subject and back-223

ground scene, which are instrumental in linking the224

target photo to the dialogue.225

Drawing from prior work (Kuznetsova et al.,226

2020; Zang et al., 2021) and our common expe-227

riences, we assume that photos shared in online228

messaging typically contain components such as229

main subjects, prominent foreground objects, back-230

ground scenes, events, and materials and attributes,231

as detailed in Table 2. Note that we do not ex-232

pect all answers to these queries to be perfectly233

extracted from the dialogue context or found in the234

ground-truth image. Instead, our goal is to leverage235

automatically inferred visual descriptors to bridge236

the gap between the image and the given dialogue237

context.238

Leveraging the powerful reasoning capabilities239

of large language models (LLMs) (Touvron et al.,240

2023), we construct a prompt comprising the di-241

alogue D and the set of queries Q and input it242

into the LLM. This process yields a set of dialogue-243

associated visual descriptors in a zero-shot manner:244

desc = LLM(D,Q). (1)245

For instance, a generated visual descriptor regard-246

ing the main subject might read, “The main sub-247

ject of the photo is a group of friends.” The used248

prompts can be found in Appendix A.249

3.2 Image Relevance Estimation250

To measure the relevance of each image candi-251

date in the context of a given dialogue D, we cal-252

culate two retrieval scores based on their gener-253

ated visual descriptors desc: Sscene(oj , desc) and254

Svision(vj , desc). The former score assesses if the 255

objects in the photo candidate align with the in- 256

ferred visual descriptors in their text-only forms, 257

referred to as the scene-aligned score. The latter 258

score evaluates if the photo candidate matches the 259

visual descriptions through multimodal methods, 260

termed the vision-aligned score. 261

3.3 Image Retrieval Learning 262

Our task involves retrieving the target image from 263

a pre-compiled photo set, and it can be approached 264

in two settings: 1) zero-shot and 2) training with 265

contrastive leanrning. 266

3.3.1 Zero-Shot 267

Using the descriptor desc derived from the dialogue 268

context D, we employ a pre-trained vision lan- 269

guage model (VLM) for zero-shot image retrieval. 270

This process yields two scores through its text en- 271

coder and image encoder, as illustrated in Figure 1. 272

The final retrieval score is calculated as: 273

Sscene(oj , desc) + λ · Svision(vj , desc), (2) 274

where λ is a weighting parameter. The image with 275

the highest score is selected in a zero-shot manner. 276

3.3.2 Contrastive Learning 277

To further enhance retrieval performance, we fine- 278

tune the VLM model using the training set. Fol- 279

lowing the pre-training stage outlined by Radford 280

et al. (2021), we apply contrastive learning to op- 281

timize our dialogue-image retriever. During train- 282

ing, we randomly sample a minibatch of dialogue- 283

associated descriptors and photo pairs, designat- 284

ing (desc, v∗, o∗) as the positive example, while 285

the remaining (b − 1) examples within the mini- 286

batch serve as negative examples. The contrastive 287

losses are calculated separately for the scene and 288

vision components, focusing on aligning dialogue- 289
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associated visual descriptors and the target photo.290

Lscene = − log
exp(Sscene(o

∗, desc)/τ)∑
j∈b exp(Sscene(oj , desc)/τ)

,291

Lvision = − log
exp(Sscene(v

∗, desc)/τ)∑
j∈b exp(Sscene(vj , desc)/τ)

,292

where τ is the trainable temperature parameter. The293

final training loss is a combination of these con-294

trastive losses:295

L =
1

b

∑
j∈b

(Lscene + λ · Lvision), (3)296

where λ is a weighting parameter. This ap-297

proach optimizes our dialogue-image retrieval298

model through contrastive learning.299

4 Experiments300

To evaluate our proposed approach, we conduct301

comprehensive experiments using the PhotoChat302

dataset (Zang et al., 2021). This dataset is charac-303

terized by open-domain, high-quality multimodal304

dialogues and comprises 10,917 images paired with305

12,286 dialogues. Specifically, the dataset is di-306

vided into 10,286 instances for training, 1,000 for307

validation, and another 1,000 for testing. Each im-308

age in the dataset is accompanied by an associated309

object list presented in textual form. In each data310

instance, one photo is shared within the context of311

the conversation.312

For the LLM in (1), we utilized well-established313

LLMs with instruction tuning and reinforcement314

learning from human feedback (RLHF), including315

LLAMA2-Chat 7B, LLAMA2-Chat 13B (Touvron316

et al., 2023), as well as ChatGPT2 (OpenAI, 2023).317

We employed greedy decoding for generating de-318

scriptors to ensure the correct format and reasoning319

capability. Our pre-trained vision-language model320

(VLM) backbone is CLIP ViT-B/32, and VLM321

training is executed on a single NVIDIA GeForce322

RTX 2080 Ti GPU with a batch size of 56. We uti-323

lize the ADAM optimizer with an initial learning324

rate of 1e-5. The weighting parameter λ was set to325

1 to strike a balance between scene-alignment and326

vision-alignment.327

Given that this task can be formulated as an im-328

age retrieval task, we employed Recall@k (R@k)329

as our evaluation metric. During the training phase,330

we select the final model based on the highest331

avg(R@1, R@5, R@10) score on the validation332

2We used gpt-3.5-turbo-0613 at https://openai.com

set. In the testing phase, for each dialogue instance, 333

the trained models retrieved images from the pool 334

of 1,000 candidate photos in the testing set. 335

4.1 Baselines 336

We compare our approach against several estab- 337

lished baselines: 338

• VSE++: Faghri et al. (2018) incorporated hard 339

negatives in the ranking loss function to learn 340

visual-semantic embeddings for text-image 341

retrieval. 342

• SCAN: Lee et al. (2018) utilized stacked cross 343

attention to align image regions and words in 344

a sentence and calculate image-text similarity. 345

• Dual Encoder (DE): Previous work (Parekh 346

et al., 2021; Zang et al., 2021) employed a 347

dual encoder architecture, where one encoder 348

processes the image and its object list us- 349

ing CLIP ViT-B/32 for images and FFNN 350

for object features. For the dialogue encoder, 351

two different text encoders were experimented 352

with: CLIP ViT-B/32 Text and BERT (Devlin 353

et al., 2019) with an additional projection to 354

ensure consistent dimensions. The retrieval 355

similarity between the image and dialogue en- 356

codings is measured using dot product. 357

4.2 Descriptor Variants 358

In addition to the query-based descriptors, we con- 359

duct experiments using the following descriptor 360

variants for in-depth analysis: 361

• Desc - Diag (whole dialogue as descriptors): 362

All dialogue utterances are concatenated to 363

form the descriptors, allowing the image re- 364

triever to utilize complete cues within the dia- 365

logue. 366

• Desc - Caption (caption as descriptors): In- 367

spired by Li et al. (2023), we performed zero- 368

shot image captioning on images in the train- 369

ing set using BLIP-2. We then trained a text 370

generator to create image captions as descrip- 371

tors based on a given dialogue. 372

• Desc - Summary (summary as descriptors): 373

Descriptors are generated by LLMs based on 374

a dialogue summary, offering a more concise 375

representation of the conversation. 376

• Desc - Guessing (visually-focused guessing 377

as descriptors): LLMs are allowed to specu- 378

late about the features of the upcoming shared 379

photo from the dialogue without being con- 380

strained by a specific query. 381

5
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Method LLM Zero-Shot Fully-Trained
R@1 R@5 R@10 R@1 R@5 R@10 Avg

VSE++† - - - - 10.20 25.40 34.20 23.27
SCAN† - - - - 10.40 27.00 37.10 24.83
DE - Diag (BERT) - - - - 12.88 35.13 47.75 31.92
DE - Diag (CLIP) - - - - 14.76 35.78 47.12 32.55
Desc - Diag - 16.00 30.90 37.70 40.35 58.77 66.88 55.33
Desc - Caption BLIP-2 - - - 16.68 35.34 45.17 32.40
Desc - Summary LLaMA7b-Chat 22.90 40.10 47.60 42.81 62.42 71.35 58.86
Desc - Summary LLaMA13b-Chat 24.40 40.50 48.30 44.17 64.23 72.66 60.35
Desc - Guessing LLaMA7b-Chat 27.60 47.80 58.10 42.55 64.22 72.29 59.69
Desc - Guessing LLaMA13b-Chat 29.30 51.30 59.80 43.18 65.45 73.43 60.69
Desc - Queries LLaMA7b-Chat 22.60 42.20 50.40 37.34 57.52 66.62 53.83
Desc - Queries LLaMA13b-Chat 26.40 45.80 55.10 44.00 64.78 73.95 60.91
Desc - Queries ChatGPT 23.40 41.40 49.80 38.68 59.66 68.71 55.68

Table 3: Retrieval performance for zero-shot and fully-trained settings (%). We employ the LLM with greedy
decoding to ensure the correct format and reasoning capability. Each number is the average over 10 runs with
different random seeds. Caption* denotes using golden captions for image retrieval, serving as an upper bound of
caption-based methods. †denotes that we directly report the numbers from Zang et al. (2021).

LLM main subject foreground objs background scene events materials
LLaMA7b-Chat 0.0 0.0 0.0 0.0 0.0
LLaMA13b-Chat 0.0 2.3 0.3 0.9 1.8
ChatGPT 0.1 48.4 52.2 47.3 24.1

Table 4: The ratio of declining responses (including “none”, “not {specified, mentioned}”).

• Desc - Queries (visually-focused query de-382

scriptors): Utilizing our designed visually-383

focused attributes as dialogue-associated de-384

scriptors.385

4.3 Results386

Table 3 provides a comprehensive overview of the387

results for both zero-shot and fully-trained settings.388

In zero-shot scenarios, Desc - Guessing emerges389

as the top-performing method among all results.390

Notably, Desc - Queries outperforms Desc - Sum-391

mary, indicating that visually-focused queries and392

guessing contribute valuable information for link-393

ing the desired images.394

In the fully-trained setting, the descriptor-based395

results (Desc - Summary, Desc - Guessing, Desc396

- Queries) with LLaMA-13b-Chat exhibit similar397

performance, with Desc - Queries achieving the398

highest average performance. These results vali-399

date the effectiveness of our proposed approach,400

demonstrating that the generated visual descrip-401

tors successfully facilitate the connection between402

associated images through the LLM’s understand-403

ing of dialogue. Additionally, it is evident that404

LLaMA13b-Chat outperforms LLaMA7b-Chat due405

to its stronger reasoning abilities for understand-406

ing dialogues. When compared to the fully-trained407

Ensemble R@1 R@5 R@10
S + G 47.32 69.62 77.63
S + Q 47.78 68.81 77.61
G + Q 47.44 68.90 77.15
S + G + Q 48.79 70.01 78.44
S + G + Q + C 48.84 70.20 78.74

Table 5: Ensemble results of fully-trained retrievers
with LLaMA13b-Chat as the LLM (%). (S: Summary;
G: Guessing; Q: Queries; C: Caption).

baselines, our proposed descriptor-based methods 408

achieve superior performance even in zero-shot 409

settings, establishing a new state-of-the-art perfor- 410

mance achieved by a single model. 411

Moreover, among all Desc - Queries results, 412

ChatGPT surprisingly performs the worst. This 413

may be attributed to ChatGPT’s tendency to de- 414

cline responses when uncertain (e.g., responding 415

with “none” or “not mentioned”). To validate this 416

observation, we calculate the ratio of declining re- 417

sponses generated by each LLM for each visually- 418

focused query using the dev set, as presented in 419

Table 4. This analysis confirms our observation 420

that ChatGPT is reluctant to speculate about possi- 421

ble elements for bridging images. 422
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Method Score R@1 R@5 R@10 Avg

Desc - Summary
Scene-Aligned (Text-Only) 35.07 49.37 57.66 47.37
Vision-Aligned (Multimodal) 29.37 53.18 62.49 48.35

Desc - Guessing
Scene-Aligned (Text-Only) 35.82 50.58 58.30 48.23
Vision-Aligned (Multimodal) 28.41 53.78 63.90 48.70

Desc - Queries
Scene-Aligned (Text-Only) 35.53 50.64 58.68 48.28
Vision-Aligned (Multimodal) 29.16 54.28 64.17 49.20

Table 6: The results of the model trained using either scene-aligned or vision-aligned scores.

Method R@1 R@5 R@10
Original 44.00 64.78 73.95
- main subject 28.80 49.16 58.41
- foreground objects 40.44 61.62 70.49
- background scene 43.65 64.05 72.88
- events 42.91 64.00 72.78
- materials & attributes 43.22 64.60 73.59
+ atmosphere or mood 43.67 64.89 73.85
+ lighting 44.13 64.95 73.93

Table 7: The results of different queries on the model’s
performance. All additions and removals are based on
the original query set.

4.4 Ensemble423

We further conduct experiments on ensemble learn-424

ing using all descriptor-based results based on the425

validation set. The results in Table 5 demonstrate426

that ensemble learning consistently improves per-427

formance. Even in cases where the caption model428

performs poorly in a fully-trained setting, ensem-429

ble learning benefits other models. These findings430

highlight the efficacy of combining various types431

of descriptors, leading to the best overall perfor-432

mance and establishing a new state-of-the-art for433

PhotoChat. This suggests that the generated de-434

scriptors focus on diverse patterns that can comple-435

ment each other and enhance scores.436

5 Analysis437

5.1 Effectiveness of Two Alignment Scores438

Our proposed method incorporates two scores:439

scene-aligned (text-only) and vision-aligned (mul-440

timodal) scores. We conduct an ablation study to441

assess the impact of each score. Table 6 presents442

the experimental results. The “score” column in-443

dicates whether the model was trained and calcu-444

lated retrieval scores using only images (v) or only445

the object list (o). The results reveal that models446

trained solely on the scene-aligned score (text-only)447

perform better in terms of R@1, whereas models448

trained on the vision-aligned score (multimodal)449

perform better for R@5 and R@10. 450

5.2 Visually-Focused Query Impact 451

To examine the impact of different visually-focused 452

queries on the results, we conduct experiments 453

by removing individual queries from the original 454

query set. The results are displayed in Table 7. No- 455

tably, the query about the main subject emerges 456

as the most significant feature for bridging the dia- 457

logue context and the target image, as its removal 458

leads to a significant decrease in scores. In descend- 459

ing order of impact, other queries are foreground 460

objects, events, background scene, and materials 461

and attributes. 462

In addition to the original queries, we introduced 463

two common features found in photos into our 464

query set: atmosphere or mood and lighting. 465

• Atmosphere or mood: In line with findings 466

by Sun et al. (2022), we acknowledge that 467

photographs possess the unique ability to con- 468

vey not just object details but also emotions 469

and ambiance. For instance, they can evoke 470

feelings of happiness, boredom, coziness, and 471

more. 472

• Lighting: The presence and quality of light 473

represent fundamental elements in the com- 474

position of a photograph, as noted by Hunter 475

et al. (2021). Our inquiry delves into whether 476

an LLM can accurately predict the lighting 477

conditions within a photo based solely on the 478

dialogue context and, furthermore, whether 479

this predictive information can enhance text- 480

image retrieval capabilities. 481

Atmosphere or mood improves results at R@5, 482

while lighting performs better at R@1 and R@5 483

compared to the original results. This suggests 484

that these two queries, which are more abstract and 485

challenging to predict, had a varying impact on 486

performance. 487
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Dialogue Context Ground-Truth Photo
B: whats up
A: Hanging out with my student Maren
B: Oh thats cool
B: how was it ?
A: Great. We are sightseeing castles
B: That sounds really cool actually
B: took any pictures of it?
A: Yes
B: Show me it I wanna see
A: sure
A: (share a photo)

LLaMA7b-Chat

Desc - Queries Desc - Summary Desc - Guessing
The main subject of the photo is a picture
of a castle. The prominent objects in the
foreground of the photo is Maren and A.
The background scene of the photo is a
beautiful landscape with rolling hills and
a blue sky. The events of the photo is
sightseeing. The materials and attributes
of the photo is a camera and a smartphone

A is a teacher who is spending time with
their student Maren. They are sightseeing
castles and took pictures of them. A is
willing to show the pictures to B.

It is likely that A shared a photograph of a
castle that they and Maren visited during
their sightseeing trip. The photograph
may show the exterior or interior of the
castle, or a specific feature or detail of the
castle that caught A’s attention.

LLaMA13b-Chat

Desc - Queries Desc - Summary Desc - Guessing
The main subject of the photo is Maren.
The prominent objects in the foreground
of the photo are castles. The background
scene of the photo is countryside. The
events of the photo are sightseeing. The
materials and attributes of the photo are
medieval architecture.

A is a teacher or mentor figure, as they
are referred to as "my student Maren"
A and Maren are currently sightseeing
castles together A has taken pictures of
the castles they have visited A is willing
to share these pictures with B

A shared a photograph of a castle that
they visited with their student Maren.
The photograph is likely to be a scenic
view of the castle, showcasing its archi-
tecture and surroundings. The photo-
graph may include Maren in the frame,
possibly posing in front of the castle or
looking out at the view.

Table 8: Red text represents incorrect information

5.3 Qualitative Study488

To further explore the quality of our generated de-489

scriptors, we present an example of a testing dia-490

logue using different LLMs and descriptor gener-491

ation methods in Table 8. A comparison between492

LLaMA7b-Chat and LLaMA13b-Chat in Desc -493

Queries reveals that LLaMA7b-Chat often pro-494

vides incorrect or unrelated answers (highlighted495

in red). In contrast, LLaMA13b-Chat tends to gen-496

erate more accurate answers and can infer some497

information not included in the dialogue context498

(e.g., medieval architecture). We attribute this varia-499

tion to the difference in reasoning abilities between500

LLaMA7b-Chat and LLaMA13b-Chat. Both Desc501

- Summary and Desc - Guessing can accurately502

describe the features of the photos. However, Desc503

- Summary sometimes includes additional infor-504

mation not directly related to the photos, such as505

“A is willing to share these pictures with B.”506

6 Conclusion507

This paper introduces a novel approach to empower508

multimodal dialogue systems with the capability509

to seamlessly share photos. Leveraging the rea- 510

soning abilities of LLMs, we propose a method 511

that generates precise visual cues based on the on- 512

going dialogue context. Our approach effectively 513

addresses the challenges that have plagued previ- 514

ous methods utilizing pre-trained vision-language 515

models, including the accurate understanding of 516

extensive dialogue contexts and the handling of 517

input length constraints. Our experimental results 518

clearly demonstrate the superiority of our method 519

over prior work. Furthermore, our comprehensive 520

ablation study validates the efficacy of text-only vi- 521

sual descriptors, highlighting the promising avenue 522

of bridging intricate dialogues and images through 523

a deep understanding of dialogues via LLMs. This 524

work not only advances the state of the art in photo 525

sharing within dialogues but also lays the founda- 526

tion for more sophisticated multimodal dialogue 527

systems in the future. 528

7 Limitations 529

Due to the attributes of the dataset, our method is 530

currently primarily trained and tested on photos 531
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with themes centered around people, food, animals,532

and products as described in Zang et al. (2021). In533

real-time online communication scenarios, there534

are often shared images such as memes and text535

screenshots, which we have not addressed in our536

current approach.537

Another limitation to consider is that our method538

assumes the availability of object detection capa-539

bilities during pre-processing to extract object lists540

associated with the images. This reliance on object541

detectors may limit the method’s applicability in542

scenarios where object detection is challenging or543

unavailable, potentially affecting its performance.544

Lastly, our method assumes that the shared im-545

ages align with the given dialogue context. In cases546

where users share images that are intentionally547

misleading or unrelated to the conversation, our548

method may struggle to retrieve appropriate im-549

ages, leading to potential accuracy issues in such550

scenarios.551
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A Prompts684

The designed prompts for all descriptor-based ap-685

proaches are shown as follows.686

A.1 Desc - Summary687

Please read the following dialogue context:
<dialogue_context>

Based on the dialogue context, please
summarize the information of speaker A.

Answers:
688

A.2 Desc - Guessing 689

Please read the following dialogue context:
<dialogue_context>

Based on the dialogue context, please describe
the photograph shared by speaker A.

Answers:
690

A.3 Desc - Queries 691

Please read the following dialogue context:
<dialogue_context>

Based on the dialogue context, please describe
the photograph shared by speaker A.
List the answer in JSON format.
- main subject: {simply list the answer by ','}
- prominent objects in the foreground: {simply
list the answer by ','}
- background scene: {one background scene}
- events: {simply list the answer by ','}
- materials and attributes: {simply list the
answer by ','}

Answers:
692
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