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Abstract

In domains where sample sizes are limited, efficient learning algorithms are critical.
Learning using privileged information (LuPI) offers increased sample efficiency by
allowing prediction models access to auxiliary information at training time which
is unavailable when the models are used. In recent work, it was shown that for
prediction in linear-Gaussian dynamical systems, a LuPI learner with access to
intermediate time series data is never worse and often better in expectation than
any unbiased classical learner. We provide new insights into this analysis and
generalize it to nonlinear prediction tasks in latent dynamical systems, extending
theoretical guarantees to the case where the map connecting latent variables and
observations is known up to a linear transform. In addition, we propose algorithms
based on random features and representation learning for the case when this map is
unknown. A suite of empirical results confirm theoretical findings and show the
potential of using privileged time-series information in nonlinear prediction.

1 Introduction

In data-poor domains, making the best use of all available information is central to efficient and
effective machine learning. Despite this, supervised learning is often applied in such a way that
informative data is ignored. A good example of this is learning to predict the condition of a patient
at a set follow-up time based on information of the first medical examination. Classical supervised
learning makes use only of the initial data to predict the disease status at the follow-up, although
in many cases data about medications, laboratory tests or vital signs are routinely collected about
patients also at intermediate time points. This information is privileged (Vapnik and Vashist, 2009),
as it is unavailable at the time of prediction, but can be used for training a model.

Learning using privileged information (LuPI) (Vapnik and Vashist, 2009), generalized distilla-

tion (Lopez-Paz et al., 2016) and multi-view learning (Rosenberg and Bartlett, 2007) have been
proposed to increase the sample efficiency by leveraging privileged information in learning. Theoreti-
cal results guarantee improved learning rates (Pechyony and Vapnik, 2010; Vapnik et al., 2015) or
tighter generalization bounds (Wang, 2019) for large sample sizes under appropriate assumptions.
However, privileged information is not always beneficial; it must be related to the task at hand (Jon-
schkowski et al., 2015). Previous works do not identify such settings. Moreover, existing analyses do
not state when learning with privileged information is preferable to classical learning for problems
with small sample sizes—which is where efficiency is needed the most.

Karlsson et al. (2022) studied LuPI in the context of predicting an outcome observed at the end of a
time series based on variables collected at the first time step. They showed that making use of data
from intermediate time steps in particular settings always leads to lower or equal prediction risk—for
any sample size—compared to the best unbiased model which does not make use of this privileged
information. However, their method called learning using privileged time series (LuPTS) was limited
to settings where the outcome function, and estimators of it, are linear functions of baseline features.
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(b) Linear latent dynamics, nonlinear observations

Figure 1: Comparison between the linear data generating process and the latent nonlinear generaliza-
tion in this work.  indicates the observation function of the latent system, with � its left inverse.

Moreover, their analysis did not study how variance reduction behaves as a function of increased
input dimension. Hayashi et al. (2019) also learned from privileged intermediate time points but their
study was limited to empirical results for classification using generalized distillation.

There is an abundance of real-world prediction tasks with fixed follow-up times which can be framed
as having access to privileged time-series information. Examples include predicting 90-day patient
mortality (Karhade et al., 2019) or patient readmission in healthcare (Mortazavi et al., 2016), the
churn of users of an online service over a fixed period (Huang et al., 2012) or yearly crop yields
from satellite imagery of farms (You et al., 2017). In these cases, privileged time-series information
comprises daily patient vitals, intermediate user interactions and daily satellite imagery respectively.
We are motivated by finding sample-efficient learning algorithms that utilize privileged time-series
information to improve upon classical learning alternatives in such settings.

Contributions. We extend the LuPTS framework to nonlinear models and prediction tasks in latent
dynamical systems (Section 3). In this setting, we prove that learning with privileged information
leads to lower risk when the nonlinear map connecting latent variables and observations is known up
to a linear transform (Section 3.1). In doing so, we also find that when the representation dimension
grows larger than the number of samples, the benefit of privileged information vanishes. We show
that a privileged learner using random feature maps can learn optimal models consistently, even when
the relationship between latent and observed variables is unknown, and give a practical algorithm
based on this idea (Section 3.2). However, random feature methods may suffer from bias in small
samples. As a remedy, we propose several representation learning algorithms aimed at trading off
bias and variance (Section 3.3). In experiments, we find that privileged time-series learners with
either random features or representation learning reduce variance and improve latent state recovery in
small-sample settings (Section 4) on both synthetic and real-world regression tasks.

2 Prediction and privileged information in nonlinear time series

We aim to predict outcomes Y in Y ✓ Rq based on covariates X1 in X ✓ Rk. X1 are observed at a
baseline time point t = 1, starting a discrete time series on the form X1, X2, . . . XT , Y . Outcomes
are assumed to be compositions of a representation �, a linear map ✓ and Gaussian noise ✏,

Y = h(X1) + ✏, where h(x1) := ✓>�(x1), and ✏ ⇠ N (0, �̃2
Y ) . (1)

In addition to observations of X1 and Y , privileged information (PI) is available in the form of samples
of random variables, X2, ..., XT , from intermediate time points between X1 and Y , all taking values
in X . Two data generating processes (DGPs) with this structure are illustrated in Figure 1. Unlike
baseline variables X1, privileged information is observed only at training time, not at test time.
Therefore, it can only benefit learning, and not inference. Data sets of m 2 N+ training samples,
D := {(xi,1, xi,2, ..., xi,T , yi)}mi=1, are drawn independently and identically distributed from a fixed,
unknown distribution p over all random variables in our system. We let Xt = [x1,t, ..., xm,t]>

denote the data matrix of features observed at time t = 1, ..., T and Y = [y1, ..., ym]> the vector
of all outcomes observed in D. A learning algorithm A : D ! H maps data sets D 2 D to
hypotheses ĥ 2 H. An efficient algorithm A has small expected risk Rp(A ) with respect to a loss
L : Y ⇥ Y ! R over training sets of fixed size m drawn from p,

Rp(A ) := ED[Rp(ĥ)] where ĥ = A (D) and Rp(ĥ) := Ep[L(ĥ(X1), Y )] . (2)

We study the regression setting with L the squared error, L(y, y0) = ky � y0k22. In analysis, we focus
on univariate outcomes, q = 1, but all results extend to multivariate outcomes, q > 1.
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Algorithm 1: Generalized LuPTS

Input: Data D = ({Xt},Y); Repr. �̂ or kernel 
if using a fixed representation �̂ then

Ẑt = [�̂(x1,1), ..., �̂(xm,1)]> for t = 1, ..., T

✓̂P :=
⇥ T�1Q

t=1
(Ẑ>

t Ẑt)
†Ẑ>

t Ẑt+1| {z }
Ât

⇤
(Ẑ>

T ẐT )
†Ẑ>

TY| {z }
�̂

ĥP(·) := ✓̂>P �̂(·)
else if using kernel  then

K̂t = (Xt,Xt) for t = 1, ..., T

↵ := K̂†
1

hQT
t=2 K̂tK̂

†
t

i
Y

ĥP(·) :=
Pn

i=1 ↵i(xi,1, ·)
return ĥP
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Figure 2: Two regimes of generalized LuPTS
with varying feature dimension d̂, and sam-
ple size m = 100. When m > d̂, gener-
alized LuPTS is provably never worse than
OLS. When m  d̂, they are equivalent. See
Appendix F for details.

Our main goal is to compare privileged learners AP, which make use of privileged information, to
classical learners AC which learn without PI. We seek to identify conditions and algorithms for
which privileged learning is more efficient, i.e., it leads to lower risk in expectation, R(AP)  R(AC)
for the same number of training samples. We describe such a setting next.

2.1 Privileged information in latent dynamical systems

We study tasks where data are produced by a latent dynamical process. Observations Xt are generated
from unobserved latent states Zt through a nonlinear transformation  , see Figure 1b. This means
that the target of learning, h(X1) = E[Y | X1], is nonlinear in X1. Latent dynamical systems like
these have proven successful at modelling a variety of phenomena as for example fluid dynamics in
physics (Lee and Carlberg, 2019) and human brain activity in neuroscience (Kao et al., 2015).
Assumption 1 (Latent linear-Gaussian system). Let Z1, ..., ZT be latent states related as a linear-

Gaussian dynamical system in a space Z ✓ Rd
with Z1 of arbitrary distribution. Further, let the

observation function be an injective map  : Z ! X with left-inverse (representation) � : X ! Z .

With A1, ..., AT�1 2 Rd⇥d
, � 2 Rd

assume that Z1, ..., ZT , X1, ..., XT , Y are generated as

Zt = A>
t�1Zt�1 + ✏t for t � 2, and 8t : Xt =  (Zt) and Y = �>ZT + ✏Y .

where ✏t ⇠ N (0,�2
t I) and ✏Y ⇠ N (0,�2

Y ).

It is easy to verify that Assumption 1 is consistent with (1), but stronger: there are more systems that
map X1 to Y as ✓>�(X1) than systems where additionally Xt =  (Zt). Nevertheless, it is much
more general than the results of Karlsson et al. (2022), limited to the linear setting, i.e. �(x1) = x1.

Next, we present a generalized version of the LuPTS algorithm of Karlsson et al. (2022) that is
provably preferable to classical learning when data is generated according to Assumption 1 and � is
known up to a linear transform. Further, we discuss how a privileged learner can be made universally
consistent for unknown representations � when combined with random features.

3 Efficient learning with time-series privileged information

We analyze and compare learners from the privileged and classical paradigms which produce estimates
of the form ĥ(x1) = ✓̂>�̂(x1), as motivated by (1). We let each use representations �̂ : X ! Ẑ ✓
Rd̂ from a family F shared by both paradigms, so that the hypothesis class H 3 ĥ is shared as well.

3.1 Learning with true representations known up to a linear transform

In this section, we assume that privileged and classical learners have access to a common, fixed
representation function �̂ which is related to the true representation function through a linear
transform, meaning there exists a matrix B such that �̂(·) = B�(·).
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Classical learning. As a classical learner to serve as a strong comparison point for our privileged
learners, we use the ordinary least-squares (OLS) linear estimator applied to the latent variables at
the first time point inferred by �̂. With Ẑ1 = [�̂(x1,1), ..., �̂(xm,1)]> 2 Rm⇥d̂,

AC(D) = ĥC(·) := ✓̂>C �̂(·) where ✓̂C := (Ẑ>
1 Ẑ1)

†Ẑ>
1 Y . (3)

When m � d̂ and � is known up to linear transform, ĥC is the minimum-risk unbiased estimator of h
which does not use privileged information. To accommodate the underdetermined case where m < d̂,
the matrix inverse is replaced by the Moore-Penrose pseudo inverse (·)† (Penrose, 1956).

Generalized LuPTS. For privileged learning, we first compute Ẑt = [�̂(x1,t), ..., �̂(xm,t)]> for
t = 1, ..., T . Then, we independently fit parameter estimates Â1, ..., ÂT , �̂ of the dynamical system
shown in Figure 1b by minimizing the squared error in single-step predictions. This equates to a
series of OLS estimates in Ẑ . At test time, baseline variables x1 are embedded with �̂ and the latent
dynamical system is simulated for T time steps to form a prediction ĥP(x1) = (Â1 · · · ÂT�)>�̂(x1).
Putting this together, we arrive at Algorithm 1 which we call generalized LuPTS. We may apply
a simple matrix identity and replace terms ẐtẐ>

t in Algorithm 1 by the Gram matrices K̂t =
(Xt,Xt) of a reproducing kernel  with corresponding (implicit) feature map �̂, (x, x0) =
h�̂(x), �̂(x0)i (Smola and Schölkopf, 1998). This variant allows for learning with unknown �.

We now state a result which says that under Assumption 1, for an appropriate fixed representation �̂
or kernel , generalized LuPTS is never worse in expectation than the classical learner in (3).
Theorem 1. Let D be a data set of size m drawn from p, consistent with Assumption 1. Assume that

the left inverse � : X ! Z of the observation function is known up to a linear transform, explicitly

or through a kernel (x, x0) = h�̂(x), �̂(x0)i, i.e., there exists a matrix B with linearly independent

columns such that �̂(x) = B�(x) with �̂ : X ! Ẑ for all x 2 X . Then, it holds for the privileged

learner AP(D) = ĥP (Algorithm 1) and the classical learner AC(D) = ĥC (3),

R(AP) = R(AC)� EĥP,X1
[VarD(ĥC(X1) | ĥP)] . (4)

Proof sketch. First, we show that the predictions made by generalized LuPTS are invariant to a linear
transform B applied to �̂(·) during training, see Appendix A. Then we consider two cases: (i) When
d̂  m we may re-purpose the proof of Theorem 1 in Karlsson et al. (2022), (ii) When m < d̂
Proposition 1 below directly implies EĥP,X1

[VarD(ĥC(X1) | ĥP)] = 0 and R(AP) = R(AC).

Theorem 1 implies that the privileged learner is at least as sample efficient as the classical one since
Var(·) � 0 and thus R(AP)  R(AC) for the same number of training samples m. The result is a
direct generalization of the main result in Karlsson et al. (2022). We also observe that generalized
LuPTS and the classical learner coincide under certain conditions when m  d̂.

Proposition 1. Let �̂ : X ! Ẑ ✓ Rd̂
be any map with corresponding kernel . Let K̂t be the Gram

matrix of  applied to Xt and let ĥC, ĥP be classical (3) and privileged (Algorithm 1) estimates. Then,

K̂t is invertible for all t =) ĥP = ĥC.

K̂t is noninvertible whenever m > d̂, assuming linearly independent features.

Proof sketch. When the Gram matrices Kt are invertible, the pseudo-inverse coincides with the
inverse, and factors KtK

†
t in the LuPTS estimators cancel, making LuPTS and CL equal.

Remarks. Theorem 1 extends the applicability of LuPTS to a) nonlinear prediction through a fixed
feature map or b) kernel estimation and c) to the underdetermined case of m < d̂. While previous
work is restricted to observed linear systems our result considers the case of latent linear dynamics
which only need to be identified up to a linear transform (see Figure 1). Proposition 1 does not claim
that no preferable privileged learner exists; it is a statement only about generalized LuPTS. We may
relate the result to the double descent characteristic previously observed for other linear estimators for
fixed m and varying d̂ (Loog et al., 2020). After a phase transition around d̂ = m LuPTS’s variance
reduces for a second time when it becomes equivalent to the classical learner (see Figure 2).
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3.2 Random feature maps for unknown representations

When the true � is entirely unknown, as is often the case in practice, using a poor representation
�̂ may yield biased results for both classical and privileged learners. A common solution in non-
linear prediction is to use a universal kernel, such as the Gaussian-RBF kernel. These have dense
reproducing-kernel Hilbert spaces which allow approximation of any continuous function. However,
universal kernels also have positive-definite and thus invertible Gram matrices (Hofmann et al., 2008),
which according to Proposition 1 eliminates any gain in sample efficiency of generalized LuPTS.

Instead, we combine our algorithm with an approximation of universal kernels—random feature
maps. These methods project inputs x onto d̂ features by a random linear map W 2 Rk⇥d̂, and a
nonlinear element-wise activation function. By choosing d̂ < m, we can benefit from the function
approximation properties of universal kernels (see discussion below) and the variance reduction of
generalized LuPTS. Popular random features include random Fourier features (RFF) (Rahimi and
Recht, 2007) and random ReLU features (RRF) (Sun et al., 2018),1

�̂�
RFF(x) =

q
2/d̂

h
cos(

p
2�W>

Nx+ b)
i

and �̂�
RRF(x) = f+(�W

>
U [x; 1]) .

where f+(z) = max(0, z) is the rectifier (ReLU) function and � > 0 is a bandwidth hyperparameter.

For large enough numbers of random features and training samples, any continuous function h can
be approximated up to arbitrary precision by a linear map ! applied to the random features, e.g.,
ĥ(x) = !>�̂�

RRF(x), see Sun et al. (2019); Rudi and Rosasco (2017). Applying the same argument
to the step-wise estimators of LuPTS we can justify using random features in Algorithm 1 by the
following observation: Under appropriate assumptions, we can construct a privileged learner using

random feature maps which is a universally consistent estimator of h(x1) = E[Y |x1]. The precise
construction deviates somewhat from Algorithm 1, but follows the same structure. We refer to
Appendix B for a precise statement. As universal consistency describes the asymptotic behaviour in
the limit of infinite samples and random features, this offers only limited insight into the benefits of
privileged information in small sample settings, where performance will be a bias-variance trade-off.

Variance reduction & bias amplification. Generalized LuPTS is only guaranteed lower variance
compared to the classical estimator under Assumption 1, although our empirical results (Section 4)
suggest this applies more widely. When �̂ is a bad approximation of �, generalized LuPTS may
amplify bias, increasing with the number of privileged time points, compared to classical learning.
We show this theoretically in Appendix C and also empirically in Appendix F. Whether generalized
LuPTS is still preferable to classical learning in terms of prediction risk appears to depend on the
amount of bias that gets amplified. Our experiments imply the variance reduction mostly dominates
when using random features, whereas this is not always the case for linear LuPTS. The phenomenon
of bias amplification is familiar from e.g., model-based and model-free reinforcement learning (Kober
et al., 2013). As the bias with random features may still be high for small sample settings, we next
present privileged representation learning algorithms to trade off bias and variance more efficiently.

3.3 Privileged time-series representation learning

Up until now the representation �̂ was considered fixed, either because � was known up to a linear
transform (explicitly or implicitly) or because of the use of random feature methods. Generalized
LuPTS (Algorithm 1) produces minimizers {Ât}, �̂ of the following objective for fixed �̂,

LSRL(�̂, {Ât}, �̂) :=
1

NT

NX

i=1

 T�1X

t=1

1

d̂

��Â>
t �̂(xi,t)� �̂(xi,t+1)

��2
2
+

1

q

���̂>�̂(xi,T )� yi
��2
2

�
. (5)

Objective (5) and the systems described by Assumption 1 lend themselves to methods which also learn
the representation � in addition to the latent dynamics {At,�}. Next, we present three algorithms
which combine the ideas of generalized LuPTS with the expressiveness of deep representation
learning. All learners use equivalent encoders to represent �̂(·) and linear layers to model the
relations between the latent variables {Zt} and the outcome Y . The classical learner predicts the
outcome linearly from Ẑ1. All architectures under consideration are visualized jointly in Figure 3a.

1For RFF, [WN ]ij ⇠ N (0, 1), and for RRF, [WU ]ij ⇠ U(�1, 1) and bi ⇠ U(0, 2⇡).
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(b) Five example sequences
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Figure 3: Representation learning architectures (left) and samples from Clocks-LGS (right).

SRL. The first privileged representation learner directly optimizes objective (5), just like generalized
LuPTS, but now also fitting the representation �̂, parameterized by a neural network. We refer to this
model as stepwise representation learner (SRL). As we will see in experiments, a drawback of this
approach is that representations may favor predicting transitions ẑi,t ! ẑi,t+1 with small error, while
losing information relevant for the target outcome in the process. At test time, for a new input x1,
SRL composes the stepwise dynamics to output ĥP(x1) = �̂>Â>

T . . . Â>
1 �̂(x1).

CRL and GRL. To make sure that the learned representation �̂ retains information about Y , we
add linear outcome supervision to the representation �̂(Xt) at each time step t. Recall that, by
Assumption 1, the expected outcome is linear in the latent state at any time step. We introduce a
hyperparameter � 2 [0, 1] to trade off the two types of losses and arrive at the combined representation

learner (CRL). With ↵ = (�̂, {Ât}, {✓̂t}) the entire parameter vector, CRL minimizes the objective

LCRL(↵) :=
�

NTq

X

i,t

��✓̂>t �̂(xi,t)� yi
��2
2
+

1� �

N(T � 1)d̂

X

i,t

��Â>
t �̂(xi,t)� �̂(xi,t+1)

��2
2
. (6)

We make test-time predictions using ĥP(x1) = ✓̂>1 �̂(x1). In experiments, we highlight the case
� = 1 where only outcome supervision is used as greedy representation learner (GRL). For a precise
definition of the GRL objective, see Appendix D. GRL is related to multi-view learning, in which
prediction of the same quantity is made from multiple “views” (cf. time points) (Zhao et al., 2017).

4 Experiments

We compare classical learning to variants of generalized LuPTS (Algorithm 1) and the privileged
representation learners of Section 3.3 on two synthetic and two real-world time-series data sets. We
(i) verify our theoretical findings by analyzing the sample efficiency and bias-variance characteristics
of the given algorithms; (ii) demonstrate that generalized LuPTS with random features succeeds in
settings where linear LuPTS suffers from large bias; (iii) point out that privileged representation
learners offer even greater sample efficiency in practice and (iv) study how well these algorithms
recover the true latent variables {Zt} and how this relates to predictive accuracy.

Experimental setup. We report the mean coefficient of determination (R2), proportional to the
squared-error risk R, for varying sample sizes, sequence lengths and prediction horizons. Experiments
are repeated and averaged over different random seeds. In each repetition, a given model performs
hyperparameter tuning on the training data using random search and five-fold cross-validation before
being re-trained on all training data. The test set size is 1000 samples for synthetic data and 20% of
all data available for real-world data sets. We consider six privileged learners of two groups. The first
group comprises generalized LuPTS with the linear kernel (LuPTS) and the two random feature maps
shown in Section 3.2: Random Fourier features (Fourier RF) and random ReLU features (ReLU RF).
The classical learners for this group are OLS estimators used with the same kernel or feature map.
The second group consists of the representation learners SRL, CRL and GRL. For tabular data, their
encoder is a multi-layer perceptron with three hidden layers of 25 neurons each. For the image data
they use LeNet-5 (LeCun et al., 1989). The classical learner (Classic Rep.) uses the same encoder
with a linear output layer. The results presented were found to be robust to small changes in training
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(c) ADNI, T = 4.

Figure 4: Predictive accuracy of generalized LuPTS on three data sets, over 60 repetitions. The
shaded area represents one standard deviation above and below the mean over repetitions.

parameters such as learning rate. For details on the training process we refer to Appendix E. All
experiments required less than 3000 GPU-h to complete using NVIDIA Tesla T4 GPUs.2

Data sets. We briefly describe evaluation data sets and refer to Appendix E for further details.
First, we create two synthetic data sets in which latent states and outcomes are generated from linear-
Gaussian systems as in Assumption 1. To produce the observations {Xt} we use a deterministic
nonlinear function  : Z �! X . In the first synthetic data set, which we call Square-Sign, the
nonlinear transformation  : Rd �! R2d maps each latent feature Z(t,k) to a two dimensional vector
such that

Xt :=  (Z(t)) = [Z2
(t,1), sgn(Z(t,1)), . . . , Z

2
(t,d), sgn(Z(t,d))]

>.

The second synthetic data set uses the same latent linear system with Zt 2 R2 and produces square
images (28⇥28 pixels) as observations. As the images are reminiscent of clocks we refer to this
data set as Clocks-LGS. Example sequences of these observations are presented in Figure 3b. The
angle, size and fill of the two clock hands encode the value of the corresponding latent variable. The
outcome Y is a linear function of ZT with q = 1. For Square-Sign, q = 3.

The Metro Interstate traffic volume data set (Traffic) (Hogue, 2012) contains hourly records of the
traffic volume on the interstate 94 between Minneapolis and St. Paul, MN. In addition, the data
contains weather features and a holiday indication. We predict the traffic volume for a fixed time
horizon given the present observations. Privileged information is observed every four hours.

We also predict the progression of Alzheimer’s disease (AD) as measured by the outcome of the
Mini Mental State Examination (MMSE) (Galea and Woodward, 2005). The anonymized data were
obtained through the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (ADNI, 2004). The
outcome of interest is the MMSE score 48 months after the first examination. Privileged information
are the measurements at 12, 24 and 36 months. In addition we tested our algorithms on the PM2.5
data set (Liang et al., 2016), where we predict the air quality in five Chinese cities (see Appendix F).

4.1 Sample efficiency, bias and variance

The main goal of our work is to improve learning efficiency by incorporating privileged time-series
information. Across almost all prediction tasks and sample sizes, nonlinear variants of generalized
LuPTS outperform their classical counterpart in terms of sample efficiency as can be seen in Figure 4.
On the Traffic prediction task, LuPTS ReLU RF outperforms linear LuPTS as the former appears
to exhibit less bias. On the synthetic data of Square-Sign, linear models reach their best accuracy
quickly, while they are limited by their lack of expressiveness. Generalized LuPTS amplifies this
bias, making linear LuPTS worse than OLS. Random feature methods attain higher accuracy here but
are generally less sample efficient. Generalized LuPTS combined with random features manages to
decrease this gap significantly. On ADNI, we don’t see a benefit of using nonlinear models in general.
We make similar observations on the PM2.5 air quality data set, see Appendix F.

2Code to reproduce all results is available at https://github.com/Healthy-AI/glupts.
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(c) Clocks-LGS, T = 6, q = 1.

Figure 5: Predictive accuracy of the representation learners over 25 repetitions. Generalized distilla-
tion is used as proposed by Hayashi et al. (2019). For details, see Appendix E.
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Figure 6: Estimated squared bias and variance of models trained on Square-Sign (T = 5, d = 10,
q = 3) over random training sets (60 for left group, 25 for the right), evaluate on 1000 test points.

The representation learners proposed in Section 3.3 are evaluated on the same data sets and on the
image prediction task Clocks-LGS. Example results are displayed in Figure 5. These demonstrate
that directly transferring the LuPTS objective to neural networks in the form of SRL results in subpar
performance. SRL does not seem to have a strong enough incentive to learn representations which
accurately predict the outcome. Generalized distillation for privileged time series as suggested by
Hayashi et al. (2019), does not improve upon classical learning in our tasks. On all experiments
displayed in Figure 5, CRL and GRL outperform the classical learner. The predictive accuracy of
these models is similar on most tasks, as may be explained by the fact that CRL may reduce to GRL
when choosing � = 1 in objective 6. Noticeably, the general observation of GRL and CRL being
more sample efficient than the classic model, neither appears to depend on the neural architecture
used for the encoder, nor does the modality of the data play an important role, as the image prediction
task Clocks-LGS (Figure 5c) demonstrates. For additional empirical results, we refer to Appendix F.

To analyze the bias and variance characteristics of our algorithms, we can estimate the expected
squared prediction bias, EX1 [(ED[A (D)](X1)�E[Y |X1])2], by computing EY [Y |X1] in synthetic
DGPs in addition to the variance of the different estimators. Figure 6 depicts bias and variance for all
models on the Square-Sign data. On the left panel, all variants of generalized LuPTS exhibit lower
variance than classical learning, despite being biased. This holds generally: Across all experiments,

we never encountered an example where the use of privileged information has not resulted in lower

variance compared to classical learning. On the contrary, the privileged learners suffer higher bias
than the comparable classical learners because of the bias compounding over the individual prediction
steps as shown in Appendix C. For the random feature variants however, the bias decreases with the
number of samples. The representation learners display similar characteristics on the right panel
of Figure 6. Learning the transitions between latent variables Zt appears to be associated with low
variance and high bias as demonstrated by the results of SRL. GRL however, which does not model
these transitions, exhibits the lowest bias and the largest variance of all privileged learners. As CRL
is able to trade off between these two objectives, the estimates for its variance and bias lie in between
the corresponding values of the other two privileged learners.

8



0.60 0.65 0.70 0.75 0.80
R²

0.45
0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n 
SV

C
C

A
 C

oe
ff

ic
ie

nt 2500

2500

1500

1500

1000

750

500500300

200

200200

Classic Rep.
SRL
GRL
CRL

(a) Mean R2 and SVVCA coefficient over
25 training runs. Markers represent average
results over repeated experiments with size
indicating the sample size, m.

(b) Visualizing the representations learned by Classic Rep. and
CRL after applying SVCCA. The recovery target is shown in the
top left corner. Both estimators are best in class and trained on
2500 samples.

Figure 7: Analyzing the representations learned by the models of Section 3.3 using SVVCA on the
Clocks-LGS image regression data set (same setup as in Figure 5c).

4.2 Latent variable recovery

Under Assumption 1, it is sufficient to identify the representation function � up to a linear transform
B to have provable gains from privileged information over a classical learner. In synthetic data, we
can assess to what extent a representation �̂ with this property has been found. As a proxy for the
existence of such a transform, we can compute a measure of correlation between �̂(X) and �(X),
such as the Canonical Correlation Analysis (CCA) (Hotelling, 1936). Raghu et al. (2017) introduced
a modified version called Singular Vector Canonical Correlation Analysis (SVCCA) to compute
correlations when dealing with noisy dimensions in neural network representations.

The mean SVCCA coefficients ⇢̄ and predictive accuracy of the representation learners are visualized
in Figure 7a. One notices that GRL and CRL produce higher correlation coefficients than the
classical learner while also predicting the outcome on the Clocks-LGS task more accurately. Further
comparing the representations learned by privileged and classical models, Figure 7b shows a visual
example of the improved latent recovery of CRL on the same task. Concluding, the use of privileged
time-series information does not only increase the sample efficiency of existing algorithms but can
also aid the recovery of latent variables in latent dynamical systems.

5 Related work

Existing analyses for learning with privileged information guarantee improvements in asymptotic
sample efficiency under strong assumptions (Vapnik and Vashist, 2009) but are insufficient to establish
a clear preference for LuPI learners for a fixed sample size. For example, Pechyony and Vapnik
(2010) showed that for a specialized problem construction, empirical risk minimization (ERM) using
privileged information can achieve fast learning rates, O(1/n), while classical (non-privileged) ERM
can only achieve slow rates, O(1/

p
n). We are not aware of any generalization theory tight enough

to establish a lower bound on the risk of a classical learner larger than an upper bound for a PI learner.
Our problem is also related to multi-task (representation) learning (Maurer et al., 2016), see especially
(5)–(6). However, our goal is different in that only a single task is of interest after learning.

In estimation of causal effects, learning from surrogate outcomes (Prentice, 1989) has been proposed
as a way to increase sample efficiency. Surrogates are variables related to the outcome which may
be available even when the outcome is not (Athey et al., 2019). We can view these as privileged
information. While the problem shares structure with ours, the goal is to compensate for missing

outcomes and analytical results give no guarantees for improved efficiency when both surrogates
outcomes are always observed (Chen et al., 2008; Kallus and Mao, 2020). Guo and Perković (2022)
showed that, in the context of a linear-Gaussian system on a directed acyclic graph, a recursive
least-squares estimator is the asymptotically most efficient estimator of causal effects using only the
sample covariance. In the linear case on a path graph, their estimator coincides with ours. However,
no analysis is provided for the nonlinear case or for fixed sample sizes.
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6 Discussion

We have presented learning algorithms for predicting nonlinear outcomes by utilizing time-series
privileged information during training. We prove that our estimator is preferable to classical learning
when data is generated from a latent-variable dynamical system with partially known components.
The proof holds for the case when the latent dynamical system is recovered by the representation
function up to a linear transform, assuming that a left inverse of the true observation generating
function exists. However, this assumption does not appear to be necessary, as our empirical results
demonstrate that privileged learning is preferable to classical learning even when these conditions
cannot be guaranteed. Consequently, a more general theoretical result where less is known about
the latent system seems attainable. For example, one might consider a case in which only a few
independent components of the latent variables are recovered by the representation used by the
learning algorithm, while other components are treated as noise.

When the latent dynamical system is entirely unknown, we create practical estimators using random
feature embeddings which outperform the corresponding classical learner across experiments. We
show that a universally consistent learner can be constructed based on this idea, with slightly different
form. As a further alternative, we propose representation learning methods of related form using
neural networks and demonstrate the empirical benefits also of this estimator over classical learning.
In experiments, we analyze how the gap in risk between privileged and classical learning changes for
different prediction horizons, as displayed in Figure 16 in Appendix F. The results suggest that the
risk advantage of privileged learners grows with the sequence length of the prediction task, despite
the fact that the task becomes more difficult at the same time.

Our work focuses on the setting where data is observed as a time series. This setting is chosen for its
simple causal structure given by (latent) linear-Gaussian systems and because it can be motivated
from many different applications. However, the ideas presented are not specifically tied to time and
also apply in the case when all variables are observed simultaneously as long as the causal structure
remains sequential. Moreover, we believe that the theory presented here is not limited to sequential
settings and generalizes to other causal structures, in particular directed acyclic graphs that connect
the baseline covariates to the outcome. In either case, one might only have access to the baseline
variable at test time. For example, the timely collection of data for all covariates at test time might be
very expensive or even impossible.

As pointed out before, Theorem 1 requires the recovery of the latent variables up to a linear transfor-
mation. Nonlinear independent component analysis (ICA) (Hyvarinen and Morioka, 2016) aims to
solve precisely this problem and has been applied to time series via time-contrastive learning. This
makes for an interesting connection between learning using privileged information and nonlinear ICA,
as the experiments of Section 4.2 suggest that privileged time-series information aids the recovery
of latent variables. Other remaining challenges include providing risk guarantees for learning with
biased representations (including deep neural networks), with regularized estimators, and for more
general data generating processes with weaker structural assumptions. We are hopeful that the utility
demonstrated in this work will inspire future research to overcome these limitations.
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