
Delving Deeper into Cross-lingual Visual Question Answering

Anonymous ACL submission

Abstract

Visual question answering (VQA) is one of the001
crucial vision-and-language tasks. Yet, existing002
VQA research has mostly focused on the En-003
glish language, due to a lack of suitable evalua-004
tion resources. Previous work on cross-lingual005
VQA has reported poor zero-shot transfer per-006
formance of current multilingual multimodal007
Transformers with large gaps to monolingual008
performance, without any deeper analysis. In009
this work, we delve deeper into the different010
aspects of cross-lingual VQA, aiming to un-011
derstand the impact of input data, fine-tuning012
and evaluation regimes, and interactions be-013
tween the modalities in cross-lingual setups.014
The key results of our analysis are: 1) We show015
that simple modifications to the standard train-016
ing setup can substantially reduce the transfer017
gap to monolingual English performance, yield-018
ing +10 accuracy points over existing methods.019
2) We analyze cross-lingual VQA across dif-020
ferent question types of varying complexity for021
different multilingual multimodal Transform-022
ers, and identify question types that are the023
most difficult to improve on. 3) We provide024
an analysis of modality biases present in train-025
ing data and models, revealing why zero-shot026
performance gaps remain for certain question027
types and languages. We will release our code028
at [URL-ANONYMOUS].029

1 Introduction030

The lack of multilingual resources has hindered031

the development and evaluation of Visual Ques-032

tion Answering (VQA) methods beyond the En-033

glish language until recently. A rise in inter-034

est in creating multilingual Vision-and-Language035

(V&L) resources has inspired more research in036

this area (Srinivasan et al., 2021; Su et al., 2021;037

Liu et al., 2021a; Pfeiffer et al., 2022; Wang et al.,038

2021; Bugliarello et al., 2022, inter alia). Large039

Transformer-based models pretrained on images040

and text in multiple different languages have been041

proven as a viable vehicle for the development of042

multilingual V&L task architectures through trans- 043

fer learning, but such models are still few and far 044

between (M3P, UC2; Ni et al., 2021; Zhou et al., 045

2021). Large decreases in task performance be- 046

tween monolingual and (zero-shot) cross-lingual 047

transfer setups have been measured and reported, 048

among other multilingual V&L tasks, in VQA 049

(Pfeiffer et al., 2022). Yet, the reasons for such 050

low results in this pivotal V&L task have not been 051

investigated in depth. 052

In this work, we aim to shed new light on 053

the cross-lingual performance gap of cross-lingual 054

VQA models from multiple angles. To the best 055

of our knowledge, we are the first to provide a 056

comprehensive analysis of multilingual VQA, with 057

focus on cross-lingual transfer scenarios. We as- 058

sess and discuss the impact of diverse prediction 059

head architectures, extending input signals, as well 060

as more sophisticated fine-tuning strategies on the 061

final cross-lingual VQA performance, aiming to 062

mitigate the present performance gap. We further 063

conduct extensive analyses into cross-lingual VQA 064

model configurations to better understand their cur- 065

rent gaps and modes of failure, across different 066

multilingual multimodal Transformers, and in zero- 067

shot and few-shot scenarios. Finally, we investigate 068

whether they suffer from the so-called unimodal 069

biases: that is, we probe if the models truly rea- 070

son over both images and questions to solve the 071

VQA task, or if they take unimodal ‘shortcuts’ in- 072

stead, exploiting spurious correlations and artifacts 073

of data creation. 074

We find that standard approaches from text-only 075

cross-lingual transfer scenarios (Pires et al., 2019; 076

Hu et al., 2020) do not leverage the full multilingual 077

capabilities of the pretrained models; we measure 078

considerably worse performance of ‘standard’ fine- 079

tuning compared to a simple modified fine-tuning 080

regime. Interestingly, we report a discrepancy be- 081

tween monolingual and cross-lingual performance 082

with the modified fine-tuning regime: while they 083
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do not have any substantial impact on the model084

performance in the source language (English), they085

considerably improve cross-lingual VQA capabili-086

ties, achieving gains of more than 10 absolute ac-087

curacy points over the baselines.088

2 Preliminaries089

The VQA task is typically framed as a classifica-090

tion problem with a large number of classes. For091

instance, in the VQA task on the standard English092

GQA dataset (Hudson and Manning, 2019), given093

a pair of an image and a question, a model needs094

to predict a correct answer from 1,853 possible095

classes. GQA consists of diverse structural and096

semantic patterns, in which the questions are vi-097

sually grounded in the image. In multilingual and098

cross-lingual VQA, the goal is to make similar pre-099

dictions, but the questions can be posed in different100

target languages (Pfeiffer et al., 2022): e.g., the101

VQA task on the multilingual xGQA dataset (Pfeif-102

fer et al., 2022) relies on the same set of 1,853103

classes as English GQA.104

We base all our analyses and experiments on the105

xGQA dataset, which is, due to its size and lan-106

guage coverage, arguably the most comprehensive107

evaluation resource for cross-lingual VQA to date.108

It has also been included in the multimodal multi-109

lingual evaluation benchmark IGLUE (Bugliarello110

et al., 2022). xGQA is the multilingual extension111

of the English GQA dataset (Hudson and Manning,112

2019) to 7 typologically diverse languages.1113

In this work, we utilize and empirically compare114

two state-of-the-art Transformer-based pretrained115

multimodal multilingual architectures: M3P (Ni116

et al., 2021) and UC2 (Zhou et al., 2021).2 The117

standard cross-lingual zero-shot transfer setup for118

VQA involves fine-tuning all the weights of the119

large pretrained model on the downstream task data120

in the source language only. In the few-shot setup,121

after the source-language fine-tuning, the model122

is additionally optimized on a handful of task-123

annotated examples in the target language (Pfeiffer124

et al., 2022).125

3 Modeling Methods126

Motivation. Recent work on VQA in cross-lingual127

settings (Pfeiffer et al., 2022; Bugliarello et al.,128

1For further details regarding xGQA we refer the reader to
the original work.

2For technical details of the two models, we refer the reader
to their respective papers.

2022) benchmarked standard multimodal architec- 129

tures in zero-shot and few-shot transfer scenarios 130

on the xGQA dataset, without aiming to understand 131

the particulars of the cross-lingual VQA task more 132

profoundly. At the same time, they report large 133

gaps of cross-lingual transfer performance when 134

compared to monolingual English performance, 135

suggesting that there is ample room for improve- 136

ment. In this work, we aim to leverage novel in- 137

sights into different aspects of the cross-lingual 138

VQA task (e.g., analyses over different question 139

types or classification architectures) to guide im- 140

proved cross-lingual VQA methods, described in 141

what follows. In particular, we assess the impact of 142

three orthogonal directions: 1) classification archi- 143

tectures (§3.1); 2) (richer) input signals (§3.2); 3) 144

fine-tuning strategies (§3.3). 145

3.1 Classification Architecture Variants 146

The original work on xGQA (Pfeiffer et al., 2022) 147

evaluated only a simple ‘shallow’ linear classifica- 148

tion head, termed Linear here: the output [CLS] 149

token of the pretrained Transformer-based model 150

(which has cross-attended over all text and image 151

features) is simply passed into such linear classifi- 152

cation. However, we hypothesize that this choice 153

might have a substantial impact on transfer per- 154

formance. Therefore, in the so-called Deep vari- 155

ant, instead of a linear classification head, we add 156

a 2-layer transformation network (ftrans) with the 157

GELU activation function (Hendrycks and Gimpel, 158

2016), dropout and a layer-normalization layer, be- 159

fore feeding the representations into a linear layer 160

for classification. The first layer of ftrans uses an 161

orthogonal initializer (Saxe et al., 2014). Unless 162

noted otherwise, all of our following experiments 163

are based on this ‘deeper’ architecture.3 164

3.2 Input Signal 165

A large number of output classes (see §2) po- 166

tentially amplifies the difficulty of zero-shot and 167

few-shot cross-lingual transfer due to the need of 168

aligning contextual representations in multiple lan- 169

guages for multi-class classifications. Standard 170

VQA datasets such as GQA and xGQA contain 171

questions of five different structural types (Verify, 172

Logical, Query, Choose, Compare).4 Pfeiffer et al. 173

(2022) have demonstrated a considerable perfor- 174

mance variation over different question types, e.g., 175

3We illustrate the architecture in Figure 3 in Appendix D.
4See Appendix B for example questions per each of the

five question types.
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Figure 1: Self-Bootstrapping (§3.3). Top: Fine-tuning
with frozen text embeddings (Stage 1). Bottom: Fine-
tuning with text embeddings and classification head
frozen. Other parameters are reset to their pretrained
values or randomly initialized (Stage 2).

there is a large cross-lingual performance drop es-176

pecially for Choose-type questions.177

To help alleviate this issue, we propose to178

feed the model with designated question-type to-179

kens (Prager, 2006; Murdock et al., 2012) which180

appear in GQA and xGQA. The idea is to in-181

fluence the label distribution for the VQA clas-182

sification task by additionally conditioning on a183

question-type token.5 More concretely, we prepend184

a question-type token QType in English to the185

text input. We use structural question types as the186

question-type tokens; the text input then takes the187

following format: ‘[QType] : [Question]’.6188

As the xGQA data contains questions with bi-189

nary answers (i.e. Yes/No questions). We anticipate190

that for a large fixed number of output classes, these191

questions should benefit the most from using the192

question-type tokens. The models which rely on193

this question-type conditioning are denoted with194

the superscript Q, e.g., M3PQ, see also later §3.4.195

3.3 Fine-Tuning Strategy196

Misalignment of multilingual text embeddings (Sø-197

gaard et al., 2018; Dubossarsky et al., 2020) has198

been indicated by Pfeiffer et al. (2022) as one of199

the principal causes for reduced zero-shot perfor-200

mance in the cross-lingual VQA tasks. Therefore,201

we propose two fine-tuning strategies, tailored ex-202

actly towards mitigating such undesired shifts in203

5See Appendix C for a probabilistic explanation. A similar
idea for multi-task setups outside of the multilingual domain
has been explored by, e.g., Cho et al. (2021).

6Recent work (Schick and Schütze, 2021; Li and Liang,
2021; Liu et al., 2021b; Shin et al., 2020) suggests that there
exist more sophisticated prefixes/prompts and prompt-tuning
methods. As our focus is not on conducting a large-scale
analysis over different prompt-based conditioning, we leave
this topic for future work.

the multilingual embedding space. 204

Freezing Text Embeddings. In the first variant, we 205

freeze text embeddings during fine-tuning and only 206

optimize the Transformer weights and the classifi- 207

cation head. This should prevent misalignment of 208

the text embedding space during fine-tuning. This 209

strategy, labelled +FT, is referred to as contrastive 210

tuning by Zhai et al. (2021). 211

Self-Bootstrapping. Zero-shot cross-lingual trans- 212

fer via standard fine-tuning is known to be sensi- 213

tive to parameter initialization (Bugliarello et al., 214

2022), and a good initialization of the classification 215

head improves generalization without degrading 216

pretrained features (Kumar et al., 2022). Further- 217

more, warm-start training (Ash and Adams, 2020) 218

periodically shrinks and perturbs weights to im- 219

prove generalization. Motivated by these insights 220

from prior research, we first train the network to 221

learn the classification head, then reset and fine- 222

tune the remaining model parameters. This leads 223

to a two-stage fine-tuning process, termed self- 224

bootstrapping (labeled +SB), illustrated in Figure 1 225

and outlined here: 226

Stage One: We fine-tune all parameters (with text 227

embeddings frozen) on the task data. 228

Stage Two: We 1) freeze the classification head (ex- 229

cluding the bias parameters) and text embeddings, 230

2) reset the remaining parameters in the multimodal 231

multilingual model to pretrained weights, and 3) 232

re-initialize the ftrans network (see §3.1). We then 233

fine-tune the transformer weights on the task data.7 234

To make fair comparisons between +FT fine- 235

tuning and self-bootstrapping, we define two extra 236

+FT variants that match the fine-tuning budget of 237

self-bootstrapping. In +FTshort we fine-tune un- 238

til the budget of self-bootstrapping’s Stage 1 is 239

matched. In +FTlong, we fine-tune until the total 240

training budget of self-bootstrapping is matched. 241

3.4 Model Configurations and Notation 242

Different choices across the orthogonal axes of clas- 243

sification architecture, input, and fine-tuning strat- 244

egy give rise to a wide spectrum of model configu- 245

rations. In particular, we can independently choose 246

1) between the Linear or Deep classification archi- 247

tecture; 2) whether to include the information on 248

7In our preliminary experiments, we found that self-
bootstrapping-based fine-tuning still achieves better perfor-
mance even if we perform Stage 1 with tunable text embed-
dings (i.e., standard fine-tuning). Freezing text embeddings in
Stage 1 is an empirical decision, freezing them in Stage 2 is
essential for self-bootstrapping to work.
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the question type at input (Q) or not; 3) whether to249

apply standard fine-tuning from prior work (Pfeif-250

fer et al., 2022), or rely on +FT or +SB fine-tuning251

strategies. On top of this, we can also vary 4) the252

underlying model (M3P or UC2), and 5) the trans-253

fer scenario (zero-shot versus few-shot). For clarity254

of presentation, unless noted otherwise, we always255

assume zero-shot scenarios and Deep classification256

architecture. Moreover, different variants are also257

labelled in a systematic manner using abbreviations258

introduced in §3.1-§3.3: e.g., M3P+SB means that259

we apply self-bootstrapping on the underlying M3P260

model (with Deep architecture assumed). In an-261

other example, UC2Q+FTlong means that we apply262

the long variant of +FT fine-tuning (see §3.3) with263

UC2 as the underlying model, and we condition264

the model on the information about question types.265

4 Analysis Methods266

The VQA task is inherently multimodal—a model267

is required to reason over both images and ques-268

tions in textual form to solve the task. However,269

as with some unimodal text-only tasks (Gururan-270

gan et al., 2018; Poliak et al., 2018) VQA models271

might also be prone to ‘taking shortcuts’, that is, ex-272

ploiting spurious correlations and artifacts of data273

creation. In other words, the VQA model might274

circumvent the multimodal aspect and only focus275

on a single modality to solve the task (Agrawal276

et al., 2016, 2018). Therefore, to better understand277

the multimodal reasoning abilities of VQA models278

in cross-lingual transfer, we propose several diag-279

nostic approaches and methods that ablate the input280

features of the models, inspired by the diagnostic281

methods of Frank et al. (2021) and Shrestha et al.282

(2020) in monolingual setups. They should provide283

us with deeper insights into the inner workings of284

cross-lingual VQA models.285

4.1 Unimodal Evaluation286

The first set of analyses involves a combination of287

standard multimodal (MM) training with unimodal288

inference/evaluation. During training, we pass both289

visual features and text tokens into the model. How-290

ever, at inference, we provide the model with fea-291

tures of only one modality (Visual modality: V or292

Text: T). This naturally gives rise to the following293

two experimental setups:294

MM-V: When evaluating on xGQA’s test set, we295

pass only a single ‘?’ as textual input to the model,296

while the standard visual features are used.297

MM-T: At inference, we zero out all visual fea- 298

tures (e.g., object features, spatial features), only 299

providing the model with the total number of ob- 300

jects detected; the unchanged questions in the tex- 301

tual form are provided to the model. 302

4.2 Unimodal Training and Evaluation 303

Next, we probe purely unimodal models trained 304

on a single modality (V or T): during training, 305

the model is provided only with visual features 306

or text tokens; at inference, we again only provide 307

the model with unimodal features from the same 308

modality. This creates three experimental setups: 309

V-V: We pass only ‘?’ as a (placeholder) textual in- 310

put to the model, while the standard visual features 311

(from the full multimodal model) are used. 312

T-T: All visual features are zeroed out; we only pro- 313

vide the number of objects detected; the unchanged 314

questions in the textual form are provided. 315

TG-TG: We randomly sample object features from 316

a Gaussian distribution with a mean and a standard 317

deviation that match the actual object feature dis- 318

tribution for that image. Spatial features and the 319

number of objects detected are kept as in the full 320

MM model. The standard unchanged questions in 321

the textual form are provided to the model. 322

5 Experimental Setup 323

Pretrained Models and Data. As introduced in 324

§2, we 1) rely on two standard state-of-the-art mul- 325

timodal multilingual transformers (M3P, UC2; Ni 326

et al., 2021; Zhou et al., 2021) as the underlying 327

pretrained models, and 2) conduct all evaluations 328

on the standard monolingual English GQA dataset, 329

and its multilingual extension: xGQA. 330

The GQA dataset consists of two training sets: 331

full and balanced. The full dataset contains 113K 332

images and 22M questions, whereas the balanced 333

dataset consists of 1.7M data samples. The dataset 334

also contains a balanced test-dev set with 12,578 335

questions and 398 images for evaluation. In xGQA, 336

the questions are manually translated from the 337

GQA test-dev set into 7 different languages: Ben- 338

gali, Chinese (simplified), German, Indonesian, Ko- 339

rean, Portuguese, and Russian. xGQA provides 340

a zero-shot evaluation set and a different train- 341

ing/evaluation set for the few-shot setting. Please 342

see the original paper for details. 343

Training Details and Hyperparameters. Follow- 344

ing the recommendations from Bugliarello et al. 345
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(2022), and due to a large number of experi-346

ments, we predominantly run training on the more347

lightweight balanced subset of GQA.8 We also de-348

fine a total training budget of 6 epochs (less than349

24 hours of training). For the self-bootstrapping350

procedure, this means the total training time (Stage351

1 + Stage 2) is equal to 6 epochs.9352

6 Results and Discussion353

In §6.1, we discuss the results of the different mod-354

eling approaches across the three dimensions (see355

§3): classification architectures, input signals and356

fine-tuning strategies. A finer-grained analysis per-357

taining to different structural question types is pro-358

vided in §6.2. Finally, in §6.3 we delve deeper into359

the VQA models’ susceptibility towards exploiting360

unimodal biases and artifacts of the VQA datasets,361

relying on model variants discussed in §4.362

6.1 Model Configurations363

A summary of the results with a wide spectrum364

of possible model configurations (see §3.4) is pro-365

vided in Table 1, with accuracy as the main metric.366

First, an interesting trend emerges: different367

model configurations have no significant effect on368

performance in the source language (English), espe-369

cially so for the better-performing pretrained model370

UC2. However, variations in different modelling371

choices from §3 do show considerable impact on372

cross-lingual transfer performance: we report gains373

by more than 16 and 13 absolute accuracy points374

for M3P and UC2, respectively.375

Classification Architectures. Surprisingly, simply376

adding additional non-linear layers to the predic-377

tion head has a considerable impact on the cross-378

lingual transfer performance of the baseline models379

(especially for the M3P model) while performance380

in the source language stays nearly the same (Ta-381

ble 1, Group G1). Put simply, a deeper classifi-382

8Another established yet less efficient training procedure is
to train on the full GQA dataset first, then further train on the
balanced dataset (Li et al., 2020). This procedure can produce
good results on the English evaluation dataset at the cost of
a substantial increase in computation demands (∼4 days on
one NVIDIA V100 for one model). Furthermore, our initial
experiments have indicated that training with the balanced set
performs similarly to the previously reported baselines in the
xGQA paper while using substantially less computing. We
stress that we also further run experiments under the more
demanding training regime (Li et al., 2020) with the best-
performing model configuration from our experiments. For
more details, we refer the reader to §7.

9For detailed hyperparameters and breakdown of training
times, please see Appendix A.

cation architecture seems to benefit cross-lingual 383

transfer performance, and the extent of its impact 384

cannot be captured by monolingual English-only 385

evaluation.10 Another key observation is that the 386

impact of depth is model-dependent with stronger 387

configurations. While it yields large gains when 388

we start from the baseline transfer models (G1), 389

the gains from the classification architecture are 390

less pronounced or even non-existent, e.g., for the 391

best-performing UC2Q + SB model variant (see 392

Group G4): 39.87 (Deep) versus 40.89 (Linear).11 393

Input Signal. The large number of output classes 394

of GQA potentially results in a noisy distribution 395

over the predicted labels when sentences in a dif- 396

ferent language are passed into the model. We find 397

that including the question-type token (Q) improves 398

the average cross-lingual zero-shot transfer accu- 399

racy by more than 10% relatively for both M3PQ 400

and UC2Q (Table 1, Group G2). This modelling 401

decision again has an inconsequential impact on 402

the source language but suggests that the question- 403

type token can partially mitigate the poor perfor- 404

mance of cross-lingual transfer. A comparison of 405

G3 versus G4 models in Table 1 demonstrates that 406

including the question type at input yields gains of 407

almost 6 accuracy points with M3P, and more than 408

3 points with UC2, with especially large gains for 409

Bengali as the lowest-performing language. 410

Fine-tuning Strategy. Freezing the embeddings to 411

mitigate a shift in the multilingual embedding space 412

results in positive gains for cross-lingual scenar- 413

ios (Table 1, Group G4).12 The self-bootstrapping 414

strategy (+SB with and without Q) achieves fur- 415

ther gains over both +FT embedding-freezing ex- 416

perimental setups. At the same time, it also 417

yields much lower variance across languages (with 418

Q). This validates that resetting parameters with 419

self-bootstrapping positively impacts model perfor- 420

mance, and supports our hypothesis that first fixing 421

the classifier weights to a good value leads to better 422

performance and lower variance.13 423

10Further, to isolate the source of these improvements, we
conducted additional experiments by removing the Layer-
Norm from the deeper architecture. The results are in Table 8
in the appendix. Removing the LayerNorm reduces zero-shot
accuracy of M3P, and increases the average variance of UC2.

11The gains from classification architecture remained for
the M3P model variant: 36.19 (Deep) versus 18.24 (Linear).

12However, we do witness a slight decrease for UC2 when
training for longer.

13The average +SB results of UC2 are statistically signifi-
cant against UC2Q and UC2Q +FTshort (p < 0.05).
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Method En De Zh Ko Id Bn Pt Ru Avg

G1 M3P ∗ (Linear) 51.88±0.7 27.45±5.8 16.33±8.3 13.70±5.4 25.25±11.4 10.59±3.4 21.10±3.4 20.95±3.3 19.34
M3P∗ 51.66±0.6 35.33±5.4 27.80±10.9 25.55±11.4 30.54±9.8 17.94±8.6 30.61±7.2 29.74±6.6 28.22

G2 M3PQ 50.90±0.5 37.95±1.5 35.06±2.6 32.31±3.4 36.56±2.0 27.69±1.8 36.64±2.4 37.30±4.6 34.79

G3 M3P + SB 47.26±1.0 35.71±6.1 29.70±8.2 30.33±8.3 28.16±2.7 20.70±3.9 34.65±6.5 34.63±6.9 30.56

G4 M3PQ + FTshort 49.48±0.3 38.68±2.6 34.94±2.2 34.17±2.6 37.18±2.4 30.00±2.2 37.35±1.9 37.57±2.4 35.56
M3PQ + FTlong 51.00±0.9 38.42±2.1 35.05±2.1 33.38±2.5 36.24±2.3 27.77±1.7 36.78±2.3 37.42±2.0 35.01
M3PQ + SB 46.70±0.7 39.52±1.3 36.15±0.9 35.67±1.1 36.73±1.6 29.75±1.4 37.59±0.8 37.93±0.9 36.19

G1 UC2 ∗ (Linear) 57.83±0.3 40.57±1.7 35.54±3.4 16.95±6.1 34.18±0.8 8.53±1.9 24.90±3.7 24.05±4.6 26.39
UC2∗ 58.31±0.2 41.33±1.6 34.77±2.2 23.87±1.5 34.79±1.3 11.82±1.9 29.30±4.5 29.41±3.7 29.33

G2 UC2Q 58.35±0.4 45.13±0.8 42.85±0.9 31.33±1.0 35.64±0.9 24.86±0.6 37.19±0.6 38.61±0.9 36.52

G3 UC2 + SB 58.52±0.4 48.51±1.3 43.97±0.3 35.08±2.0 37.33±3.2 19.09±4.5 35.29±2.9 35.99±3.5 36.46

G4 UC2Q + FTshort 57.83±0.5 47.17±1.6 45.59±0.9 34.19±0.7 37.04±1.1 24.94±0.5 38.32±1.2 39.96±1.4 38.17
UC2Q + FTlong 58.15±0.6 44.27±0.5 42.49±0.4 29.75±0.3 36.81±0.4 24.48±0.2 35.39±0.4 37.32±0.4 35.79
UC2Q + SB 58.57±0.2 49.51±1.1 46.52±0.9 36.48±1.3 38.92±1.3 26.23±1.5 39.76±0.6 41.72±0.3 39.87

Table 1: Zero-shot transfer results on xGQA. Avg. refers to the average accuracy across languages excluding
English. Group G1: baselines. ∗: our runs of baselines trained on balanced GQA. Group G2: results using a
question-type token. Group G3: results using self-bootstrapping (+SB). Group G4: combining different fine-tuning
strategy with the use of question-type tokens. Best results in each column and per each pretrained model across
Groups G1-G4 are shown in bold. Results are averaged across 4 random seeds.

6.2 Performance across Question Types424

Finer-grained results per individual question type425

are summarized in Figure 2, where we compare the426

baseline models with the best-performing variant,427

which utilizes the question-type at the input and428

the self-bootstrapping strategy. In sum, we observe429

gains across all structural question-types for such430
Q+SB model configurations, both for M3P and431

UC2. Performance on Query and Choose questions432

meets substantial gains, suggesting that improving433

the alignment between multilingual text embed-434

dings has a positive effect on performance, espe-435

cially for non-binary, free-form question-types.14436

6.3 Multi-Modal versus Unimodal VQA?437

We further aim to understand whether or not the un-438

derlying models learn to rely on a single modality439

to make predictions, either due to spurious corre-440

lations in the data or the model’s inability to ef-441

fectively combine multi-modal features. The main442

results are provided in Table 2.443

Unimodal Evaluation. The scores of MM-T/MM-444

V ablations reveal the sensitivity to missing fea-445

tures in each input modality at test time. We ob-446

serve a drop in accuracy of more than 50% across447

all question types in the MM-T/MM-V experiments448

compared to their counterparts that assume ‘full-449

14See exact numerical values in Appendix B.

feature’ multi-modal input at inference. Moreover, 450

Verify, Logical and Compare questions seem more 451

dependent on text features. The results confirm that 452

the trained model needs both modalities to achieve 453

good cross-lingual performance, although not at 454

equal proportions. In other words, high zero-shot 455

transfer performance observed in our experiments 456

are obtained by leveraging both modalities in syn- 457

ergy, and not by ‘taking unimodal shortcuts’ (§4). 458

Unimodal Training and Evaluation. V-V/T-T/TG- 459

TG experiments reveal the worst-case exploitation 460

of the data biases in modalities by the models. The 461

results suggest that a majority of the final perfor- 462

mance can be attained with text features in fine- 463

tuned models for the Logical, Verify, and Compare 464

question types. Therefore, the results indicate that 465

these question types contain modality biases that 466

can be exploited by unimodal VQA architectures. 467

The exploitable data biases could also explain the 468

observations from prior experiments, where we 469

noted that the VQA models assign different atten- 470

tion to the text and vision features. We suspect 471

this could also explain the asymmetrical attention 472

over modalities, observed by Frank et al. (2021) in 473

monolingual multi-modal models. 474

Biases across Question Types. Unimodally 475

trained models can only attain ∼20% (M3P) and 476

∼26% (UC2) accuracy at best for the Query ques- 477
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Figure 2: Zero-shot cross-lingual transfer performance across individual question types in GQA and xGQA.

M3P V-V T-T TG-TG M3PQ M3PQ+SB MM-V MM-T

Verify 45.19 53.98 54.88 58.35 55.98 0.1 18.59
Logical 43.18 51.66 53.06 53.89 53.65 0.0 19.87
Compare 27.76 46.22 39.64 45.82 47.14 0.1 17.85
Query 2.63 4.39 11.42 21.86 24.50 6.81 4.46
Choose 1.21 8.52 22.26 29.43 33.57 2.08 12.22

UC2 V-V T-T TG-TG UC2Q UC2Q+SB MM-V MM-T

Verify 44.60 51.87 57.00 59.94 61.70 4.21 24.91
Logical 44.26 50.78 52.57 54.87 56.49 6.27 21.12
Compare 33.45 40.55 46.91 49.15 51.73 2.85 21.08
Query 3.39 6.23 12.11 23.94 27.88 7.30 0.02
Choose 1.39 17.24 23.76 29.66 36.14 2.27 0.14

Table 2: Zero-shot transfer results of M3PQ/UC2Q

trained and tested with visual features only (V-V), text
features only (T-T), text features with partial visual
features (TG-TG), as well as of M3PQ+SB/UC2Q+SB
trained using all features, but exposed only to visual
features (MM-V) or text features (MM-T) at inference
(§4). The scores are averaged over all target languages
in xGQA, excluding English.

tion type, with similar trends observed for Choose.478

Exposing the models to increasingly more visual479

features (from T-T over TG-TG to the full multi-480

model) yields large performance gains. It thus in-481

dicates that Query and Choose questions contain482

fewer exploitable data biases, and additional image-483

text grounding could help improve predictions. Fur-484

ther, Table 2 also reveals that more sophisticated485

fine-tuning strategies such as self-bootstrapping,486

which prevent multilingual text embedding shifts,487

are an effective way to improve performance on488

these two (most challenging) question types.489

In sum, it is crucial to conduct such finer-grained490

analyses across different question types in the mul- 491

tilingual VQA tasks, and not treat them equally 492

with only a global accuracy metric. In particular, 493

our results render Query and Choose question types 494

as by far the most challenging question types for 495

cross-lingual transfer and the types that do not suf- 496

fer from exploitable data biases. Future research 497

in multilingual VQA should put more emphasis 498

on such questions, and approaches that prevent the 499

exploitation of unimodal data biases. Future re- 500

search should also look beyond the question types 501

currently covered by xGQA, and introduce even 502

more challenging types. 503

7 Further Analyses 504

Training with Full English GQA. To validate the 505

effectiveness of our approach in setups where more 506

data in the source language is available, we addi- 507

tionally run experiments in another VQA setup: we 508

train the best-performing method UC2Q+SB for 5 509

epochs on the unbalanced English GQA dataset, 510

followed by 2 epochs on the balanced dataset. De- 511

spite the fact that this variant leverages more source- 512

language training data and consumes considerably 513

more compute, we do not observe any gain on 514

monolingual English performance, and observe 515

only a small gain in the cross-lingual zero-shot 516

setup: the accuracy score, averaged across all the 517

target languages, increases from 39.87 to 40.51.15 518

15Table 9 in Appendix F provides per-language accuracy.
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Method 0 1 5 48

M3P 35.58 37.62 39.29 42.28
M3P + SB 33.73 35.89 39.27 42.46
M3PQ 33.81 35.40 37.80 41.87
M3PQ + SB 37.14 37.50 38.16 40.00

UC2 30.15 36.09 38.67 44.37
UC2 + SB 38.09 40.51 42.14 46.68
UC2Q 37.28 39.24 40.88 45.11
UC2Q + SB 39.83 42.35 43.68 46.62

Table 3: Averaged few-shot (0/1/5/48-shot) accuracy
scores on xGQA (excl. English) for selected models.

Few-shot Experiments. Besides the zero-shot519

transfer scenario—which is the primary focus of520

this work—we also evaluate whether similar find-521

ings extend to few-shot scenarios, where a handful522

of annotated examples in the target language is as-523

sumed. Following the standard setup of Lauscher524

et al. (2020) we start from the weights of the best-525

performing model, already fine-tuned on English526

VQA data. We then further fine-tune it on the few527

examples in the target language. In particular, we528

conduct few-shot experiments with 1, 5, and 48529

images.16 Following Pfeiffer et al. (2022) we fine-530

tune for 10 epochs, with a learning rate of 5e-5.17531

The results are summarized in Table 3, and indi-532

cate two key findings. First, we corroborate find-533

ings from prior work, where it was shown that fine-534

tuning on an increasing number of shots/examples535

in the target language generally improves model536

performance.18 Second, although baseline models537

are able to recover more performance from zero-538

shot to few-shot setups, our best-performing con-539

figuration with UC2 still significantly outperforms540

the baseline.19 These results indicate that few-shot541

fine-tuning is an additional cost-efficient approach,542

orthogonal to our modelling enhancements from543

§3, to further improve VQA model performance in544

the target language.545

8 Related Work546

Transformer-based models trained on multimodal547

data (Tan and Bansal, 2019; Li et al., 2020; Cho548

et al., 2021; Shen et al., 2021; Kamath et al., 2021,549

inter alia) have demonstrated impressive results550

on English-only VQA tasks. However, as train-551

16We choose 1 and 5 shots because these are typical in
few-shot training setups (Zhao et al., 2021). 48 shots are the
maximum available training data for the few-shot evaluation.

17For reproducibility, see again Appendix A for a detailed
list of hyperparameters.

18See Table 10 in Appendix G for full ‘uncompressed’
scores across models and languages.

19We attribute the on-par performance across M3P variants
to M3P’s sensitivity to initialization and high variance.

ing and evaluation data has previously only been 552

available in high resource languages (Elliott et al., 553

2016, 2017; Barrault et al., 2018; Gao et al., 2015), 554

progress in multilingual vision-and-language learn- 555

ing has not kept pace. 556

More comprehensive multilingual multimodal 557

benchmarks have been developed only recently 558

(Srinivasan et al., 2021; Su et al., 2021; Liu et al., 559

2021a; Pfeiffer et al., 2022; Wang et al., 2021; 560

Bugliarello et al., 2022, inter alia) making it possi- 561

ble to evaluate multimodal models which have ei- 562

ther been pretrained on multilingual data (Ni et al., 563

2021; Zhou et al., 2021) or extended to unseen 564

languages (Liu et al., 2021a; Pfeiffer et al., 2022). 565

Our work complements this recent line of work 566

by delving deeper into cross-lingual visual ques- 567

tion answering, again highlighting the inherent dif- 568

ficulty of multilingual multimodal learning. 569

9 Conclusion 570

In this work, we provide an extensive analysis 571

of the issues present in VQA-related multilingual 572

vision-and-language learning, aiming to inspire 573

new solutions that can improve cross-lingual VQA 574

performance. To this end, we studied simple yet ef- 575

fective methods that increase previously low trans- 576

fer performance and thus substantially reduce the 577

gap to monolingual English performance. This has 578

been achieved through more sophisticated classi- 579

fication architectures, fine-tuning strategies, and 580

modifications of the model input via question-type 581

conditioning. We also conducted further analy- 582

ses and empirical comparisons, including detec- 583

tion of unimodal biases in training and evaluation 584

data, fine-grained analyses across different ques- 585

tion types, and comparisons across different multi- 586

lingual Transformer models and transfer scenarios. 587

We hope that this work will spark more interest and 588

inspire future research on cross-lingual VQA tasks 589

in particular, as well as on multilingual multimodal 590

learning in general. 591
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A Details of Training Setup and868

Hyperparameters869

The hyperparameters used to train M3P and UC2870

models are summarized in Table 4. We conducted871

all experiments with either an NVIDIA V100 or872

A100 GPU. The numbers of training epochs across873

different model configurations are summarized in874

Table 5. Training time for the rest of our zero-shot875

experiments ranges from 8 to 24 hours.876

We searched over the following learning rates:877

2e-5, 5e-5, and 1e-4.878

We note that experiments which rely on Full879

GQA data (−full) have a significantly different880

training budget. This setup followed the previously881

recommended training setup of Li et al. (2020).882

We use pretrained, state-of-the-art Transformer-883

based M3P and UC2 models (open-sourced), which884

build on pre-extracted image features from pre-885

trained object detectors. M3P was pretrained via886

masked language modeling, cross-lingual masked887

language modeling and cross-modal text-image re-888

gion alignments objectives. UC2 was trained sim-889

ilar to M3P with an additional auxiliary task (i.e.890

translation).891

We extracted image features for M3P892

using the ResNet-101 backbone using the893

vqa-maskrcnn-benchmark model (Massa894

and Girshick, 2018) (100 bounding boxes), and895

we extracted image features for UC2 using the896

bottom-up-attention (Anderson et al., 2018)897

(100 bounding boxes). The feature extraction898

procedures are different because the pretrained899

M3P and UC2 use different features.900

Name Value

learning rate (M3P) 0.00002
learning rate (UC2) 0.0001
train batch size 192
warmup steps 0
weight decay 0.05
max grad norm 1
dropout rate 0.5
max seq length 70
max img seq length 50
ftrans hidden dim 768
optimizer AdamW

Table 4: Hyperparameters.

B Structural Question Types in GQA and901

xGQA902

There are 5 different structural questions types903

in GQA and, consequently, in xGQA. We used904

Balanced Balanced
Exp. Stage 1 Stage 2 Total Ep. Time

M3PQ 6 - 6 <24hrs
M3PQ + FT short 4 - 4 <24hrs
M3PQ + FT long 6 - 6 <24hrs
M3PQ + SB 4 2 6 <24hrs

UC2Q 6 - 6 <24hrs
UC2Q + FT short 3 - 3 <24hrs
UC2Q + FT long 6 - 6 <24hrs
UC2Q + SB 3 3 6 <24hrs

Full Balanced
Exp. Stage 1 Stage 2 Total Ep. Time

−full 5 2 7 4 days

Table 5: Training epochs and times. Full and Bal-
anced indicate the GQA subset used for training. The
self-bootstrapping experiments are initialized from the
weights of short experiments.

Question Type Count

Verify 2,251
Logical 1,803
Compare 5,89
Query 6,804
Choose 1,129

Table 6: GQA test-dev set: distribution of questions
over question types.

the exact lowercased name of each question type 905

as the QType token in our experiments, namely: 906

verify, logical, compare, query, and choose. The 907

text input follows the format of: ‘[QType] : 908

[Question]’ (see again §3.2). Some example 909

questions for each question type are as follows: 910

Verify: Yes/No questions. E.g. Do you see books 911

near the device that looks gray? Is the bus blue? 912

Logical: Questions that require logical inference. 913

E.g. Is there any motorcycle or ball in the scene? 914

Does the dirt look brown and fine? 915

Compare: Comparison questions between two or 916

more objects. E.g. Who seems to be younger, the 917

boy or the woman? 918

Query: Open questions. E.g. What color are the 919

pants? What is the animal that is standing on the 920

grass called? 921

Choose: Choose from two presented alternatives. 922

E.g. Is it red or blue? What size is the jacket, small 923

or large? 924

Verify and Logical question types are binary 925

question types (Yes/No). The question type dis- 926

tribution in the test-dev set of GQA is given in 927

Table 6, while we provide average accuracy scores 928
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Question Type M3P M3P + SB M3PQ M3PQ + SB

Verify 40.15 44.45 58.35 55.98
Logical 39.15 45.29 53.89 53.65
Compare 35.95 40.75 45.82 47.14
Query 24.57 21.42 21.86 24.50
Choose 30.63 29.07 29.43 33.57

Question Type UC2 UC2 + SB UC2Q UC2Q + SB

Verify 41.55 51.27 59.94 61.70
Logical 35.40 48.32 54.87 56.49
Compare 34.48 44.71 49.15 51.73
Query 23.18 27.68 23.94 27.88
Choose 29.51 36.62 29.66 36.14

Table 7: Average accuracy on different structural ques-
tion types from xGQA (excluding English). M3P and
UC2 are using Deep architecture.

over all target languages in xGQA (excluding En-929

glish), with a representative set of models, in Ta-930

ble 7.931

C Conditioning on Question-Type Tokens:932

A Probabilistic Perspective933

For simplicity, let x and y represent inputs and la-934

bels of the model. Let ϕ represent task-specific935

information in the form of the question-type to-936

ken, which follows a categorical distribution. In a937

standard classification task, our goal is to learn a938

discriminative model P (y|x). Decomposing this939

using ϕ, we have:940

P (y|x) =
∑
ϕ

P (y|x, ϕ)P (ϕ|x),941

which is a mixture model with mixture components942

P (y|x, ϕ) and mixture weights P (ϕ|x).943

Without knowing ϕ, the model has to learn the944

mixture structure or mixture weights.945

By choosing a ϕ that represents the question-946

type, we essentially consider P (ϕ|x) to be deter-947

ministic (i.e. a delta function centered at the correct948

question-type for each x), as a single x can only949

belong to one question type.950

Hence, learning P (y|x) is simplified to learning951

the mixture components P (y|x, ϕ) without having952

to learn the mixture structure or mixture weights.953

We further take advantage of the ability of neu-954

ral networks to learn distinct distributions over the955

label space based on an additional input (condition-956

ing) variable.957

D Classification Architecture with and958

without Layer Normalization959

Deeper variant of the classification architecture960

from §3.1 is illustrated in Figure 3. The Multimodal961

Figure 3: Deep(er) classification architecture (see §3.1).
The first linear layer in the transformation uses an or-
thogonal initializer.

Multilingual Model block in Figure 3 denotes one 962

of the two pretrained multimodal multilingual mod- 963

els used throughout the (main) paper: UC2 and 964

M3P. 965

We further experimented with another variant 966

of the architecture, where we removed the layer 967

normalization (LayerNorm) layer. The results of 968

this variant are available in Table 8. 969

In a nutshell, LayerNorm has more impact on 970

M3P’s zero-shot transfer accuracy scores than on 971

UC2. However, the variance of UC2 results in- 972

creases with the removal of LayerNorm. 973

E Accuracy vs. Total Training Epochs 974

We conducted experiments with different total num- 975

bers of training epochs with M3P in order to un- 976

derstand the effect of the self-bootstrapping fine- 977

tuning strategy. We experimented with the follow- 978

ing three model configurations across different se- 979

tups: 980

1. M3PQ + FT: We train the M3PQ model with 981

text embeddings frozen for 4, 6 and 10 epochs. 982

2. M3PQ∗ + FT: We initialize the M3PQ model 983

with fine-tuned weights (including transfor- 984

mation, classification head) from 1 (i.e., the 985

variant above), and train for 4 epochs. We con- 986

tinue to fine-tune the model for 2 or 5 more 987

epochs after resetting the learning rate and the 988

optimizer. 989

3. M3PQ + SB: We train the M3PQ model with 990

self-bootstrapping and the classification head 991

weights from variant 1 above, and do it for 4 992

epochs. We continue to fine-tune the model 993

for 2 or 5 epochs. 994
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Method En De Zh Ko Id Bn Pt Ru Avg
M3P (Linear) 51.88±0.7 27.45±5.8 16.33±8.3 13.70±5.4 25.25±11.4 10.59±3.4 21.10±3.4 20.95±3.3 19.34
M3P w/ LN 51.66±0.6 35.33±5.4 27.80±10.9 25.55±11.4 30.54±9.8 17.94±8.6 30.61±7.2 29.74±6.6 28.22
M3P w/o LN 50.89±1.0 32.92±5.6 22.14±8.0 20.33±9.1 25.44±6.5 16.88±8.0 29.40±7.8 29.31±7.9 25.20

UC2 (Linear) 57.83±0.3 40.57±1.7 35.54±3.4 16.95±6.1 34.18±0.8 8.53±1.9 24.90±3.7 24.05±4.6 26.39
UC2 w/ LN 58.31±0.2 41.33±1.6 34.77±2.2 23.87±1.5 34.79±1.3 11.82±1.9 29.30±4.5 29.41±3.7 29.33
UC2 w/o LN 58.03±0.5 42.74±1.4 37.84±3.0 24.91±5.2 33.56±1.6 13.21±4.5 29.99±4.5 29.47±6.3 30.25

Table 8: Zero-shot cross-lingual transfer results with and without LayerNorm.

Method En De Zh Ko Id Bn Pt Ru Avg

UC2Q + SB - full 57.88±0.2 50.52±0.5 47.63±0.2 37.56±1.7 40.37±1.6 25.25±1.4 40.56±0.2 41.67±0.8 40.51

Table 9: Zero-shot results when the models are trained with Full GQA data.

We also run similar variants with UC2 as the un-995

derlying model with shorter training epochs. These996

variants are: UC2Q + FT / UC2Q∗ + FT / UC2Q997

+ SB where superscripts and acronyms remain the998

same as the M3P variants. Results of these ex-999

periments are provided in Figure 4a (M3P) and1000

Figure 4b (UC2).1001

We observe that the gains in cross-lingual trans-1002

fer with +FT variants diminish or even start de-1003

creasing with the increase of training time. Similar1004

results are observed when we reset the learning1005

rate, weight decay and optimizer after training for1006

4 epochs. We also find that self-bootstrapping train-1007

ing continually improves the results, even with less1008

additional total training epochs.1009

Moreover, the performance of self-bootstrapping1010

is considerably more stable (lower variance) across1011

random seeds, even though its classification heads1012

are initialized from the corresponding trained1013

weights from the M3PQ + FT experiments.1014

We also observe an increase in zero-shot trans-1015

fer accuracy scores with more epochs of training1016

in Stage 2 of self-bootstrapping. However this re-1017

sults in much longer training times, which may not1018

be realistic for academic and even some industry1019

settings.1020

F Results with Full GQA Data1021

It is worth to note that the experiments trained with1022

full GQA data (−full) have a significantly dif-1023

ferent (and larger) training budget (see §7). We1024

follow the previously recommended total training1025

budget of Li et al. (2020), and combine with our1026

self-bootstrapping fine-tuning strategy. Table 91027

shows the detailed results.1028

G Few-shot Experiments: Full Results 1029

Table 10 shows the detailed results of our few-shot 1030

experiments, where the summary table is provided 1031

in the main paper: Table 3 in §7. 1032
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Figure 4: Average accuracy versus total training epochs.
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Lang Method 0 1 5 48
de M3P 39.45 40.76 41.88 44.20

M3P + SB 39.25 39.72 40.98 43.08
M3PQ 36.84 38.28 40.11 43.18
M3PQ + SB 40.99 40.74 40.39 41.71

zh M3P 35.76 37.65 40.28 42.18
M3P + SB 32.96 35.55 38.24 41.15
M3PQ 33.74 35.97 37.95 41.28
M3PQ + SB 36.95 36.88 37.60 39.38

ko M3P 34.53 36.58 36.79 39.61
M3P + SB 36.04 36.92 37.31 39.41
M3PQ 31.96 32.77 35.39 40.45
M3PQ + SB 35.78 35.38 37.46 38.99

id M3P 38.38 39.39 40.63 42.57
M3P + SB 29.17 36.94 39.49 41.16
M3PQ 34.69 35.37 38.50 42.12
M3PQ + SB 37.75 36.25 38.57 39.92

bn M3P 24.27 30.53 34.72 40.73
M3P + SB 22.71 25.94 33.96 40.46
M3PQ 27.67 29.95 33.15 40.36
M3PQ + SB 30.50 31.77 34.08 39.24

pt M3P 38.19 38.35 40.54 44.27
M3P + SB 38.17 37.98 39.35 43.01
M3PQ 36.87 37.93 39.72 43.08
M3PQ + SB 38.56 39.24 39.71 40.56

ru M3P 38.46 40.06 40.22 42.38
M3P + SB 37.84 38.20 38.54 41.95
M3PQ 34.86 37.51 39.82 42.64
M3PQ + SB 38.76 39.74 39.39 40.19

de UC2 40.39 44.23 46.03 49.51
UC2 + SB 49.52 50.10 50.30 51.42
UC2Q 46.26 46.95 46.94 49.42
UC2Q + SB 50.23 50.70 50.53 51.39

zh UC2 37.26 41.70 42.68 46.32
UC2 + SB 43.54 46.30 47.17 48.80
UC2Q 43.89 44.90 45.56 47.24
UC2Q + SB 46.37 47.82 48.32 48.47

ko UC2 25.93 32.63 36.11 41.11
UC2 + SB 36.48 36.73 37.84 43.90
UC2Q 32.45 35.79 37.37 42.04
UC2Q + SB 37.80 39.05 40.68 43.38

id UC2 35.76 39.35 40.12 44.24
UC2 + SB 32.70 38.18 42.88 47.06
UC2Q 36.70 39.54 41.40 45.78
UC2Q + SB 38.34 42.16 42.33 47.01

bn UC2 12.00 21.91 25.95 39.75
UC2 + SB 24.66 29.76 32.31 42.08
UC2Q 25.29 27.68 32.75 39.82
UC2Q + SB 24.07 31.67 35.77 42.83

pt UC2 29.79 33.86 40.18 45.23
UC2 + SB 38.79 40.49 41.95 47.34
UC2Q 36.60 39.56 40.67 46.45
UC2Q + SB 40.36 42.65 43.79 47.63

ru UC2 29.94 38.97 39.66 44.41
UC2 + SB 40.93 42.02 42.54 46.15
UC2Q 39.76 40.26 41.46 45.04
UC2Q + SB 41.62 42.42 44.32 45.63

Table 10: Few-shot transfer average accuracy with dif-
ferent amounts of training data. M3P and UC2 are using
the deeper classification architecture.
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