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Abstract
Salient Object Ranking (SOR) is the process of predicting
the order of an observer’s attention to objects when view-
ing a complex scene. Existing SOR methods primarily focus
on ranking various scene objects simultaneously by explor-
ing their spatial and semantic properties. However, their so-
lutions of simultaneously ranking all salient objects do not
align with human viewing behavior, and may result in incor-
rect attention shift predictions. We observe that humans view
a scene through a sequential and continuous process involv-
ing a cycle of foveating to objects of interest with our foveal
vision while using peripheral vision to prepare for the next
fixation location. For instance, when we see a flying kite, our
foveal vision captures the kite itself, while our peripheral vi-
sion can help us locate the person controlling it such that we
can smoothly divert our attention to it next. By repeatedly
carrying out this cycle, we can gain a thorough understanding
of the entire scene. Based on this observation, we propose
to model the dynamic interplay between foveal and periph-
eral vision to predict human attention shifts sequentially. To
this end, we propose a novel SOR model, SeqRank, which re-
produces foveal vision to extract high-acuity visual features
for accurate salient instance segmentation while also model-
ing peripheral vision to select the object that is likely to grab
the viewer’s attention next. By incorporating both types of
vision, our model can mimic human viewing behavior better
and provide a more faithful ranking among various scene ob-
jects. Most notably, our model improves the SA-SOR/MAE
scores by +6.1%/-13.0% on IRSR, compared with the state-
of-the-art. Extensive experiments show the superior perfor-
mance of our model on the SOR benchmarks. Code is avail-
able at https://github.com/guanhuankang/SeqRank.

Introduction
Salient object detection (He et al. 2017b; Qin et al. 2019;
Zhao et al. 2019; Liu et al. 2021b; Wu et al. 2022; Wang
et al. 2023) aims to identify objects that naturally attract hu-
man attention in a cluttered visual world. Although SOD can
tell which objects are more likely to grab human attention, it
fails to reveal how human attention shifts among them. This
issue has recently led to the development of Salient Object
Ranking (SOR) (Siris et al. 2020), which is to predict the vis-
iting order of an observer’s attention to various scene objects
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Figure 1: We present a novel salient object ranking ap-
proach, in which the objects are detected in a sequential
order, allowing the most salient object to be detected first,
followed by the less salient one and so on. Our sequential
ranking strategy is consistent with human viewing behavior
and gives a more accurate prediction than the state-of-the-
art methods (Liu et al. 2021a; Tian et al. 2022a), which rank
objects simultaneously.

based on their degrees of salience, allowing the most salient
object to be attended to first, followed by the less salient ob-
jects, resulting in a sequential visiting of different parts of a
complex scene. SOR can help understand how humans in-
terpret images and benefit many downstream tasks, such as
image editing (Aberman et al. 2022; Miangoleh et al. 2023),
scene understanding (Du et al. 2019; Li et al. 2023), and
human-robot interaction (Schillaci, Bodiroža, and Hafner
2013).

Salient object ranking is a rather new research field that
has witnessed some recent progress. For instance, (Siris
et al. 2020) study the object-scene context to predict atten-
tion shifts. (Fang et al. 2021a) suggest adding position in-
formation explicitly to enhance ranking performance. (Tian
et al. 2022a) propose combining both spatial and object-
based attention in the ranking model for more realistic at-
tention shift predictions. These methods have demonstrated
some advantages in salient object ranking. However, they are
limited to exploring semantics and spatial attributes to learn
how objects compete for saliency, raising concerns about
spatial and semantic biases. Besides, they operate under an
unrealistic assumption that the saliency ranking of all poten-
tial salient objects in the scene could be inferred simultane-



ously, which is different from how humans view the scene
and may lead to incorrect attention shift predictions.

We observe that humans view the visual world in a se-
quential and continuous manner, with an ongoing interac-
tion between visual stimuli and our visual system (Hooge
and Erkelens 1999; Ludwig, Davies, and Eckstein 2014;
Wolf, Belopolsky, and Lappe 2022). Specifically, we use the
central part of our visual field (i.e., foveal vision) to fixate
on objects for perceiving object details and the outer region
of our visual field (i.e., peripheral vision) to search for the
next fixation location so that we can smoothly divert our at-
tention to it next. By repeatedly engaging in this cycle, we
can prioritize our attention on various scene objects and ul-
timately gain a comprehensive understanding of the entire
scene. Based on this observation, we propose to model the
dynamic interplay between foveal and peripheral vision to
infer saliency ranking in a sequential manner. Our sequential
ranking strategy enables us to explicitly explore the tempo-
ral relationships between previously visited objects and sub-
sequently attended locations (Wolf, Belopolsky, and Lappe
2022), which is neglected by previous works.

To this end, we propose SeqRank, a query-based salient
object ranking method driven by the human sequential view-
ing behavior. SeqRank includes two novel modules: a Fovea
Module (FOM) to extract high-acuity visual features, and
a Sequential Ranking Module (SRM) to search for the sub-
sequent fixation location. Our FOM is inspired by the hu-
man fovea, which is a small, central area of the retina that
is responsible for sharp, detailed vision and color percep-
tion. FOM works by fixating on a specific region of an im-
age and extracting detailed visual features from that region
to enable the model to accurately represent the high-acuity
visual information there. The proposed SRM aims to mimic
human peripheral vision by selecting the next fixation loca-
tion from the periphery region. This region is usually not
as sharp as the central visual field but contains highly com-
pressive visual information, which can be used by SRM to
predict where the viewer’s attention is likely to shift to next.
By repeatedly invoking SRM, as shown in Figure 1, we can
sequentially detect all salient instances in an order that re-
flects the sequence of human attention shifts. By incorporat-
ing both types of vision, our model can better mimic human
viewing behavior and provide a more faithful ranking among
various salient objects. We conduct extensive experiments to
show the superior performance of our model.

In summary, our main contributions of this work include:

1. We propose a novel approach for salient object ranking.
It learns to sequentially infer the saliency ranks of vari-
ous scene objects by modeling both foveal and peripheral
vision, and we make the first attempt to explore temporal
relationships between objects for SOR.

2. We propose our SOR model, SeqRank, with two innova-
tive modules, i.e., Fovea Module and Sequential Ranking
Module. These two modules work coherently for a natu-
ral and realistic attention shift prediction.

3. Extensive experiments are conducted to confirm the ef-
fectiveness of our approach, and our model achieves new
state-of-the-art results on the existing SOR benchmarks.

Related Work
Salient Object Ranking (SOR) is first studied by (Islam,
Kalash, and Bruce 2018), who suggest ranking scene ob-
jects by the level of agreement among multiple observers
who consider the objects to be salient. However, their rank-
aware network can only output pixel-level saliency con-
trasts. Later, (Siris et al. 2020) complement the concept of
SOR by incorporating psychological and neuroscientific evi-
dence (Neisser 2014; Desimone and Duncan 1995), and con-
sider SOR as a task of predicting the visiting order of human
attention to distinct objects in the scene. They explore the
object-scene context for attention shifts prediction, and in-
troduce a large-scale salient object ranking benchmark for
evaluation, which has become widely used by subsequent
works. Then, (Fang et al. 2021a) study the impact of posi-
tion embedding and feature interaction between objects and
show their benefits in the SOR task. (Liu et al. 2021a) pro-
pose another dataset with fewer annotation errors and intro-
duce graph convolution for object-level reasoning, further
enhancing the ranking performance. (Tian et al. 2022a) em-
phasize the interaction between objects and context, propos-
ing to model both spatial and object-based attention.

While these works have made significant progress in
salient object ranking, their exploration is limited to seman-
tics and spatial properties for learning how objects com-
pete for saliency simultaneously. In this work, we propose
to model the dynamic interplay between foveal and periph-
eral vision, inspired by the human sequential viewing be-
havior, to predict attention shifts sequentially. This enables
an explicit exploration of the temporal relationship between
objects, which is greatly neglected by previous works.

Salient Object Detection (SOD) is a topic closely related
to SOR and has been widely studied. It aims to identify and
locate objects that naturally capture human attention in a
scene. Early methods in SOD primarily used low-level cues,
such as background priors (Li et al. 2013; Jiang et al. 2013;
Zhu et al. 2014) and center priors (Cheng et al. 2013; Yan
et al. 2013). Yet, these traditional approaches often struggle
with a lack of high-level semantics. Later on, deep learning-
based methods (Qin et al. 2019; Zhao et al. 2019; Liu, Han,
and Yang 2020; Wu et al. 2022; Wang et al. 2023) become
popular and show impressive results. Most of these works
rely on multi-level or multi-scale feature fusion strategies to
achieve their success. Recently, transformer-based architec-
ture is also introduced to salient object detection, e.g., visual
saliency transfomer (Liu et al. 2021b).

Despite the success, SOD approaches can only disentan-
gle salient objects from the background. They cannot recog-
nize distinct object instances. To tackle this issue, Salient
Instance Detection (SID) has recently been proposed. It
aims to detect multiple salient instances in an image. Unlike
SOD approaches, SID methods (Li et al. 2017; Fan et al.
2019; Tian et al. 2022b) usually include an additional ob-
ject proposal stage for instance discovery and then learn to
identify the salient ones from the background.

In contrast to SOD and SID, salient object ranking is more
challenging as it not only requires detecting distinct salient
instances but also assigning a rank to each instance to indi-



Figure 2: SeqRank is composed of a backbone network, a pixel decoder, a Fovea Module (FOM), and a Sequential Ranking
Module (SRM). The FOM learns to progressively refine the learnable object queries from image features, while the SRM
predicts the next object that is likely to be visited, conditioning on the previous visiting history. By continuously updating the
visiting history and invoking the SRM, all salient objects can be detected in a sequential order that reflects how human attention
shifts among them.

cate how human attention shifts from one to another based
on their salience degrees.

Our Approach

The design of SeqRank is inspired by the human sequential
viewing behavior. It first learns to detect salient instances in
the scene, and then ranks them in a sequential order such that
the most salient object is visited first, followed by the less
salient ones. Two novel modules are proposed for this pur-
pose: Fovea Module (FOM) and Sequential Ranking Module
(SRM), which aim to simulate human foveal and peripheral
vision, respectively.

The overall architecture of SeqRank is illustrated in Fig-
ure 2. SeqRank receives an RGB image as input and em-
ploys a bottom-up backbone network, such as ResNet (He
et al. 2016) or Swin Transformer (Liu et al. 2021c), for fea-
tures extraction. A pixel decoder, e.g., FPN (Lin et al. 2017),
is included to restore the spatial information from low-level
features and produces a set of image features at different
resolutions, denoted as feat5, feat4, feat3 and feat2 from
low to high. Note that the resolutions of feat5, feat4, feat3
and feat2 are 1/32, 1/16, 1/8 and 1/4 of the input res-
olution, respectively. The set of image features is then fed
to FOM, which learns to progressively refine the learnable
object queries for high-acuity salient instance segmentation.
After that, SRM attempts to predict which object is likely to
grab human attention, conditioning on the previous visiting
history. Through iteratively invoking SRM with the increas-
ing visiting history, we obtain a list of salient instances that
reflects the sequence of human attention shifts.

Fovea Module (FOM)

FOM is proposed to extract high-acuity visual features and
facilitate an accurate salient instance segmentation by tak-
ing inspiration from the human fovea, which is a small re-
gion in the retina of the eye containing many cones packed
closely to allow it to fixate at a small region of the scene
for sharp details. FOM works by progressively refining the
learnable object queries from image features feati, where

Figure 3: The Fovea Layer is a variant of the transformer
decoder. It first applies RoIAlign to obtain object-part-aware
target features, which are then added to object-level queries.
The cross-attention layer comes before the self-attention
layer, so that the image features can be involved earlier.
An average pooling is inserted after the cross-attention layer
for aggregating the object-part-aware queries back to object-
level queries, which are then sent to the self-attention layer
for inter-object relationships modeling. Note that positional
embeddings are omitted in this figure for readability.

i ∈ {3, 4, 5}. Each refining stage is formulated as:

qt = f(qt−1, bt−1, feati), (1)
bt = mlp(qt), (2)

where qt ∈ RN×d and bt ∈ RN×4 are the object queries and
bounding box prediction at stage t. N is the number of ob-
ject queries. We formulate f as a fovea layer shown in Fig-
ure 3. To help fixate on the targets and learn high-acuity vi-
sual information, it first performs RoIAlign (He et al. 2017a)
on feati to extract object-part-aware features, which are
then attached to qt−1 forming a new set of object-part-aware
queries, denoted as qfovea ∈ RNhw×d, where h,w are the
height and width of the RoI window. We further apply a
cross-attention layer (Vaswani et al. 2017) to update qfoveal
from feati. After that, we use an average pooling operation



to recover the updated qfovea back to object-level queries
qi ∈ RN×d. A self-attention layer for modeling inter-object
relationships is appended at the end and outputs qt, which
can be used for predicting bounding boxes bt with a 3-layer
MLP.

FOM is composed of six fovea layers. Each layer
receives image features at a single scale from the
set of {feat3, feat4, feat5}. Specifically, inspired by
Mask2Former (Cheng et al. 2022), the six layers are as-
signed with feat5, feat4, feat3, feat5, feat4, feat3.
Noteworthy, FOM works differently from Mask2Former,
which learns localized features by constraining cross-
attention to within predicted instance regions. In contrast,
FOM fixates on objects through the guidance of RoI fea-
tures while enabling object queries to attend to every loca-
tion within the image, such that it could potentially be more
robust to early prediction errors.

Finally, we apply a dot product between feat2 and the
object queries q from the last fovea layer, followed by a
sigmoid function to output salient instance masks. A clas-
sification head is used to indicate which object queries are
activated for outputting salient instance masks.

Sequential Ranking Module (SRM)
SRM is proposed to predict the next object that is likely to
catch human attention conditioning on the previous visiting
history (Wolf, Belopolsky, and Lappe 2022). It is motivated
by human peripheral vision, in which humans prepare the
next fixation location by scanning the peripheral region (a
region with low resolution but high information compres-
sion) and then shift their gaze smoothly to it afterwards. Fig-
ure 4 shows the structure of SRM. We encode the visiting
history with one-hot encoding and expand it with a learn-
able memory embedding to match the dimensionality d of
the object queries q ∈ RN×d. Mathematically, the encoding
process of the visiting history can be written as:

v = onehot(visiting history), (3)
ve = v ·memo, (4)

where onehot is the one-hot encoding function. v ∈
{0, 1}N×1 is the one-hot vector of the visiting history, where
1 means the object was visited and 0 means it was not.
memo ∈ R1×d is a learnable memory embedding for ex-
panding v to d-dimension space. We then inject the visiting
history into object queries with an addition, followed by a
self-attention layer to allow the queries to exchange visiting
information. This can be written as:

qv = SelfAttn(Q=q+ve, K=q+ve, V =q+ve), (5)
qV = FFN(qv), (6)

where SelfAttn is the self-attention layer. FFN is the
feed-forward neural network.

We use the high-level features from the last layer of the
backbone to mimic the visual features of the peripheral re-
gion, since high-level features are in low-resolution and con-
tain rich semantics. We first perform a cross-attention from
high-level features (as queries) to the object queries (as

Figure 4: Sequential Ranking Module (SRM) learns to
predict the next salient object conditioning on the visit-
ing history. memo: learnable memory embedding. self attn:
self-attention layer. ffn: feed-forward neural network. A to
B attn: cross-attention layer with A as query and B as
key, value. linear: linear projection. σ: sigmoid function.
Note that shortcuts, LayerNorm and positional embeddings
are omitted in this figure for readability.

key, value) for the alignment between them, as:

featalign = CrossAttn(Q=feathigh, K=qV , V =qV ),
(7)

where feathigh ∈ RP×d are the high-level features. P is
the number pixels in feathigh. CrossAttn is the cross-
attention layer. To model the saliency competition among
distinct locations, we select the current fixated object query
qc ∈ Rd from qV ∈ RN×d and concatenate qc with each
pixel of featalign, resulting in featconcat ∈ RP×2d, such
that each pixel contains both local and currently fixated ob-
ject information:

qc = qV [c], (8)
featconcat[i] = concat(featalign[i], qc), (9)
featConcat = FFN(featconcat), (10)

where c is the index of the currently fixated object. i is
the index to all pixels of featalign, and concat is a con-
catenate operation. After that, object queries qV is updated
from featConcat via a cross-attention, followed by a self-
attention and a feed-forward network allowing an explo-
ration of the temporal relationships between objects. Finally,
we use a linear projection followed by a sigmoid function to
produce the likelihood of an object to be visited next:

likelihood = σ(linear(qout)), (11)

where qout ∈ RN×d is the final object queries by SRM, and
likelihood ∈ [0, 1]N indicates the likelihood of an object
being visited next.

During inference, we use SRM to iteratively find all
salient instances in the scene. The first run of SRM detects
the most salient object. After adding it to the visiting history,
we run SRM again to find the next object to be fixated on.
This process is repeated until there are no more salient in-
stances or the maximum number of runs, i.e., N , is reached.



Method Task ASSR Test Set (2418) IRSR Test Set (2929)
SA-SOR↑ SOR↑ MAE↓ SA-SOR↑ SOR↑ MAE↓

VST (Liu et al. 2021b) SOD 0.422 0.643 9.99 0.183 0.571 8.75
MENet (Wang et al. 2023) SOD 0.369 0.627 9.60 0.162 0.558 8.25
S4Net (Fan et al. 2019) SID 0.451 0.649 14.4 0.224 0.611 12.1
QueryInst (Fang et al. 2021b) IS 0.596 0.865 8.52 0.538 0.816 7.13
Mask2Former (Cheng et al. 2022) IS 0.635 0.867 7.31 0.521 0.799 7.14
RSDNet (Islam, Kalash, and Bruce 2018) SOR 0.386 0.692 18.2 0.326 0.663 18.5
ASRNet (Siris et al. 2020) SOR 0.590 0.770 9.39 0.346 0.681 9.44
PPA (Fang et al. 2021a) SOR 0.635 0.863 8.52 0.521 0.797 8.08
IRSR (Liu et al. 2021a) SOR 0.650 0.854 9.73 0.543 0.815 7.79
OCOR (Tian et al. 2022a) SOR 0.541 0.873 10.2 0.504 0.820 8.45
Ours SOR 0.685 0.870 7.22 0.576 0.822 6.20

Table 1: Quantitative Comparison. SOD: Salient Object Detection. SID: Salient Instance Detection. IS: Instance Segmentation.
SOR: Salient Object Ranking. The best is marked in bold and the second-best is marked with an underline.

Training Strategy
We use the binary cross-entropy loss and the dice loss (Mil-
letari, Navab, and Ahmadi 2016) for our salient instance
masks. The bounding box is supervised with ℓ1 loss and
GIoU loss (Rezatofighi et al. 2019), while the classification
head adopts binary cross-entropy loss. Therefore, the final
loss for FOM is:

ℓFOM = λmℓmask + λbℓbbox + λcℓcls, (12)

where λm is set to 5.0, λb is set to 2.0 for GIoU loss and 5.0
for ℓ1 loss, and λc is set to 10.0 for predictions matched with
a ground truth and 0.1 for the ”no object”, i.e., predictions
have not been matched with any ground truth. The match-
ing mechanism used is the Hungarian algorithm following
(Carion et al. 2020; Fang et al. 2021b; Cheng et al. 2022).

We use the binary cross-entropy loss for SRM:

ℓSRM = λs

n∑
j=1

ℓbce(likelihoodj , GTj), (13)

where λs is set to 5.0, n is the number of salient objects in
the image, ℓbce is a binary cross-entropy loss function and
likelihoodj is the likelihood of an object being visited in
the jth round prediction by SRM. It is noteworthy that the
corresponding ground truth, GTj ∈ {0, 1}N , either has only
one salient object or no salient object, since our SRM pre-
dicts salient objects one by one and predicts no object when
there are no more salient instances in the scene. Thus, the
final loss for SeqRank can be written as:

ℓSeqRank = ℓFOM + ℓSRM . (14)

Experiments
Datasets and Evaluation Metrics
We conduct experiments on the public SOR benchmarks,
ASSR (Siris et al. 2020) and IRSR (Liu et al. 2021a). ASSR
is constructed from MS-COCO (Lin et al. 2014) and SAL-
ICON (Jiang et al. 2015) and comprises 7646 images for
training, 1436 images for validation and 2418 images for
testing. Each image is labeled with at most five salient

instances with ranks. IRSR consists of 6059 training im-
ages and 2929 testing images, with fewer annotation errors
but more challenging as each image contains up to eight
ranked salient instances. The images in both SOR bench-
marks cover a wide range of scenes and common objects,
presenting a great challenge for the SOR task.

We evaluate our results using three metrics: Salient Ob-
ject Ranking (SOR) (Islam, Kalash, and Bruce 2018),
Segmentation-Aware SOR (SA-SOR) (Liu et al. 2021a), and
Mean Absolute Error (MAE). SOR is formulated as the
Spearman’s rank correlation between the predicted rankings
and the ground truth, with values normalized to a range of
0.0 to 1.0 and higher values indicating better performance.
SA-SOR calculates the Pearson correlation between the pre-
dicted rankings and the ground truth, and it also penal-
izes missed salient instances or false negative predictions.
SA-SOR measures the consistency between the predicted
saliency ranking and the ground truth, with values ranging
from -1.0 to 1.0, where a positive/negative value indicates
a positive/negative correlation. MAE reflects the quality of
salient object segmentation, and smaller means better.

Implementation Details
We use Swin Transformer (Liu et al. 2021c) pretrained on
ImageNet (Krizhevsky, Sutskever, and Hinton 2012) as our
backbone network and FPN (Lin et al. 2017) as our pixel de-
coder. The height and width of the RoI window for our FOM
are set dynamically according to the scales of the feati, with
h = w = 1/2/3 when i = 5/4/3. We set N = 100, d = 256,
L = 2 and P = H

32 × W
32 , where H,W are the resolution of

the input image, which is set to 800× 800. During training,
suggested by (Cheng et al. 2022), we calculate ℓmask on K
randomly sampled points instead of the whole mask to im-
prove training efficiency and reduce training memory. K is
set to 12544, i.e., 112× 112 points. We trained SeqRank for
30k iterations with a batch size of 32. We adopt AdamW
optimizer with a weight decay of 1e-4. The initial learning
rate is set to 1e-4 and is decayed to 1e-5 after 20k iterations.
We use random flip for data augmentation. We develop Se-
qRank using Detectron2 (Wu et al. 2019) and train it with 4
NVIDIA A100-SXM4-80GB.
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Figure 5: Visual Comparison. Salient instances are colorized using varying color temperatures, ranging from warm to cool,
indicating the order in which they are visited. In general, our model produces more favorable results compared to other methods.

Quantitative Results
To thoroughly evaluate our approach, we compare it with
10 other related methods, including two SOD methods (Liu
et al. 2021b; Wang et al. 2023), one SID method (Fan
et al. 2019), two instance segmentation methods (Fang et al.
2021b; Cheng et al. 2022) and five SOR methods (Islam,
Kalash, and Bruce 2018; Siris et al. 2020; Fang et al. 2021a;
Liu et al. 2021a; Tian et al. 2022a). For a fair compari-
son, we retrain all these methods on both the ASSR and
IRSR benchmarks. For SOD and SID methods, we compute
the saliency ranks based on the average saliency intensity
following (2018). For instance segmentation methods, we
consider the rank labels to be the category labels. Table 1
shows the quantitative results. Our method consistently out-
performs all other compared methods in nearly every met-
ric on both benchmarks. Notably, our SA-SOR scores sur-
pass the second-best by a clear margin of 5.4% and 6.1% on
ASSR and IRSR, respectively, demonstrating our approach’s
superior ability to predict human attention shifts. Addition-
ally, our method significantly improves the MAE scores in
the more challenging IRSR benchmark, which contains im-
ages with more salient instances. These results clearly high-
light the advantages of the proposed SeqRank.

Visual Comparison
We also present the visual comparison in Figure 5. In gen-
eral, our approach can produce more favorable results com-
pared to the other methods. For example, in the second row,
our method accurately identifies the tennis player as the most
salient object and then shifts focus to the tennis ball that is
small in size. In contrast, other approaches incorrectly high-
light either another person or the tennis racket as the second
most salient object. In the third row, our method predicts a
natural ranking by identifying the man as the most salient
object, followed by the cake and then the cup near it. Ad-
ditionally, our approach is capable of detecting and ranking
multiple salient instances in complex scenes. For instance, in
the fifth row, despite the presence of a crowd of people and
many small distractors, our method still produces pleasing
segmentation and ranking results.

Ablation Study
We now conduct experiments to understand the effectiveness
of the proposed modules and strategies. For simplicity, all
experiments are conducted on the ASSR dataset.
Fovea Layer is the basic component of our FOM. To val-
idate its effectiveness, we replace it with a standard trans-



Method SA-SOR SOR MAE
transformer decoder layer 0.672 0.849 7.82
fovea layer (h=w=1/1/1) 0.680 0.864 7.35
fovea layer (h=w=1/2/3) 0.685 0.870 7.22

Table 2: Analysis on the Fovea Layer. h,w are the height
and the width of the RoI window. We set h and w according
to the scales of feati, where i ∈ {5, 4, 3}.

Method #FL SA-SOR SOR MAE FLOPs
feat5 only 3 0.676 0.859 7.57 512.4G
feat3 only 3 0.678 0.870 7.44 516.1G
multi-scale 3 0.682 0.872 7.59 513.9G
multi-scale 6 0.685 0.870 7.22 516.4G

Table 3: Multi-scale v.s. single-scale. Multi-scale strategy
uses feat5, feat4 and feat3 in turn, while single-scale
strategy only uses image features at a single scale for all
fovea layers. #FL: the number of fovea layers.

former decoder layer (Vaswani et al. 2017). We further an-
alyze the impact of varying the size of the RoI window. As
shown in Table 2, the fovea layer consistently achieves better
results than the transformer decoder layer, regardless of the
size of the RoI window. In particular, our aggressive settings
(h=w=1/2/3) lead to a 7.7% decrease in the MAE scores.
Multi-scale strategy is adopted by our FOM, which updates
object queries by using feat5, feat4 and feat3 in sequence.
We compare it with the single-scale strategy in Table 3. It
shows that the high-resolution features (feat3) are more im-
portant for accurate segmentation but at the expense of in-
creased FLOPs. We adopt the multi-scale strategy since it
strikes a balance between performance and FLOPs.
Sequential ranking of salient objects is the core design of
SRM. This is in contrast to previous SOR models, which
rank salient objects in parallel by directly predicting their
saliency scores or ranks. Table 4 compares the two ranking
strategies and shows that the sequential ranking strategy per-
forms better, regardless of whether the baseline or SRM is
used. Besides, SRM with the sequential strategy can lead to
the best performance, demonstrating the effectiveness of our
SRM and sequential ranking strategy, which agrees with hu-
man viewing behaviors.
Sequential Ranking Module. We study the importance of
each component by removing them one at a time. As shown
in Table 5, we can see that the ”feat to q attn” layer is more
important for our SRM design. We think this is because
the subsequent saliency competition modeling involves the
concatenation between the pixel embedding and the object
query, which demands the alignment between image fea-
tures and object queries. When we further remove the selec-
tion and concatenate operations, i.e., baseline, we find that
both SA-SOR and SOR improve moderately. Moreover, we
conduct ablation experiments to understand the importance
of the first and second self-attention layers. Our results show
that the second self-attention layer, which is behind the ”q to
feat attn” layer, is more useful for this task.
Generalization Ability. We further evaluate SeqRank’s

Method Mode SA-SOR SOR MAE
w/o SRM Parallel 0.669 0.862 7.55
Baseline Parallel 0.665 0.861 7.41
Baseline Sequential 0.670 0.870 7.47
SRM Parallel 0.676 0.857 7.68
SRM Sequential 0.685 0.870 7.22

Table 4: Sequential ranking v.s. Parallel ranking. w/o SRM:
remove SRM and rank salient objects in parallel. Baseline:
a cross-attention layer followed by a self-attention layer and
a feed-forward neural network.

Method SA-SOR SOR MAE
w/o feat to q attn 0.665 0.861 7.31
w/o first self-attn 0.679 0.873 7.39
w/o second self-attn 0.672 0.864 7.25
Baseline 0.670 0.870 7.47
SRM 0.685 0.870 7.22

Table 5: Analysis on the SRM. To validate the importance
of each component, we remove them one at a time. Base-
line: only keep the last two attention layers and the last feed-
forward neural network.

Figure 6: Examples from Internet. The input images are in
the top row and the predicted results are in the bottom row.

generalization ability with new internet-sourced images. The
results, shown in Figure 6, demonstrate its robust perfor-
mance and generalization across various scenarios.

Conclusions
In this work, we propose SeqRank, a novel method for
salient object ranking (SOR). It predicts the order of hu-
man attention on various scene objects in a sequential man-
ner, allowing us to model the temporal relationships between
objects. Moreover, we propose Fovea Module (FOM) and
Sequential Ranking Module (SRM) to facilitate an accurate
and realistic prediction. The FOM stimulates human foveal
vision to learn high-acuity visual features, while the SRM
aims to mimic human peripheral vision to predict where
the viewer’s attention is likely to shift to next. We conduct
extensive experiments to demonstrate the superior perfor-
mance of SeqRank. We hope our work can inspire future
research in this direction and facilitate various applications
that require understanding human attention.
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