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Abstract

Using large language models (LLMs) to
solve problems in professional fields (e.g.,
medicine) is emerging as a research hotspot,
requiring LL.Ms to master sufficient domain-
specific factual knowledge. Recently, several
LLMs achieved notable performance on mul-
tiple professional-field evaluation benchmarks.
However, current benchmarks generally lever-
age common and fixed question formulations,
allowing LLMs to provide correct answers
based on surface-level patterns in questions
without mastering the underlying knowledge.
In this paper, we focus on this problem. We
propose a general truth-preserving evaluation
framework (TPEval) to precisely probe LLMs’
mastery of factual knowledge in professional
fields through distinct representations of the
same knowledge. Specifically, for each piece of
knowledge, we convert its original expression
into multiple truth-preserving statements with
logical transformations, presenting the knowl-
edge in diverse ways. By leveraging these state-
ments, the proposed framework can more pre-
cisely estimate LLMs’ mastery of the specified
knowledge. Given the wealth of factual knowl-
edge in medicine, we validate the effectiveness
of our framework in the medical domain. We
curate 6,000+ clinical facts and generate eight
statements for each fact using the proposed
method, evaluating the mastery of LLMs. Ex-
perimental results indicate a notable decline
in LLMs’ performance as the number of state-
ments per fact increases, suggesting insufficient
knowledge mastery of LLMs. Our method can
serve as an effective solution for probing LLMs’
knowledge mastery in professional fields.

1 Introduction

Recent years have witnessed the rapid advance-
ment of large language models (LLMs), which
have achieved considerable performance in vari-
ous downstream applications (Brown et al., 2020;
Ouyang et al., 2022; Touvron et al., 2023; OpenAl,
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Figure 1: An example of GPT-3.5-turbo verifying two
contradictory medical factual statements.

2023; Madani et al., 2023; Boiko et al., 2023) and
exhibited potential in several professional fields
(e.g., medicine, finance, law). Solving problems in
professional fields typically requires a comprehen-
sive and in-depth mastery of the extensive factual
knowledge within the specific domain. Recently,
several studies (Petroni et al., 2019; Singh et al.,
2023; Nori et al., 2023b; Wu et al., 2023) have re-
ported that some LLMs (e.g., GPT-3.5-turbo) are
capable of encoding domain-specific knowledge
and largely surpass previous state-of-the-art models
across various benchmark datasets within profes-
sional fields. Despite the considerable performance
on existing evaluation benchmarks, it has also been
observed that these LLMs are not practically ap-
plicable in real-world scenarios (Thirunavukarasu
et al., 2023; Wornow et al., 2023; Li et al., 2023b),
resulting in a gap between the evaluation and appli-
cation. This paper aims to narrow this gap by more
accurately evaluating current LLMSs’ proficiency in
mastering domain-specific knowledge.

Several evaluation benchmark datasets have been
proposed to evaluate LLMs’ knowledge mastery
in professional fields. Most of existing bench-
mark datasets (Hendrycks et al., 2020; Chen et al.,
2021, 2022; Jin et al., 2021; Pal et al., 2022; Ben
Abacha et al., 2017) leverage QA questions to eval-
uvate LLMs’ ability to answer questions using do-
main knowledge, while others also utilize tradi-
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Figure 2: Framework of the proposed truth-preserving evaluation approach (TPEval) that probes LLMs’ mastery of
factual knowledge using multiple truth-preserving statements describing the knowledge in diverse ways.

tional NLP tasks (e.g., NER, sentiment analysis)
(Zhang et al., 2022; Maia et al., 2018; Alvarado
et al., 2015). However, these benchmark datasets
typically evaluate LLMs’ mastery of each fact with
a fixed question formulation, which LLMs may
have seen in pre-training. As a result, LLMs may
directly derive answers based on surface-level
patterns in questions without mastering the un-
derlying factual knowledge. This issue is also
known as data contamination (Sainz et al., 2023;
Zhou et al., 2023). Figure 1 illustrates an example:
GPT-3.5-turbo successfully verifies a medical fac-
tual statement but fails to check its negated version,
suggesting the insufficiency of evaluating LLMs
with uniform question formulations.

If an LLLM masters a fact, it should understand
various expressions of that fact. Motivated by this,
we propose in this paper a novel truth-preserving
evaluation approach (TPEval) to precisely probe
LLMs’ mastery of factual knowledge in profes-
sional fields. Figure 2 presents the framework of
our proposed method. Specifically, for each piece
of knowledge, we transform it into a seed logical
expression and deduce a series of expressions based
on this seed expression. The truth-preserving na-
ture of deductive reasoning guarantees the correct-
ness of the generated expressions. Finally, all the
expressions are transformed back into statements,
where LLMs are asked to determine the truthful-
ness of these statements. Compared to existing
benchmarks, the proposed method evaluates the
same knowledge through diverse expressions,
thereby reducing the influence of LLMs in mem-
orizing superficial patterns and leading to more
accurate evaluation outcomes.

Our proposed method transcends specific do-

mains and is adaptable across diverse professional
fields. Given the wealth of factual knowledge in
the medical domain, we validate the effectiveness
of our proposed method within this domain. Specif-
ically, we select >6,000 pieces of clinical factual
knowledge and generate eight statements for each
of them employing the proposed method. Utiliz-
ing the generated statements, we evaluate a total
of 14 LLMs, some of which (e.g., Gemini-pro)
have achieved outstanding performance on exist-
ing medical benchmarks. Experimental results
demonstrate that, though several LLMs perform
well when evaluated with only one statement for
each piece of knowledge, their performance sharply
declines with the increasing number of statements.
The results indicate that current LLMs have not
mastered medical knowledge to the extent reflected
by existing benchmarks. Moreover, we find that
current LL.Ms generally perform worse when deal-
ing with negative statements, suggesting they only
have a surface-level mastery of medical knowledge.
Our contributions are summarized as follows:

* We introduce a novel truth-preserving evalua-
tion framework (TPEval) to evaluate LLMs’
mastery of factual knowledge within profes-
sional domains. By evaluating LL.Ms with
a series of truth-preserving statements, our
method mitigates the impact caused by mem-
orizing shallow cues and data contamination.

* Applying the proposed framework, we take
the medical domain as an example and evalu-
ate the mastery of LLMs on over 6,000 pieces
of clinical medical knowledge.

* Furthermore, we compare LLMs’ perfor-
mance on different groups of statements along



three dimensions (knowledge type, statement
polarity, and expression form), shedding light
on developing domain-specific LLMs.

2 Related Work

LLM:s in Professional Fields Recently, several
famous LLMs, such as GPT-4, are reported to
have achieved considerable performance on evalua-
tion benchmarks across various professional fields.
For example, in the medical domain, well-known
LLMs Gemini-pro, Flan-PalLM, and GPT-4 achieve
accuracies of 67.0, 67.6, and 90.2 on a medical
exam benchmark MedQA (Pal and Sankarasubbu,
2024; Singhal et al., 2023; Nori et al., 2023b),
largely surpassing previous SOTA performance
(Liévin et al., 2023). In the financial domain, GPT-
4 achieves notable performance on two financial
QA datasets FinQA (Chen et al., 2021) and Con-
vFinQA (Chen et al., 2022) by 78.0 and 76.5, re-
spectively (Li et al., 2023a), outperforming SOTA
models by around ten percents. However, sev-
eral studies (Thirunavukarasu et al., 2023; Wornow
et al., 2023; Li et al., 2023b) demonstrate that these
LLMs are not yet applicable in real-world scenarios.
Therefore, we aim to study in this paper the causes
of the gap between LLMs’ benchmark performance
and their insufficient practical effectiveness.

Evaluation Benchmarks for LLMs Various
evaluation benchmarks have been developed in
recent years to examine LLMs’ mastery and ap-
plication of domain-specific knowledge. Current
evaluation benchmarks can be categorized into two
types: (1) QA-based benchmarks that assess LLMs
with multiple-choice questions, such as MMLU
(Hendrycks et al., 2020), FinQA (Chen et al.,
2021), ConvFinQA (Chen et al., 2022), MedQA
(Jin et al., 2021), MedMCQA (Pal et al., 2022), and
LiveQA (Ben Abacha et al., 2017); (2) benchmarks
that combine traditional NLP tasks with domain-
specific corpora, such as CBLUE (Zhang et al.,
2022), FiQA (Maia et al., 2018), and FIN (Al-
varado et al., 2015). However, these benchmarks
test LLMs’ knowledge mastery with common ques-
tions, allowing LLMs to answer solely based on
surface-level patterns. This paper tackles this is-
sue by introducing a truth-preserving evaluation
method, which generates multiple statements de-
scribing the same fact in various forms.

3 Truth-preserving Evaluation Method
3.1 Principle of the Method

In this section, we introduce the principle of
our proposed truth-preserving evaluation approach
(TPEval), which systematically probes LLMs’ mas-
tery of domain-specific factual knowledge based
on truth-preserving statement generation. We de-
note the language-form expression of a piece of
factual knowledge as S. The existing evaluation
methods generally examine whether an LLM M
has mastered the fact as follows:

mg = fs(M) (1

where fg refers to the evaluation question gener-
ated based on S, and mg € {0,1} denotes the
evaluation result: mg = 1 when M answers the
question correctly, otherwise mg = 0. In contrast,
the proposed TPEval method evaluate M by gener-
ating K truth-preserving statements {S;}/ | based
on the same piece of factual knowledge:

p = g(S) (2)
[ql) q2, 7qK] = Deduce(p) (3)
Si=g Hw)1<i<K )

mgs = [fS1 (M)af82(M)> o 7fSK(M>] (5)

where g denotes a mapping that projects the orig-
inal statement S into the associated logical form
p (seed expression), and ¢~ is its inverse oper-
ation. Deduce refers to the deductive reasoning
process, and {qi}fil are truth-preserving logical
expressions deduced from the seed expression p.
Compared with the former method, the proposed
method mitigates the impact of the model memo-
rizing specific patterns in the original expression,
where the properties of deductive reasoning guar-
antee the validity of generated questions.

3.2 Truth-preserving Evaluation Framework

Built on the truth-preserving principle, we design
a novel evaluation framework to evaluate LLMs’
mastery of factual knowledge in professional fields
more precisely.

Statement Generation We primarily consider
factual knowledge that can be expressed by a triplet:
(A, R,B), where A and B are entities, and R is
the relation between them. Such type of factual
knowledge is usually expressed as “A is/has the
[attribute/relation] of/with B" in the language form
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Figure 3: An overview of the truth-preserving logical transformation module in the proposed TPEval framework.

(S). The logical form of this expression is formu-
lated as p = R(A,B), where R(A,B) is a pred-
icate that denotes “A has the relation R with B".
For example, Drug_of (A, B) presents a medical
fact “A is the therapeutic medication of disease B."

We leverage deductive reasoning to transform
the seed expression p into multiple truth-preserving
expressions. Figure 3 depicts the whole trans-
formation process. Specifically, we combine p
with each piece of commonsense knowledge c;
to obtain a conclusion g; based on syllogism. The
commonsense knowledge encompasses the prin-
ciples and rules in the specific domain, serving
as the foundation for solving problems in this
domain. In our framework, we focus on a type
of commonsense knowledge represented as ¢; =
VXVY (R(X,Y) = Qi(X,Y)). To illustrate, con-
sider a medical commonsense knowledge instance:
"If a drug is a therapeutic drug of a disease, then
the drug can be used to treat a person who suffers
from the disease." Here, the phrases "a drug ... for
a disease" and "the drug ... from the disease" can
be denoted as R(X,Y) and Q;(X,Y), respectively.
Combining the factual knowledge p with each c;,
we have:

VXYY (R(X,Y) = Qi(X,Y))

R(A, B)

(ci)
(p)
(Qi)

It is worth noting that if M incorrectly predicts
the truth value of Q;(X,Y)), it indicates that the
LLM either lacks the corresponding factual knowl-
edge or commonsense knowledge. In our frame-
work, we choose commonsense knowledge that
is clear, common, and simple as much as pos-
sible to ensure that the generated expressions
are easy to understand. We generate K'/2 expres-
sions through this process and also create another
K /2 expressions based on the double negation rule:
divx/2 = —(=qi),1 <4 < K/2. This process

) |

—R(A’,B) ]

E Statement: A has a relation Q with B Statement: A’ has a relation Q with B
|| Label: True Label: False H

Figure 4: A comparison between the statement genera-
tion procedures based on positive and negative triplets.

yields a total of K truth-preserving expressions.

Subsequently, each logical expression q; is trans-
formed into a statement S; along with a label
l; € {T,F}. For q; where i < K /2, we trans-
form it using the predicate (); and set I; as the
true value of p. For q;, g /o (double negation), it is
transformed using the negated predicate —();, with
l; set to the opposite value of p. It’s worth noting
that S; | i/o can be derived from S; by incorporat-
ing negative words (e.g., “not"). These statements
are applied to evaluate M’s mastery of the same
factual knowledge.

Generation from Negative Triplets The state-
ment generation method above is designed to gener-
ate statements based on positive knowledge triplets.
As a result, p always holds in this scenario, caus-
ing statements generated by positive predicates to
always be true, while those generated by negative
predicates are consistently false. Therefore, gener-
ating statements exclusively from positive triplets
could introduce bias, as LLMs may predict out-
comes solely based on the presence of negation
cues. Moreover, recognizing the absence of certain
relations between entities is crucial for LLMs (e.g.,
a drug cannot be used to treat a specific disease).
Therefore, we also generate statements from nega-



tive triplets, where these statements share the same
formats as those generated from the corresponding
positive triplets but have opposite labels.

Figure 4 compares the generation procedure
based on positive triplets with negative ones.
Specifically, for each p = R(A,B), we sample
an A’ that satisfies ~R(A’, B). Then, we treat =R
as a new predicate and employ the same method
to generate truth-preserving statements. To ensure
consistency in the formats of the generated state-
ments with those from positive triplets, we only
choose commonsense knowledge where the inverse
proposition (VXVY (-R(X,Y) = —-Qi(X,Y)))
also holds. Consequently, for every ¢; = Q;(A, B),
we have ¢, = —Q;(A’,B) holding true as well.
Thus, S can be derived by replacing A with A’
in S;, and the corresponding label is exactly oppo-
site to the original label: [, = —I;. By generating
statements from both positive and negative triplets,
we can effectively prevent LLMs from verifying
statements solely based on surface-level patterns
and guarantee the completeness of the proposed
evaluation framework.

LLM Evaluation The proposed truth-preserving
evaluation principle does not restrict the types of
evaluation questions. In our framework, we eval-
uate LL.Ms with statement verification questions,
asking LLMs to determine whether the given state-
ment S; is true or false:

fsi(M) = T(M(Sy) = i), 1 <i < K (6)

Where M(S;) € {T,F} denotes the LLM’s predic-
tion of S;’s truth value, 1(-) represents the charac-
teristic function that equals 1 when the enclosed
expression is true, and 0 otherwise.

We measure M’s performance on a dataset
that includes N pieces of knowledge by two
modes: multi-statement average evaluation and
multi-statement joint evaluation. These two modes
calculate accuracies in different granularities:

N K
Qavg = %%ZZfS;(M) (7

i=1 j=1

N K
o = v 3 [ fis (M) ®

i=1 j=1

Here, S; denotes the j* statement derived from the
it" piece of knowledge. The former calculates the
accuracy of M across all statements. In contrast,
the latter calculates the accuracy across knowledge,
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Figure 5: The knowledge structure of the proposed
disease-centric medical knowledge base DiseK.

considering a piece of knowledge being correctly
answered if and only if all the related statements
are judged correctly.

4 Experiments

4.1 Experiment Setup

Dataset Generation We select the medical do-
main to validate the effectiveness of the proposed
method because it encompasses a wide range of fac-
tual knowledge. Moreover, several existing LLMs
have been reported to achieve impressive perfor-
mance on various medical benchmarks (Nori et al.,
2023a; Singhal et al., 2023; Nori et al., 2023b).
One of the primary goals in the medical domain is
to diagnose and treat diseases. Motivated by this,
we construct a large-scale disease-centric medi-
cal knowledge base, DiseK, covering 1,000 high-
frequency diseases across four crucial knowledge
aspects closely related to disease diagnosis and
treatment. LL.Ms must master this fundamental
medical knowledge to assist doctors in diagnos-
ing and treating corresponding diseases (Wu et al.,
2018; Liang et al., 2019). Figure 5 depicts the
knowledge structure of the proposed knowledge
base. Detailed statistics and annotation details of
DiseK are provided in Appendix A.

DiseK contains more than 24k pieces of factual
knowledge, each of them can be represented as a
triplet (A, R, D), denoting "A is the R of disease
D." Here, R corresponds to one of four knowl-
edge aspects: symptoms, affected sites, therapeutic
drugs, and surgical procedures, and A is an entity
of R. To reduce computational cost in evaluation,
we select a positive triplet (A, R,D) and a neg-
ative triplet (A’, =R, D) for each pair of (R, D),
resulting in 3,167 positive triplets and 3,167 neg-
ative triplets'. Subsequently, we generate a truth-

'Some diseases may not have certain aspects of knowledge,



preserving evaluation dataset TPDiseK using the
proposed method, where each fact is evaluated by
K = § statements. We initially transform a piece
of knowledge into four truth-preserving statements
based on commonsense knowledge. Two of the
generated statements are derived through both triv-
ial reasoning (S1) and reverse reasoning (Ss), ex-
hibiting minimal deviation from the original repre-
sentation. The remaining two statements (S5 and
S4) are generated by applying the factual knowl-
edge to specific medical cases, thereby evaluating
LLMs’ capability of handling specific problems
with the knowledge acquired. Another four state-
ments with opposite labels (S5 to Sg) are generated
by negating these four statements. The statement
templates are meticulously designed to ensure
they are easily understandable and faithfully
express the meaning of corresponding logical
expressions. To summarize, TPDiseK consists of
6,334 knowledge triplets (positive and negative),
each comprising 8 statements for evaluation. More
details of TPDiseK are provided in Appendix B.

Evaluation Setting We primarily assess LLMs
with the five-shot in-context learning strategy
(Brown et al., 2020), where five demonstrative
question-answer pairs are presented before the test
question, guiding LLMs to produce answers consis-
tent with the provided examples. We also examined
the zero-shot performance of LLMs and found that
the trend is similar to that observed in the five-shot
setting. Therefore, we provide the zero-shot results
for complement in Appendix D. We report the accu-
racies measured by the average and joint evaluation
modes introduced in Sec 3.2. Note that the joint
accuracy can be regarded as the proportion of
factual knowledge truly mastered by LLMs. We
present more details in Appendix C.

Evaluated Models In our study, we evaluate
a total of 14 well-known general and medical-
domain-specific LLMs on the proposed TPDiseK
dataset: (1) general LLMs: ChatGLM (6B) (Du
et al., 2022), Bloomz-mt (7.1B) (Muennighoff
et al., 2023), Llama2 (7B,70B) (Touvron et al.,
2023), Vicuna (7B,13B) (Zheng et al., 2023), GPT-
3.5-turbo (Ouyang et al., 2022), ERNIE-Bot-turbo
(Sun et al., 2021) and Gemini-pro (Team et al.,
2023); (2) medical-domain-specific LLMs: Pulse
(7B) (Zhang et al., 2023), ClinicalCamel (70B)
(Toma et al., 2023), Meditron (7B,70B) (Chen et al.,

such as therapeutic medication or surgeries.

Models PKiS:E TFI?LS;)K
Random 50.0 50.0
ChatGLM-6B 52.6 48.7
Llama2-7B 52.8 51.7
Pulse-7B 54.9 514
Bloomz-mt-7.1B 52.3 48.8
Vicuna-7B 59.0 52.0
Meditron-7B 50.0 50.0
Vicuna-13B 61.2 54.0
Llama2-70B 65.9 56.5
ClinicalCamel-70B 74.4 64.4
Meditron-70B 70.3 57.0
Med42-70B 71.7 64.1
ERNIE-Bot-turbo 69.8 56.7
GPT-3.5-turbo 73.5 60.5
Gemini-pro 78.0 73.1

Table 1: Comparison of LLMs’ average accuracy on the
original medical evaluation dataset (DiseK) with that
on the truth-preserving dataset (TPDiseK) generated
by the proposed framework TPEval. K: the number of
evaluated statements per knowledge triplet.

2023) and Med42 (70B) (Christophe et al., 2023).
We have not assess LLMs that are either too expen-
sive (e.g., GPT-4 (OpenAl, 2023)) or not publicly
available (e.g., MedPaLM (Singhal et al., 2023)).

4.2 Results

4.2.1 Overall Performance

We initially compare the performance of LLMs
on the original dataset DiseK with that on the
truth-preserving dataset TPDiseK. LLMs’ perfor-
mance on DiseK is measured by their performance
on the first type of statements (S;), which ex-
presses the knowledge in a trivial way (A is the
R of B). The experimental results are provided
in Table 1 and measured by average accuracy.
We observe that LLMs <13B generally perform
poorly on both datasets, while several 70B LLMs
and commercial LLMs (Gemini-pro, ERNIE-Bot-
turbo, GPT-3.5-turbo) achieve notable performance
on the trivial representation of DiseK. However,
their performance significantly declines when
using the proposed truth-preserving evaluation
method. LLMs like GPT-3.5-turbo, Meditron-70B,
and ClinicalCamel-70B exhibit a performance de-
cline of over 10% on TPDiseK compared to their
performance on DiseK. Even the best-performing
Gemini-pro demonstrates a performance gap of
4.9% between DiseK and TPDiseK.
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Subsequently, we study the performance of
LLMs by gradually increasing the number of truth-
preserving statements per knowledge triplet from
1 (DiseK) to 8. Statements are gradually added to
the evaluation in the order of Sy to Sg defined in
Sec 4.1. The experimental results are presented in
Figure 6, showing accuracies for both joint evalua-
tion (proportion of triplets where all related state-
ments are correctly predicted) and average evalua-
tion. The experimental results indicate a significant
decrease in the joint accuracy of LLMs as the num-
ber of truth-preserving statements increases, declin-
ing much faster than their average accuracy. Sur-
prisingly, some famous LLMs like GPT-3.5-turbo,
ERNIE-Bot-turbo, and Llama2-70B even achieve
comparable joint accuracies with LLMs <13B (dot-
ted lines) when evaluated by all the statements.
The results suggest that while these LLMs may
memorize more surface-level patterns of knowl-
edge expressions than smaller models, they do
not truly master a broader range of knowledge.
Gemini-pro and Med42-70B significantly outper-
form other LLMs regarding joint accuracy, suggest-
ing a relatively comprehensive mastery of medical
knowledge than others.

4.2.2 Performance across Statement Types

To further investigate current LLMs’ performance
on handling different types of statements, we cat-
egorize statements based on three criteria: (1) the
type of knowledge triplets (positive/negative); (2)
statement polarity (positive/negative); (3) the ex-

pression forms of statements determined by pred-
icates Q;,1 < i < 4. We only present the top-5
performing LL.Ms here for convenience and pro-
vide the results of other LLMs in Appendix D. The
performance is measured by average accuracy.

Knowledge Type Figure 7a presents LLMs’ per-
formance on statements generated from different
types of knowledge triplets. We observe that LLMs
exhibit varying degrees of proficiency in differ-
ent types of factual knowledge (positive/negative).
Gemini-pro and Med42-70B perform significantly
better on negative triplets, indicating that they are
more accurate in determining the absence of a rela-
tionship between two medical entities. It is worth
noting that Med42 performs slightly worse than
random guessing on positive triplets, suggesting
a tendency to indicate no given relationship be-
tween two medical entities. In contrast, the other
three LLMs achieve more balanced performance
between different triplet types.

Statement Polarity Figure 7b examines how
LLMs handle statements of different polarities:
positive (S; to S4) and negative (S5 to Sg). The
results show that current LL.Ms generally per-
form significantly worse on negative statements.
Some LLMs’ performance (Meditron-70B, GPT-
3.5-turbo) even approaches or is inferior to random
guessing. Gemini-pro significantly outperforms
others on negative statements, achieving the most
balanced performance on the two polarities.
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Expression Form We further investigate LLMs’
performance on various expression forms in Figure
7c, where each (); denotes a specific expression
form. Generally, LLMs perform notably worse
on the last expression form than other forms. It
may be because the expression form combines fac-
tual knowledge with specific cases and involves
a contrapositive transform from the third expres-
sion. Therefore, this expression form occurs less
frequently in existing medical corpora, making
it less likely to be predicted by surface-level cues.
Gemini-pro is the only LLM that achieves over 60%
accuracy on every single expression form, suggest-
ing its comprehensive mastery of medical factual
knowledge compared to other LLMs.

5 Discussion

Effectiveness of Truth-preserving Evaluation
The experimental results reveal that the LLMs’
mastery of medical knowledge, as assessed by
the proposed truth-preserving method, is notably
lower than that evaluated by the traditional methods.
Moreover, their performance declines sharply as
the number of statements per knowledge triplet in-
creases. These findings suggest that current LLMs
generate responses by memorizing surface-level
patterns of knowledge expressions without gen-
uinely mastering the underlying knowledge. Fur-
thermore, the examination across various statement
types indicates that these LLMs struggle to manip-
ulate factual knowledge through basic transforma-
tions (e.g., negation), instead relying on specific
forms of knowledge presentation. Some LLMs also
prefer to memorize specific types of knowledge.
All these findings demonstrate that the proposed
truth-preserving evaluation method can serve as an
effective solution to evaluate LLMs’ mastery of

factual knowledge in professional fields.

Insights into Developing Domain-specific LLMs
The experimental results demonstrate that current
LLMs lack an in-depth mastery of medical factual
knowledge. Therefore, training LLMs to genuinely
acquire domain knowledge is crucial rather than
merely memorizing surface-level patterns in cor-
responding expressions. Expanding the training
data by expressing factual knowledge in diverse
ways may potentially enhance LL.Ms’ knowl-
edge mastery in professional fields.

6 Conclusion

Understanding LL.Ms’ mastery of domain knowl-
edge is crucial for their application in real-world
scenarios. In this paper, we introduce a novel truth-
preserving evaluation method (TPEval) to systemat-
ically evaluate LLMs’ proficiency in factual knowl-
edge of professional fields. The proposed method
evaluates the same knowledge using multiple state-
ments that present it in diverse ways, leading to
a more precise estimation of LLMs’ knowledge
mastery. We investigate the proposed method in
the medical domain based on >6,000 knowledge
triplets from a medical knowledge base. The re-
sults reveal a significant drop in the performance
of existing LLMs when assessed using the pro-
posed TPEval method compared to traditional eval-
uation methods, suggesting that they lack an in-
depth mastery of medical factual knowledge. Our
method can serve as an effective solution for eval-
uating the knowledge mastery of LLMs in profes-
sional fields, shedding light on developing domain-
specific LLMs. In the future, we aim to refine this
method further by integrating it with more question
formats, such as question answering, and applying
it to more professional domains.



Limitations

One of the major limitation of our study is that
we only verify the effectiveness of the proposed
method in the medical field due to space constraints.
However, the principle of our method is decoupled
with specific professional fields, and the experi-
mental results in this paper is already sufficient to
demonstrate the effectiveness of our method. In
future, we will utilize the proposed method to build
more truth-preserving datasets in other professional
fields to promote related researches.

Moreover, while our study evaluated several
well-known general and medical-domain-specific
LLMs, some other notable models like GPT-4 and
MedPalLM were excluded. This was due to either
their high costs (it would require $800 to evalu-
ate GPT-4 on TPDiseK) or their unavailability for
public access (e.g., MedPaLM). We will keep eval-
uating other LLMs in future if feasible.
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A Details of DiseK

Knowledge Aspects #Uniq Avg.
#Symptoms 4,163 12.37
#Affected Sites 387 0.75
#Therapeutic Drugs 1,782 7.89
#Surgical Procedures 1,932 3.40

Table 2: Statistics of the proposed knowledge base
DiseK. #Uniq: the number of unique entities that ap-
pear in the knowledge bases. Avg: the average number
of entities associated to each disease. Note that some
diseases may affect multiple organs and do not have
specific affected sites.

We propose in this paper a large-scale disease-
centric medical knowledge base DiseK, which
involves a total of 1,000 high-frequency dieases
along with 4 knowledge aspects that are essential
to the diagnosis and treatment of diseases. The four
knowledge aspects in DiseK are listed below:

* Symptoms: Physical or mental feature that
indicates the presence of the disease.

Affected sites: Specific parts of the body that
are impacted or harmed by the disease.

Therapeutic Drugs: Pharmaceutical sub-
stances prescribed to manage, alleviate, or
cure the symptoms and effects of the disease.

Surgical Procedures: Medical procedures
that treat the disease, involving the cutting,
repairing, or removal of body parts.

The diseases in DiseK are selected by filtering
out top 1,000 most frequently occurring diseases
among approximately four million medical records
gathered from over 100 hospitals across five cities.
After that, we ask 20 medical experts to annotate
the related knowledge of these diseases from the
four aspects introduced above. To ensure the qual-
ity of annotation, we first leverage a retrieval mod-
ule to automatically retrieve the related knowledge
from medical books, literature, and the Internet.
Then the experts are asked to recheck the retrieved
content, and revise the incorrect parts. We find that
the utilized retrieve-and-check annotation frame-
work can alleviate the burden of annotators while
ensuring consistency in the annotations.

The proposed medical knowledge base is anno-
tation by 20 medical experts over a period of ap-
proximately 3 months. The medical experts are em-
ployees in our company and have obtained medical
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practitioner licenses. The data collection process is
approved by an ethics review board, and we have
obtained approval from the person in charge to use
the annotated data for research.

B Details of TPDiseK

Triplet Type Commonsense Expression

Triv. RX,Y) = R(X,Y)

Pos  Rev. R(X,Y) = R(Y,X)
Spec. R(X,Y) — (Has(Y) — P(Y))
Contr.  R(X,Y) = (=P(Y) = —=Has(Y))
Triv. —R(X,Y) — ~R(X,Y)

Nee Rev. -R(X,Y) — -R™1(Y,X)

& Spec. —R(X,Y) = ~(Has(Y) — P(Y))

Contr. =R(X,Y) — —(=P(Y) — —Has(Y))

Table 3: The expressions of commonsense knowledge
leveraged in our experiments. All the expressions hold
for all X and all Y. Pos: positive triplets; Neg: nega-
tive triplets. R~!: The R of the disease Y include X.
Has(Y): A patient only suffers from the disease Y.

DiseK contains 24,413 disease-related knowl-
edge triplets in total. Assessing LLMs using all of
these triplets would lead to a large computational
cost. To balance the scale of evaluation and the
computation efficiency, we select a single knowl-
edge triplet (A, R, D) and a negative knowledge
triplet (A’, =R, D) for each pair of (R, D), result-
ing in a total of 6,334 knowledge triplets. Each
positive triplet can be directly expressed by the
statement “A is a R of the disease D".

Following the principle of truth-preserving eval-
uation, we choose four pieces of commonsense
knowledge for deductive reasoning: (1) Trivial rea-
soning: the generated statement is exactly the same
as the seed statement; (2) Reverse reasoning: we
reverse the original expression, resulting in “The R
of D include A"; (3) Specialization: we combine
the triplet with a specific case, such as “If a patient
only suffers from disease Y, he/she (has the symp-
tom of P(Y)/has lesions in P(Y)/P(Y) can be
used to treat the patient)."; (4) Contrapositive: we
conduct contrapositive transformation based on the
third to derive this piece of commonsense. We also
design similar deductive rules for negative triplets.

All of the commonsense knowledge used in our
framework are listed in Table 3. Based on these
pieces of commonsense knowledge and double
negation, we generate a total of 8 statements for
each triplet. Finally, the generated TPDiseK con-
tains a total of 50,672 statements. We list all the
utilized statement templates in Table 4.



Knowledge Aspect Statement ID  Statement Template

S1 A is a common symptom of B.
So The common symptoms of B include A.
S, If a patient only suffers from B, then he/she is likely to have
symptoms of A.
S, If a patient does not have the symptoms of A, then it is unlikely
Symptom that he/she only suffer from B.
Ss A is not a common symptom of B.
Se The common symptoms of B do not include A.
g If a patient only suffers from B, then he/she is unlikely to have the
7 symptoms of A.
g If a patient have the symptoms of A, then it is unlikely that he/she
8 only suffer from B.
S1 A’ is the affected site of B.
So The affected sites of B include A.
S, If a patient only suffers from B, then he/she may have lesions in
A.
If a patient does not have lesions in A, then it is unlikely that
Affected Si 54 he/she only suffers from B.
ected Site Ss A is not the affected site of B.
S The affected sites of B do not include A.
g If a patient only suffers from B, then he/she is unlikely to have
7 lessions in A.
g If a patient have lesions in A, then it is unlikely that he/she only
8 suffers from B.
S1 A is a common therapeutic drug for B.
Sa The common therapeutic drugs used to treat B include A.
S, If a patient only suffers from B, then A can be used to treat his/her
condition.
S, If A cannot be used to treat a patient’s condition, then it is unlikely
Therapeutic Drug that he/she only suffers from B.
Ss A is not a common therapeutic drug for B.
Se The common therapeutic drugs used to treat B do not include A.
S- If a patient only suffers from B, then it is unlikely that A can be
used to treat his/her condition.
g If A can be used to treat a patient’s condition, then it is unlikely
8 that he/she only suffers from B.
S1 A is a common surgical procedure for B.
So The common surgical procedures used to treat B include A.
S, If a patient only suffers from B, then A can be used to treat his/her
condition.
g If A cannot be used to treat a patient’s condition, then it is unlikely
Surgical Procedure 4 that he/she only suffers from B.
Ss A is not a common surgical procedure for B.
Se The common surgical procedures used to treat B do not include A.
S- If a patient only suffers from B, then it is unlikely that A can be
used to treat his/her condition.
Sq If A can be used to treat a patient’s condition, then it is unlikely

that he/she only suffers from B.

Table 4: The statement templates we use in our evaluation framework. A: an entity from the specified knowledge
aspect that has/does not have the relation with the disease. B: the name of the given disease.
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Categories
True
False

Keywords
True, Entailed, Correct, Yes
False, Contradicted, Wrong, No

Table 5: The keywords we utilize to extract answers
from LLMSs’ responses.

C More Details of Evaluation Setting

In our implementation, we form the statement ver-
ification question based on the template: “[State-
ment], is the statement above true or false? Please
answer True or False." For the five-shot setting,
we randomly choose another five diseases, and
follow the similar method applied in constructing
TPDiseK to form demonstrative examples. It is
worth noting that we always leverage example state-
ments in the same format of the test statement to
achieve the best performance. For the zero-shot set-
ting, we directly examine LLMs with the generated
verification question. Complex prompting strate-
gies such as chain-of-thought are not applied in
our study, as the evaluation statements are crafted
to be straightforward and easily understandable,
allowing for verification without the need for com-
plex logical reasoning. In the inference process,
we use greedy search for most of LLMs. However,
some commercial LLMs (e.g, GPT-3.5-turbo) do
not support greedy search, and we use their default
generation setting to make a relative fair compari-
son across LLMs.

We recognize the answer from models’ re-
sponse based on keyword recognition since the
words/phrases used to express True and False are
limited. We listed all of the keywords we applied
to recognize answers in Table 5.

D Complementary Experiments

D.1 Performance of all LLMs across
Statement Types

We provide the detailed performance of all LLMs
across different types of triplets, polarities, and ex-
pression forms in Figure 8, 9, and 10, respectively.
The experimental results support the conclusions
made in our paper: the evaluated LLMs generally
perform worse on the negative and contrapositive
types statements. Smaller LLMs perform signifi-
cantly worse than larger LLMs on positive triplets,
positive statements, and the first three expression
forms.
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D.2 Zero-shot Performance of LLMs

As introduced in our paper, we also study the
zero-shot performance of LLMs on the proposed
TPDiseK dataset. The experimental results are dis-
played in Figure 11, 12, 13, and 14, respectively.
The experimental results show that LLMs gener-
ally achieve lower performance under the zero-shot
setting (< 10%), and LLMs’ performance under
the zero-shot setting declines faster than that under
the five-shot setting. Some 70B LLMs (LLama2-
70B and Meditron-70B) even achieve performance
close to random guessing, indicating that they have
a poor medical knowledge manipulation perfor-
mance under the zero-shot setting. Nevertheless,
the results under the zero-shot setting exhibit the
similar trend compared to the five-shot setting,
demonstrating the correctness of our conclusions
based on the five-shot setting.
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Figure 8: Average accuracy on statements generated from different types of knowledge triplets.
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Figure 9: Average accuracy on statements with varied expression polarities. positive statements: S to S4; negative
statements: Sy to Sg.
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Figure 10: Average accuracy on statements with varied expression forms. Each expression form is determined by a
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Figure 11: Zero-shot performance of LLMs evaluated by increasing number of truth-preserving statements. Left:
joint accuracy; Right: average accuracy. Dotted lines: LLMs <13B; Solid lines: LLMs >13B.
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Figure 12: Zero-shot average accuracy on statements generated from different types of knowledge triplets.
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Figure 13: Zero-shot average accuracy on statements with varied expression polarities. positive statements: S; to
S4; negative statements: Ss to Sg.
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Figure 14: Zero-shot average accuracy on statements with varied expression forms. Each expression form is
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