
Under review as a conference paper at ICLR 2023

SIMFOREST: AN EFFICIENT PLUG-IN TO BOOST FEW-
SHOT LEARNING PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to a lack of labeled training data and the subsequent unreliability in empirical
risk minimization, few-shot learning algorithms usually suffer from high variance
and bias in their predictions. Ensemble, on the other hand, combines predictions
from multiple predictors, thus alleviating the aforementioned unreliability. Essen-
tially, we believe that ensemble is a simple yet effective solution to tackle the core
problems in few-shot learning; therefore, we develop a plug-in (ensemble) method
to boost the performance of trained few-shot models. To maximize the perfor-
mance of ensemble, we use epoch-training to develop the feature representations
used in the plug-in; in contrast, episodic training is used to obtain the feature rep-
resentations of the original few-shot models. To minimize the extra computation
cost induced by ensemble, we adopt a non-deep classifier (e.g: random forest) for
the plug-in, which can complete its training within a few seconds. Our method
achieves substantial improvements for the few-shot learning, consistently outper-
forming all the baseline methods.

1 INTRODUCTION

Deep neural networks (DNN) coupled with lots of labeled training data have empowered the salient
progress in the image classification field (Kolesnikov et al., 2020). Nevertheless, in many real-world
scenarios, large labeled datasets are usually not readily available (Ford, 2018; Zhou et al., 2018).
Few-shot learning algorithms perform classifications based on a different set of classes compared
to those of the test data set. With few-shot training, models can predict classes of images they are
never trained on previously (Wang et al., 2020). This would bring much potential benefit to various
real-world scenarios, as the deficiency of labeled data is a common problem in the real world.

So far, few-shot learning remains a challenging problem. In deep learning, reliable empirical risk
minimization is generally achieved by having a large number of training examples (Wang et al.,
2020; Kolesnikov et al., 2020). In contrast, in few-shot learning, the testing samples are of different
classes compared to those used in training; the empirical risk minimization with few labeled test
samples thus easily overfits, approximations of the few-shot predictors becoming unreliable with
high potential bias and variance (Wang et al., 2020; Dvornik et al., 2019).

In this work, we develop an ensemble to boost the performance of trained few-shot learning mod-
els. In particular, we design a lightweight and computationally efficient few-shot classifier (plug-in)
using an epoch-trained encoder, which is then ensembled with a model trained through an episodic
set-up. The plug-in is named ”SimForest” in our work. More specifically, to implement SimFor-
est, we first pretrain a feature encoder using a standard epoch training approach (Krizhevsky et al.,
2017), as opposed to a few-shot episodic approach. Then, we use the pretrained feature encoders
to produce image features, which are paired up and fed as the input features to random forest clas-
sifiers (Breiman, 2001). To ensemble SimForest with other trained models, we simply average the
output scores of the former and the latter, taking the averaged result as the final output.

We argue that our ensemble approach is simple yet effective in tackling several major challenges
in few-shot learning. In particular, statistical problems arise when a machine learning algorithm is
searching a space of hypotheses that is too large for the amount of training data (Dietterich et al.,
2002). Secondly, computational problems arise when a learning algorithm tends to get stuck in a lo-
cal minimums (Dietterich et al., 2002). Both of these are particularly serious challenges to few-shot

1

Under review as a conference paper at ICLR 2023

learning(Wang et al., 2020). To tackle the pain points, having multiple predictors can control the un-
reliability in each few-shot predictor by averaging out its individual bias. Besides, a representational
problem arises when the algorithm has difficulty to produce representations that are complex enough
to resemble those of the target function (Dietterich et al., 2002; Kittler, 2001). A single few-shot
predictor falls prey to such a representational problem. To explain, few-shot models generally have
to stay simple with relatively few parameters to avoid overfitting, again due to the lack of labeled
data (Wang et al., 2020). For example, based on our preliminary experiments, when we try a resnet-
18 (He et al., 2016) encoder for few-shot episodic classification, the model overfits and renders
poor results. Therefore, in few-shot learning, less complicated encoder architectures such as resnet-
12 (He et al., 2016; Ye et al., 2020) are used instead within the few-shot research community. The
forced simplicity of model architecture exacerbates the aforementioned representational problem.
Fortunately, based on findings in other works (Chen et al., 2019) and our own experiments, unlike
episodic training, epoch training is reasonably compatible with complex model architectures. While
resnet-18 is infeasible as an encoder for episodic training, it can produce reasonable classification
results under epoch training using the same set of training data. Additionally, the different feature
representations (epoch training features vs episodic training features) can complement each other
to form more complex hypotheses that resemble the target function better, when compared to those
formed by a single predictor (Dietterich et al., 2002; Kittler, 2001). With these, the representational
problem in few-shot learning can be alleviated.

Our proposed approach has a range of advantages. Above all else, our approach can ease the statisti-
cal, computational and representational problems in few-shot learning. In addition, to minimize the
extra computation cost of ensemble, we choose a non-deep classifier for SimForest. With pretrained
features, the random forest classifier in SimForest can complete the classifier training within a few
seconds. As a universally adaptable plug-in for an episodically trained few-shot model, the SimFor-
est classifier can comfortably and consistently achieve a salient performance boost for the latter. We
also conduct extensive experiments to demonstrate the obvious improvement in the few-shot learn-
ing performance achieved through our method. For the miniImagenet dataset, we can achieve at least
3.79% improvement in the test accuracy scores across different classification tasks. Furthermore, we
are able to achieve state-of-the-art result via the proposed approach.

2 RELATED WORKS

Few-Shot Learning There are several major types of gradient-based approaches to few-shot
learning, including data-based approaches, model-based approaches and algorithm-based ap-
proaches (Wang et al., 2020). More relevant to our work, model-based approaches include metric-
based approaches which measure the degree of similarity between queried data points and reference
data points (Sung et al., 2018; Dvornik et al., 2019). Algorithm-based approaches include meta-
learning (Ye et al., 2020; Snell et al., 2017; Ribeiro et al., 2016).

As outlined in (Simon et al., 2020), few-shot learning algorithms generally consist of a feature en-
coder and a classifier. A few research uses a pretraining strategy to initialize the feature encoder
model parameters for few-shot training. By pretraining, we refer to the standard image classifica-
tion epoch training (Krizhevsky et al., 2017) as opposed to episodic training. While the pretraining
strategy is adopted, it is rather overlooked and only used as an auxiliary approach in these works (Ye
et al., 2020; Rusu et al., 2018; Qiao et al., 2018). Some works propose that the mainstream meta-
learning algorithms in few-shot learning are sub-optimal (Gidaris & Komodakis, 2018; Oreshkin
et al., 2018; Qiao et al., 2018), and they demonstrate that a fine-tuned pretrained encoder cou-
pled with even a simple classifier can achieve equivalent or even more superior performance as
complex meta-learning models (Chen et al., 2019; Gidaris & Komodakis, 2018; Qiao et al., 2018).
(Chen et al., 2019) proposes a baseline for few-shot learning, called baseline++. Similarly, authors
in (Dhillon et al., 2019) pretrain models via standard image classification approach, and perform
transductive fine-tuning by adding in another non-linear layer to the pretrained model for few-shot
classification. While the transductive fine-tuning approach is able to achieve good results on few-
shot classification, it assumes a certain degree of knowledge about the test dataset, which is usually
unknown in real life.

Model Ensemble Ensemble can be achieved using different approaches, including independently
constructed ensembles and coordinated constructed ensembles (Dietterich et al., 2002; Kittler,

2

Under review as a conference paper at ICLR 2023

Vector Difference for
Each Image Pair

Prediction 1 Prediction 2 Prediction N

Average

Encoder

Pretrained Vector

Query Support

SimForest Prediction

✓

Vector Difference

Matching Net

Proto Net

Relation Net

FEAT

Figure 1: Pipeline of SimForest. Firstly, a pretrained encoder (orange) is obtained from a standard
image classification training. Secondly, the pretrained encoder is used to prepare for SimForest
training data. After training SimForest with the prepared data, SimForest will be able to make few-
shot predictions. Finally, the few-shot predictions will be ensembled with other trained few-shot
learning models. The figure is best viewed in colors.

2001). For an independently constructed ensemble, boosting ensemble method combines weak
learners to produce a strong learner; random forest is also a type of ensemble that combines the pre-
dictions of decision trees through majority voting (Breiman, 2001). The collection of tree structured
classifiers can be decision trees (Brijain et al.; Breiman et al., 2017). For coordinated constructed en-
sembles, Adaboost (Dietterich et al., 2002; Freund et al., 1999) algorithm construct new hypotheses
incrementally.

In the intersection field of few-shot learning and model ensemble, (Dvornik et al., 2019) proposes
to train multiple few-shot models with a loss function that encourages diversity via KL-divergence
and cooperation via cosine similarity. Similar to our work, (Liu et al., 2020) designs a plug-in to
be ensembled with other few-shot learning models to achieve enhanced performance. The approach
called E3BM learns and combines an ensemble of epoch-wise Bayes models. Our work fundamen-
tally differs from these ensemble works in few-shot learning in different aspects. Most importantly,
we propose a novel and justified scheme that combines epoch training features with episodic training
features, while the previous works do not consider such a combination. Based on our experimental
results, our work renders arguably more conspicuous improvement for few-shot classification tasks
via ensemble.

3 METHOD

We propose the similarity-measuring random forest classifier, or SimForest, which combines DNN-
based image embeddings and random forest classifiers for few-shot learning problems. SimForest
takes in pairs of image feature vectors and produces their similarity scores as output. The overall
architecture of SimForest classifier can be illustrated as figure 1. After training on a small dataset,
SimForest is ensembled with other trained few-shot learning models through scores-averaging. A
preliminary on few-shot learning problem formulation, along with more details on SimForest and
the ensemble are given as follows.

3.1 PRELIMINARY

Few-shot learning employs an episodic strategy to train a few-shot model on a set of classes, and
tests the model on a different set of classes. During the training and evaluation, episodic data loaders
sub-sample a dataset to form each episode. An episode consists of a support set and a query. For
each support set, there are n classes and k data points for each class. Such a support set configuration
leads to ”n-way-k-shot” classification tasks. Let T denote such a support set. A query data point
xq is sampled based on T . The query xq should belong to one of the n classes in the support set.
Few-shot learning algorithms that adopt the episodic training and testing strategy need to identify

3

Under review as a conference paper at ICLR 2023

which class the query xq belongs to, by comparing it with the samples from each class of the support
set (Arnold et al., 2021).

3.2 SIMFOREST

SimForest is able to measure the pairwise similarity score between two input images. To build a
SimForest, an image encoder is first prepared through standard deep-learning approaches. Secondly,
pairs of images consisting of a support image and a query image are converted to vectors via the
pretrained encoder. Their absolute vector differences are used as input for SimForest training, and
training labels are whether the image pairs are of the same class.

For stage one, pretraining an encoder, a standard image classification (epoch-training) approach
is adopted. For example, few-shot training is usually done on the train split of the miniImagenet
dataset; we use the same train split for the pretraining. During the pretraining, the train split images
are fed to a DNN-based encoder and a standard classifier, which outputs scores for the image be-
longing to a particular class. There are 64 training classes in miniImagenet train split, so the standard
classifier will produce 64 scores. After the pretraining, only the image feature encoder is retained
for further usage.

For stage two, training the SimForest classifier, one needs to first prepare the dataset for SimForest
training, before the actual training of SimForest. To prepare the training dataset, pairs of images are
converted to vectors using the pretrained encoder. Their absolute vector differences are calculated
and fed to the random forest classifier as input. Each absolute vector difference has a label, which is
1 if the image pair is of the same class, and 0 otherwise. Then, one can train the SimForest classifier
using the prepared dataset.

To explain the rationale behind the overall design, each value of the feature vectors represents the
visual strength of a particular feature in the original picture. Through the set-up, SimForest tends to
identify the greatest important discrepancies between pairs of image feature vectors via the absolute
vector difference. If the discrepancies are strong enough, the image pair tends to be different-class.

SimForest is formalized as follows. Let fθ1 be a feature encoder (e.g: feature encoders in resnet-
18 (He et al., 2016) etc., parametrized by network parameters θ1), and fθ2 be a standard classifier.
Let Dtrain = {(xi, yi)}Ntrain

i=1 denote the training data used for both pretraining of encoders and
few-shot learning training. Let (x, y) ∈ Dtrain, a prediction result is rendered by ŷ = fθ2 ◦ fθ1(x).
Let θ be a concatenation of θ1 and θ2. Minimizing the empirical risk through cross-entropy loss, we
can get the optimal parameters θ∗ for θ, which is represented by :

θ∗ = argmin
θ

1

Ntrain

∑
(x,y)∈Dtrain

− log pθ(y|x), (1)

Having obtained the feature encoder fθ∗
1
, we proceed with SimForest training data preparation. We

randomly sample training instances from Dtrain, which are denoted as S = {(xi, yi)|(xi, yi) ∈
Dtrain}. Then, we construct a set of training data for SimForest, DSimForest based on the following
criteria:

DSimForest = {(|fθ∗
1
(xi)− fθ∗

1
(xj)|,1(yi = yj))|(xi, yi), (xj , yj) ∈ S} (2)

We perform training on a random forest classifier with the prepared input DSimForest. The random
forest classifier performs classification based on votings of multiple decision trees. Each decision
tree partitions the input features recursively, based on some threshold, such that samples with the
same labels or target values are grouped together. This procedure is also known as ”impurity min-
imization”. Let data at node m of the decision tree be denoted as Qm with Nm samples. Let
ym = 1

Nm

∑
y∈Qm

y. The ”impurity” H(·) is defined as the following mean squared error func-
tion (Buitinck et al., 2013; Brijain et al.; Breiman et al., 2017):

H(Qm) =
1

Nm

∑
y∈Qm

(y − ym)2 (3)

4

Under review as a conference paper at ICLR 2023

For each decision tree in the random forest classifier, let ϕ denote the model parameters. Let
tm be each candidate’s split threshold value. Let threshold tm partition a node into two sub-
sets, which are respectively denoted as Qleft

m (ϕ) = {(x, y)|x < tm, (x, y) ∈ DSimForest} and
Qright

m (ϕ) = Qm\Qleft
m (ϕ). The training procedure of each decision tree is tantamount to the

following equation (Buitinck et al., 2013; Brijain et al.; Breiman et al., 2017):

G(Qm, ϕ) =
N left

m

Nm
H(Qleft

m (ϕ)) +
N right

m

Nm
H(Qright

m (ϕ)) (4)

ϕ∗ = argmin
ϕ

G(Qm, ϕ) (5)

Let Sdt be the set of decision trees in the random forest classifier, where each decision tree model is
represented by dϕ∗ . A prediction for input x′ is made based on (Breiman, 2001):

ŷ′ = argmax
1

|Sdt|
∑

dϕ∗∈Sdt

dϕ∗(x′) (6)

3.3 SIMFOREST ENSEMBLE

SimForest can be universally ensembled with different types of episodic few-shot algorithms. After
preparing the SimForest classifier, one can ensemble the SimForest output scores with the output
scores from other trained few-shot learning algorithms. To obtain the output scores, one simply
needs to feed the same episodes of a support set and a query to SimForest and another trained few-
shot learning model respectively. For multiple-shot scenarios, the average embeddings of the support
set is considered during the comparison. For example, for 5-shot tasks, the 5 support images first
have their embeddings averaged to become the support embedding for one particular class. Finally,
ensembled predictions are obtained as the average scores from SimForest and the other few-shot
learning algorithm. This procedure only occurs during the testing phase, and is very resource-
efficient. Moreover, through the simple method of the ensemble, we can ensure the convenience and
universal adaptability of SimForest ensemble.

SimForest is formalized as follows. For each episode, we have an n-way support set, TSn
=

{(xsi, ysi)}ni=1 and a query sample xq where xsi denotes the prototype of class ysi. With trained
few-shot learning model γ, the output relation scores are pγ(xq|TSn

) ∈ Rn. Similarly, we can get
the output relation score of SimForest pθ(xq|TSn

). Our final output score is defined as:

ŷensemble
q =

1

2
(pγ(xq|TSn

) + pθ(xq|TSn
)) (7)

The entire procedure of SimForest training and ensemble can be described as Alg 1 in appendix.

4 EXPERIMENTS

4.1 EXPERIMENT SET-UP

Datasets: We use two datasets, miniImagenet and cifar-fs (Sun et al., 2019). The miniImagenet
dataset is sampled from the imagenet dataset (Russakovsky et al., 2015), consisting of colored im-
ages with a 84x84 resolution. There are 100 classes, with 64 of them for training, 16 for validation
and 20 for testing. Each of the class contains 600 images. Cifar-fs dataset comprises colored images
(of 32x32 resolution) sampled from the cifar-100 dataset (Krizhevsky et al., 2009). We follow the
split specified in (Bertinetto et al., 2019), which also has 64 training classes, 16 validation classes
and 20 testing classes with 600 samples for each class.

Evaluation Protocols: For evaluation of SimForest, we test the set-up on standard 5-way-1-shot and
5-way-5-shot few-shot classification tasks. We use the Res12 and the Conv4 (Sung et al., 2018; Ye
et al., 2020) backbones for the original few-shot learning algorithms, which are also our baselines.
In particular, we choose the prototypical network (Snell et al., 2017; Ye et al., 2020), the relation

5

Under review as a conference paper at ICLR 2023

Table 1: Accuracy for Baselines and SimForest Ensembles (%)

Method Backbone miniImagenet cifar-fs
1-shot 5-shot 1-shot 5-shot

SimForest(Ours) Res18† 42.01 60.40 41.66 60.02
ProtoNet (Snell et al., 2017) Conv4 50.02±0.20 66.89±0.17 - -
ProtoNet+SimForest Conv4 55.78±0.20 74.66±0.16 - -
ProtoNet Res12 60.12±0.21 73.94±0.16 66.73±0.18 77.07±0.29

ProtoNet+SimForest Res12 65.69±0.20 82.99±0.13 71.34±0.14 84.83±0.11

RelationNet (Sung et al., 2018) Conv4 49.63±0.64 65.16±0.65 58.50±0.63 74.37±0.50

RelationNet+SimForest Conv4 54.18±0.32 71.85±0.44 64.50±0.42 80.67±0.39

MatchingNet (Vinyals et al., 2016) Conv4 44.00±0.74 - 55.87±0.66 -
MatchingNet+SimForest Conv4 56.74±0.62 - 67.60±0.63 -
FEAT (Ye et al., 2020) Conv4 52.21±0.19 67.90±0.17 - -
FEAT+SimForest Conv4 57.08±0.19 75.39±0.15 - -
FEAT Res12 62.17±0.25 78.76±0.34 71.76±0.27 85.14±0.21

FEAT+SimForest Res12 67.14±0.20 84.71±0.13 74.46±0.14 89.23±0.19

DeepSet (Ye et al., 2020) Res12 60.34±0.17 74.82±0.33 68.04±0.18 77.26±0.16

DeepSet+SimForest Res12 66.98±0.30 84.00±0.29 71.35±0.19 82.91±0.11

InfoPatch (Liu et al., 2021) Res12 67.50±0.47 82.10±0.31 79.16±0.38 89.29±0.29

InfoPatch+SimForest Res12 71.29±0.47 88.26±0.33 81.81±0.32 93.16±0.47

† The ResNet-18 backbone is frozen and pretrained using epoch-training.

network (Sung et al., 2018), the matching network (Vinyals et al., 2016), FEAT and its variant,
DeepSet (Ye et al., 2020) and infoPatch (Liu et al., 2021).

For evaluation of the ensemble performance, We compare the performance of baseline models before
and after the ensemble. We report the mean accuracy as well as the 95% confidence interval for
both ensemble results and baseline results. For SimForest performance, we only report the mean
accuracy.

Implementation Details: For implementation of the SimForest, we first pretrain a resnet-18 en-
coder (He et al., 2016) on the train split of the miniImagenet dataset, which consists of 64 classes
with 600 images for each class. Training hyperparameters are given in the appendix.

After obtaining the image feature encoder, we combine pairs of image feature vectors obtained via
the pretrained encoder, and merge two 512-vectors into one 512-vector by computing their absolute
vector difference. Each merged 512-vector corresponds to either a positive label representing same-
class pairs, and a negative label representing different-class pairs. We sample only 12,800 pairs of
positive and negative pairs in total. Among the 12,800 pairs, half are positive and half are negative.
Finally, we train a random forest classifier implemented in the scikit-learn library (Buitinck et al.,
2013), using the prepared dataset. We set the number of estimators of random forest to 200, the
maximum features to 4 and the random seed to 0, 42 or 222.

For implementation of the ensemble, we feed the same testing episodes, each consisting of a support
set and a query set, to SimForest and the other trained few-shot model. Both SimForest and the
other trained few-shot model produce a relation score for each pairwise combination of the query
and support samples. For each episode, we simply combine the relation scores of a SimForest and
the relation scores of the other trained few-shot model through averaging. We take the maximum
average score as the final prediction. This ensemble is done only during the testing phase.

4.2 MAIN RESULTS

The first row of table 1 summarizes the performance of SimForest respectively on 5-way-1-shot
and 5-way-5-shot tasks, tested on the miniImagenet dataset. The accuracy scores are generally
limited. The remaining rows summarize the main results we obtain before and after the ensemble.
All the reported accuracy scores of the baseline methods are based on our reproduced experimental
results. From the table, we observe that SimForest ensemble can effectively boost the performance

6

Under review as a conference paper at ICLR 2023

Embeddings Obtained from Episodic Training Embeddings Obtained from Epoch Training

Figure 2: We use TSNE (van der Maaten & Hinton, 2008) projection to visualize feature embeddings
based on encoders trained through either a few-shot episodic set-up or standard epoch training set-
up. Based on the visualization, features from the few-shot encoder on the left tend to mess together,
while the pretrained encoder on the right forms better and more well-separated clusters.

of various few-shot learning algorithms, despite the limited performance of SimForest itself. For
example, while SimForest only achieves around 42.01% accuracy score for 5-way-1-shot tasks on
miniImagenet, and the original matching network only achieves a 44% accuracy score for the same
task, the ensembled model can achieve a 56.74% accuracy score, which is a significant improvement
of over 12 percent. Lastly, when ensembled with state-of-the-art (SOTA) models like FEAT or
infoPatch, we can achieve new SOTA result. More SOTA comparison is given in table 6 in appendix.

5 ANALYSIS AND ABLATION STUDIES

This section summarizes the evaluation and analysis of our approach, including its ablative variants.

5.1 VISUALIZATION OF FEATURE REPRESENTATIONS

A dissection of SimForest improvement can be found in appendix. We visualize the feature repre-
sentations of a few-shot encoder and the pretrained encoder. Figure 2 are TSNE projections (van der
Maaten & Hinton, 2008) done on the pretrained encoder and the few-shot encoder respectively.
In the projections, the same 5 classes are randomly sampled from 64 training classes of the
miniImagenet dataset. The few-shot encoder is a randomly initialized Conv4 encoder trained via
the relation network algorithms on 5-way-1-shot tasks, until convergence. Based on the visualiza-
tion, the pretrained encoder forms better clusters, when compared to those formed by the episodic
training. We also visualize the attention map for the two different encoders, which is illustrated by
figure 3. The attention maps illustrate that the pretrained encoders have much more precise attention
than the encoders of the relation network. The attention maps here are different from traditional
attention maps, and is named mutual attention map in this work. Instead of highlighting regions of
interest in a traditional classification setting, the mutual attention map highlights regions of interest
during pairwise images comparisons. In other words, the attention map highlights the regions the
classifiers focus on, in order to tell whether the two image belong to the same class. A standard
image classification model produces a set of confidence scores for a single input image, based on
which the weights activation mapping is calculated (Selvaraju et al., 2019). In contrast, a few-shot
model can take in a pair of images, producing only one similarity score for each image pair. We cal-
culate the weights activation mapping for a pair of images based on the the single similarity output
score. Please see our code for more details on the implementation of ”mutual attention map”, which
is modified based on (Gildenblat & contributors, 2021; Selvaraju et al., 2019).

Both TSNE and mutual attention map visualizations demonstrate that our pretrained encoder can
produce more complex feature representations which are visually disparate from the few-shot en-
coder. This may be explained by the much more complex model architecture of the pretrained
encoder when compared to the few-shot encoder, in addition to the difference in training approach.
As we mention in the introduction, episodic training cannot afford to have complex model config-
urations with excessive model parameters due to its susceptiblity to model overfitting. However,
preparing the complex encoder based on epoch training and then ensembling it with a few shot
encoder can bypass the barrier.

7

Under review as a conference paper at ICLR 2023

Few-Shot PretrainOriginal Few-Shot PretrainOriginal Few-Shot PretrainOriginal

Figure 3: We use mutual attention maps to visualize the miniImagenet test set image pairs. There
are six groups of mutual attention maps. Each group comprises, from left to right: (i) the original
image pair; (ii) mutual attention maps based on relation network encoders and (iii) mutual attention
maps based on SimForest encoders, or the pretrained encoders. Please see the main text for more
details on the term ”mutual attention”.

5.2 MODEL INTERPETABILITY

We use Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) to qualita-
tively understand the inner mechanisms of the model. LIME allows us to understand the effects
of superpixels in test images on the prediction of class similarity. We choose LIME as it can be
applied to SimForest, which is a mixture of gradient and non-gradient based models. Furthermore,
recent studies find theoretical guarantees and connections between LIME and integrated gradient
methods (Garreau & Mardaoui, 2021). We randomly sample two classes (class A and B) and select
two images from one class (images A and B), and one image from another class (image C). We then
create 2 image pairs, (i) image A and B, (ii) image A and C. We designate the randomly-selected
image A as the input image for LIME’s perturbations. Using a trained SimForest on miniImagenet,
we run LIME on the model while feeding the model with pairs (i) and (ii). We find qualitative re-
sults that validate our hypothesis that SimForest is able to identify image features that contribute to
similarity scoring. Figure 4 in the appendix shows samples of our qualitative results.

5.3 COMPUTATION EFFICIENCY

In our experiment, we use 16-bit floating precision representation for SimForest training, as op-
posed to 32-bit full precision representation. We use the lower-precision as we observe that the
performance of SimForest is similar for the two representations. The 32-bit SimForest results can
be found in appendix 4.

The time complexity of random forest algorithms is O(N × log(N) × k), where N is the size of
the dataset and k is the number of features for each data point (Breiman, 2001). The overall training
time for SimForest is summarized in table 2. Our CPU model is Intel(R) Xeon(R) Silver 4310 CPU
@ 2.10GHz. Overall, the training time of SimForest is almost negligible compared to other few-shot
algorithm training.

5.4 WHAT IF THE RANDOM FOREST CLASSIFIER IS REPLACED?

In our work, we also explore a fully-DNN approach. By replacing random forest classifier with a
3-layer fully-connected DNN classifier, the ”DNN-based SimForest” can achieve even better per-
formance as suggested in table 2 and table 4 in appendix. We also try replacing the absolute vector
difference set-up with a concatenation set-up. However, these methods take much longer and more
data to train. Therefore, we decide not to focus on the design in this work.

8

Under review as a conference paper at ICLR 2023

Table 2: Accuracy for SimForest and its Variants

SimForest Classifier (∆) 1-shot Accuracy(%) 5-shot Accuracy(%) Training Time(s)
Random Forest (Breiman, 2001) 42.01 60.40 7.62
Extra Trees (Geurts et al., 2006) 41.89 60.87 3.86
Ada-Boosting (Friedman, 2001) 42.99 59.29 2.98

The key component of SimForest which leads to the ensemble performance improvement is the
feature encoder as opposed to the classifier. Other non-deep classifiers can also lead to similar
performance. These classifiers can be gradient boosting classifier (Friedman, 2002), extra tree clas-
sifier (Geurts et al., 2006), ada-boosting classifier (Friedman, 2001), k-nearest-neighbours classi-
fier (Goldberger et al., 2004), support vector machine classifier (Wu et al., 2003) and so on. We only
report random forest classifier, extra tree classifier and ada-boosting classifier results in our work,
due to their simplicity of hyperparameters involved.

6 CONCLUSIONS

To conclude, this paper proposes an algorithm called SimForest, which can be either used on its own,
or conveniently ensembled with various trained few-shot learning models during the testing phase.
SimForest makes use of pretrained image features, strengthening the original few-shot learning pre-
diction scores with alternative predictions, easing the statistical, computational and representational
problems in a single few-shot predictor. Aside from achieving substantial boost for few-shot learn-
ing performance, the SimForest module can train itself within a few seconds on standard CPUs, thus
emerging as an efficient and practical ”plug-in” for almost all types of episodically trained few-shot
learning models.

REFERENCES

Sébastien Arnold, Guneet Dhillon, Avinash Ravichandran, and Stefano Soatto. Uniform sampling
over episode difficulty. Advances in Neural Information Processing Systems, 34, 2021.

Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyxnZh0ct7.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and
regression trees. Routledge, 2017.

Mr. Brijain, R Patel, Mr. Kushik, and K Rana. A survey on decision tree algorithm for classification.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Van-
derPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Min-
ing and Machine Learning, pp. 108–122, 2013.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. arXiv preprint arXiv:1909.02729, 2019.

Thomas G Dietterich et al. Ensemble learning. The handbook of brain theory and neural networks,
2(1):110–125, 2002.

9

https://openreview.net/forum?id=HyxnZh0ct7

Under review as a conference paper at ICLR 2023

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Diversity with cooperation: Ensemble methods
for few-shot classification. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3723–3731, 2019.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. Inter-
national journal of computer vision, 59(2):167–181, 2004.

Martin Ford. Architects of Intelligence: The truth about AI from the people building it. Packt
Publishing Ltd, 2018.

Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612, 1999.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):
367–378, 2002.

Damien Garreau and Dina Mardaoui. What does lime really see in images? International Confer-
ence on Machine Learning, 2021.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning,
63(1):3–42, 2006.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4367–4375,
2018.

Jacob Gildenblat and contributors. Pytorch library for cam methods. https://github.com/
jacobgil/pytorch-grad-cam, 2021.

Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. Neighbourhood
components analysis. Advances in neural information processing systems, 17, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Josef Kittler. Multiple Classifier Systems: Second International Workshop, MCS 2001 Cambridge,
UK, July 2-4, 2001 Proceedings, volume 2. Springer Science & Business Media, 2001.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In European confer-
ence on computer vision, pp. 491–507. Springer, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10657–10665, 2019.

Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin Li, Chengjie Wang, and Li Zhang. Learn-
ing a few-shot embedding model with contrastive learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 8635–8643, 2021.

Yaoyao Liu, Bernt Schiele, and Qianru Sun. An ensemble of epoch-wise empirical bayes for few-
shot learning. In European Conference on Computer Vision, pp. 404–421. Springer, 2020.

10

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam

Under review as a conference paper at ICLR 2023

Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. Advances in neural information processing systems, 31,
2018.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recognition by predicting
parameters from activations. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7229–7238, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretability of ma-
chine learning. arXiv preprint arXiv:1606.05386, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based lo-
calization. International Journal of Computer Vision, 128(2):336–359, oct 2019. doi: 10.1007/
s11263-019-01228-7. URL https://doi.org/10.1007%2Fs11263-019-01228-7.

Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. Adaptive subspaces for
few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4136–4145, 2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 403–412, 2019.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In European Conference on
Computer Vision, pp. 266–282. Springer, 2020.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Ma-
chine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/
vandermaaten08a.html.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning, 2016. URL https://arxiv.org/abs/1606.04080.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

Ting-Fan Wu, Chih-Jen Lin, and Ruby Weng. Probability estimates for multi-class classification by
pairwise coupling. Advances in Neural Information Processing Systems, 16, 2003.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adaptation
with set-to-set functions. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8808–8817, 2020.

Sung Whan Yoon, Jun Seo, and Jaekyun Moon. Tapnet: Neural network augmented with task-
adaptive projection for few-shot learning. In International Conference on Machine Learning, pp.
7115–7123. PMLR, 2019.

11

https://doi.org/10.1007%2Fs11263-019-01228-7
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1606.04080

Under review as a conference paper at ICLR 2023

Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image classifica-
tion with differentiable earth mover’s distance and structured classifiers. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12203–12213, 2020.

Donghao Zhou, Zheng Yan, Yulong Fu, and Zhen Yao. A survey on network data collection. Journal
of Network and Computer Applications, 116:9–23, 2018.

A APPENDIX

A.1 DISSECT SIMFOREST IMPROVEMENT

The significant performance boost achieved through the ensemble may be explained by a decom-
position of the correct/wrong predictions made by SimForest and other algorithms respectively. In-
tuitively, there is much ”orthogonality” between SimForest and the other trained few-shot model,
whose predictions complement each other’s. Table 3 summarizes such a decomposition. The 4th
column represents that both SimForest and original method have correct predictions; 5th represents
that only SimForest has correct predictions; 6th represents that both SimForest and original method
have wrong predictions; 7th represents that only the original method has correct predictions; 8th
represents predictions corrected by SimForest ensemble, and 9th represents predictions wrongly
changed by SimForest ensemble. According to the decomposition, the number of predictions cor-
rected by SimForest ensemble are consistently higher than those wrongly corrected by SimForest,
thus explaining the boost in performance.

Table 3: Ensemble Statistics (%)
Method Backbone Task SimForest ✓ SimForest ✓ SimForest × SimForest × SimForest SimForest

Original ✓ Original × Original × Original✓ Correction Mistake

FEAT (Ye et al., 2020) Conv4 1-shot 21.86 20.31 27.65 30.18 7.35 2.39
Conv4 5-shot 41.33 18.91 12.6 27.16 8.68 1.14
Res12 1-shot 26.92 15.23 20.88 36.98 5.56 1.93
Res12 5-shot 46.96 12.98 8.61 31.45 6.80 0.91

ProtoNet (Snell et al., 2017) Conv4 1-shot 23.40 19.52 26.93 30.25 8.99 1.68
Conv4 5-shot 40.50 19.48 13.25 26.78 9.08 1.23
Res12 1-shot 25.01 17.12 22.39 35.48 8.98 3.67
Res12 5-shot 44.63 15.29 10.59 29.49 11.02 2.22

RelationNet (Sung et al., 2018) Conv4 1-shot 24.62 17.03 23.47 34.87 4.25 1.23
Conv4 5-shot 38.08 21.65 14.69 25.57 6.75 0.95

A.2 WHY NOT INCLUDE SIMFOREST IN THE TRAINING PHASE?

Based on our experiment, including SimForest does not help improve the performance of the ensem-
ble. As suggested by table 5 in appendix, if we are to ensemble SimForest with the original few-shot
learning algorithm during the training phase, the performance degrades by around 2%, which is sug-
gested by the train+test column in the table. Furthermore, the computation cost also increases. The
experiments are conducted on 5-way-1-shot miniImagenet classification tasks.

A.3 HYPERPARAMETERS FOR PRETRAINING OF ENCODERS

For pretraining of the feature encoders, we use a randomly initialized resnet-18 (He et al., 2016)
model, whose last fully-connected layer is changed to produce 64 scores as opposed to 1000 scores.
For the input data, we only apply normalization without any augmentation. The optimizer we use
is a stochastic gradient descent (SGD) optimizer. The momentum is 0.9. The weight decay rate is
0.0001. The initial learning rate is 0.1. We train the model for 100 epochs, and the learning rate is
reduced by a factor of 0.1 during the 30th, 60th and 90th epoch.

We do not directly finetune a pretrained resnet-18 model because the model is pretrained on the
ImageNet (Russakovsky et al., 2015) dataset. As the miniImagenet, including its test split, is a
subset of the ImageNet dataset, directly using a pretrained resnet-18 model will lead to an unfair
assessment. Meanwhile, we also do not want to involve extra training data.

12

Under review as a conference paper at ICLR 2023

Algorithm 1: SimForest Emsemble
Data: Dtrain, Dtest, Mtrained

Result: FinalPredictions
Function PrepareEncoder(Dtrain)

Enc← RandomlyInitializedEncoder;
Class← RandomlyInitializedClassifier;
train Enc and Class together, via gradient descent, on Dtrain;
return Enc;

end
Function PrepareData(Dtrain, Enc)

TrainForestX ← emptyList;
TrainForestY ← emptyList;
iterationSize← constant;
sampleSize← constant;
for i← 1 to iterationSize do

for classIndex← 1 to GetClassSize(Dtrain) do
PostivePairs← SamplePositivePairs(classIndex);
Difference =
Enc(PostivePairs.get(image1))− Enc(PostivePairs.get(image2));

TrainForestX.append(Difference.absolute());
TrainForesY.append(1.repeat(sampleSize)); /* Sample positive
pairs */

NegativePairs← SampleNegativePairs(classIndex);
Difference =
Enc(NegativePairs.get(image1))− Enc(NegativePairs.get(image2));

TrainForestX.append(Difference.absolute());
TrainForesY.append(0.repeat(sampleSize)); /* Sample negative
pairs */

end
end
return concat(TrainForestX, TrainForestY);

end
Function Ensemble(Dtest, T rainedSimForest,Mtrained)

SimForestPreds← Test(Dtest, T rainedSimForest);
OtherPreds← Test(Mtrained, T rainedSimForest); /* Mtrained represents a
trained few-shot learning model (e.g: Matching network,
FEAT...) */

return average(SimForestPreds,OtherPreds);
end
Enc← PreapreEncoder(Dtrain);
Dtrain−forest ← PrepareData(Dtrain, Enc);
TrainedSimForest← Train(Dtrain−forest, Enc);
FinalPredictions← Ensemble(Dtest, T rainedSimForest,Mtrained);
Return FinalPredictions;

13

Under review as a conference paper at ICLR 2023

Figure 4: LIME interpretability maps for sampled miniImagenet images. We choose image pairs
from the same class at random, and image pairs from different classes at random. We use the image
on the left most side as the input image to LIME, the middle image as the image from the same
class, and the image on the right as the image from a different class. LIME scores are based on su-
perpixels identified via unsupervised image segmentation using Felzenszwalb’s graph-based image
segmentation (Felzenszwalb & Huttenlocher, 2004). Green areas indicate regions that contribute
to a prediction of same class, while red regions indicate regions that contribute to a prediction of
different class. Classes shown here are (from top to bottom: [house finch, Saluki], [harvestman,
jellyfish], [wok, file cabinet].

Table 4: Accuracy for SimForest and its Variants (full-precision) (%)

Simforest Classifier (∆) 1-shot Accuracy 5-shot Accuracy

Random Forest (Breiman, 2001) 42.17 60.40
Extra Trees (Geurts et al., 2006) 41.89 61.49
Ada-Boosting (Friedman, 2001) 42.99 61.49
DNN 47.41 -
DNN-concat 49.52 -

14

Under review as a conference paper at ICLR 2023

Table 5: 5-way-1-shot Ensemble Accuracy(%)

Method Backbone Train+Test Test-Only
Relation Net (Sung et al., 2018) Conv4 52.43 54.18
Matching Net (Vinyals et al., 2016) Conv4 55.20 56.74
FEAT (Ye et al., 2020) Res12 65.63 67.14
Deep Set (Ye et al., 2020) Res12 64.62 66.98

Table 6: Reported Few-shot Learning SOTA Results (Inducitve setting with Res12 backbones) (%)
Method 1-shot Accuracy 5-shot Accuracy

TapNet (Yoon et al., 2019) 61.65±0.15 76.36±0.10

MetaOptNet (Lee et al., 2019) 62.64±0.61 78.63±0.46

FEAT (Ye et al., 2020) 66.78±0.20 82.05±0.14

DeepEMD (Zhang et al., 2020) 65.91±0.82 82.41±0.56

Rethink-Distill (Tian et al., 2020) 64.82±0.60 82.14±0.43

infoPatch (Liu et al., 2021) 67.67±0.45 82.44±0.31

RobustDistill (Dvornik et al., 2019) 63.06±0.61 80.63±0.42

MLT (Sun et al., 2019) 63.40 80.10
E3BM + MLT (Liu et al., 2020) 64.30 81.00

FEAT+SimForest 67.14±0.20 84.71±0.13

infoPatch+SimForest 71.29±0.47 88.26±0.33

15

	Introduction
	Related Works
	Method
	Preliminary
	SimForest
	SimForest Ensemble

	Experiments
	Experiment Set-up
	Main Results

	Analysis and Ablation Studies
	Visualization of Feature Representations
	Model Interpetability
	Computation Efficiency
	What if the random forest classifier is replaced?

	Conclusions
	Appendix
	Dissect SimForest Improvement
	Why not include SimForest in the training phase?
	Hyperparameters for Pretraining of Encoders

