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Abstract
It takes several years for the developing brain of a baby to
fully master word repetition — the task of hearing a word
and repeating it aloud. Repeating a new word, such as
from a new language, can be a challenging task also for
adults. Additionally, brain damage, such as from a stroke,
may lead to systematic speech errors with specific char-
acteristics dependent on the location of the brain dam-
age. Cognitive sciences suggest a model with various
components for the different processing stages involved
in word repetition. While some studies have begun to lo-
calize the corresponding regions in the brain, the neu-
ral mechanisms and how exactly the brain performs word
repetition remain largely unknown. We propose to bridge
the gap between the cognitive model of word repetition
and neural mechanisms in the human brain by modeling
the task using deep neural networks. Neural models are
fully observable, allowing us to study the detailed mech-
anisms in their various substructures and make com-
parisons with human behavior and, ultimately, the brain.
Here, we make first steps in this direction by: (1) train-
ing a large set of models to simulate the word repetition
task; (2) creating a battery of tests to probe the mod-
els for known effects from behavioral studies in humans,
and (3) simulating brain damage through ablation studies,
where we systematically remove neurons from the model,
and repeat the behavioral study to examine the resulting
speech errors in the ”patient” model. Our results show
that neural models can mimic several effects known from
human research, but might diverge in other aspects, high-
lighting both the potential and the challenges for future
research aimed at developing human-like neural models.

Keywords: word repetition; deep learning; speech errors;
working memory

Introduction
Across multiple cognitive domains, from perception to lan-
guage and reasoning, dual-route processing appears as a key
computational strategy of the human brain to address complex
tasks (Marshall & Newcombe, 1973; Dell et al., 1997; Tversky
& Kahneman, 1974; Mishkin et al., 1983; Hickok & Poeppel,
2007; Evans, 2008). Dual-route processing relies on the com-
bination of a memory-based and a rule-based route, which
are used to process incoming information and choose subse-
quent actions. The memory-based route draws on Long-Term
Memory (LTM) to handle familiar information from past expe-
riences. This type of processing is often fast, automatic, and
unconscious, making it highly efficient. In contrast, the rule-
based route relies on fresh computations and Working Mem-

ory (WM), which is slower but crucial for processing novel in-
formation. This idea of dual-route processing can be traced
back to the work of William James, who distinguished between
actions selected based on habit and those that involve effortful
deliberation (James, 1890).

A dual-route processing account has been proposed for
numerous tasks, including word repetition (e.g., Goldrick &
Rapp, 2007; Nozari et al., 2010). Word repetition involves
hearing a word – whether real or a pseudoword – and repeat-
ing it aloud. For healthy adult speakers, this is typically a sim-
ple task that rarely leads to errors, however, it could present
challenges for various populations. For example, babies and
toddlers, still developing their language skills, often find word
repetition difficult as they are in the early stages of processing
and producing speech. Similarly, children with developmen-
tal disorders may struggle with this task in specific ways. In
adults, individuals who have experienced neurological events
such as a stroke may face varying degrees of difficulty with
auditory word repetition. Studying these challenges provides
valuable insights into the intricate cognitive and neural pro-
cesses involved in language. In fact, research on the deficits
observed in patients has contributed to the development of an
information-processing Cognitive Model for Word Repetition
(Dotan & Friedmann, 2015).

The cognitive model for word repetition has two main routes
(Figure 1A-Top): a lexical route and a sublexical route. Both
routes begin by processing the acoustic input. The lexical
route is used for familiar words, activating stored information
from long-term memory (LTM), which can be used for their
pronunciation. In contrast, the sublexical route handles new
words that are not yet stored in LTM, relying on rules to con-
vert a sequence of phonemes into their sequential produc-
tion. The lexical route is typically fast and efficient, leveraging
LTM, and the sublexical route is slower and constrained by
WM limitations. However, the sublexical route is crucial for
language acquisition in children as well as in adults (e.g., Su-
san E. Gathercole & Emslie, 1994).

Neuroimaging studies have identified neural pathways
that may correspond to these routes. The ventral stream
is involved in lexical processing, while the dorsal stream
handles sound-to-motor mapping (Hickok & Poeppel, 2007;
Rauschecker & Scott, 2009), and damage to this route can
lead to impaired speech repetition (Fridriksson et al., 2010).
While these studies offer evidence for where word repetition
may occur in the brain, the underlying neural mechanisms
involved in each processing stage remain largely unknown.
Here, we move towards linking the cognitive model to neu-
ral mechanisms in the brain by modeling the task using neu-
ral networks that simulate dynamics which resemble those of
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Figure 1: Linking the Cognitive Model for Word Repetition and Brain Dynamics with Deep Neural Models. (A) Top: A
diagram of the cognitive model for word repetition, illustrating the various underlying processing stages. The so-called ’Buffers’
represent working memory (WM) components, which have capacity limitations and can only store information temporarily. The
so-called ’Lexicons’ in the model represent long-term memory (LTM) components, which can store tens of thousands of words
and allow for retrieval during processing. Bottom: An encoder-decoder architecture used to model word repetition with a neural
network. (B) Known effects from human research: (1) Length Effect: A tendency to make more errors on longer words. This
effect is observed in WM components but not in LTM components, due to the capacity limitations of WM. (2) Frequency Effect:
The tendency to make fewer errors on words that are more frequent in language. In contrast to the length effect, this effect is
observed in LTM component but not in WM components – frequent words are stored and retrieved more efficiently in LTM. (3)
Primacy and Recency Effects: The tendency to make fewer errors on phonemes at the beginning (primacy) and at the end
(recency) of a word. Phonemes at the beginning of a word are often more easily encoded and retrieved due to their prominence
in speech perception, while phonemes at the end of a word benefit from more recent activation in working memory. (4) Sonority-
Sequencing Principle: The principle states that sonority increases towards the nucleus of a syllable (typically the vowel) and
decreases afterwards. In CCV structures (C: consonant, V: vowel), consonant clusters show a gradient where the sonority rises
towards the vowel, while in VCC structures, sonority decreases towards the final consonant.



the brain. Unlike biological networks, these neural networks
are fully observable, which offers an opportunity to study the
mechanisms behind word repetition.

We used an Encoder-Decoder (aka, seq2seq; Sutskever,
2014) architecture with recurrent neural networks (RNNs),
which captures the two main parts of the cognitive model (Fig-
ure 1A-Bottom). We trained a large set of models to per-
form the word-repetition task on the full English vocabulary,
weighted by word frequency. We then studied the models be-
haviorally, and asked whether the errors of the models mimic
known phenomena from human studies. We finally studied the
models neurally through ablation studies to identify the role
of specific subsystems: we studied the errors of our ‘patient’
models, asking whether they resemble speech-error patterns
akin to those identified in human patients, and whether dual-
route processing naturally emerges in an otherwise generic
neural architecture.

The main contributions of our study are: (1) Encoder-
Decoder neural models that perform the word-repetition task;
(2) A suite of tests to study human-like processing in the
models; (3) A framework to examine if dual-route process-
ing emerges spontaneously in a generic neural network as
it learns; (4) ‘Patient’ models that simulate speech errors in
human patients. 1

Related Work and Background

The Dual-Route Processing for Word Repetition

Evidence for the dissociation between two pathways in word
repetition comes from neuropsychological studies, which
identify two groups of patients with distinct error patterns. One
group produces errors indicative of lexical processing, such as
sensitivity to word frequency, while the other produces errors
indicative of sublexical processing, such as sensitivity to syl-
labic structure or phoneme frequency (e.g., Goldrick & Rapp,
2007; Nozari et al., 2010). These findings were integrated into
a cognitive model for word repetition (Figure 1A).

In this model, the lexical and sublexical routes share a com-
mon initial stage in the so-called Auditory Analyzer, where
phoneme identities and positions are extracted from word
acoustics. This information is transiently held in the Phono-
logical Input Buffer. In general, so-called ‘buffers’ of the model
are WM components2, which store information for a relatively
short time. Due to their limited capacity, they typically show
length effects. Information from the Phonological Input Buffer
then flows into the two main routes of the model, the lexical
and the sublexical routes.

The lexical route involves accessing and retrieving entries
from LTM, which are stored in two lexicons. The Phonological
Input Lexicon stores auditory representations of entire words,
and the Phonological Output Lexicon stores more abstract

1All necessary materials, stimuli and scripts necessary for repro-
duction can be found at https://github.com/danieldager/swp-model

2While certain processes might align more with short-term mem-
ory (STM), working memory (WM) and STM are used synonymously
for ease of exposition.

representations that are shared with also other tasks, such as
reading and naming (Marshall & Newcombe, 1973; Friedmann
& Coltheart, 2018; Dotan & Friedmann, 2015). Evidence for
selective impairments of each of these lexicons, and there-
fore to their separate existence, comes from neuropsycholog-
ical studies, showing such double dissociation (e.g., Shallice,
1981; Caramazza & Hillis, 1990).

In contrast to the lexical route, the sublexical route directly
maps input to output phonology, bypassing the lexical sys-
tem, through a set of conversion rules. These rules control
the mapping of short sequences of heard phonemes during
word comprehension onto the corresponding sequences for
word production. The sublexical route is used to process new
words. Since new words lack lexical entries, they cannot be
processed fully through the lexical system.

Both routes converge at the Phonological Output Buffer,
which is the stage in language production where phonemes
are held in working memory and assembled into words (Ro-
mani, 1992; Vallarb et al., 1997; Shallice et al., 2000). It
serves two primary functions, first, as a phonological work-
ing memory that maintains phonological information until ar-
ticulation, and second, it assembles phonemes into words
and combines stems and affixes into complex words (Dotan
& Friedmann, 2015; Haluts et al., 2020). This stage therefore
has a key role across several word-processing tasks: naming,
reading, and repetition of both words and pseudowords.

Word-Processing Phenomenology
Research on both healthy individuals and patients has re-
vealed several key insights into word repetition. Here, we fo-
cus on four established effects. To these, we add two more:
one derived from typical WM characteristics and another from
phonological theory. These six effects will guide the analyses
of the neural models (Figure 1B):

1. Lexicality Effect: Pseudowords (non-words that fol-
low phonological rules but have no meaning) are more
prone to errors than real words. This effect is key
for differentiating lexical vs. sublexical processing in the
two routes, since pseudowords are necessarily processed
through the latter route.

2. Frequency Effect: Low-frequency words are more
prone to errors than high-frequency words. This effect
is key for differentiating lexicons from buffers in the mod-
els, since lexicons, as LTM components, but not buffers,
are predicted to show frequency effects.

3. Length Effect: Longer words are more prone to errors
than short words. This effect is key for differentiating
buffers from lexicons in the models, since buffers, as WM
components, but not lexicons, have limited capacity (Bad-
deley et al., 1975).

4. Morphological-Complexity Effect: Morphologically-
simple words are more prone to errors than equi-length
morphologically-complex words. Morphemes (e.g., ’ing’

https://github.com/danieldager/swp-model


or ’able’) were shown to be stored as basic units, like
phonemes, function and number words (Dotan & Fried-
mann, 2015), from which the phonological output buffer
composes words. The effective length of morphologically-
complex words is therefore shorter than that of morphologi-
cally simple words of equal length, making them less prone
to errors related to word length.3

5. Primacy and Recency Effect: Phonemes in middle po-
sitions of words are more prone to error than early and
late positions. A well-established phenomenon in working
memory is the serial position effect (Murdock Jr, 1962). In
a sequence, items presented at the beginning are better re-
tained due to their saliency, known as the primacy effect.
Items presented at the end of the sequence are also more
easily recalled due to their recency during retrieval, known
as the recency effect. In contrast, items that appear in the
middle of the list tend to be forgotten more often. This pri-
macy and recency effects have been consistently demon-
strated in tasks such as free recall and immediate serial
recall (ISR), as well as in pseudoword repetition tasks (e.g.,
Hartley & Houghton, 1996; P. Gupta, 2005; P. Gupta et al.,
2005; Page & Norris, 2009).

6. Sonority-Gradient Effect: consonant clusters that vi-
olate the Sonority Sequencing Principle are more
prone to errors than consonant clusters that obey it.
The Sonority Sequencing Principle (SSP; Selkirk, 1984;
Clements, 1990) describes how syllables are structured
based on the sonority, or loudness, of sounds. It suggests
that the central part of a syllable, typically a vowel, is the
peak of sonority, and the surrounding consonants should
have progressively lower sonority as you move away from
the vowel. For example, in the English one-syllable word
”plant”, the consonants ”p” (low sonority) are followed by ”l”
(high sonority), and the vowel ”a” forms the peak of sonority,
with the consonants ”n” (high sonority) and ”t” (low sonority)
completing the syllable. While many languages follow this
pattern, some languages, allow for violations of this rule.
English follows the SSP but also has exceptions, such as
the /s/ + stop clusters (e.g., in ‘sport’). Overall, we expect
more repetition errors for phoneme sequences that violate
the SSP.

Computational Models for Word Repetition
Our approach draws on influential prior computational models
of language processing and short-term memory (e.g., Mc-
Clelland et al., 1989; Dell et al., 1997; Botvinick & Plaut, 2006;
S. Gupta et al., 2020; Sajid et al., 2022). More recent work has
attempted to model word repetition by incorporating knowl-
edge of the neuroanatomy of the language system (Ueno et

3While morphologically complex words might be less prone to
length-related errors than equi-length monomorphemic words due
to their smaller ”effective size”, they nonetheless exhibit specific er-
ror patterns, particularly morphological errors such as affix omis-
sions, substitutions, or insertions, as described in Dotan & Friedmann
(2015). These specific error types will not be explored in the current
work.

al., 2011; Chang & Lambon Ralph, 2020). However, these
models were trained on a relatively small vocabulary—only a
few hundred words—far smaller than the lexicon of an aver-
age speaker. Additionally, all words were restricted to mono-
syllables. Here, we leverage advances in machine learning to
train a deep neural model on the full lexicon, achieving perfect
performance. This enables the use of richer probing datasets
that are not limited to monosyllabic words and allows for the
exploration of length and morphological effects.

Experimental Setup

Datasets

The Training Dataset Comprises the 30K most frequent En-
glish words, based on the WordFreq python library (Speer,
2022). We excluded abbreviations and words that were not
found in the CMU dictionary (CMU, 2014). Each word was
included at least once in the dataset, after which words were
sampled by frequency, with replacement, in order to generate
106 total samples. The CMU dictionary provided us with the
ARPAbet phonetic translation of each word, including vowel
stress, which, for simplicity, we do not model in this work.

The Word Feature Evaluation Dataset Given the known
processing effects from humans (Section - Word-Processing
Phenomenology ), we created a factorial design with four main
dimensions, which allows for the disambiguation of the effects
of interest: lexicality effect, morphological-complexity effect,
length effect, and frequency effect (see Table 1). The eval-
uation dataset has 100 words for each of the 12 conditions,
summing to a total of 1200 words. The factorial design al-
lows for splitting the dataset according to any one condition
(e.g., 600 short words vs. 600 long words). Real words were
selected from the training dataset. Pseudo-words were gen-
erated using an algorithm that leverages the trigram statis-
tics of the training dataset (New et al., 2004). To enhance
sublexicality, we included only pseudowords that were ortho-
graphically far from all real words in the training dataset. To
quantify this, we computed the Levenshtein edit distance to all
real words and normalized it by pseudoword length. We then
included pseudowords whose minimal length-normalized edit
distance to all real words was at least 0.25. Meaning, four-
letter pseudowords could share all but one phoneme with any
real word, whereas eight-letter pseudowords needed to differ
by at least two. Finally, the phonetic transcriptions of all pseu-
dowords were generated using the G2P python library (Park
& Kim, 2019). As with the training dataset, vowel stress was
removed.

The Sonority Evaluation Dataset To explore whether er-
ror rates correlate with the phonotactics of the language, we
created a dataset with all the possible consonant-consonant-
vowel (CCV) and vowel-consonant-consonant (VCC) combi-
nations, excluding combinations where the same consonant
was repeated and those that were in the training dataset. We
then quantified the sonority gradient in the resulting syllables
by computing the difference between the phoneme classes of



# Lex. Morph. Length Freq. Example
1 Real Simple Short High Boot
2 Real Simple Short Low Clog
3 Real Simple Long High Prestige
4 Real Simple Long Low Gauntlet
5 Real Complex Short High Undo
6 Real Complex Short Low Anew
7 Real Complex Long High Restart
8 Real Complex Long Low Joviality
9 Pseudo Simple Short N/A Quab
10 Pseudo Simple Long N/A Curroxima
11 Pseudo Complex Short N/A Rebo
12 Pseudo Complex Long N/A Deoborer

Table 1: The Word Feature Evaluation Dataset. We created
a factorial design to probe the models, which has four main
dimensions: (1) Lexicality, (2) Morphological Complexity, (3)
Word Length and (4) Word Frequency. An example is given for
each of the 12 conditions. The dataset contained 100 samples
from each condition.

the adjacent consonants. That is, following the SSP, we first
ordered phoneme classes based on their sonority: glide(1)>
liquid(2) > nasal(3) > f ricative(4) > plosive(5). Then, for
each consonant cluster, we computed the difference between
the two classes as the difference between their rank in this
order. For example, if the first consonant was plosive and the
second one was nasal, then the sonority gradient was set to
5− 3 = 2, and it was set to 3− 5 = −2 if the first was nasal
and the second was plosive. This means that CCV syllables
with a positive sonority gradient follow the SSP and those with
a negative gradient violate it; and vice versa for VCC syllables.

Models

Architecture We used a standard Encoder-Decoder archi-
tecture (Sutskever et al., 2014), with either simple (Elman) or
Long-Short Term Memory (LSTM; Hochreiter & Schmidhuber,
1997) units, see Figure 1A-Bottom.4

Encoder-Decoder The Encoder first passes the tokens
through an embedding layer, and then through the recurrent
layer (or layers, of RNN or LSTM units). The final hidden state
of the Encoder was passed as the initial state of the recurrent
layer of the Decoder. For simplicity, the Encoder and Decoder
always had the same unit type, hidden size and number of
layers. At each time step in the Decoder, the previous output
was fed back to the recurrent network as the input for the next
token prediction. The first input embedding of the Decoder
was the Start-of-Sequence token. The weights for the input
embedded layers in Encoder and Decoder were shared, and
the output embedding layer of the Decoder used their trans-

4Our choice of recurrent architectures over more recent Trans-
former models is driven by their greater biological plausibility, as they
more closely resemble the sequential processing of biological brains,
while still offering robust performance for the tasks explored here.
Notably, some recent advancements in neural network architectures,
such as State Space Models (SSMs; Gu & Dao (2023)), are exploring
a return to designs that incorporate forms of recurrent connections.

position. After being embedded, tokens are passed through a
dropout layer.

Training Procedure LSTM models were trained for 100
epochs, at which point our best models had perfectly learned
the training data. RNN models required more epochs to con-
verge, and were trained for 150 epochs, but ultimately failed
to achieve zero error rate on the training data. We used the
standard ADAM optimizer (Kingma & Ba, 2014), and a varia-
tion of Cross-Entropy Loss which allowed us to ignore the pad
tokens we used to align the sequences for batching.

Model Selection After a preliminary parameter search, we
ran a finer grid search over models with a single layer (see
Table 2 in Appendix). For model selection, we used the fol-
lowing criteria: (1) perfect accuracy on the CV training splits;
(2) highest accuracy on the CV validation splits; (3) smallest
model complexity, in terms of number of parameters.

Analyses

Measures We used two measures for model performance:
(1) Error rate, the fraction of words that the model fails to per-
fectly repeat, and (2) Edit distance, the average of the Leven-
shtein distances (Levenshtein, 1965) between each predicted
phoneme sequence and its corresponding ground truth.

Model Evaluation After training and model selection, we
computed the error rate and the edit distance of the selected
models on the Word Feature Evaluation Dataset and on the
Sonority Evaluation Dataset.

Behavioral Study To determine which factors—lexicality,
length, and morphological complexity—best predict model
performance, we regressed model performance on all fac-
tors, including interaction terms. Since regression coefficients
are sensitive to possible correlations among factors, we also
conducted a Feature-Importance (FI) Analysis for the main
effects, which is more robust to such correlations (Breiman,
2001).

Neural Study To study the neural representations of
phoneme sequences, we conducted single-unit ablation stud-
ies by zeroing the output values of units in the recurrent layer
(Lakretz et al., 2019; Lakretz, Hupkes, et al., 2021). We
then evaluated the performance of the ablated model on the
Word Feature Evaluation and Sonority Evaluation Datasets,
and compared their results with those of the intact model. To
study distributed neural representations across all units, we
trained Metric Learning Encoding Models (MLEMs; Jalouzot
et al., 2024; Salle et al., 2024), which reveal which linguistic
factors best predict neural distances among words.

Results

Behavioral Study: Speech Errors and Main Effects
in the Neural Model for Word Repetition

The NWR Model Fully Accomplishes the Word Repetition
Task LSTMs, but not RNNs, could learn to perform the task
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Figure 2: Speech Errors of the NWR-Model. We probed model’s behavior for several processing effects, known from humans:
(A) Length effect and its interaction with lexicality and morphological-complexity. Length effect is observed for pseudowords only.
For real words, no errors are expected since the intact (non-ablated) model performs perfect word repetition of real words. An
interaction with morphological complexity is observed: Except for nine-phoneme sequences, morphologically-complex words
are processed more robustly. (B) Feature Importance (FI) for all main dimensions: lexicality, morphological complexity and word
length (frequency was omitted due to its strong correlation with lexicality, assuming pseudewords have zero frequency), which
were estimated from a regression model trained to predict edit-distance errors for all words in the Word Feature Evaluation
Dataset. The signs of the FIs were determined from the regression coefficients. (C) Error-rate as a function of relative position
of the phoneme in the word. A primacy and recency effects are observed: The model tends to make more errors in middle
positions compared to early or late ones. (D) Sonority-Sequencing effect: Error-rate as a function of the sonority gradient in
a two-consonant cluster, for both CCV and VCC clusters (C - consonant, V - vowel). Overall, the model follows the Sonority
Sequencing Principle (SSP), making more errors when sonority gradients violate the SSP.

perfectly on the training data. The hyperparameters of the op-
timal model among them (see Model Selection) were: batch
size: 2048, hidden size: 128, dropout: 0, learning rate: 0.001.
This model achieved a zero error rate when trained on the
complete lexicon of the Training Dataset. We refer to this se-
lected model as the Neural Word Repetition (NWR) model.
Figure 2 shows the performance of this model on our eval-
uation datasets, which we comment below. To test the ro-
bustness of the results, we trained 10 more models from dif-
ferent seeds, using the optimal hyper-parameters from the
grid-search. All results are reported in the appendix, show-
ing strong consistency across models.

Lexicality Effect The NWR model was able to perfectly re-
produce all real words in the test set, which was expected,
since all real words appeared in the training dataset. However,
the model also perfectly reproduced the vast majority of pseu-
dowords in the Word Feature Evaluation Dataset (97.25%).
This suggests good generalization capabilities of the model.
This difference between real and pseudowords suggests a
lexicality effect (2A; blue vs. red lines), which was significant
in the regression model (Figure 2B; p− value ≪ 0.05; see
Experimental Setup)

Length Effect As seen in Figure 2A, the NWR model makes
more errors on longer pseudowords (ρ = 0.220, p− value ≪
0.05). This behavior matches what we would expect from a
model which employs a mechanism akin to working memory
(e.g., a phonological output buffer) for processing words that
are not part of an already learned lexicon. The length effect
was found significant in the regression model (Figure 2B, p−
value ≪ 0.05).

Morphological-Complexity Effect We next asked whether
the model made more errors on morphologically simple words,
compared to complex ones. This would be expected if mor-
phemes are processed as discrete units, thus reducing the
effective size of the phoneme sequence. Figure 2A (continu-
ous vs. dashed lines) suggests a morphological-complexity ef-
fect: the model started making errors on morphologically sim-
ple pseudowords of phoneme-sequence length 7 and greater,
and on morphologically complex pseudowords only at length
9. However, the regression model found no significant main
effect of morphological complexity (p−value > 0.05) or inter-
action effect with word length (p− value > 0.05).

Primacy and Recency Effect Next, we studied if the model
made more errors at particular positions within the phoneme
sequences. Figure 2C shows the error rate distribution for
all real (red) and pseudo (blue) words as a function of the
position of the phoneme in the sequence (if for a given se-
quence more than a single error occurred, each error was
counted independently). Overall, the model made more er-
rors on phonemes in middle positions compared to positions
near the beginning or the end of the sequence. This pattern
resembles primacy and recency effects in humans, typical to
working-memory processes (e.g., P. Gupta, 2005; P. Gupta et
al., 2005).

Sonority-Gradient Effect Finally, we studied whether
phoneme processing in the NWR model follows the sonority
sequencing principle (SSP). Figure 2D shows speech errors
made by the NWR model on the Sonority Evaluation Dataset.
For CCV syllables, the model made fewer repetition errors
on syllables that conform with the SSP (i.e. having a posi-
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Figure 3: Neural Representations of Single Phonemes in the NWR Model. (A) Pairwise Euclidean distances among the 39
phoneme representations, taken from the hidden state of the Encoder after processing each phoneme individually. Rows and
columns are sorted based on unsupervised hierarchical clustering (dendrogram on the left). Two macro-clusters are observed,
corresponding to vowels and consonants. (B) Feature Importance for vowel and consonant features obtained from a Metric-
Learning Encoding Model (Jalouzot et al., 2024). For vowels (top), Height refers the the height of the tongue when pronouncing
the phoneme (e.g., high, low). Backness refers to the horizontal placement of the tongue (e.g., back, front). Whether the vowels
was a diphthong or not was encoded as a binary variable. Asterisks denote statistical significance; n.s. - not significant. For
consonants (bottom), place of articulation is where along the vocal tract the consonant is pronounced (e.g., coronal, labial).
Manner of articulation describes the interactions of speech organs to produce a sound (e.g., fricative, nasal). Voiced is a binary
feature which encodes whether vibration of the vocal cords is necessary for pronunciation. Error bars are standard error.

tive sonority gradient; ρ = −0.262, p− value ≪ 0.05). For
VCC syllables, the SSP is reversed and so are the results: the
NWR model makes more errors with positive sonority gradi-
ents (ρ = 0.114, p−value ≪ 0.05), which is when the SSP is
violated.

Neural Study: Linking Linguistic Features to Neural
Representations in the NWR Model

The behavioral effects described above must stem from the
model’s underlying neural representations and mechanisms
for processing phoneme sequences. In this section, we take
initial steps toward understanding these by studying single-
phoneme representations and conducting ablation experi-
ments on individual model units.

The Neural Organization of Single-Phoneme Representa-
tions in the NWR Model We first investigated how the NWR
model internally represents single phonemes, the basic units
of spoken words. Prior research in cognitive science and
neuroscience has shown that human phoneme representa-
tions are structurally organized. Specifically, during speech
comprehension, they are grouped by linguistic features such
as manner-of-articulation (e.g., [plosive], [fricative]; Chom-
sky & Halle (1968)). What kind of neural representations for

phonemes has the NWR developed during training?
To study this, we presented individual phoneme tokens to

the Encoder, extracting their corresponding embeddings from
its hidden layer. To analyze the pairwise relationships among
all phonemes, we computed the Euclidean distances between
all embedding pairs. Figure 3A displays the resulting dissimi-
larity matrix for all phonemes.5. This matrix is sorted accord-
ing to a dendrogram (left side) generated using unsupervised
hierarchical clustering (Pedregosa et al., 2011). Remarkably,
despite the model receiving no explicit acoustic information
during training, it learned to segregate vowels and consonants
into distinct regions within its neural space. This clear sepa-
ration is evident in the two prominent clusters for vowels and
consonants visible in the dissimilarity matrix, and also after
dimensionality reduction (Figure 13).

Beyond the broad consonant and vowel distinctions, we ob-
served more granular, structured relationships within these
groups. For instance, within the consonant clusters, specific
sounds such as the plosives /p/, /b/ and /k/ are grouped to-
gether. Similarly, among vowels, some diphthongs show clear
clustering. However, a straightforward organization based
purely on surface phonological features was not immediately

5Using cosine distance yielded qualitatively similar results.



apparent from the dissimilarity matrices alone.
To determine whether specific phonological features under-

lie the neural organization of phonemes in the NWR model, we
employed Metric Learning Encoding Models. MLEMs are de-
signed to model neural distances from differences in theoret-
ical features, which, in our case, were phonological features.
This method assigns a Feature-Importance (FI) score to each
phonological feature, quantifying how strongly a difference in
that feature predicts a large neural distance.

Figures 3B illustrate the resulting FIs for vowels (top) and
consonants (bottom). For vowels, three features were in-
cluded in the analysis – Height, Backness6 and whether the
sound was a diphthong, which, for simplicity, were encoded
in the NWR as single token. MLEMs showed that diphthongs
predict the largest neural distances in the Encoder.

For consonants, we contrasted the effects of place,
manner-of-articulation, and voicing on neural distances.
MLEMs revealed that changes in manner-of-articulation fea-
tures corresponded to the largest distances in the neural
space. This finding aligns with human behavioral observa-
tions, where manner-of-articulation features exhibit the great-
est discriminative power in English, and also dominate neural
representations in the human auditory cortex (Mesgarani et
al., 2014; Lakretz et al., 2018; Lakretz, Ossmy, et al., 2021).

Speech Errors of Neurally-Damaged NWR Models Neu-
ropsychological research has shown that humans can exhibit
highly characteristic speech errors after localized brain dam-
age, which can be explained by selective impairments to spe-
cific components in the cognitive model for word repetition
(Figure 1A-top). If during training, the NWR model developed
neural circuits akin to the cognitive model, we would expect
characteristic speech errors in neurally-damaged NWR mod-
els that resemble those reported in humans. Here, we make
first steps to test this hypothesis by conducting ablation stud-
ies, for which we removed at each time a single unit from the
recurrent layer of the NWR model and studied the resulting
speech errors in the ablated NWR model.

Dual-Route Processing in the NWR model? The single-
unit ablation study resulted in 128 ablated NWR models. Fig-
ure 4 summarizes errors made by all 128 ablated models on
the Word Feature Evaluation Dataset. Values on the x and
y-axes show the percentage of errors made by the ablated
model on real and pseudo words, respectively. Each dot rep-
resents a different ablated NWR model.7

If single-unit ablation were to lead to some ablated models
appearing in the lower triangular region of the plot (i.e., mak-
ing more lexical errors), while other models appeared in the
upper triangular region (i.e., making more sublexical errors),
this would provide support for the emergence of dual-route
processing within the NWR model. Of course, the absence

6Due to a strong correlation between Backness and the Round-
edness feature, the latter was omitted from the regression model.

7Complete results for all other features pairs (e.g. short/long) can
be found in Figure 7 in the Appendix.

of such evidence is not evidence of the absence of dual-route
processing, but a positive result would offer strong support.
What did we find in the NWR model?

Figure 4 shows that most ablated models had an error rate
under 20% on the evaluation dataset, showing general robust-
ness to ablation. However, single-unit ablations resulted in
higher error rates when performed in the Encoder (blue) than
in the Decoder (red). This suggests that sequence encoding
uses smaller, less redundant circuits than sequence produc-
tion.

Unit 49

Unit 31

Figure 4: Speech Errors of all ablated models. We per-
formed a single-unit ablation study where each hidden layer
unit (blue for Encoder, red for Decoder) was ablated one at a
time. The model’s performance was then re-evaluated on the
factorial dataset. Each dot represents a single ablated model.
The axis values indicate the percentage of error following ab-
lation, specifically contrasting real vs. pseudowords from the
factorial dataset. Units on the diagonal had a similar effect
on real and pseudowords; units in the upper triangle caused
more sublexical errors.

Figure 4 further shows that all ablated models lie close to
the diagonal, in the upper triangle of the scatter (see Appendix
for the distribution of the distances from the diagonal). That
is, single-unit ablations cause more errors in sublexical rather
than in lexical processing. This suggests only a single, rather
than double, dissociation between the two routes of the cog-
nitive model.

Interestingly, two units (number 31 and 49) caused a large
increase in speech errors, with one unit (49) causing error
rates up to 80% for both real and pseudo words, as discussed
next.

Speech Errors Following the Ablation of Unit 49 Given
the large effect on error rate following the ablation of unit
49, we conducted an in-depth analysis of the corresponding
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Figure 5: Speech errors of the NWR model following the ablation of unit 49. Panels are organized as in Figure 2

ablated NWR model. Fig. 5 shows the behavioral analysis
of the ablated model, with its performance in the different
conditions.8 We highlight several key observations: In Fig-
ure 5A, we find a strong length effect (ρ = 0.665, p−value ≪
10−3), but no lexicality effect (with similar difficulty for real
and pseudo words) and no morphological-complexity effect.
Figure 5B further quantifies this, showing that the length ef-
fect dominates the results. Furthermore, Figure 5C shows
that ablating unit 49 eliminates the recency effect of the orig-
inal model, and 5D shows that the sonority-gradient effect is
preserved for both CCV and VCC syllables. An analysis of
the error patterns of this unit revealed that the model prema-
turely stops sequence producing during word repetition (see
Appendix D). This premature stopping of sequence produc-
tion explains the strong length effect (panels A&B) and the
absence of a recency effect (panel C).

Discussion
We introduce a novel approach to investigate whether the
dual-route cognitive model for word repetition can be mapped
onto neural processing within an artificial neural model trained
on this task. We propose three new evaluation methods: (1)
assessing human-like linguistic behavior in the neural model
using a defined set of criteria; (2) determining the emergence
of dual-route processing by contrasting lexical and sublexical
errors; and (3) performing component-wise tests of the cog-
nitive model’s individual parts, by providing a list of expected
effects for each component.

Unlike previous studies, we trained our models on a large
lexicon including polysyllabic and multi-morphemic words,
also accounting for the natural frequency of words. Our re-
sults show that the neural word repetition (NWR) model suc-
cessfully learns to reproduce all words in the training lexicon
and can accurately repeat most pseudowords in the evalua-
tion test. The model exhibited several human-like processing
effects, including a length effect, primacy and recency effects,
and adherence to the sonority sequencing principle. However,
it did not show a sensitivity to morphological complexity.

Our analysis of the NWR model’s single-phoneme repre-

8see Appendix for the speech errors of the NWR model following
the ablation of unit 39.

sentations revealed an organization into distinct vowel and
consonant clusters. This structure emerged during training
based solely on phoneme co-occurrence statistics, without
any acoustic input. We found that manner-of-articulation fea-
tures most strongly predicted neural distances for consonants,
while the diphthong vs. monophthong distinction was key for
vowels. In the above respects at least, the representations
of phonemes by the NWR model were consistent with human
processing.

To investigate whether dual-route processing emerges dur-
ing training, we conducted ablation studies, simulating neu-
ral damage in the model. The resulting ’patient’ models dis-
played a tendency to make both lexical and sublexical errors.
As seen in Figure 4, most ablated models clustered around
the diagonal, suggesting that ablating a single unit tended to
impact both lexical and sublexical processing similarly, or at
least caused more errors in sublexical processing, but not the
other way around. This pattern indicates a single dissocia-
tion between lexical and sublexical processing, or potentially
even no clear dissociation, at least not at the single-unit level.
Consistently, a follow-up analysis of how lexical and sublexi-
cal information is encoded by different units of the model did
not reveal distinct, lexicality-based separation of units (Figures
12&14). These results more closely align with the view that
lexical and sublexical processing are entangled, exhibiting no
sharp boundaries between them (e.g., Regev et al., 2024).

Overall, this study takes initial steps toward bridging the gap
between the cognitive model of word repetition and its under-
lying neural mechanisms in the human brain by developing a
neural model that can be analyzed at both behavioral and neu-
ral levels. By training the model on a large lexicon and system-
atically examining its behavior, we provide evidence that key
human-like processing effects can emerge during training, in-
cluding those related to working memory, without explicitly in-
troducing working-memory dynamics into the model. Future
research should investigate how lexical and sublexical infor-
mation is represented across different units of the model, how
phoneme sequences are neurally encoded and whether dual-
route processing can be more explicitly induced by incorpo-
rating working-memory dynamics into the model, or by adding
architectural constraints inspired by human neuroanatomy.
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Appendices
A Word Feature Evaluation Dataset The length of each
word is the number of phonemes, and not the number of
letters, it contains. Short words have between 3, 4, and 5
phonemes. Long words have between 7, 8, and 9. Low fre-
quency (real) words have a Zipf frequency up to 3.5, and high
frequency words have Zipf frequency as low as 4.0. A word
is morphologically complex if it contains a prefix or suffix ap-
pended to a distinguishable root (e.g. restart is complex, but
repeat is simple, because -peat does not stand on its own in
the same sense).

B Model Selection Before settling on the hyperparame-
ter ranges for our final grid search, we first ran a series of
preliminary tests to explore the hyperparameter space. To fa-
cilitate training by preventing the accumulation of prediction
errors, we implemented a teacher-forcing procedure. That is,
the predicted token is replaced with the ground-truth token,
with a given probability. We ultimately found its effects to be
detrimental to learning. Far more significant are the effects of
the learning and dropout rates. We found no clear advantage
in increasing the number of recurrent layers beyond one layer.

We explored all combinations obtained for variations of hid-
den size (64 or 128), dropout rate (0, 0.1, 0.2), batch size
(1024, 2048, 4096) and learning rate (5.10−3, 10−3, 5.10−4).
We followed a 5-fold cross-validation (CV) procedure. Each
CV split contained 30k training words sampled by frequency
to generate 106, as in the complete training data set. To avoid
overfitting, we used early stopping, choosing the 75th epoch
(the middle of the period between epochs 65 and 85, when
the model first achieved a stable zero error rate on the Train-
ing Dataset)

Hyperparameter Range
# of Layers 1 – 2
Hidden Size 2 – 512
Dropout Rate 0.0 – 0.7
Learning Rate 10−5 – 10−2

Teacher-Forcing 0.0 – 0.7

Table 2: Hyperparameter ranges for first grid search.

We settled on two hidden sizes for the grid search, 64 and
128. This equates to 256 (512) hidden units for both the
encoder and the decoder, so 512 (1024) hidden units total
for RNNs and LSTMs, respectively. We found a handful of
promising models with hidden size 64 that had not yet con-
verged at the end of 100 epochs. Many of them learned to
complete the task perfectly on the training set after a second
round of training for 150 epochs. The results of the model
among them with the earliest stable zero error rate are in-
cluded below. Ablation on this model revealed another neu-
ron whose ablation caused the same behavioral effect as the
ablation of neuron 49 in our chosen model of hidden size 128
discussed above. That is, a consistent premature emission of
End-of-Sequence tokens.

C Analysis of the NWR model

Types of error The edit distance is computed on the basis
of 3 operations : insertions, deletions, and substitutions. We
kept track of the average number of each operation per word
for every condition possible in our Word Feature Evaluation
Dataset. Those numbers are reported on Figure 8A.

D Ablation Study

Ablation of Unit 49 Given the results reported on Figure 5,
we examined the predicted phonemes over the factorial de-
sign dataset. We observed that this ablated model was most
often outputting end of sequence tokens (<EOS>) from position
4 to 8 and up to the end of the word with seemingly no corre-
lation with other factors than length. Some phoneme substitu-
tions could also be observed sporadically, although no pattern
was easily identifiable. For example:
[F, R, EY, M, W, ER, K] [F, R, EY, M, W, ER, <EOS>]

[F, IH, SH, IH, NG] [F, IH, SH, <EOS>, <EOS>]

Ablation of other units Fig. 15 reports a categorization of
errors induced by ablating the most significant neurons. Only
neurons inducing at least 50 errors are reported.

E Replication across Model Seeds
To test the robustness of the results, we trained 10 more mod-
els with the same architecture, same hyperparameters, with
10 different seeds. First, we found that all versions of the
model reached zero errors on real words in the train dataset
for the first time as early as epoch 39 and as late as epoch
85. Figure 10 shows the average results across models, with
shaded areas as the 95% confidence interval across model
seeds, demonstrating the robustness of all identified effects
across model seeds.

We also repeated the ablation study on the 10 new repli-
cate models. In every case, we found that only 2 to 4 units
had a significant impact (> %20) on model performance upon
ablation, this almost always being units in the encoder.

The unit with the strongest effect showed a typical behavior
across all seeds, similar to that of Unit 49 in the original NWR
model. The ablation of this unit, in all models, caused a typical
length effect (c.f. Figure 11). Moreover, closer inspection of
ablated models’ predictions showed that these errors were of
the same kind: premature prediction of the end of the word.



Figure 6: Grid search results.



Figure 7: Full results for ablation study on NWR model, organized by factor.
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Figure 8: Types of errors of the NWR model Type and average count of errors made by the NWR model depending on word
condition. Condition is made of the initials of lexicality (Real, Pseudo), length (Long, Short), morphology (Complex, Simple) and
when relevent, frequence (High, Low). The types are determined from the Levenshtein distance computation. (A) Error types of
the NWR model. (B) Error types for NWR model with unit 49 ablated. (C) Error types for NWR model with unit 31 ablated.
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Figure 9: Speech errors of the NWR model following the ablation of unit 31. Same as Figure 2

B. D.C.A.

Figure 10: Mean speech errors over 10 seeds. Same as Figure 2. Error bars reflect standard error.

B.A. D.C.

Figure 11: Mean speech errors of 49-like units over 10 seeds. Same as Figure 2. Error bars reflect standard error.



Figure 12: Stacked feature importance per neuron Neurons were clustered according to their feature importance profiles using
k-means. The optimal number of clusters was computed by comparing the silhouette scores of the results of k-means clustering
the neurons with k = [2,8]. The first group identified is clearly dominated by length, which is consistent with the regression
analyses. The profile for the second cluster is more difficult to interpret. Yet, overall, an increase in the importance of lexicality
relative to the other features is observed.



Figure 13: Dimensionality Reduction of the Pairwise Distances among all Single-Phoneme Representations



Figure 14: Feature Importances for Length and Zipf Frequency across all ablations of NWR model This figure shows the
feature importances for length and frequency for modeling the errors of each ablated NWR model. The significant FIs for length
correspond to units 49 and 31. We found no model where the FI for frequency was significant.



Figure 15: Classification of Errors for Ablated units in the NWR Model All single-unit ablations resulting in at least 50 errors
are included in this figure. Length error : premature prediction of <EOS> token with all previous phonemes being correct. Position
error : error resulting from the position of phonemes being confused by the model, while preserving all phoneme identities (i.e.
the prediction is a permutation of the initial sequence). Identity error : at least one phoneme being substituted with another,
in a given position. Other : any error not falling in the previous categories. We observe that ablation 49 cause length errors.
Ablation 31 has a combination of position and identity errors. These position errors are generally the instances where vowels
were permuted.
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