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Abstract

Large pretrained language models (LMs) have001
become the central building block of many002
NLP applications. Training these models re-003
quires ever more computational resources and004
most of the existing models are trained on En-005
glish text only. It is exceedingly expensive006
to train these models in other languages. To007
alleviate this problem, we introduce a novel008
method – called WECHSEL – to efficiently009
and effectively transfer pretrained LMs to new010
languages. WECHSEL can be applied to any011
model which uses subword-based tokenization012
and learns an embedding for each subword.013
The tokenizer of the source model (in English)014
is replaced with a tokenizer in the target lan-015
guage and token embeddings are initialized016
such that they are semantically similar to the017
English tokens by utilizing multilingual static018
word embeddings covering English and the tar-019
get language. We use WECHSEL to trans-020
fer the English RoBERTa and GPT-2 models021
to four languages (French, German, Chinese022
and Swahili). We also study the benefits of023
our method on very low-resource languages.024
WECHSEL improves over proposed methods025
for cross-lingual parameter transfer and outper-026
forms models of comparable size trained from027
scratch with up to 64x less training effort. Our028
method makes training large language models029
for new languages more accessible and less030
damaging to the environment. We make our031
code and models publicly available.032

1 Introduction033

Large LMs based on the Transformer architec-034

ture (Vaswani et al., 2017) have become increas-035

ingly popular since GPT (Radford et al., 2018)036

and BERT (Devlin et al., 2019) were introduced,037

prompting the creation of many large LMs pre-038

trained on English text (Yang et al., 2019; Clark039

et al., 2020; Lewis et al., 2020; Joshi et al., 2020;040

Ram et al., 2021). There is a tendency towards041

training larger and larger models (Brown et al.,042

2020; Fedus et al., 2021) while the main focus is 043

on the English language. Recent work has called 044

attention to the costs associated with training in- 045

creasingly large LMs, including environmental and 046

financial cost (Bender et al., 2021). If training large 047

LMs for English is already costly, it is prohibitively 048

expensive to train new, similarly powerful models 049

to cover other languages. 050

One approach to address this issue is creating 051

massively multilingual models (Devlin et al., 2019; 052

Conneau et al., 2020; Xue et al., 2021) trained on a 053

concatenation of texts in many different languages. 054

These models show strong natural language under- 055

standing capabilities in a wide variety of languages, 056

but suffer from what Conneau et al. (2020) call 057

the curse of multilinguality: beyond a certain num- 058

ber of languages, overall performance decreases on 059

monolingual as well as cross-lingual tasks. Consis- 060

tent with this finding, Nozza et al. (2020) observe 061

that monolingual LMs often outperform massively 062

multilingual models. It is thus desirable to train 063

monolingual models in more languages. Training 064

monolingual models in non-English languages is 065

commonly done by training a new model with ran- 066

domly initialized parameters (Antoun et al., 2020; 067

Louis, 2020; Chan et al., 2020; Martin et al., 2020). 068

However, to train a model with capabilities com- 069

parable to that of an English model in this way, 070

presumably a similar amount of compute to what 071

was used to train the English model would be re- 072

quired. 073

To address this issue, we introduce WECHSEL1, 074

a novel method to transfer monolingual language 075

models to a new language. WECHSEL uses multi- 076

lingual static word embeddings between the source 077

language and the target language to initialize model 078

parameters. WECHSEL first copies all inner (non- 079

embedding) parameters of the English model, and 080

exchanges the tokenizer with a tokenizer for the tar- 081

1Word Embeddings Can Help initialize Subword Embed-
dings in a new Language.
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get language. Next, in contrast to prior work doing082

random initialization (de Vries and Nissim, 2021),083

the token embeddings in the target language are084

initialized such that they are close to semantically085

similar English tokens by mapping multilingual086

static word embeddings to subword embeddings.087

The latter step is particularly important consider-088

ing that token embeddings take up roughly 31%089

of the parameters of RoBERTa (Liu et al., 2019)090

and roughly 33% of the parameters of GPT2 (Rad-091

ford et al., 2019). Intuitively, semantically transfer-092

ring embeddings instead of randomly initializing093

one third of the model should result in improved094

performance. Our parameter transfer provides an095

effective initialization in the target language, requir-096

ing significantly fewer training steps to reach high097

performance than training from scratch. As mul-098

tilingual static word embeddings are available for099

many languages (Bojanowski et al., 2017), WECH-100

SEL is widely applicable.101

We conduct our experiments on RoBERTa and102

GPT-2 as representative models of encoder and103

decoder language models, respectively. We trans-104

fer the English RoBERTa model to four languages105

(French, German, Chinese and Swahili), and the106

English GPT-2 model to the same four plus an-107

other four very low-resource languages (Sundanese,108

Scottish Gaelic, Uyghur and Malagasy). We eval-109

uate the transferred RoBERTa models on Neural110

Entity Recognition (NER), and Natural Language111

Inference (NLI) tasks in the respective languages.112

The transferred GPT-2 models are evaluated in113

terms of Language Modelling Perplexity (PPL) on114

a held-out set. We compare WECHSEL with ran-115

domly initialized models (denoted as FullRand), as116

well as the recently proposed TransInner method117

which only transfers the inner (non-embedding)118

parameters (de Vries and Nissim, 2021). All men-119

tioned models are trained under the same condi-120

tions (around 4 days on a TPUv3-8). We also121

compare our model with models of comparable122

size trained from scratch under significantly larger123

training regimes, in particular CamemBERT (Mar-124

tin et al., 2020) (French), GBERTBase (Chan et al.,125

2020) (German), and BERTBase-Chinese (Devlin126

et al., 2019).127

Results show that models initialized with128

WECHSEL outperform randomly initialized mod-129

els and models initialized with TransInner across130

all languages and all tasks, for both RoBERTa and131

GPT-2. In addition, strong performance is reached132

at a fraction of the training steps of other methods. 133

Our contribution is summarized as follows. 134

• We propose WECHSEL, a novel method for 135

transferring monolingual language models to 136

a new language by utilizing multilingual static 137

word embeddings between the source and the 138

target language. 139

• We show effective transfer of RoBERTa and 140

GPT-2 using WECHSEL to four and eight lan- 141

guages, respectively, achieved after minimal 142

training effort. 143

• We release more effective GPT-2 and 144

RoBERTa models than previously published 145

non-English models, achieved under our more 146

efficient training setting. Our code and mod- 147

els are publicly available at github.com/ 148

anonymized. 149

In the following, we review related work in Sec- 150

tion 2. We introduce the WECHSEL method in 151

Section 3, followed by explaining the experiment 152

setup in Section 4. We show and discuss results in 153

Section 5. 154

2 Related Work 155

Large Language Models. Training Language 156

Models is usually done in a self-supervised manner 157

i. e. deriving labels from the training text instead 158

of needing explicit annotations. One optimization 159

objective is Masked Language Modelling (Devlin 160

et al., 2019, MLM), where randomly selected to- 161

kens in the input are replaced by a special [MASK] 162

token, and the task is to predict the original tokens. 163

Another common objective is Causal Language 164

Modelling (CLM), where the task is to predict the 165

next token. These two objectives highlight a funda- 166

mental distinction between language models: mod- 167

els can be trained as encoders (e.g. with MLM) or 168

as decoders (e.g. with CLM). 169

Instead of words, the vocabulary of recently pro- 170

posed language models commonly consists of sub- 171

words (Clark et al., 2020; Liu et al., 2019; Devlin 172

et al., 2019). 173

Multilingual representations. There has been a 174

significant amount of work in creating multilin- 175

gual static word embeddings. A common method 176

is learning embeddings from scratch using data 177

in multiple languages (Luong et al., 2015; Duong 178

et al., 2016). Alternatively, multilinguality can be 179
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achieved by aligning existing monolingual word180

embeddings using a bilingual dictionary, so that181

the resulting embeddings share the same seman-182

tic space (Xing et al., 2015; Joulin et al., 2018).183

Recent studies improve on this by reducing (or184

even completely removing) the need for bilingual185

data (Artetxe et al., 2017, 2018; Lample et al.,186

2018).187

Beside static word embeddings, multilinguality188

is also well studied in the area of contextualized189

representations. One approach to learn multilingual190

contextualized representations is through training191

a model on a concatenation of corpora in differ-192

ent languages. Some models created based on193

this approach are mBERT (Devlin et al., 2019),194

XLM-R (Conneau et al., 2020) and mT5 (Xue195

et al., 2021), trained on text in 104, 100, and 101196

languages, respectively. As shown by Pires et al.197

(2019), a multilingual model such as mBERT can198

enable cross-lingual transfer by using task-specific199

annotations in one language to fine-tune the model200

for evaluation in another language. Despite the ben-201

efits, recent studies outline a number of limitations202

of massively multilingual LMs. Wu and Dredze203

(2020) empirically show that in mBERT “the 30%204

languages with least pretraining resources perform205

worse than using no pretrained language model at206

all”. Conneau et al. (2020) report that beyond a207

certain number of languages in the training data,208

the overall performance decreases on monolingual209

as well as cross-lingual tasks. These studies moti-210

vate our work on introducing an efficient approach211

for creating effective monolingual LMs for more212

languages.213

Cross-lingual transfer of monolingual LMs.214

Studies in this area can be divided into two cat-215

egories:216

• Bilingualization of a monolingual LM is217

concerned with extending a model to a new218

language while preserving its capabilities in219

the original language. Artetxe et al. (2020)220

approach this problem by replacing the to-221

kenizer and relearning the subword embed-222

dings, while freezing other (non-embedding)223

parameters. Such a model becomes bilingual,224

since the initial tokenizer and embeddings can225

be used for tasks in the source language, while226

the new tokenizer and embeddings can be used227

for tasks in the target language. Thus, a model228

can be finetuned on annotated task data in229

the source language, and then zero-shot trans- 230

ferred to the target language. Tran (2020) 231

follow a similar approach, while instead of 232

randomly initializing embeddings, they utilize 233

static word embeddings to initialize embed- 234

dings in the target language close to semanti- 235

cally similar English tokens. They then con- 236

tinue training the model on an English text 237

corpus as well as on the target language in or- 238

der to preserve model capabilities in English. 239

• Creating a new monolingual LM in the tar- 240

get language is, in contrast, concerned with 241

transferring a model from a source to a tar- 242

get language without the necessity to preserve 243

its capabilities in the source language. Zoph 244

et al. (2016) and Nguyen and Chiang (2017) 245

show that cross-lingually transferring a ma- 246

chine translation model can improve perfor- 247

mance, especially for low-resource languages. 248

Zoph et al. (2016) use embeddings of random 249

tokens in the original vocabulary to initial- 250

ize token embeddings in the new vocabulary, 251

while Nguyen and Chiang (2017) utilize vo- 252

cabulary overlap between the source and tar- 253

get language. More recently, de Vries and Nis- 254

sim (2021) follow a similar approach to the 255

one of Artetxe et al. (2020) for transferring a 256

GPT-2 model to a new language. de Vries and 257

Nissim (2021) add an additional step, where 258

they train the entire model for some amount 259

of steps to allow adapting to the target lan- 260

guage beyond the lexical level. We refer to 261

the method of de Vries and Nissim (2021) as 262

TransInner and consider it as a baseline in our 263

experiments. 264

Our WECHSEL method belongs to the second 265

category. WECHSEL can be seen as an extension 266

to the method proposed by Tran (2020) with the 267

goal of creating a new monolingual LM instead 268

of bilingualizing the LM. This allows removing 269

the constraints imposed by the need to preserve 270

the model’s capabilities in the source language. In 271

addition, we generalize the semantic subword map- 272

ping done by Tran (2020) to consider an arbitrary 273

number of semantically similar subword with an 274

arbitrary temperature. We are the first to show 275

that a cross-lingually transferred model can outper- 276

form monolingual models which have been trained 277

extensively from scratch in the target language, 278

while requiring substantially less computational 279

resources. 280
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3 Methodology281

To initialize the model in the target language, we282

copy the inner (non-embedding) parameters from283

the source model. Our goal, then, is given the tok-284

enizer T s in the source language with vocabulary285

Us, the corresponding token embeddings Es, and a286

tokenizer T t in the target language with vocabulary287

Ut, to find a good initialization of the embeddings288

Et by using Es. To this end, we use existing bilin-289

gual word embeddings enriched with subword in-290

formation, containing a set of words and subword291

n-grams in the source and target language and their292

aligned vectors. We denote the set of words and293

n-grams in the source and target language as Vs294

and Vt respectively, and the aligned static embed-295

dings as W s and W t. In Appendix D we consider296

an alternative method if no subword information is297

available in the bilingual word embeddings.298

First, independently for both languages, we com-299

pute static subword embeddings for tokens in the300

tokenizer vocabulary in the same semantic space301

as the static word embeddings (Section 3.1). This302

results in subword embeddings U s and U t for the303

source and target language, respectively. Next, we304

use U s and U t to compute the semantic similar-305

ity of every subword in Us to every subword in306

Ut. Using these semantic similarities, we initial-307

ize the embeddings in Et through a convex com-308

bination of embeddings in Es (Section 3.2). By309

applying WECHSEL, the vectors of Et are in the310

same semantic space as Es, where a subword in311

the target language is semantically similar to its312

counterpart(s) in the source language. These steps313

are summarized in Figure 1 and explained in more314

detail in the following.315

3.1 Subword Embedding Computation316

The process of mapping word embeddings to sub-317

word embeddings is done individually for the318

source and the target language. Given a tokenizer319

T with vocabulary U and embeddings W , the goal320

is to find subword embeddings U for subwords in321

U in the same semantic space as W . To this end,322

we decompose subwords in U into n-grams and323

compute the embedding by taking the sum of the324

embeddings of all occuring n-grams, equivalent to325

how embeddings for out-of-vocabulary words are326

computed in fastText (Bojanowski et al., 2017).327

ux =
∑

g∈G(x)

wg328

Source  Language

Subword Embedding
Computation

Subword similarity-
based Transfer

Subword Embedding
Computation

Target Language

aligned

copy

Source Model Target Model

 Embeddings   Embeddings  

Tokenizer  Tokenizer  

 Embeddings  
(Model Input Space) 

Non-Embedding
weights 

 Embeddings  
(Model Input Space)

Non-Embedding
weights

 Embeddings  
(Word Embedding Space)

 Embeddings  
(Word Embedding Space)

Figure 1: Summary of our WECHSEL method. We
show inputs, intermediate results and outputs.

where G(x) is the set of n-grams occuring in the sub- 329

word x and wg is the embedding of the n-gram g. 330

Subwords in which no known n-gram occurs are 331

initialized to zero. 332

3.2 Subword similarity-based Transfer 333

Applying the previous step to both source and tar- 334

get language results in the subword embeddings 335

U s and U t over the subword vocabularies Us and 336

Ut, respectively. Our aim is to leverage these em- 337

beddings to find an effective transformation from 338

Es to Et. We first compute the cosine similarity 339

of every subword x ∈ Ut to every subword y ∈ Us, 340

denoted as sx,y. 341

sx,y =
ut
xu

s
y
T

‖ut
x‖‖us

y‖
342

We now exploit these similarities to initialize 343

embeddings in Et by a convex combination of 344

embeddings in Es. In particular, each subword 345

embedding in Et is defined as the weighted mean 346

of the k nearest embeddings in Es according to 347

the similarity values. The weighting is done by a 348

softmax of the similarities with temperature τ . 349

etx =

∑
y∈Jx

exp (sx,y/τ) · esy∑
y′∈Jx

exp (sx,y′/τ)
350

where Jx is the set of k neighbouring subwords 351

in the source language. Subword embeddings for 352

which U t is zero are initialized from a random 353

normal distribution N (E[Es],Var[Es]). 354
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4 Experiment Design355

We evaluate our method by transferring the En-356

glish RoBERTa (Liu et al., 2019) and the English357

GPT-2 model (Radford et al., 2019) to French, Ger-358

man, Chinese and Swahili. We refer to these lan-359

guages as medium-resource languages. In addition,360

we study the benefits of our method on four low-361

resource languages, namely Sundanese, Scottish362

Gaelic, Uyghur and Malagasy.363

We evaluate WECHSEL-RoBERTa by fine-364

tuning on XNLI (Conneau et al., 2018), and on the365

balanced train-dev-test split of WikiANN (Rahimi366

et al., 2019; Pan et al., 2017) to evaluate NLI and367

NER performance, respectively. The hyperparame-368

ters used for fine-tuning are reported in Appendix B.369

GPT-2 is evaluated by Perplexity (PPL) on a held-370

out set from the same corpus on which the model371

was trained on.372

Due to the difficulty of extrinsic evaluation on373

low-resource languages, we only train GPT-2 mod-374

els in these languages, and evaluate their perfor-375

mance intrinsically via Language Modelling Per-376

plexity on a held-out set. We use the pretrained377

models RoBERTaBase with 125M parameters, and378

the small GPT-2 variant with 117M parameters pro-379

vided by HuggingFace’s Transformers (Wolf et al.,380

2020) in all experiments.381

To ensure our method does not depend on ex-382

cessive amounts of training data in the target lan-383

guage, we use a subset of 4GiB from the OSCAR384

corpus (Ortiz Suárez et al., 2019) for German,385

French and Chinese. For the other languages, we386

use data from the CC-100 corpus (Conneau et al.,387

2020) which contains 1.6GiB, 0.1GiB, 0.1GiB,388

0.4GiB and 0.2GiB for Swahili, Sundanese, Scot-389

tish Gaelic, Uyghur and Malagasy, respectively.390

To obtain aligned word embeddings between the391

source and the target language we use monolingual392

fastText word embeddings2 (Bojanowski et al.,393

2017). We align these embeddings using the Or-394

thogonal Procrustes method (Schönemann, 1966;395

Artetxe et al., 2016) with bilingual dictionaries396

from MUSE3 (Conneau et al., 2017) for French,397

German and Chinese and a bilingual dictionary398

from FreeDict4 (Bański and Wójtowicz, 2009) for399

Swahili. For the low-resource languages, we use400

bilingual dictionaries scraped from Wiktionary.5401

2https://fasttext.cc
3https://github.com/facebookresearch/MUSE
4https://freedict.org
5available at github.com/anonymized

Model Tokens trained on Factor
WECHSEL-RoBERTa 65.5B 1.0x
TransInner-RoBERTa 65.5B 1.0x
FullRand-RoBERTa 65.5B 1.0x
CamemBERT 419.4B 6.4x
GBERTBase 255.6B 3.9x
BERTBase-Chinese 131.1B 2.0x

Table 1: Tokens trained on in the target language be-
tween our models and previous monolingual models.

We choose temperature τ = 0.1 and neighbors 402

k = 10 for WECHSEL by conducting a parameter 403

search over a grid with varying values for k and 404

τ using linear probes (Appendix A). We train tok- 405

enizers in the target languages using a vocabulary 406

size of 50k tokens and byte-level BPE (Radford 407

et al., 2019). After applying WECHSEL, we con- 408

tinue training RoBERTa on the MLM objective and 409

GPT-2 on the CLM objective. We compare against 410

two baseline methods. 411

• TransInner: Randomly initializing Et while 412

transferring all other parameters from the En- 413

glish model as in de Vries and Nissim (2021). 414

After training only embeddings for a fixed 415

amount of steps while freezing other parame- 416

ters, the entire model is trained for the remain- 417

ing steps. In preliminary experiments reported 418

in Appendix E, we compare the method by 419

Zoph et al. (2016) with TransInner, observing 420

superior performance of TransInner, so we 421

choose TransInner as the baseline for cross- 422

lingual transfer in all our experiments. 423

• FullRand: Training from scratch in the target 424

language, as is commonly done when train- 425

ing BERT-like or GPT-like models in a new 426

language (Antoun et al., 2020; Louis, 2020; 427

Chan et al., 2020; Martin et al., 2020). 428

All models are trained for 250k steps with the 429

same hyperparameters across all languages (re- 430

ported in Appendix B). Training one model takes 431

around 4 days on a TPUv3-8. For WECHSEL and 432

FullRand we use a learning rate (LR) schedule with 433

linear warmup from zero to the peak LR for the first 434

10% of steps, followed by a linear decay to zero. 435

For TransInner, we perform two warmup phases 436

from zero to peak LR, once for the first 10% of 437

steps for training embeddings only, then again for 438

the remaining steps while training the entire model. 439

In addition to the mentioned baselines trained 440

under this setting, we compare the results of 441

5
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Lang Model Score@0 Score@25k Score@250k Score (more training)
NLI NER Avg NLI NER Avg NLI NER Avg NLI NER Avg

French

WECHSEL-RoBERTa 78.25 86.93 82.59 81.63 90.26 85.95 82.43 90.88 86.65 - - -
TransInner-RoBERTa 60.86 69.57 65.21 65.49 83.82 74.66 81.75 90.34 86.04 - - -
FullRand-RoBERTa 55.71 70.79 63.25 69.02 84.24 76.63 75.28 89.30 82.29 - - -
CamemBERT - - - - - - - - - 80.88 90.26 85.57
XLM-RBase - - - - - - - - - 79.25 89.48 84.37

German

WECHSEL-RoBERTa 75.64 84.53 80.08 81.11 89.05 85.08 81.79 89.72 85.76 - - -
TransInner-RoBERTa 58.51 65.23 61.87 64.78 82.05 73.42 80.75 89.30 85.02 - - -
FullRand-RoBERTa 54.82 66.84 60.83 68.02 81.53 74.77 75.48 88.36 81.92 - - -
GBERTBase - - - - - - - - - 78.64 89.46 84.05
XLM-RBase - - - - - - - - - 78.58 88.76 83.67

Chinese

WECHSEL-RoBERTa 63.23 72.79 68.01 77.19 79.07 78.13 78.32 80.55 79.44 - - -
TransInner-RoBERTa 46.95 69.06 58.01 52.96 73.35 63.16 76.99 80.00 78.49 - - -
FullRand-RoBERTa 44.24 57.95 51.09 58.34 64.84 61.59 71.38 78.35 74.86 - - -
BERTBase-Chinese - - - - - - - - - 76.55 82.05 79.30
XLM-RBase - - - - - - - - - 76.41 78.36 77.38

Swahili

WECHSEL-RoBERTa 60.28 74.38 67.33 73.87 87.63 80.75 75.05 87.39 81.22 - - -
TransInner-RoBERTa 54.67 64.46 59.56 58.85 80.27 69.56 74.10 87.05 80.57 - - -
FullRand-RoBERTa 50.59 62.35 56.47 63.79 83.49 73.64 70.34 87.34 78.84 - - -
XLM-RBase - - - - - - - - - 69.18 87.37 78.28

Table 2: Results from fine-tuning RoBERTa models. We report accuracy for NLI on XNLI and micro F1 score for
NER on WikiANN. Results are averaged over 3 runs. We report scores before training (Score@0), after 10% of
steps (Score@25k) and after training (Score@250k). We also report results from fine-tuning prior monolingual
models and XLM–R (Score (more training)), all trained on more tokens than our models. For each language, the
best results in every column are indicated with underlines. The overall best results including the comparison with
existing monolingual/multilingual models of comparable size are shown in bold.

RoBERTa models with existing comparable mod-442

els trained from scratch with more training ef-443

fort. We consider the total number of tokens the444

model has encountered in the target language, com-445

puted as the product of batch size × sequence446

length × train steps (shown in Table 1) as a proxy447

for training effort. We evaluate the performance448

of CamemBERT (Martin et al., 2020) (French),449

GBERTBase (Chan et al., 2020) (German), and450

BERTBase-Chinese (Devlin et al., 2019) as existing451

monolingual LMs,6 as well as XLM-RBase (Artetxe452

et al., 2020) as a high-performing multilingual LM.453

5 Results454

We present our results on transferring RoBERTa455

and GPT-2 from English to other languages, fol-456

lowed by analyzing training behavior. In Ap-457

pendix C, we provide a qualitative assessment of458

how well subword tokens are mapped between the459

source and the target languages.460

5.1 Transferring RoBERTa461

Table 2 reports the evaluation results of RoBERTa.462

As shown, models initialized with WECHSEL out-463

perform models trained from scratch and models464

initialized with TransInner across all languages.465

Surprisingly, close relatedness of the source and466

6To the best of our knowledge there is no monolingual
model available for Swahili.

target language is not necessary to achieve effective 467

transfer, as e. g. on NLI WECHSEL improves abso- 468

lute accuracy by 7.15%, 6.31%, 6.94% and 4.71% 469

over models trained from scratch for French, Ger- 470

man, Chinese and Swahili, respectively. 471

We observe that our parameter transfer-based 472

model consistently outperforms the previously re- 473

leased LMs on both monolingual and multilingual 474

settings, while these models benefit from much 475

larger training resources in terms of computation 476

time and corpus size. In particular, the results 477

show an improvement over XLM-RBase by an av- 478

erage 3.54% accuracy for NLI and 1.14% micro 479

F1 score for NER. For NLI, we improve over the 480

prior monolingual models by 1.55%, 3.15% and 481

1.77% absolute accuracy for French, German and 482

Chinese, respectively. For NER, we observe im- 483

provements over monolingual models with 0.62% 484

and 0.26% absolute micro F1 score improvement 485

for French and German, respectively. For Chinese, 486

the monolingual model BERTBase-Chinese still out- 487

performs our method by 1.5% absolute micro F1 488

score. We suspect that the discrepancy between 489

NLI and NER is due to the limited training cor- 490

pus size (max. 4GiB), while a larger corpus can 491

potentially improve NER as more named entities 492

appear (Martin et al., 2020). 493

The first two columns of Figure 2 show the 494

performance of RoBERTa models on downstream 495
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Figure 2: Test scores over training steps from fine-tuning RoBERTa models on NLI (using XNLI) and NER (using
WikiANN). Perplexity on the held-out set over training steps of GPT-2 models. We evaluate every 12.5k steps.

Lang Model PPL@0 PPL@25k PPL@250k

French
WECHSEL-GPT2 1.7e+3 23.47 19.71
TransInner-GPT2 1.4e+5 67.97 20.13
FullRand-GPT2 5.9e+4 25.99 20.47

German
WECHSEL-GPT2 3.7e+3 34.35 26.80
TransInner-GPT2 1.5e+5 121.67 27.76
FullRand-GPT2 5.8e+4 37.29 27.63

Chinese
WECHSEL-GPT2 2.4e+4 71.02 51.97
TransInner-GPT2 1.5e+5 231.05 56.17
FullRand-GPT2 5.8e+4 69.29 52.98

Swahili
WECHSEL-GPT2 1.4e+5 13.02 10.14
TransInner-GPT2 1.4e+5 42.95 10.28
FullRand-GPT2 5.8e+4 13.22 10.58

Table 3: Results of training GPT2 models. We report
Perplexity before training (PPL@0), after 10% of steps
(PPL@25k) and after training (PPL@250k).

tasks after each 12.5k training steps. Models ini-496

tialized with WECHSEL reach high performance497

in significantly fewer steps than models initialized498

with FullRand or TransInner.499

We expect FullRand-RoBERTa to approach per-500

formance of the respective prior monolingual mod-501

Lang Model Best PPL

Sundanese
WECHSEL-GPT2 111.72
TransInner-GPT2 151.86
FullRand-GPT2 149.46

Scottish Gaelic
WECHSEL-GPT2 16.43
TransInner-GPT2 18.62
FullRand-GPT2 19.53

Uyghur
WECHSEL-GPT2 34.33
TransInner-GPT2 39.06
FullRand-GPT2 42.82

Malagasy
WECHSEL-GPT2 14.01
TransInner-GPT2 14.85
FullRand-GPT2 15.93

Table 4: Results of training GPT2 models on low-
resource languages. We report the best Perplexity on
the held-out set, evaluated every 2.5k steps.

els when trained on the same amount of tokens7. 502

For French, WECHSEL-RoBERTa outperforms 503

CamemBERT after 10% of training steps, reducing 504

training effort by 64x. For German, WECHSEL- 505

7It would presumably be slightly worse because we restrict
training corpus size to 4GiB.

7



RoBERTa outperforms GBERTBase after 10% of506

training steps, reducing training effort by 39x.507

For Chinese, WECHSEL-RoBERTa outperforms508

BERTBase-Chinese on NLI, but does not outper-509

form BERTBase-Chinese on NER.510

5.2 Transferring GPT-2511

5.2.1 To Medium-Resource Languages512

Results on medium-resource languages are shown513

in Table 3. Similar to the results for WECHSEL-514

RoBERTa, the GPT-2 models trained with WECH-515

SEL consistently outperform the models trained516

from scratch and with TransInner across all lan-517

guages.518

The last column of Figure 2 depicts the perfor-519

mance of GPT-2 models after each 12.5k train-520

ing steps. Comparing the results across all lan-521

guages throughout training, we observe a stronger522

dependence on similarity of the source to the tar-523

get language than for downstream tasks such as524

NLI or NER. In particular, for French and German,525

WECHSEL is consistently better than TransInner526

and FullRand throughout the entire training, while527

for Chinese, a decrease in perplexity towards the528

end of training causes WECHSEL to surpass train-529

ing from scratch.530

5.2.2 To Low-Resource Languages531

Table 4 reports the perplexity of Language Mod-532

elling on the low-resource languages. Again, we533

observe consistent improvements using WECHSEL534

on all languages. Furthermore, as discussed in Ap-535

pendix G, we conduct a sensitivity analysis w. r. t.536

the amount of available training data on French,537

studying the relation of performance improvement538

with training data size.539

One difference of the low-resource models with540

the ones trained on medium-resource languages is541

that the low-resource LMs are prone to overfitting,542

and require appropriate model selection even in543

the early steps of training. Appendix F further544

elaborates on this by showing the performance of545

the low-resource LMs throughout training.546

5.3 Is freezing necessary?547

Previous work using the TransInner method freezes548

non-embedding parameters for a fixed amount of549

steps before training the entire model (de Vries550

and Nissim, 2021). This is done to prevent catas-551

trophic forgetting at the beginning of training. To552

evaluate if freezing non-embedding parameters is553

still necessary with our method, we conduct an554

12.5k 25k 37.5k 50k 62.5k 75k
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Figure 3: Comparison of German GPT-2 models
trained with WECHSEL and TransInner between freez-
ing non-embedding parameters at the start and not
freezing any parameters.

additional experiment. We train a German GPT-2 555

model with WECHSEL and a model with TransIn- 556

ner without freezing any parameters, and the same 557

models with freezing of non-embedding parameters 558

for the first 10% of steps. We match hyperparame- 559

ters of the main experiments except training for 75k 560

steps only. Based on the results shown in Figure 3, 561

we conclude that freezing is necessary when using 562

TransInner, but there is no need for freezing when 563

using WECHSEL. 564

6 Conclusion 565

We introduce WECHSEL, an effective method to 566

transfer monolingual language models to new lan- 567

guages. WECHSEL exploits multilingual static 568

word embeddings to compute an effective initializa- 569

tion of subword embeddings in the target language. 570

We conduct experiments by transferring RoBERTa 571

and GPT-2 models from English to French, Ger- 572

man, Chinese and Swahili, as well as English GPT- 573

2 to four low-resource languages. The evaluation 574

results show that the transferred RoBERTa and 575

GPT-2 models are more efficient and effective than 576

strong baselines, and consistently outperform prior 577

monolingual models that have been trained for a 578

significantly longer time. WECHSEL facilitates 579

the creation of effective monolingual LMs for new 580

languages with medium to low resources, particu- 581

larly in computationally-limited settings. In addi- 582

tion, our work provides strong evidence towards 583

the hypothesis by Artetxe et al. (2020) that deep 584

monolingual language models learn abstractions 585

that generalize across languages. We discuss limi- 586

tations and risks of our work in Appendix H. 587
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A Grid search over k and τ849

To choose number of neighbors k and temperature850

τ for WECHSEL we conduct a grid search over851

linear probes of models with different initializa-852

tion shown in Table 8. For RoBERTa, we compute853

scores on NLI (using XNLI) and POS tagging (us-854

ing the French, German and Chinese GSD corpora855

in Universal Dependencies) using linear probes of856

the last hidden state. We probe on NLI by taking857

a concatenation of the mean of all token represen-858

tations in the premise with the mean of all token859

representations in the hypothesis. We probe on860

POS tagging by taking the mean of all token rep-861

resentations belonging to each word. For GPT2,862

we compute Language Modelling Perplexity on the863

held-out set also used to evaluate performance of864

the trained models.865

B Hyperparameters866

Hyperparameters used to fine-tune RoBERTa on867

downstream tasks are shown in Table 5. Hyperpa-868

rameters used to train models in our main experi- 869

ments are shown in Table 6. 870

Parameter NLI NER
peak learning rate 2e-5 2e-5
batch size 128 32
sequence length 128 128
Adam ε 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999
train epochs 2 10
warmup 10% of steps 10% of steps
warmup schedule linear linear
LR decay linear to zero linear to zero

Table 5: Hyperparameters used to fine-tune RoBERTa
models on NLI (XNLI) and NER (WikiANN).

Parameter RoBERTa GPT2
peak learning rate 1e-4 5e-4
batch size 512 512
sequence length 512 512
weight decay 0.01 0.01
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98
train steps 250k 250k

Table 6: Hyperparameters of the models transferred
from RoBERTa and GPT2.

C Qualitative subword correspondence 871

We show a small random sample of tokens in the 872

target language and their closest English token (ac- 873

cording to WECHSEL) in Table 7. 874

D Using Word Embeddings without 875

subword information 876

As an alternative to n-gram decomposition, we in- 877

troduce a method for mapping word embeddings to 878

subword embeddings without using any subword 879

information (shown in Figure 4). For this method, 880

we require word frequency information in addition 881

to the word embeddings. We apply the tokenizer T 882

to every word v in V resulting in a set of subwords 883

for each word. We define V(x) as the set of words 884

containing the subword x when tokenized. The 885

embedding ux of the subword x is then defined as 886

the average of the embeddings of words in V(x), 887

weighted by the word frequencies. 888
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Figure 4: WECHSELTFR, an alternative subword embedding computation method. First, tokenize all words in the
word embeddings. Then flatten the result by assigning the embeddings of the words in which it occured and their
word frequencies to each subword. Finally, reduce the embeddings assigned to each subword by taking their mean,
weighted by word frequency.

ux =

∑
v∈V(x) wv · fv∑

v∈V(x) fv
889

where wv is the embedding and fv is the frequency890

of word v. We call this variant of our method891

WECHSELTFR. We evaluate WECHSELTFR by892

training the same models as for WECHSEL. Re-893

sults are shown in Table 9 for GPT2 and in Table894

10 for RoBERTa. We find that, on average, perfor-895

mance is on par with WECHSEL.896

E Choosing a transfer baseline897

We consider two baseline methods to transfer mod-898

els to a new language without using any language-899

specific information. One method is copying non-900

embedding parameters to the target language and901

initializing embeddings from a random normal dis-902

tribution as done by de Vries and Nissim (2021).903

We refer to this method as TransInner. Another904

option is copying non-embedding parameters and905

assigning the embedding of a random token in the906

source language to each embedding in the target907

language (effectively "shuffling" the embeddings)908

as done by Zoph et al. (2016) and Nguyen and909

Chiang (2017). We refer to this method as TransIn-910

nerShuffleEmb. We evaluate these two methods911

using a setup equivalent to the experiments in Sec-912

tion 5.3 and find that TransInner performs slightly913

better than TransInnerShuffleEmb (Figure 6), so914

we use TransInner for subsequent experiments.915

F Performance throughout training on916

low-resource languages917

We show Language Modelling Perplexity on the918

held-out set throughout training in Figure 5.919
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Figure 5: Perplexity throughout training on low-
resource languages. We evaluate every 2.5k steps and
stop training if Perplexity on the held-out set does not
improve for 10k steps. TransInner-GPT2 takes more
steps to overfit since all non-embedding parameters are
frozen for the first 25k steps (c. f. Section 4).
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Lang Target Token Closest English Token

French

héritage legacy
tremp soaked

épiscop bishop
scandaleux udicrous

vertig astonishing
enregistrer rec

sucrés sweets
Emmanuel Emmanuel
entourage confid
secrétariat ariat

German

machen ize
mit with

Sprichwort proverb
erischen Austrian
minuten utes

Haustechnik umbing
dringen urgent

verfeinern refine
umgebung vironments
ternehmen irms

Chinese

到处 everywhere
巧合 coinc
第三 third
杂交 recomb
利来 chnology
政务 Govern
石 stone

喊麦 sing
中海 iterranean
张某 defendant

Swahili

shirikishe ive
Harusi Marriage
pesile ery
tihani graduate

changi ool
kuugua ingestion
kuzidi acclaim
vipigo Trouble

dhamiri conscience
aliposimama Slowly

Table 7: Samples of tokens in each language and the
corresponding closest tokens from the English vocabu-
lary according to WECHSEL.

G Sensitivity Analysis w. r. t. training920

data size921

Evaluating on languages with different amounts of922

available data only indirectly measures the effect923

of training data size on WECHSEL since other fac-924

tors (e.g. language similarity to English) are also925

involved. We conduct a sensitivity analysis to make926

the relation to the amount of training data explicit927

(Table 11). Due to computational constraints we928

only do this for French. We find that the improve-929

ment from WECHSEL increases as the amount of930

training data decreases. In addition, we find that931

using fastText embeddings trained on less data dete-932

riorates performance, but still leaves a clear margin933

to TransInner and FullRand.934

Lang Model k τ
Scores

NLI POS LM

French
WECHSEL@0

1 1 58.4 85.2 2.5e+5
10 0.1 59.8 86.8 2.0e+5
10 1 58.3 84.4 4.8e+5
50 0.1 57.2 83.6 3.1e+6
50 1 54.0 81.6 1.8e+7

FullRand@0 - - 46.3 60.6 5.7e+6
CamemBERT - - 63.5 93.6 -

German
WECHSEL@0

1 1 55.8 72.7 6e+5
10 0.1 58.9 76.0 4.2e+5
10 1 57.5 75.4 8.3e+6
50 0.1 55.4 75.4 1.0e+7
50 1 53.6 69.5 5.9e+7

FullRand@0 - - 44.5 49.1 6.2e+6
GBERTBase - - 63.2 81.4 -

Chinese
WECHSEL@0

1 1 47.4 75.4 2.7e+6
10 0.1 48.0 80.7 2.6e+6
10 1 48.3 80.3 3.1e+6
50 0.1 48.3 77.8 3.7e+7
50 1 47.9 76.5 8.6e+7

FullRand@0 - - 37.5 53.7 5.8e+6
BERTBase-Chinese - - 61.9 91.9 -

Table 8: Grid search over the temperature τ and number
of most similar tokens k parameters of WECHSEL.

Lang Model PPL@0 PPL@25k PPL@250k

French WECHSEL-GPT2 1.7e+3 23.47 19.71
WECHSELTFR-GPT2 2.3e+3 23.45 19.70

German WECHSEL-GPT2 3.7e+3 34.35 26.80
WECHSELTFR-GPT2 5.0e+3 34.46 26.82

Chinese WECHSEL-GPT2 2.4e+4 71.02 51.97
WECHSELTFR-GPT2 2.5e+4 72.11 52.07

Swahili WECHSEL-GPT2 1.4e+5 13.02 10.14
WECHSELTFR-GPT2 1.5e+5 13.03 10.06

Table 9: Results of training WECHSELTFR GPT2 mod-
els. We report Perplexity before training (PPL@0),
after 10% of steps (PPL@25k) and after training
(PPL@250k).

H Limitations and Potential Risks 935

H.1 Limitations 936

We conduct our experiments on up to eight lan- 937

guages, showing the benefits of our parameter trans- 938

fer method to both medium- and low-resource lan- 939

guages. However, there are many more languages 940

with diverse linguistic characteristics on which our 941

WECHSEL method is not tested. This is a limi- 942

tation forced by computational constraints, as we 943

can not ascertain whether transfer to all other lan- 944

guages would result in similar improvements. In 945

addition, our extrinsic evaluation is limited to two 946

tasks (NLI and NER). While this choice is due 947

to the limitations on the available collections in 948

various languages, this evaluation does not neces- 949

sarily provide a comprehensive view of language 950

understanding tasks. 951
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Lang Model Score@0 Score@25k Score@250k
NLI NER Avg NLI NER Avg NLI NER Avg

French
WECHSEL-RoBERTa 78.25 86.93 82.59 81.63 90.26 85.95 82.43 90.88 86.65
WECHSELTFR-RoBERTa 78.25 87.43 82.84 81.86 90.07 85.96 82.55 90.80 86.68

German
WECHSEL-RoBERTa 75.64 84.53 80.08 81.11 89.05 85.08 81.79 89.72 85.76
WECHSELTFR-RoBERTa 77.00 84.70 80.85 80.71 89.09 84.90 82.04 89.72 85.88

Chinese
WECHSEL-RoBERTa 63.23 72.79 68.01 77.19 79.07 78.13 78.32 80.55 79.44
WECHSELTFR-RoBERTa 62.75 72.87 67.81 77.07 78.03 77.55 77.99 80.65 79.32

Swahili
WECHSEL-RoBERTa 60.28 74.38 67.33 73.87 87.63 80.75 75.05 87.39 81.22
WECHSELTFR-RoBERTa 60.14 75.42 67.78 74.04 87.79 80.92 74.58 87.66 81.12

Table 10: Results from fine-tuning WECHSELTFR-RoBERTa models. Results shown the equivalently as in Table 2.

Best PPL
Model Subsample Size 16MiB 64MiB 256MiB 1024MiB

WECHSEL-GPT2 (original fastText embeddings) 78.33 44.75 31.63 24.66

WECHSEL-GPT2 (fastText embeddings trained on subsample) 97.42 49.50 32.88 24.75
FullRand-GPT2 281.46 83.43 43.08 27.09
TransInner-GPT2 216.37 77.71 35.27 25.15

Table 11: Sensitivity Analysis w. r. t. the amount of training data on transfer to French. We train models on ran-
dom subsamples of 16MiB, 64MiB, 256MiB and 1024MiB of the original training data, and evaluate on the same
held-out set. For WECHSEL-GPT2, we train two models. One using the original, publicly available fastText em-
beddings trained on Common Crawl data. The other using fastText embeddings trained only on the corresponding
subsample of text.

12.5k 25k 37.5k 50k 62.5k 75k
Steps

30

40

50

60

70

80

90

P
er

pl
ex

it
y

TransInner-GPT2 (freeze inner 10%)

TransInner-GPT2 (no freeze)

TransInnerShuffleEmb-GPT2 (freeze inner 10%)

TransInnerShuffleEmb-GPT2 (no freeze)

WECHSEL-GPT2 (freeze inner 10%)

WECHSEL-GPT2 (no freeze)

Figure 6: Comparison of German GPT-2 models
trained with WECHSEL, TransInner and TransInner-
ShuffleEmb between freezing non-embedding parame-
ters at the start and not freezing any parameters.

H.2 Risks 952

It is well-known that existing LMs trained on En- 953

glish text encode societal biases and stereotypes 954

and using them in downstream tasks might lead to 955

unfair treatment of various social groups. Since we 956

propose a method to transfer the English LMs to 957

new languages, it is highly probable that the exist- 958

ing biases are also transferred to the target LMs. 959

We therefore advocate a conscious and responsible 960

use of the transferred LMs in practice. 961
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