Published in Transactions on Machine Learning Research (11/2023)

Variational Causal Dynamics:
Discovering Modular World Models from Interventions

Anson Lei anson@robots.ox.ac.uk
Applied AI Lab
University of Oxford

Bernhard Scholkopf bs@tue.mpg.de
MPI for Intelligent Systems

Tiibingen

Ingmar Posner ingmar@robots.ox.ac.uk

Applied AI Lab
University of Oxford

Reviewed on OpenReview: |https: //openreview. net/ forum? 1d=V9tGKYYNK1

Abstract

Latent world models allow agents to reason about complex environments with high-
dimensional observations. However, adapting to new environments and effectively leveraging
previous knowledge remain significant challenges. We present variational causal dynamics
(VCD), a structured world model that exploits the invariance of causal mechanisms across
environments to achieve fast and modular adaptation. By causally factorising a transition
model, VCD is able to identify reusable components across different environments. This is
achieved by combining causal discovery and variational inference to learn a latent represen-
tation and transition model jointly in an unsupervised manner. Specifically, we optimise
the evidence lower bound jointly over a representation model and a transition model struc-
tured as a causal graphical model. In evaluations on simulated environments with state and
image observations, we show that VCD is able to successfully identify causal variables, and
to discover consistent causal structures across different environments. Moreover, given a
small number of observations in a previously unseen, intervened environment, VCD is able
to identify the sparse changes in the dynamics and to adapt efficiently. In doing so, VCD
significantly extends the capabilities of the current state-of-the-art in latent world models
while also comparing favourably in terms of prediction accuracy.

1 Introduction

The ability to adapt flexibly and efficiently to novel environments is one of the most distinctive and
compelling features of the human mind. It has been suggested that humans do so by learning internal
models which not only contain abstract representations of the world, but also encode generalisable,
structural relationships within the environment (Behrens et al., [2018). This latter aspect, it is conjectured,
is what allows humans to adapt efficiently and selectively. Recent efforts have been made to mimic this
kind of representation in machine learning. World models (e.g. Ha & Schmidhuber] |2018) aim to capture
the dynamics of an environment by distilling past experience into a parametric predictive model. Advances
in latent variable models have enabled the learning of world models in a compact latent space (Ha &
Schmidhuber, 2018} [Watter et al., 2015; [Hafner et al., 2018 [Buesing et al.| |2018; |Zhang et al., 2019)) from
high-dimensional observations such as images. Whilst these models have enabled agents to act in complex
environments via planning (e.g. [Hafner et al, 2018} [Sekar et al., [2020]) or learning parametric policies (e.g.
Hafner et al., 2019; Ha & Schmidhuber}, 2018)), structurally adapting to changes in the environment remains
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Figure 1: Left: The general architecture of VCD. The dynamics model is trained using observation sequences
from multiple environments by minimising the KL divergence between the predicted state distribution and
the encoded posterior state distribution. Rollouts in the latent space can be performed by recursively
applying the learnt transition model. Right: The structure of the causal transition model. Each dimension
of the latent space is treated as a causal variable. Predictions are made using only the causal parents of each
variable, according to a learnt causal graph.

a significant challenge. The consequence of this limitation is particularly pronounced when deploying
learning agents to environments, where distribution shifts occur. As such, we argue that it is beneficial to
build structural world models that afford modular and efficient adaptation, and that causal modeling offers
a tantalising prospect to discover such structure from observations.

Causality plays a central role in understanding distribution changes, which can be modelled as causal
interventions (Scholkopf et al., 2021). The Sparse Mechanism Shift hypothesis (Scholkopf et al., [2021]
Bengio et al., 2019) (SMS) states that naturally occurring shifts in the data distribution can be attributed
to sparse and local changes in the generative process. This implies that many causal mechanisms remain
invariant across domains (Scholkopf et al., |2012; [Peters et al 2016; [Zhang et al., [2015). In this light,
learning a causal model of the environment enables agents to reason about distribution shifts and to exploit
the invariance of learnt mechanisms across different environments. Hence, we posit that world models with
a causal structure can facilitate modular transfer of knowledge. To date, however, methods for causal
discovery (Spirtes et al.l [2000; Pearl, [2009; Peters et al.,|2017; [Brouillard et al., 2020; [Ke et al. [2020) require
access to abstract causal variables to learn causal models from data. These are not typically available in
the context of world model learning, where we wish to operate directly on high-dimensional observations.

In order to benefit from the structure of causal models and the ability to represent high-dimensional obser-
vations, we propose Variational Causal Dynamics (VCD), which combines causal discovery with variational
inference. Specifically, we train a latent state-space model with a structural transition model using varia-
tional inference and sparsity regularisation from causal discovery. By jointly learning a latent representation
of the observations and a transition model, VCD learns a causally factorised world model that can modularly
adapt to different environmentsﬂ The key intuition behind our approach is that, since sparse structures can
only be discovered on semantically meaningful variables, training the representation and the causal discovery
module in an end-to-end manner acts as an inductive bias that encourages well disentangled representations.
By leveraging the learnt causal structure, VCD is able to identify the sparse mechanism changes in the envi-
ronment and re-learn only the intervened mechanisms. This enables fast and modular adaptation to changes
in dynamics. The code for the experiments are available at https://github.com/applied-ai-1lab/VCD.

2 Related Work

Predictive models of the environment can be used to derive exploration- (Sekar et al.l |2020]) or reward-driven
(Ha & Schmidhuber} 2018} [Hafner et al., 2019} |2018)) behaviours. In this paper, we focus on the learning
of latent dynamics models. World models (Ha & Schmidhuber} |2018)) train a representation encoder and a
RNN-based transition model in a two-stage process. Other approaches (Hafner et all 2018; |Zhang et al.|

1The assumption under which the model is valid is discussed in section
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[2019; Watter et al., 2015) learn a generative model by jointly training the representation and the transition
via variational inference. PlaNet (Hafner et all |2018]) parameterises the transition model with RNNs. E2C
(Watter et al., [2015; Banijamali et al., [2018) and SOLAR (Zhang et all 2019)) use locally-linear transition
models, arguing that including constraints in the dynamics model yields structured latent spaces that
are suitable for control problems. In a similar vein, the use of latent prediction models have also been
explored in the context of video prediction (Villegas et al., |2019; [Denton & Fergus, 2018} |Assouel et al.l
. Our proposed approach shares the general principle that latent representations can be shaped
by structured transition mechanisms (Ahuja et all [2021)). However, to the best of our knowledge, VCD
is the first approach that implements a causal transition model given high-dimensional inputs in this context.

Causal discovery methods enable the learning of causal structure from data. Approaches can be cat-
egorised as constraint-based (e.g. (Spirtes et al.,|2000)) and score-based (e.g. (Hauser & Buhlmann) [2012))).
The reader is referred to (Peters et al., 2017) for a detailed review of causal discovery methods. Motivated
by the fact that these methods require access to abstract causal variables, recent efforts have been made to
reconcile machine learning, which has the ability to operate on low-level data, and causality
. Recent advances in this area include theoretical works on independent component analysis exploring
the conditions under which disentanglement is possible (Yao et al., 2022; Hyvarinen et al., 2019; Lachapelle|
. Our current work situates within this broader context of causal representation learning,
and aims to identify causally meaningful representations via the discovery of causal transition dynamics.
(Lachapelle et al. [2021} [Lachapelle & Lacoste-Julien), [2022) discusses the theoretical identifiability of a
latent state-space model similar to ours. Whilst we do not make identifiability claims, our work builds on
the inductive biases developed in these works. Building on this theoretical foundation, VCD focuses on the
adaptation capabilities of causal models and empirically shows their applicability to image observations.

There has been significant interest in leveraging causal reasoning in world model learning (Li et al.
. These approaches typically rely on predefined representations such as keypoints
or object slots , and attribute changes in the dynamics to unobserved confounders, which
can be estimated from observations. Our approach differs in that we couple the learning of the representation
and the model, which enables dynamics-aware discovery of causal representations. Similar approaches
of jointly learning representation and model structure have also been explored in different contexts such
as reinforcement learning. AdaRL (Huang et al) [2022) considers few-shot adaptation under sparse
mechanism shift (SMS) by attributing changes in the environments to low-dimensional environment-specific
parameters. In contrast, by explicitly drawing from causal discovery, VCD models the dynamics of the
scene as independent causal mechanisms. This, in turn, allows our approach to directly identify localised
mechanism shifts between environments in an interpretable manner. Another branch of work considers
temporally intervened sequences (Lippe et all [2022b} 2023} [Brehmer et all [2022). While these share our
general approach of learning sparse graphs in the latent space, they consider interventions as direct changes
to the causal variables in each time step, whereas VCD formulates interventions as shifts in the dynamics
across environments, which enables the capability of domain adaptation. In the model-free RL literature,
[Raileanu et al.| (2020); |[Sang et al| (2022) investigate a similar setting where agents are trained in diverse
environments and adapt to new environments with limited data.

Another branch of causality-inspired work leverages the invariance of causal mechanisms by learning
invariant predictors across environments (Tian & Pearl, 2001; Scholkopf et al., 2012; Peters et all [2016}
|Zhang et al., |2017; Arjovsky et all [2019). This invariance has been studied in the context of state
abstractions in MDPs (Zhang et al., 2020)), and invariant policies can be learnt via imitation learning from
different environments (Bica et all 2021). In contrast, our approach models the full generative process of
the data across different environments rather than learning discriminative predictors.

3 Background

This section describes the prerequisite definitions and formulations for our proposed method. We highlight
the strengths and weaknesses of latent state-space models, causal models and causal discovery methods, and
motivate our approach that builds upon these to learn causal world models.
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Latent state-space models In a complex environment with high-dimensional observations, such as im-
ages, learning a compact latent state space that captures the dynamics of the environment has been shown to
be more computationally efficient than learning predictions directly in the observation space (Hafner et al.
2018} [Buesing et al} [2018). Given a dataset of sequences {(0%7, af*")}¥ ] with observations of and actions
a' at discrete timesteps ¢, a generative model of the observations can be defined using latent states z%'7 as

T
PP T,a) = [ T patoflptal ot a0, &)
t=0

where pg(of|2!) and pg(2f|2t71,at~1) are the observation model and the transition model respectively. For

simplicity, we do not learn the policy term p(af|zt) and omit it throughout this paper as it is constant with
respect to the parameter 6. The variational evidence lower bound can be written as

T

ELB@(@, QZS) = ZEqd)(zqot) [log(p9(0t|zt))] — Eq¢(zt—1|ot71) [KL[Q¢(Zt|Ot)||p9(zt|zt71, atil)]], (2)
t=0

where g, (2']0") is a learnable approximate posterior of the observationsﬂ See Appendix for the derivation.
RSSM (Hafner et all [2018) employs a flexible transition model parameterised as a fully connected recurrent
neural network, where the transition probability is split into a stochastic part and a deterministic recurrent
part,

2" Np9(2t|ht)7 ht = fe(htilvztilvatil)a (3)

where f(-) is instantiated as a GRU (Cho et al., |2014) and h! is the associated hidden state. Intuitively,
this provides a path through which information can be passed on over multiple timesteps.

Despite their success, these models cannot reason about changes in the environment. Specifically,
they are unable to structurally utilise prior knowledge learnt from different environments under distribution
shift. To this end, we argue that imposing a causal structure on the transition model equips the learning
agent with the ability to adapt to changes in a modular and efficient manner.

Causal graphical models A causal graphical model (CGM) (Peters et al., 2017) is defined as a set of
random variables { X1, ..., X4}, their joint distribution Py, and a directed acyclic graph (DAG), G = (X, E),
where each edge (4,j) € E implies that X; is a direct cause of X;. The joint distribution admits a causal
factorisation such that

d
p(x1, .y q) = Hp(:z:i|PAi), (4)
i=0

where PA; is the set of parents to the variable X; in the graph. Each of the conditional distributions can
be considered as an independent causal mechanism.

In contrast to standard graphical models, CGMs support the notion of interventions, i.e., local changes in
the causal distribution. Formally, an intervention on the variable X; is modelled as replacing the conditional
distribution p(z;|PA;) while leaving the other mechanisms unchanged. Given the set of intervention targets
I C X, the interventional distribution can be written as

P (@1, wa) = [ [ s PA) [T (2: P A, (5)

igl iel

where p/(+]-) is the new conditional distribution corresponding to the intervention. The SMS hypothesis
(Scholkopf et al.,[2021)) posits that naturally occurring distribution shifts tend to correspond to sparse changes

2In the current work, we focus on environments without rewards. However, the proposed method can be readily extended
to include reward prediction.

3The approximate posterior, which only depends on the current observation, is a simplification of the full posterior which is
conditioned on all observations. This is consistent with prior works and is found to be sufficient for the dynamical systems in
the experiment. However, the algorithm presented in this work can be readily adapted to use the full posterior instead.
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(a) Latent state space model (b) Typical transition model (c) VCD transition model

Figure 2: (a) The structure of latent state space models in one timestep. Solid lines denote the generative
process of the environment, dashed lines denote approximate posteriors, shaded nodes denote observed
variables, and the bi-directional arrow denotes the KL divergence in the ELBO term. In this work, we
propose a novel architecture for the transition model. (b) The structure of latent transition models where
the probability distribution is modelled as a fully connected neural network. (c) The causal transition model
in VCD. Each individual variable has a separate conditional distribution p;. Each mechanism is conditioned
on a subset of the previous state and action. The blue lines highlight the intervened mechanism which is
specific to the environment k, as opposed to the mechanisms corresponding to the black lines, which are
shared across environments.

in a causal model when factorized as , i.e., changes of a few mechanisms only. Causal mechanisms thus
tend to be invariant across environments (Scholkopf et al., |2012; [Peters et al., 2016; |Zhang et all, 2017)). In
this light, we argue that a causal world model can structurally leverage the invariance within distribution
shifts as an inductive prior. In order to learn a causal model in the context of world models, we draw
inspiration from recent advances in causal discovery which aim to learn causal structures from data.

Differentiable causal discovery We focus on methods that formulate causal discovery as a continuous
optimisation problem (Brouillard et al., 2020; [Ke et al. [2020; Bengio et al.l |2019; [Lippe et al., 2022a))
as these can be naturally incorporated into the variational inference framework. Furthermore, since the
causal variables are learnt in our model, the causal discovery module is required to learn causal graphs
from unknown intervention targets. In this work, we follow the formulation in Differentiable Causal
Discovery with Interventional data (Brouillard et al.,[2020) (DCDI), which optimises a continuously param-
eterised probabilistic belief over graph structures and intervention targets. See Appendix [B|for further detail.

In the context of learning world models from high-dimensional observations, the drawback of this
approach, and of causal discovery methods in general, is that it requires access to semantically meaningful
causal variables, much like classical Al required symbols in terms of which algorithms could be formulated.
In the next section, we present a method to perform causal discovery and learn causally meaningful
representations jointly.

4 Variational Causal Dynamics

Similar to causal discovery with interventional data, variational causal dynamics (VCD) learns from action-
observation sequences from an undisturbed environment, (0?6?,51?6?), and K intervened environments,

{(o?l;q)w,a?,f)r)}le. Throughout this paper, we assume that 1) changes between the environments are due
to ‘soft’ interventions where the structure of the causal graphs remains the same but individual parameters
of the mechanisms change, 2) there are no instantaneous causal dependencies in each timestep, and 3) the
observation function does not change across environments.
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The general approach of VCD follows the latent state-space model framework (Fig, where a latent repre-
sentation of the observations is jointly learnt with a transition model by maximising the ELBO. In contrast
to existing approaches that parameterise the transition probability p(zt|z!=%, a’~1) as a feedforward neural
network (Fig, VCD learns a structured transition model by utilising inductive biases from causal discov-
ery. Importantly, our approach is grounded in the hypothesis that causal structures can only be discovered on
meaningfully disentangled representations of the system. We therefore argue that training a representation
and a transition model jointly to optimise a causal discovery objective can lead to a latent representation
that affords sparse transition models and is therefore semantically meaningful. We discuss this approach
in relation to existing theoretical works on identifiability in Section Taking the view that changes in
the dynamics can be attributed to sparse causal interventions, we posit that a causally factorised transition
model facilitates modular adaptation to new environments by explicitly leveraging the invariance of causal
mechanisms. We propose an algorithm for adaptation in Section [4.4

4.1 Causal transition model

In order to perform causal discovery on the transition dynamics, the transition model in VCD is designed
to mimic the structure of a CGM (Eq. . In the following paragraphs, we motivate and describe the three
main architectural features of VCD that enable causal discovery: independent mechanisms, sparse causal
dependencies and sparse interventions. Access to the causal graph G and the intervention targets for each
environment 7 is assumed throughout this subsection. We describe the method of learning these jointly
with the model in Section E.3l

Independent mechanisms In contrast to a fully-connected transition model, the transition probability
is factorised into individual conditional distribution as

d
p(zt|zt_1,at_1) — Hpi(zf|zt_17at_1), (6)
7

where d is the dimension of the latent space, to be set as a hyperparameter. z; denotes the ith dimension of
the latent state, and each conditional distribution p; is a one-dimensional normal distribution with mean and
variance given by separate neural networks. This factorisation and separation of parameters is motivated by
the Independent Causal Mechanism principle, which states that the causal generative process of a system’s
variables is composed of autonomous modules that do not inform or influence each other (Scholkopf et al.)
2021). This explicit modularity of the model structure enables the notion of interventions, where individual
conditional distributions are locally changed without affecting the other mechanisms.

Sparse causal dependencies Following the structure of a CGM, we condition each variable only on its
causal parents according to the learnable causal graph G, rather than the full state. Given a graph G, we
define the binary adjacency mask MY where the entry Mg is 1 if and only if [2'71, a?~1]; is a causal parent
of z§ This is consistent with the intuition that, in physical systems, states interact with each other in a
sparse manner (Goyal et al.l |2021al), and actions tend to have a direct effect on only a subset of the states.
Under this parameterisation, the causal transition probability can be written as

d
p(2t|2t71,at71):Hpi(ZﬂMig@[Ztil,atil])y (7)

where ® denotes the element-wise product, [-,-] denotes the concatenation of vectors, and Mf is the binary
mask that selects only the causal parents of z; under the graph G.

Sparse interventions Following the SMS hypothesis (Scholkopf et al., 2021), we assume that changes in
distributions across the K intervened environments are due to sparse interventions in the ground truth causal
generative process. In order to incorporate sparse interventions in VCD, given the set of learnt intervention
targets Zj, for each environment, we define the binary intervention mask RZ where the entry RE, is 1 if and
only if the variable z; is in the set of intervention targets in environment k. For each variable z;, RZ, acts
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as a switch between reusing a shared observational model and an environment-specific interventional model.
The full interventional causal model of the transition probability in the environment k can be written as

d
— —_ —_ —_ —_ I. —_ —_ I.
P et = T GHIME © [ a1l M o [ at ) (®)
i

where p(©) is the observational mechanism that is shared across all environments and p(*) is the intervened
distribution specific to environment k. Intuitively, this model ensures that all environments reuse the same
conditional distributions p°®* unless it is deemed that a particular mechanism has been intervened on (i.e.
RI, = 1). This modular adaptation between environments facilitates structural transfer of knowledge be-
tween different environments. Note that the structure is that of a causal graphical model. The overall
architecture of the VCD transition model is summarised in Fig.

4.2 Recurrent module

Similar to RSSM (Hafner et al., 2018)), we augment the model with a deterministic recurrent path to enable
long-term predictions. To ensure that each conditional distribution only has access to the causal parents,
in the same way that each conditional distribution is modelled by a separate network, each conditional
distribution keeps a separate recurrent unit and a corresponding hidden activation:

Zf ~ pz(zﬂhi), h: = fi(hﬁ_lv Mzg © [Zf_l’ at’_l])v (9)

7

where f; is a recurrent module specific to the variable z;, instantiated as a GRU (Cho et al.| 2014]).

4.3 Training

The task of model training is to determine the model parameters 8, the approximate posterior parameters ¢,
as well as the causal graph G and the intervention targets Z. These can be jointly trained in a way similar to
DCDI. We parameterise the belief over the causal adjacency matrix M9 as a random binary matrix. Each
entry Migj follows a Bernoulli distribution with success probability o (c;), where a;; is a scalar parameter and
o(-) is the sigmoid function. Similarly, a random binary matrix R” is parameterised using the scalar variable
Bii for each entry. Unlike DCDI, due to the existence of latent variables, we cannot directly maximise the
data likelihood. Instead, we maximise the expected ELBO across all environments over causal graphs and
intervention masks,

L(97¢7aaﬁ) = Z EQ,I [ELB@(O?kT’a(()kj)ﬂ79>¢7g;I) - )‘G’lg‘ - )\I|I|]7 (10)
keo0,1,...,K]

where
T
ELBO(0(i}, a(i}10,6,G,T) = Eq,(z(ot) [pa(0'|2")]
t=0

k _ _
— By, (211001 [KL[gg (2'0") I (212471, at=1)]]. (11)

pék)(zt|zt*1, a'~1) is further factorised as in Equation . The gradients through the outer expectation and
the expectation term in ELBO are estimated using the straight-through Gumbel-max trick (Jang et al.)
2017) and the reparameterisation trick (Kingma & Welling, [2014)) respectively. For further implementation
details, derivation of the lower bound, and model architectures, see Appendices [A] and [B]

4.4 Adaptation

Due to the modular nature of the transition model, VCD can naturally adapt to new, unseen environments
by jointly inferring the intervention targets and the new model parameters for the intervened mechanisms.
Specifically, the transition model in a new environment can be written as

Pt at ) = o GHME © [ at ) Bl (et P @ [0 ot 1)) (12)
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where R’ is the intervention mask for the new environment and pj is the environment-specific distribution.

The parameters of p(o)

, ~ are carried over from the training environments, meaning that the model reuses
trained mechanisms unless the variable is intervened on in the new environment. Under the SMS hypothesis,
only a small subset of the mechanisms need to be adapted in a new environment. As such, by leveraging

past experience, VCD can adapt more quickly to environment change.

One way to implement modular transfer is to train VCD on trajectories in the new environment
while reusing the trained parameters for the causal graph and the mechanisms in the undisturbed environ-
ment. This can be done by identifying the set of intervention targets in the new environment I’ and learning
the model parameters for the corresponding conditional distributions €’. These can be jointly trained in an
analogous way to Eq.

Ledar (g, B') = Eg o [ELBO(0p7", ap7; 0/, ¢, G, Z') = Ar|T']], (13)

where 3’ are the Bernoulli parameters for the distribution over intervention targets. Under this framework,
VCD has the capability to identify the sparse mechanism changes in a new environment and learn the
transition mechanisms only for the intervened variables. In Section 5} we show that VCD can identify sparse
interventions from a small amount of data and is able to refit the world model with improved data efficiency.

4.5 Identifiability of Causal Graph and Causal Representations

VCD'’s ability to adapt in a modular fashion hinges on the discovery of the correct, or at least approximately
correct, causal structure as well as on a causally meaningful representation space. The conditions under
which such structures can be learnt from data are studied under the term identifiability. While we make
no formal claims about identifiability of causal graph and representation in the paper, our approach is
grounded in recent theoretical results which makes use of the sparsity of causal relationships (Brouillard
et al., 2020; |[Lachapelle et al.,2021)). In this subsection, we foreground the relationship between these results
and our approach.

(Brouillard et all 2020) shows how the correct casual graph can be identified in a setting similar to
ours. Given observed causal variables X in k different environments with intervention targets Z* and
ground-truth casual graph G*, the following score function is proposed,

K
S(6,7) = Sl;pZEX pologf®(X:G.T,6) — Ag|G| — Az |Z, (14)
k=1

where f) is the likelihood of the data under the model in environment k, parameterised by ¢, and other
definitions are the same as eq[I0] The main theoretical results in (Brouillard et al] [2020) shows that with
small enough A\g and Az, maximising this score function will result in the correct intervention targets and a
causal graph that is Z*-markov equivalent to the ground-truth graph. In other words, with a suitable choice
of hyperparameters, maximising the score function will lead to the correct causal graph and intervention
targets. The main idea of this theorem is that if the model learns the underlying distribution perfectly, any
learnt graph that is not equivalent to the ground-truth graph is necessarily less sparse and hence have a
lower score. VCD uses the same score function as the training objective with the log likelihood replaced
with the evidence log lower bound since we do not have access to the causal variables.

To this end, (Lachapelle et al., |2021) considers the identifiability of causal variables from high di-
mensional observations, i.e. whether an encoder can learn latent representations that correspond to
causally meaningful variables. Given a dataset of observation-action sequences, {o*, a’}L_, generated by the
transition model:

o' =f(z"), = Hp(zﬂz<t,a<t), (15)

(]2 a=t) = hi(2))eap{Ti(z)) T Mi(GF © 2=, G} ©a=") — (<", a™")}, (16)



Published in Transactions on Machine Learning Research (11/2023)

where f is an invertable function that maps the latent causal variables to high dimensional observations.
The theory holds conditional distributions within the exponential family, where T is the sufficient statistics,
A is a transition function that outputs the natural parameters of the distribution, & and 1 are the base
measure and the normalising constant respectively. G* and G® are the binary masks corresponding to the
causal graph of the observed system, analogous to the learnt causal masks for VCD. In this framework, the
learnable parameters are 6 := (f, A, G). The main theorem states that, if the distribution induced by the
learnt model § matches the ground-truth model 6, then under certain technical conditions concerning the
structure of the problem, ||G||o < ||G||o implies that 6 and § are equivalent up to permutations. In other
words, if the learnt model perfectly captures the data distribution with a causal graph that is at least as
sparse as the ground-truth causal graph, then the learnt casual variables must be completely disentangled.
The intuition behind this theorem can be demonstrated with a simple example. Consider a system with
a transition model that only depends on one causal variable. With an entangled representation, i.e.
information about the causal variable is spread across several latent dimensions, the model must take into
account all of these latent dimensions in order to make predictions. As such, the model will require multi-
ple edges in the learnt causal graph. In contrast, only one edge is needed if the representation is disentangled.

In sum, these results show that sparsity plays a central role in the identification of both the causal
graph and a causal representation. With this in mind, the architecture of VCD is designed to afford a
sparse transition model that mimics the structure of a CGM. Whilst, in practice, the condition of perfectly
matched distributions might not hold, this general principle of sparsity regularisation forms the basis of our
approach. In section |5, we empirically show that VCD is able to learn a disentangled latent representation
and identify most of the causal relationships.

5 Experiments

In this section, we demonstrate that VCD is able to learn from
multiple environments with different dynamics by learning a causal
world model that explicitly captures the changes between the envi-
ronments as interventions. We evaluate, qualitatively and quanti-
tatively, the learnt representations and causal structures and show
that VCD is able to capture the dynamics of the scene using sparse
dependencies between states, as well as identify sparse changes be-

tween the environments. Moreover, we illustrate that, in an unseen \\\
. . N

environment, VCD can leverage past experience to perform mod- N

ular adaptation, resulting in significantly improved data efficiency

over the baselines.

Dataset We evaluate VCD on a simulated dataset of a 2-D multi- Figure 3: The configuration of the
body system which contains four particles that affect each other multi-body environment. The red and
via a spring or an electrostatic-like force. The configuration of the the blue lines represent an attractive
environment is shown in Fig The action a € R? is an external and repulsive force respectively.

force that applies to particle 4. The environment is designed such

that there is an unambiguous ground-truth causal graph between

the causal variables and well-defined changes in the dynamics. We consider changes such as strengthening or
removing one of the springs, increasing or decreasing the mass of a particle, or constraining the position of a
particle along the = or the y axis. Each of these changes can be considered as an intervention on one or more
causal variables. See Appendix [C] for further details of the environment and the full list of interventions.
We evaluate VCD in two experiments: Mixed-state, where the observation is given by applying an affine
transformation to the ground-truth positions of the particles, and Image, where the observation is given by
rendering the environment as a RGB image.

Baselines We compare the performance of VCD against RSSM (Hafner et all [2018]), a state-of-the-art
latent world model that served as inspiration for VCD. As RSSM does not support learning from multiple
environments, we consider two adaptations of RSSM with different levels of knowledge transfer between



Published in Transactions on Machine Learning Research (11/2023)

Mixed-state Image
20.0 800
—— RSSM
17.5 MultiRSSM 700 4
—— VCD .
15.0 1 600
S 125 500
e e
— —
w w
o 100 — 400
) ]
3 X
o 7.5 & 300
5.0 200
2.5 100
0.0 ™ ™ T T ™ ™ ™ 0 T T ™ ™
0 25 50 75 100 125 150 175 0 20 40 60 80
timestep timestep

Figure 4: The rollout error measured on validation trajectories. The models receive observations on each
timestep for the first half of each trajectory (shaded), after which the model is rolled out based on latent
predictions. The reported error in the mixed-state environment (left) and the image environment (right) are
squared error in the ground-truth state space and squared error in pixel values respectively. VCD outperforms
the baselines in both modes of observation. Evaluations on the image experiments using non-pixel-based
errors are available in Appendix E

Table 1: The modified MCC scores for RSSM and VCD. Higher score means better disentanglement.

Expriment RSSM VCD

Mixed-state 0.728 0.975
Image 0.715  0.908

environments: (1) RSSM, where one transition model is trained over all environments, i.e., maximum
parameter sharing across environments; and (2) MultiRSSM, where individual transition models are trained
on each environment, with shared encoders and decoders. This corresponds to the case where no knowledge
about dynamics is transferred, i.e., each model is a local expert. Compared to these two extremes of
knowledge sharing, VCD captures environment-specific behaviours whilst reusing invariant mechanisms.

Prediction performance VCD and the baselines are trained on a dataset composed of 2000 trajectories
from each of the undisturbed environment and five intervened environments. The models are evaluated
on trajectories from a validation set drawn from the training environments. Fig. [4] shows the rollout error
for each of the models with state and image observations. Unlike VCD and MultiRSSM, RSSM can only
capture the average dynamics of the environments due to parameter sharing. As such, it is not able to
capture environment-specific behaviours. This is reflected in the prediction accuracy of the model. In the
mixed-state experiment, VCD is able to identify changes between the environments and performs as well
as MultiRSSM in terms of prediction error. A similar trend is shown in the image space, where VCD
outperforms the baselines. See Appendix [D] for image rollout examples that demonstrate the difference in
behaviour between RSSM and VCD.

Causal discovery and Disentanglement One of the key hypotheses of this work is that jointly learning
a representation and a transition model using causal discovery leads to causally meaningful representations.
Here we examine the quality of the learnt latent space and the causal structure of the transition model. Fig.
shows the image reconstructions of points drawn from a straight line along dimension 6 of the latent space.
Since both models are initialised with the same encoder, this provides a qualitative intuition as to how the
causal discovery inductive bias shapes the latent space. Whilst this dimension of the latent space in RSSM
is able to encode only the blue particle, VCD is able to learn an azis-aligned coordinate (z coordinate) of the
blue particle with respect to the environment. Note that the motion of bouncing off the boundaries is only
separable in the z,y frame, implying that the dynamics in axis-aligned coordinates is sparser. In table 1} we
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along dimension 6

RSSM

VCD

Figure 5: Reconstructed images from points sampled along dimension 6 of the latent space. Compared to
the latent space learnt in RSSM, VCD is able to learn an axis-aligned representation where the blue particle
moves horizontally. See Appendix |E| for more examples.

Table 2: Sparsity of learnt causal graphs and intervention targets. We compare the learnt graph with the
ground truth causal graph by mapping each ground-truth state dimension to a latent dimension by picking
the dimension with the highest correlation score.

Observation # of edges Correct Edges Missed Edges False Positives
Mixed state causal graph 42/288 19 7 8
intervention targets 18/80 10 0 )
Image causal graph 73/288 22 4 13
intervention targets 31/80 10 0 17

provide the mean absolute correlation coefficient scoreEl for the representations for both RSSM and VCD,
which measures the quality of representation disentanglement by comparing the learnt latent space with the
ground-truth states. We see that in both cases, training with the sparsity regularisation in VCD achieves a
higher MCC score, which confirms that VCD learns a more disentangled representation. More qualitative
exploration of the learnt latent space is provided in Appendix

By considering the correlation between each dimension of the learnt representation and the ground-truth
states, it is possible to compare the learnt causal graph with the ground-truth (tabel. As desired, the learnt
causal graphs in both the mixed-state and the image environment are found to be sparse and encode most
of the causal edges of the graph. Taken together with the prediction accuracy of the model, this means that
VCD is able to retain causal edges that are important for predicting the dynamics of the environment while
pruning out spurious edges. A more in-depth analysis of the learnt causal graph is provided in Appendix
showing that the edges in the learnt causal graph do correspond to meaningful causal relationships.

Adaptation We provide empirical evidence that VCD can adapt to a new environment with less data
compared to RSSM and MultiRSSM by reusing learnt mechanisms in a modular fashion. We collect datasets
of different sizes in a previously unseen intervened environment where particle 1 is constrained horizontally.
RSSM and MultiRSSM adapt to the new environment by optimizing the ELBO (Eq. , with the difference
that MultiRSSM instantiates a new transition model randomly and RSSM initialises the transition model
using pre-trained parameters. Following Eq. [I3] VCD performs adaptation by jointly estimating the inter-
vention targets and the parameters of the intervened mechanisms. The models are evaluated on a validation
set of trajectories in the new environment. Fig. [6] shows the rollout error of the models trained on datasets

4Due to the fact that the ground-truth state dimension (8) is less than the latent state dimension (16), we modify the MCC
score by calculating the mean of the top 8 scores out of the 16, effectively ignoring the latent variables that do not capture the
state information.

11



Published in Transactions on Machine Learning Research (11/2023)

—— RSSM
(7)) 35 . 35 35 35 35
Q MultiRSSM
4+ 301 —— VCD m 30 30 30 30
(0] g
) L 25 25 /J 25 25 25
5
(Vo g
" g0 20 20 20 20
8 le 15 L—_"—_-—/ 15 15 15
5 10 10 10 10 10
= s s s s
0 o [ 0
25 50 75 100 125 150 175 25 50 75 100 125 150 175 25 50 75 100 125 150 175 25 50 75 100 125 150 175 25 50 75 100 125 150 175
1 trajectory 4 trajectories 16 trajectories 64 trajectories 256 trajectories
T
I o 2 a 6 8 10 12 14 0 2 a 6 8 10 12 14 o 2 4 6 8 10 12 14 ] 2 4 6 8 10 12 14 [ 2 4 6 8 10 12 14
800 800 800 800
700 700
600 ‘/\W/"\/ 600 W\/\/\»\«/v\//\-
0
Q .50 500
5
m %400 400
m a
E 300 300
- 200 200
100 100
o o [ [
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
10 trajectories 40 trajectories 160 trajectories 640 trajectories 2560 trajectories
I/ | | | .| | B | B WEE | | | | B |
0 2 a4 6 8 10 12 14 o 2 a4 6 8 10 12 14 o 2 4 6 8 10 12 14 ] 2 4 6 8 10 12 14 [ 2 4 6 8 10 12 14

Figure 6: Rollout errors in the mixed-state and image experiments where the models are trained on datasets
of varying sizes. The models receive observations for the first half of the trajectory (shaded), and perform
latent space prediction for the rest. VCD significantly outperforms the other models with little data. The
bar below each plot shows the learnt intervention targets in the new environment. VCD is able to reuse
most of the previously learnt mechanisms, as indicated by the sparsity in the learnt intervention targets. In
the mixed-state, we verify that the learnt intervention target (dimension 8) corresponds to the ground-truth
target (y1), see Appendix @ Evaluations using non-pixel-based errors are available in Appendix

of varying size. Across all models, performance improves as the dataset grows. However, in contrast to
RSSM and MultiRSSM, which overfits the dataset when the number of trajectories is small, VCD is able
to predict significantly more accurately. This is because VCD estimates the intervention targets and reuses
trained modules that remain invariant. Remarkably, in the mixed-state experiment, VCD is able to converge
to a single latent dimension that encodes the y position of particle 1 with just one training trajectory. See
Appendix [E] for more experiments with different interventions.

6 Conclusion and discussion

In this paper, we propose VCD, a predictive world model with a causal structure that is able to consume
high-dimensional observations. This is achieved by jointly training a representation and a causally structured
transition model using a modified causal discovery objective. In doing so, VCD is able to identify causally
meaningful representations of the observations and discover sparse relationships in the dynamics of the
system. By leveraging the invariance of causal mechanisms, VCD is able to adapt to new environments
efficiently by identifying relevant mechanism changes and updating in a modular way, resulting in significantly
improved data efficiency.

Limitations and future directions Our experiments highlight VCD’s ability to discover causal variables
and mechanisms from image observations. Future work should investigate the efficacy of the proposed method
in more challenging environments such as (Baradel et al.,|2019; Ahmed et al.| [2021). One possible drawback
of the proposed framework is that the causal graph is assumed to be static across all timesteps and all
environments. In more complex environments, it could be more difficult for the model to discover temporally
sparse interactions such as collisions, and adapt to scenes with different numbers of objects. As such, exciting
directions for future research also include exploring the synergy between causal world models and object-
centric generative models (Wu et al., |2021; Engelcke et al., 2021} von Kiigelgen et al.,|2020)), temporally-local
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causal influence detection (Seitzer et al.| 2021} |Pitis et al.,[2020) and relational reasoning (Goyal et al., 2021bj;
Kipf et al., 2019).

Broader Impact Statement

While the present work significantly advances the current state-of-the-art in world-modelling and causal
representation learning, we expect its immediate impact outside of the machine learning community to be
low as current methods can not yet deal effectively with real-world scenarios.
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A Derivations

Using the approximate posterior g(z%7[0%T,a%") = T[], q(z'|o"), the variational log lower bound for the

latent state-space model (Eq. [2)) can be derived from importance weighting and Jensen’s inequality:

T
logp(o™", a®") =log / Hp(otIzt)p(atlzt)p(ztlzt‘l, a' = 1)d"T (17)
—tog | Hp o plal P gt a0 (19)
Zt Zt_l, at—l
ZIE:Hq(zt\o‘) llog (gp(otzt)p(atzt)p( |q(zt|0t) )>] (19)
T

= Z Eq(zt lot) [logp(ot |Zt) + logp(at |Zt)]
0

+ Eq(zt—l‘ot—l) [Eq(ztlot) [logp(zt\zt_l, at_l) — log q(zt|0t)]] (20)
T

= Z Eq(zt|ot) [logp(ot |zt) + logp(at|zt)]
0

— ]Eq(zt—l‘ot—l) [KL [q(zt|ot)||p(zt\zt71, atil)H . (21)

Since the policy p(a'|z') is constant with respect to the model parameters, we omit this term and write the
ELBO objective as

T
ELBO(0, ¢) = > By, (2 (ot) [log(pa(0'[2"))] = Bg, (zt-110t-1) [KL[gs (2" |0")|Ipo(z']2" 1, a' )], (22)
t=0

where 6 is the model parameter and ¢ is the parameter for the approximate posterior. # and ¢ are omitted
henceforth to simplify notation. In VCD, the KL divergence term can be further decomposed by exploiting
the structure of the transition model (Eq. , and the assumption that variables within each timestep are
independent:

KL [q(="|o)|Ip™) (2']2 1, a1 (23)
(k) ([ t=1 =1
pF (2t a
—/log( ( (|zt|0t) )> q(2*]0")dz" (24)
(0) SHMY —11\1=RZ, (k) (_t| A 15 t—1 t—171\R,
M7 © ki (2 | M7 O 27 a ki
-3 [ ( e e ! >q<zf|ot>dzg (25)
=0 g

0)( t1 1 sG t—1 ,t—1
O (2| MF © [, at]
[ E 1 7RIZ‘ /10 p; (Zz‘ i ) Zf ot dzf

(k) tins9 t—1 atfl
1 R, / log< MO 2 D)q(zﬂot)dzf) (26)

e
d

=3 (0= RRKL [atetlo " G0 © )
0

+ REKL [l (418 © 1) ). @)

The KL terms can be computed analytically since the conditional distributions in the last expression are
univariate Gaussian distributions. In training time, the gradients through the expectation terms in the
ELBO is estimated by drawing a sample from the posterior distribution using the reparameterisation trick
(Kingma & Welling; 2014]).
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B Implementation Detail

B.1 DCDI and Graph Learning

This section covers the formulation of DCDI (Brouillard et al.} [2020) and the graph learning method. These
are subsequently used in the learning of VCD.

Given samples from an observed data distribution P)((0 ) and K intervened distributions P)((k)7 DCDI
optimises a probabilistic belief over causal graphs G and intervention targets Z. Specifically, these are
encoded as random binary matrices, Mg and Rz, where Mg = 1 implies that the edge (4, j) is in the causal
graph, and Rfi = 1 implies that the variable x; is in the intervention targets in environment k. Each entry in
MY follows an independent Bernoulli distribution, parameterised by matrix o where P(Mf; =1) = o(ay).
R%i is similarly parameterised by S. Under this parameterisation, causal discovery can be formulated as
maximising the expected data log likelihood with sparsity regularisation,

K
L(,0,B) =Eays | > loglpy?” (a¥, ... 2k G. 1)) — AalG| — 1|7 , (28)
k=0

where p*) is the data likelihood under causal graph G and intervention targets Z in the kth environment,
as factorised in eq.. The conditional distributions are parameterised as feedforward neural networks with
parameter 6; Ag ; are hyperparameters to control sparsity. In the original DCDI framework, this is also
subject to an acyclicity constraint. However, this is not neccessary in the context of our work as we assume
there are no instantaneous causal effects (i.e., within a timestep).

The training objective for VCD can be viewed as a modified version of the DCDI objective, where
the likelihood term is replaced with the ELBO (Eq. ,

K T
LYCP(0,¢,0,B) = Eag [Z Y “ELBO(0, ¢;G,T) — Acld] — |7l , (29)

k=0 t=0

Note that the expected number of edges in G and Z given « and f is simply the sum of the probability of
each entry being one. Therefore, the training objective can be computed as:

K T
LYOP(0,¢,0,8) = Eq,pg [ZZELR@(M;Q,I)

k=0 t=0

*AGzU(aij)*AIZU(Bki)' (30)
ij ki

The gradients through the outer expectation can be estimated using the Gumbel-Softmax trick (Jang et al.,
2017). To implement this, the ELBO term is evaluated with a sample of the causal graph using the following
expression for each entry,

Mg = ]I(O'(Ckij + L”) > 05) + U(Oéij + LU) — stopigradient(a(aij + Lij))a (31)
where I(-) is the indicator function, L;; is a sample from the logistic distribution, and stop_gradient is a
function that does not change the value of the argument but sets the gradient to zero. Samples for the

intervention targets are similarly acquired. Note that the sample is used throughout each trajectory, i.e. the
same sample graph and intervention targets are used for all of T' timesteps.

B.2 Model Architecture

Mixed-state In the mixed-state experiment, all conditional distributions (including encoders, decoders
and transition models) are parameterised by feedforward MLPs with two hidden layers of 64 hidden units
each. The recurrent modules are implemented as GRUs (Cho et al., [2014)) with 64 hidden units. Distributions
in the latent space are 16-dimensional diagonal Gaussian distributions with predicted mean and log variance.
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Table 3: List of interventions

ID Intervention Intervention targets
1 Remove spring between 1 and 2 T1,Y1, T2, Y2
2 Remove spring between 2 and 3 T2, Y2, XT3, Y3
3 Increase mass 1 T1,Y1,Td, Ya
4 Increase mass 2 T2, Y2

5 Increase mass 3 T3,Y3, T4, Y4
6 Decrease mass 1 T1,Y1,Td, Yq
7 Decrease mass 2 T2, Yo

8 Decrease mass 3 T3,Y3, Td, Yq
9 Increase spring constant between 1 and 2 T1,Y1, T2, Y2
10  Increase spring constant between 2 and 3 T2, Y2, T3, Y3
11 Constrain movement of 1 to vertical only 1

12 Constrain movement of 1 to horizontal only

13 Constrain movement of 2 to vertical only To

14 Constrain movement of 2 to horizontal only 1y,

15  Constrain movement of 3 to vertical only T3

16  Constrain movement of 3 to horizontal only y3

17 Constrain movement of 4 to vertical only Ty

18  Constrain movement of 4 to horizontal only  y4

Image In the image experiment, the encoders and decoders are parameterised as convolutional and
deconvolutional networks from (Ha & Schmidhuber} 2018). In the RSSM models, the transition models
are parameterised as feedforward MLPs with two hidden layers of 300 hidden units. The recurrent module
is a GRU with 300 hidden units. In VCD, to compensate for the fact each dimension in the latent space
has a separate model, the number of hidden units in the GRU and MLP are reduced to 32 to avoid
over-parameterisation. We found that initialising the encoders and decoders by pretraining them as a
variational autoencoder helped with training stability for both RSSM and VCD.

In both experiments, the training objective is maximised using the ADAM optimiser (Kingma & Bay
2014) with learning rate 10~ for mixed-state, and 10~ for images. In both environments, we clip the log
variance to —3, with a batch size of two trajectories from each of six environments with 7" = 50. In VCD,
the hyperparameters Ag, Az are both set to 0.01. All models are trained on a single Nvidia Tesla V100
GPU.

C Experiment Detail

Interventions The ground truth states of the multi-body dynamics environment is the z and y coordinates
of each particle. The full list of possible interventions on the environment is provided in Table [3] Note that
the forces between particle 1, 3 and 4 are proportional to their masses. Hence intervening on the mass of
particle 1 and 3 also affect the dynamics of particle 4. In the experiments, all models are trained in the
undisturbed environment and intervened environments 1, 5, 11, 14, 17.

In the mixed-state experiment, the observation function is a mixing matrix where each entry is drawn from
a unit Gaussian distribution. In the image experiment, the observation is given by rendering the system to
a 128 x 128 x 3 image. In both experiments, the models are trained on a training set of 2000 trajectories
from each of the six environments and evaluated on a validation set of 400 unseen trajectories.
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time

Ground Truth

VCD

RSSM

Figure 7: Sample rollouts (without observations) from an intervened environment. VCD successfully captures
the constraint on the yellow particle (vertical movement only) over a long time horizon. The frames are
sampled 5 timesteps apart from each other.
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Figure 8: The average magnitude of the derivative of the ground-truth states x; w.r.t. the learnt latent states
zj. VCD is able to learn a latent representation where each dimension captures information about one state
only, i.e. only one state variable changes when we perturb the latent representation along one dimension. On
the other hand, the RSSM latent space encodes state information in a more entangled manner, i.e. multiple
ground-truth states are affected when the latent representation is perturbed in one dimension.

D Qualitative Exploration for Learnt Causal Structure

D.1 Rollout prediction

Section [5] shows the rollout accuracy of the baselines and VCD. Here we demonstrate qualitatively that
VCD is able to capture environment-specific behaviours that RSSM cannot learn due to maximal parameter
sharing. Figure[7] shows sample rollouts in the image space from RSSM and VCD in intervened environment
11, i.e. the yellow particle is constrained horizontally and only moves vertically. The yellow particle in the
VCD rollout stays along a vertical line whereas RSSM fails to capture this environment-specific constraint.

D.2 Representation quality

Mixed-state Since the observation mixing function is linear and invertable in the mixed-state environment,
we can directly access the level of disentanglement of the latent space with respect to the ground-truth state
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Figure 9: The R? of a linear regression between the ground-truth states and the learnt latent variables.
This shows a similar pattern as the mixed-state experiments where the VCD representation in general only
capture information about one ground-truth state.
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Figure 10: The learnt causal graphs for the mixed-state and image experiments, obtained by binarising the
learnt edge probabilities such that a blue square at (¢, 7) implies o(c;;) > 0.5, i.e. 4 is a causal parent of j.

of the environment, i.e. the x and y coordinate of the particles. Fig. [§] shows the average magnitude of
the entries of the Jacobian matrix between the ground-truth state and the learnt latent state. Each entry
measures the changes in each ground-truth state variable when the latent representation is perturbed along
each dimension. By using the discovery of causal transition models as an inductive bias, VCD is able to
learn a disentangled representation where each ground-truth state is captured by only one latent dimension.
In contrast, RSSM learns a representation that is not sparse.

Image The quality of the learnt representation is discussed in Section Here we show reconstruction
samples along all dimensions of the latent space in the RSSM and VCD representation. Note that since
both encoders are initialised from the same pretrained VAE, the difference in the latent space arise because
of the causal discovery objective in VCD. Fig. [13| shows the changes in the reconstruction when the RSSM
representation is perturbed in each dimension of the latent space. Fig. [[2] shows the same for VCD. As
discussed in the main text, VCD learns a awxis-aligned representation that affords a sparse causal graph.
For example, dimension 1 and 3 captures the y and x coordinates of the green particle respectively. In
contrast, RSSM learns a representation that is not axis-aligned. Fig. |§| plots the R? linear regression scores
between the learnt latent variables and the ground-truth variables, showing that the VCD representation
can in general disentangle individual states, as indicated by the more salient squares.
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Figure 11: The learnt intervention targets for the mixed-state and image experiments, obtained by binarising

the learnt probabilities such that a blue square at (k,4) implies o(S;) > 0.5, i.e. i is an intervention target
in environment k.

D.3 Learnt causal graphs and intervention targets

In this subsection, we explore the quality of the learnt causal graph and intervention targets. Fig. [I0]shows
the learnt causal graphs for the mixed-state and image experiments. Fig. shows the learnt intervention
targets for each environment. The sparsity of the learnt graph and targets is summarised in Table[2} VCD has
identified 42 and 73 causal edges in the mixed-state and image experiments respectively, out of 288 possible
edges. Viewed in conjunction with the prediction performance results, this shows that VCD is able to learn
a world model that is sparsely connected and affords modular parameter sharing without compromising on
prediction accuracy.

Mixed-state In the mixed-state experiments, each ground-truth state can be mapped to a latent dimension
using the average magnitude Jacobian matrix (Fig. . We use this mapping to compare the learnt causal
graph with the ground truth causal structure of the environment and report the number of correctly identified
edges. Table [2] summarises the quality of the learnt graph. VCD is able to identify a majority of the correct
causal dependencies and all of the intervention targets. Upon further inspection of the learnt causal graph,
we find that all of the seven missed edges correspond to the 1/]|6x||? terms that scale the electrostatic-like
forces. We hypothesise that the model cannot capture these dependencies as they are not as significant as
the other forces.

Image In the image space, a similar comparison is made using the R? scores. Each ground-truth state
is mapped to a latent dimension by choosing the dimension with the highest R? score. This leaves unused
latent states, which are ignored in the analysis provided in Table 2] We also qualitatively explore the learnt
causal relationships. Focusing on dimension 3, for example, which encodes the x coordinate of the green
particle, the ground-truth causal parents of this variable is the x coordinates of the yellow and the blue
particles. In the learnt causal graph, on column three, the learnt causal parents are dimensions 3, 6, 8, 14
and 15. The visualisation of the latent space (Fig. suggests that dimensions 6 and 8 captures the z coor-
dinates of the yellow and blue particles respectively, meaning that VCD has learnt the correct causal parents.

A similar analysis can be carried out on the intervention targets. Focusing on intervened environ-
ment 0, for example, the learnt intervention targets are dimension 1, 2, 3, 7, 8, 11, 13, 15. The ground-truth
intervention ID is 1, i.e. the intervention targets are z,y coordinates of the yellow and green particles (see.
table 3)). By inspecting the VCD latent space (Fig. , dimensions 1 and 3 encodes the position of the
green particle and dimensions 7, 8 and 11 encodes the position of the yellow particle. This shows that VCD
is able to identify the changes in the environments.

In summary, while VCD identifies some false positive edges, it is able to capture the causal parents
and the intervention targets in each environment.
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Figure 12: Visualisation of the learnt latent space in VCD.
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Figure 13: Visualisation of the learnt latent space in RSSM.
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This shows a consistent result as the main text, where VCD outperforms the baselines.

E Further Experiments

This section provides extra adaptation experiment results similar to Fig. [f] in the main text, where the
models adapt to intervention number 12 (see table . We present experiment results for adaptation to
different types of interventions (intervention numbers 4, 9, 13). Fig and show the adaptation plots.
The results exhibit a consistent pattern where VCD significantly outperforms the baselines in the low data

regime by identifying sparse mechanism changes.

F Non-pixel-based error

In the image experiments, while pixel error is indicative of model performance in the short term, it provides
limited clarity in long term predictions as two non-overlapping balls leads to the same pixel error regardless
of their distance. In this section, we present an alternative latent space distance-based evaluation metric, Hit
at 5 (H@5). This metric is defined by the proportion of episodes where the predicted latent representation
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VCD with full interventional training. (b) Learnt causal graph.

Figure 19: Training VCD without interventions results in a model that shows some causal structure. Com-
pared to the VCD with full interventional training, the adaptation performance of the model is slightly
degraded, but still significantly better than the RSSM baseline.

is in the top-5 nearest neighbour set of the encoded ground-truth image. A H@5 score of 1 means all
predicted latent states lie within a close distance to the ground-truth representation. Fig [17] and |18| shows
the prediction errors and the adaptation plots respectively. These are consistent with the results shown in
the main text, where VCD outperforms the baselines in prediction accuracy as well as adaptation speed.

G Importance of Interventional Training

One of our hypothesis is that explicitly training the model to exhibit minimal changed across multiple
interventional environments aids causal discovery and hence improves adaptation efficiency. Fig. [19| presents
results where VCD is trained without interventions. It can be seen that the model is still able to learn causal
structures, albeit less sparse compared to the full model. The adaptation performance is slightly worse
than the full model but still much better than the baseline. This corroborates our claim that interventional
training can improve structure learning and adaptation efficiency.
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