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Abstract

Neuronal systems maintain stable functions despite large variability in their physiological components. Ion channel expression, in
particular, is highly variable in neurons exhibiting similar electrophysiological phenotypes, which raises questions regarding how
specific ion channel subsets reliably shape intrinsic properties of neurons. Here, we use detailed conductance-based modeling to
explore how stable neuronal function is achieved despite variability in channel composition among neurons. Using dimensionality
reduction, we uncover two principal dimensions in the channel conductance space that capture most of the variance of the observed
variability. These two dimensions correspond to two sources of variability that originate from distinct physiologically relevant
mechanisms underlying the regulation of neuronal activity, providing quantitative insights into how channel composition is linked to
the electrophysiological activity of neurons. These insights allow us to understand and design a model-independent, reliable

neuromodulation rule for variable neuronal populations.
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Significance Statement

Neuronal electrical activity is primarily regulated by a variety of transmembrane proteins known as ion channels. These channels
exhibit substantial intraindividual variability in their number but neurons nonetheless maintain their proper function under physio-
logical conditions—a concept known as degeneracy. This article is intended to deepen our understanding of how different ion chan-
nels interact to regulate neuronal function. Specifically, we use dimensionality reduction techniques and computational neuron
models to demonstrate that the distribution of ion channels arises from two distinct physiological mechanisms. Studying the inter-
action between these two mechanisms sheds light on how the expression levels of different ion channels are linked to each other and

determine neuronal activity. Such insights could significantly enhance the design of electrophysiological experiments.

Introduction

A remarkable property of nervous systems is their ability to main-
tain stable functions despite large variability and turnover of the
underlying physiological components. This observation has led
to the understanding that neuron electrophysiological properties
are shaped by the coordinated expression of potentially large sub-
sets of ion channels (1), which represent a substantial challenge in
any attempt to link ion channel properties with neuron electro-
physiological signature.

In recent decades, a combination of experimental and computa-
tional work has provided insights into the relationship between the
densities of ion channels and neuronal signaling. First, it has been
clarified that different combinations of ion channels can lead to
similar activity despite substantial variation in channel densities
(2-6), as aresult of functional overlap in channel voltage- and time-
dependent properties (1, 7). Second, it has been shown experimen-
tally that ion channel expression correlates positively in the same

neuron type, while the correlations vary among different neuron
types (8-13). It has been revealed that these positive correlations
in ion channel expression emerge from physiologically plausible
homeostatic rules (14). One could thus argue that specific correla-
tions in channel expression are an important neuronal signature.
Third, consistent neuromodulatory effects despite the large
variability of ion channel expression (also called reliable neuromo-
dulation) has been shown to often occur through a concomitant ac-
tion on several channel subtypes (8, 15-18), which highlights the
importance of understanding the mechanisms that link the density
of ion channels and neuronal signaling.

Although this body of work has deepened our understanding of
how ion channels shape neuronal activity, many important ques-
tions remain. First, although most studies have reported positive
correlations in channel gene mRNA expression, studies on corre-
lations in actual conductance values have revealed a less clear
picture. Correlations in conductance values are observed, but
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the correlation coefficient can vary and it can be either positive or
negative depending on the ion channel subtype and neuron sub-
type (19-22). In addition, correlations in both channel gene
mRNA expression and conductance values can be dependent on
activity and neuromodulation (23, 24). Given these negative corre-
lations in conductance values, the question arises of what poten-
tially complex mechanism might link channel gene mRNA and
protein expressions. Here, we attempt to answer this question
by analyzing how positive and negative conductance correlations
arise in highly degenerate parameter sets of two different
conductance-based models. We show that pairwise correlations
in channel conductance are the result of two interfering mecha-
nisms. Such interference is activity-dependent, which results in
activity-dependent correlation levels. Another unanswered ques-
tion involves the fact that, at present, our understanding of how
ion channels shape neuronal activity remains largely qualitative.
The lack of a concrete mechanistic understanding makes it ex-
tremely difficult to quantify how specific changes in ion channel
density affect neuronal output, which in turn makes the study
of reliable neuromodulation laborious. Here, we provide such a
mechanistic understanding through a dimensionality reduction
analysis of the two degenerate parameter sets. The geometry of
the principal components (PCs) found by dimensionality reduc-
tion methods is fully explained by the geometry of the sensitive di-
rections in the maximal conductance space, as revealed by using
feedback control ideas (7). This analysis permits the derivation of
a simple, physiologically plausible rule explaining how neuromo-
dulation can be achieved reliably in highly degenerate neurons.

Results

Neuronal degeneracy in conductance-based
models is associated with variable pairwise
correlations in channel conductances

We initially created variable sets of conductances leading to stable
firing patterns in two different neuron conductance-based models
(Fig. 1): a stomatogastric (STG) neuron model (25) (left) and a dopa-
minergic (DA) neuron model (adapted from (26)) (right). All simula-
tions and analyses were performed on these two different models to
avoid uncovering model-specific features, but rather to focus on
general properties. Each parameter set was created through ran-
dom sampling followed by a post-processing procedure that se-
lected models sharing specific firing pattern characteristics (4).
Each model was studied in its nominal firing pattern: burst firing
for the STG neuron model, and slow tonic spiking for the DA neuron
model (see Materials and methods). An example of each firing pat-
tern is shown at the top, right of each panel in Fig. 1A.

Figure 1A shows a scatter plot matrix of ion channel maximal
conductances for a subset of ion channel types in both models,
as well as the correlation computed for each pair. As observed
in previous experimental and computational work (1, 20), correla-
tions can vary markedly between different pairs of conductances,
from strongly positive (such as gy, and g, in STG model), to nega-
tive (such as g, and gy, in STG model), or seemingly uncorrelated.
This highlights the strong degeneracy of both conductance-based
models, despite the fact that they maintain their respective firing
activity using different types of ion channels.

To gain deeper insights into how conductances correlate to
maintain robust firing activity, we represent the pairwise correla-
tions between all conductances using correlation graphs (Fig. 1B).
Each node represents a conductance, the thickness of the edges
connecting each node represents the strength of the correlation,

and the color of each edge represents the correlation sign (red
for positive and blue for negative). These two graphs show similar
trends for the two models: correlations between ion channels are
mostly positive, but there are also negative correlations in a small
subset of conductance pairs. This is intriguing for two reasons.

First, to maintain similar firing activity, one would expect con-
ductances that are sources of currents of the same sign to correl-
ate negatively, whereas conductances that are sources of currents
of the opposite sign would correlate positively. This would allow
the global transmembrane current, hence excitability, to be main-
tained at a steady level. However, this is not what is observed in
Fig. 1B. If we take the example of §.,s in the STG model, which
is a source of inward current, it can correlate either negatively
or positively with other sources of inward currents (G, and Gy,
respectively). Likewise, outward current sources can correlate ei-
ther negatively or positively with other outward sources (i.e. Ggq
with g, and Ggg, in the STG model). The same observation can
be made for the DA neuron model.

Second, experimental studies on the correlation between ion
channel mRNA and computational models of neuronal homeostasis
have uncovered the existence and emergence of neuron-dependent,
strictly positive correlations in channel densities (1, 13, 27). A similar
trend emerges from our dataset, where the majority of correlations
are indeed positive. However, negative correlations are also ob-
served in our dataset, as well as experimental data on ion channel
conductances (20). This suggests that correlations emerging from
homeostatic rules areimportant for the maintenance of robust firing
activity, but that some other mechanisms must be at play.

A few PCs capture neuronal degeneracy but do not
single out channel functions

As pairwise correlations between conductances alone did not pro-
vide much insight into how ion channels correlate to maintain ro-
bust firing activity, we performed principal component analysis
(PCA) of both random sampling sets in an attempt to uncover low-
dimensional subspaces in the data. We observed that a limited
number of PCs, namely, four for the STG model and three for the
DA model, accounts for more than 80% of the total variances in
thedata (Fig. 2A). We chose to focus our analysis on these significant
PCs. The first PC accounted for approximately 40% of the variancein
both models. This observation is encouraging, as it shows that the
mechanisms that drive conductance joint distribution in neuron
models are low-dimensional, which is key for interpretability.

We then extracted the contribution of each conductance in each
of the PCs, with the hope of observing a pattern that would allow us
to make predictions on the biophysics behind these components
(Fig. 2B). However, the results were difficult to interpret, as a variety
of conductances contributed to the different PCs for both models.
Moreover, conductances that made substantial contributions to
the first PC in one model did not do so in the other (e.g. see the
role of gy, O gieak in the two models), which prevented the extrac-
tion of a model-independent rule from a naive analysis focusing
on the role of single conductances. Although this last observation
might seem unsurprising, as both models relate to different neu-
rons exhibiting different firing patterns from differention channels,
we still aim to find some common, general mechanisms that might
rule the degeneracy in ion channel conductances.

Dominant PC captures homogeneous scaling

of maximal conductances

As the first principal component (PC1) accounted for a large por-
tion of the variability in the data for both models (approximately
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Fig. 1. Neuronal degeneracy in conductance-based models is associated with variable pairwise correlations in channel conductances. A) Scatter plot
matrices of random sampling populations in the conductance spaces for the STG model (left) and the DA model (right), along with regression lines.
The pairs depicted here do not represent all conductances of the models and are randomly chosen toillustrate the variable correlations, expressed by the
Pearson correlation coefficient (r). All conductances are expressed in mS/cm?. The bottom left corner of each scatter plot represents the origin of the
conductance space. For the STG model, g, ranges up to 600, gy4 to 350, gy, to 0.7, and gy, to 8,000. For the DA model, g.,; ranges up to 0.1, oy t00.12, Grpe
to 0.25, and gg4 to 20. The dotted line on the voltage traces corresponds to OmV. B) Correlation graphs of all conductances of the random sampling
populations for the STG model (left) and DA model (right). A dashed (solid) line indicates a negative (positive) pairwise correlation. The thickness of the
line represents the absolute value of the correlation. Correlations below a certain threshold, corresponding to the inverse of the number of conductances
in the considered model (one-eighth and one-sixth in the STG and DA models respectively), are not shown.

40%), we further analyzed its role by creating scatter plots of con-
ductance values for a subset of four conductances that play dom-
inant roles in PC1 (Fig. 3A). Interestingly, according to these
scatter plots, all conductances that play significant roles in PC1
are strongly positively correlated with each other in both models.
This is highly reminiscent of previous observations in channel
mRNA data or the channel correlations emerging from models
of neuronal homeostasis (14, 27, 28). In particular, such positive
correlations follow a direction passing roughly through the origin.

This direction is close to the homogeneous scaling direction in
the maximal conductances. The direction of homogeneous scal-
ing corresponds to the total least squares regression direction
without intercept, i.e. to the direction connecting the origin of
the conductance space to the center of mass of the degeneracy
set. This center of mass represents the means of every type of con-
ductance across the population. While pairwise homogeneous
scaling is only evident in a subset of ion channels, this observation
extends to the entire conductance space. The alignment between
PC1 and homogeneous scaling in the full conductance space was
robustly confirmed in both the STG and the DA models, with a

notable 0.8 alignment in the former and a remarkable 0.9 align-
mentin the latter. This alignment was computed as the dot prod-
uct between the unit vectors along PC1 and homogeneous scaling
direction. Alternatively, it can be interpreted as the cosine of the
angle formed by these two directions in the high-dimensional
space of conductances.

The dominant role of homogeneous scaling of conductances in
neuronal degeneracy can be understood by its functional signifi-
cance. Such homogeneous scaling can emerge from homeostatic
models of ion channel expression, where the slope between a
pair of conductances correlates with the type of neuronal activity
(14). This slope is determined by the ratio of regulation time con-
stants. Homogeneous scaling also permits modulation of the neu-
ron response to external inputs while its intrinsic firing pattern is
maintained unaffected. Indeed, increasing all conductances by a
common factor permits an increase in the global membrane per-
meability, which decreases the responsiveness to external input
through a decrease in input resistance R;, (Fig. 3B). As indicated
by the color coding in Fig. 3A, the direction of PC1, which repre-
sents homogeneous scaling, aligns with the variability in neuron
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Fig. 2. A few PCs capture neuronal degeneracy but do not single out channel functions. A) Screen plot of PCA applied to the conductance spaces of
random sampling populations for the STG model (left) and the DA model (right). B) Absolute values of the entries of the PCs in the conductance space for

the STG model (left) and the DA model (right).

input resistance in both models. At the same time, it does not af-
fect the ratio between channel conductances, thus maintaining
firing activity. Therefore, homogeneous scaling plays a critical
role in excitability modulation and homeostasis.

Normalization of the datasets by the input
resistance reveals that the secondary PCs capture
degenerate conductance ratios

Analysis of the remaining meaningful principal components (PC2,
PC3, and PC4 in the STG model, and PC2 and PC3 in the DA model)
should shed light on the physiological origin of most of the remain-
ing variance in the data. However, these PCs have highly variable
slopes in the different conductance planes, making the analysis
less straightforward than for PC1. The effect of homogeneous scal-
ing is intertwined with the other potential origins of degeneracy in
neuron model populations, which complicates matters further.
To circumvent this problem, we removed the effect of PC1 by
normalizing the dataset by neuron input resistance, thereby elim-
inating the effect of homogeneous scaling. This was achieved
by multiplying each conductance by R;, (i.e. dividing by the
input conductance gi,). The regression lines of the normalized
dataset almost perfectly coincide with the secondary PCs of the
non-normalized dataset (Fig. 4), demonstrating that normaliza-
tion by input resistance effectively suppresses the effect of PC1.
Once the effect of homogeneous scaling is removed, the re-
maining variability corresponds to changes in conductance ratios
that do not impact neuron input resistance. Degeneracy in

conductance ratios can be quantified by leveraging the concept
of dynamic input conductances (DICs) (7), which provides a way
of linking channel conductance ratios with firing activity. In short,
it was shown that the dynamical effects of ion channel gating on
neuron activity could be captured by a few voltage-dependent
conductance curves (DIC) acting on separate timescales. For a
bursting neuron, three timescales are sufficient: a fast timescale
characterizing spike upstroke; a slow timescale characterizing
spike downstroke, neuron excitability type and rest-spike bistabil-
ity; and an ultraslow timescale characterizing burst parameters
such as period and duty cycle. The value of each DIC at the thresh-
old potential on each timescale determines firing activity, and
each parameter set leading to similar DIC values leads to similar
firing activities. We exploited this last property to understand
the variability that remains in the normalized dataset by identify-
ing directions of zero sensitivity in the maximal conductance
space, i.e. directions along which changes in maximal conductan-
ces donot affect DIC values at threshold, and hence lead to similar
spiking behavior (7).

We then verified if variability in conductance ratio leading to
similar DIC values was the dominant source of degeneracy in
the normalized dataset by computing zero-sensitivity directions
of the slow DIC in both STG and DA neuron models and comparing
these directions with the secondary PCs of the original dataset
(PC2, PC3, and PC4). Indeed, we found that the effect of the slow
DIC was dominant on degeneracy, as the slow DIC is the main
player in determining neural excitability types by governing
spiking-to-bursting transitions and the regulation of cellular
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Fig. 3. Dominant PC captures homogeneous scaling of maximal conductances. A) Scatter plot matrices of random sampling populations in the
conductance spaces for the STG model (left) and the DA model (right) along with the direction of PC1, color coded based on the input resistance. The
scatter plots shown are associated with the conductances having the largest entries (in absolute value) in the first PC. All conductances are expressed in
mS/cm”2. The bottom left corner of each 2D subspace represents the origin of the conductance space. For the STG model, g, ranges up to 8,000, gy, to 0.7,
Ogca 10 250 and §,g to 50. For the DA model, gjeax Tanges up to 0.02, Gyg to 20, ey to 0.12 and Gegg to 0.25. B) Simulations illustrating the effect of
homogeneous scaling for the STG model (left) and the DA model (right). A random model from the scatter plot in (A) receives an inhibitory input. The
same experiment is then conducted with all conductances multiplied by 2 and 10.

rest-spike bistability (for further details, see Materials and meth-
ods). In both models, the zero-sensitivity directions strongly align
with one of the secondary PCs in the original random sampling set
(Fig. 4), and thus with the regression line of the normalized data-
set. This confirmed that the second origin of degeneracy in ion
channel expression can be explained by the existence of degener-
ate conductance ratios that create similar membrane dynamical
properties.

Degeneracy in conductance ratios is also functionally significant
for robust neuronal signaling. Relying on different conductance ra-
tios to create similar firing activity allows the creation of heterogen-
eity in response to external perturbations such as changes in
temperature or pH (29, 30), as well as specificion channel blockades
or dysfunction, which increases neuronal robustness. It also cre-
ates variable responses to exogenous neuroactive drugs and allows
for compensation during long-lasting drug exposure or a genetic
defect in the expression of a specific channel.

An alternative approach to building degenerate
parameter sets allows the effect of homogeneous
scaling to be separated from variability in
conductance ratios

To better understand how homogeneous scaling and variability in
conductance ratios interfere with each other, we constructed a new
dataset that allowed us to separate these two effects. We created

datasets of similar firing patterns by allowing randomness in all
conductances but one per timescale, and adapting the remaining
conductances to ensure that DIC values are kept constant (for fur-
ther details, see Materials and methods). Importantly, to be able to
separate the effect of homogeneous scaling from other sources of
ion channel degeneracy, we normalized DIC values by gjeax. This
normalization allows the creation of variable conductance ratios
thatbarely affects homogeneous scaling, which is itself mostly cap-
tured through variability in gje.. We decided to perform normaliza-
tion using gie.x instead of Ry, for computational efficiency, as Ry,
depends on all conductances and is voltage-dependent. Note that
homogeneous scaling is equally well captured using Ri, O Gjeak,
since the leak conductance is the dominant current source below
the threshold potential in both models.

The dataset constructed using this approach created neurons
exhibiting similar firing activities (see Fig. S2) and showed close
qualitative similarities to the dataset produced through random
sampling in both models: pairwise correlations in channel expres-
sion are highly variable between channel pairs, with a positive
correlations dominating but negative correlations also being
found, while the first PC aligns with homogeneous scaling and
the second PC has highly variable slopes in the different conduct-
ance planes (Fig. 5A).

This dataset is easily seen to be generated by two subspaces in
the maximal conductance space (Fig. 5B): one characterized by
variability solely in gpq (triangles in Fig. 5B) and the other
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exhibiting variability exclusively in voltage-gated conductance ra-
tios along DIC zero-sensitivity directions (crosses in Fig. 5B).
Variability in gpeqx only creates a degenerate dataset with strong,
strictly positive correlations between conductance pairs, which
isolates the effect of homogeneous scaling in channel conductan-
ces. Regression slopes of these subsets strongly align with the PC1
of the randomly sampled dataset. Variability limited to voltage-
gated conductances (and fixed gj.,x) creates a degenerate dataset
that also shows strong pairwise correlations. However, these cor-
relations can be either positive or negative, and their regression
slopes do not intersect the origin. Within this subset, the correl-
ation between pairs of conductances arises from their distinct
roles in shaping DIC values at threshold, and the slow DIC in par-
ticular. Channels that have an opposite effect on the slow DIC
show a positive correlation (j,s and g, in the STG), whereas chan-
nels thathave similar effects show a negative correlation (§.,; and
Jcan 1N the DA model). The regression slopes within this subset
strongly align with the PC2 of the complete dataset (compare
PC2 in Fig. 5A with crosses in Fig. 5B).

This alternative approach to building degenerate parameter
datasets shows that variable pairwise correlations in channel con-
ductances could result from the interaction of two distinct fac-
tors: homogeneous scaling, which maintains the ratio between
ion channel conductances; and degenerate conductance ratio,
which leads to similar DIC values and hence similar membrane
dynamical properties.

Variability from both homogeneous scaling and
degenerate conductance ratios blurs the connection
between conductance correlation and function

Our analysis so far shows that variability from homoge-
neous scaling creates strong positive correlations in channel

conductances. Meanwhile, variability in voltage-gated conduct-
ance ratios also leads to strong correlations in channel conduc-
tances, but these can be either positive or negative depending
on the channel pair (Fig. 6A). When both types of variability are
present within a neuron population, these two correlation mech-
anisms interfere with each other to create highly variable levels
of correlations between channel pairs (Fig. 6B). If both types of
variability create positive correlations, the interference is min-
imal, and the global correlation in channel conductance remains
strong (Fig. 6, left). However, if the variability in conductance
ratios creates a negative correlation, the interference is conse-
quential, and the global correlation in channel conductance
becomes weak (Fig. 6, right). This observation is of interest,
as it shows that the variable pairwise correlation observed in
channel conductance values originate from potentially compet-
ing effects rather than from an actual uncorrelated role in our
datasets.

From an experimental perspective, this analysis helps us to
understand how recorded ion channel conductances are corre-
lated. Homogeneous scaling always results in a strong positive
correlation. Therefore, an overall positive correlation would indi-
cate that the channels are functionally antagonistic, as their vari-
able conductance ratios align with the direction of homogeneous
scaling. Conversely, if the overall correlation is nonsignificant or
slightly negative, this suggests that the channels are either func-
tionally uncorrelated or agonistic. In these cases, the positive cor-
relation from homogeneous scaling is counteracted by variability
in conductance ratios, leading to a null or negative correlation,
respectively. Experimentally, the normalization of channel con-
ductances by input resistance can reveal correlations arising
solely from variable conductance ratios, thus dissociating the
two sources of degeneracy (see additional material for other 2D
subspaces).
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0.25 and g¢,; t0 0.1.

Variability in pairwise correlations in conductance
values is neuromodulation-dependent

The variability in channel pairwise correlation level is therefore
linked to the relative slope of the correlations created by both vari-
ability types, homogeneous scaling and degenerate conductance
ratios. This has an interesting consequence when one studies
the effect of neuromodulation on the correlation in channel con-
ductance. To illustrate this consequence, we performed a simple
computational experiment where we neuromodulated the excit-
ability state of both models from spiking to light bursting to strong
bursting (Fig. 7). In both cases, the neuromodulator affects the
maximal conductance of two channel types: g, and gq,s in the
STGmodel, and §,; and g, in the DA model (Fig. 7A). Those con-
ductances are known to affect the burstiness of the respective
neuron models. To create robust neuromodulation in degenerate

neurons, we modulated the datasets of Fig. 5A by modifying the
target threshold value for the slow DIC and used the algorithm
of (7) to compute the neuromodulated conductance values for
each neuron of the dataset (see Materials and methods). The re-
sulting data points are shown in the scatter plots at the top of
Fig. 7B. The dot color quantifies neuron burstiness, showing that
the three firing patterns are robustly attained and well separated.

In both models, neuromodulation of neuron excitability strong-
ly affects the level of pairwise correlations (Fig. 7B). In the STG
model, the correlation between g, and ., is strongly positive
in spiking (r=0.93), peaksin light bursting (r=0.97), and decreases
in strong bursting (r = 0.88). Meanwhile, in the DA model, the cor-
relation between §,; and g,y is hegative in spiking (r = —0.45), be-
comes less negative in light bursting (r = -0.11), and the two
conductances appear uncorrelated in strong bursting (r = 0.03).
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Fig. 6. Variability from both homogeneous scaling and degenerate conductance ratios blurs the connection between conductance correlation and
function. A) Scatter plots of custom generated populations separated into triangles (homogeneous scaling only) and crosses (variability in conductance
ratios only) in the (G,, §ear ) 2D subspace for the STG model (left) and the (Ge,;, Gean) 2D subspace for the DA model (right). B) Scatter plots of the full
variability custom generated populations in the same 2D subspace as in a) for both the STG model (left) and the DA model (right), along with regression

lines and Pearson correlation coefficients.

Pairwise correlations in ion channel conductances therefore ap-
pear neuromodulation-dependent.

The origin of these neuromodulation-dependent changes in
pairwise correlations can be explained by plotting the first two
principal components (PC1 and PC2) on the scatter plots and ob-
serving the effect of neuromodulation on them. On the one
hand, neuromodulation creates a rotation of PC1 around the ori-
gin, which affects its slope. In the projections of Fig. 7B, the slope
of PC1 increases when neurons switch from spiking to bursting in
both models. This effect is consistent with the results obtained
from homeostatic models of ion channel expression (14). On the
other hand, neuromodulation creates a translation of PC2, and
the slope is barely affected. As a result, therelative slopes between
PC1 and PC2 depend on neuron neuromodulatory state, which af-
fects the global correlation level.

In the STG model, both PC components have a positive slope. In
spiking, PC1 has a flatter slope than PC2, which slightly widens the
data cloud. As the model switches to bursting mode, the slope of
PC1 increases and the two slopes become almost identical in light
bursting. In this state, the two PCs align, which creates a strong
correlation between the channel pair. As the model further in-
creases its burstiness, the steepness of the slope of PC1 increases
further and it becomes steeper than that of PC2. The two PCs dis-
align again and the correlation between the channel pair de-
creases. A similar observation can be made in the DA model,
except that here PC2 has a negative slope. As a result, PC1 and
PC2 become more and more orthogonal as burstiness increases,
which reduces the correlation level, and even destroys the chan-
nel pairwise correlation in a strong bursting state.

As identified above, PC1 relates to the homogeneous scaling of
conductances, whereas PC2 relates to the variability in the ratio
between voltage-dependent conductances. To further demon-
strate this link, we reproduced the three neuromodulatory states
in two subsets where we isolated variability derived from homoge-
neous scaling (triangles in the bottom panels of Fig. 7B) from vari-
ability in conductance ratios (crosses in the bottom panels of
Fig. 7B). We used the same algorithm as for the full dataset to cre-
ate robustly neuromodulated states. The results from both mod-
els clearly show that robust neuromodulation is achieved
through a rotation of the data points in the conductance space if
variability derives from homogeneous scaling, whereas it is
achieved through a translation of the data points if variability in-
volves the ratio between voltage-dependent conductances.

This observation can be interpreted physiologically and provides
significant insights into the requirements for robust neuromodula-
tion in variable neurons. If robust neuromodulation is achieved
through a rotation in the conductance space, it means that the
robust neuromodulation rule is multiplicative: §;yop = @ - Gijnit
where ¢; is set by the concentration of neuromodulator. The rule
is multiplicative in the case of variability through homogeneous
scaling, because neurons having twice the maximal conductance
values require twice the change in conductance to achieve a similar
firing pattern, owing to the change in input resistance. If robust
neuromodulation is achieved through a translation in the conduct-
ance space, it means that the robust neuromodulation rule is addi-
tive: g yop = inie + B Where f; is also set by the neuromodulator
concentration. The rule is additive in the case of variability in con-
ductance ratios only because a similar firing pattern is achieved
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Fig. 7. Variability in pairwise correlations in conductance values is neuromodulation-dependent. A) Bar plot of conductance values for custom generated
populations in the three phenotypes considered for the STG model (right) and the DA model (left). The dotted line on the voltage traces corresponds to
0mV. B) Scatter plots of full variability custom generated populations in the neuromodulated 2D space for both the STG model (left) and the DA model
(right) across three neuromodulated states, along with PC1, PC2, and Pearson correlation coefficients (top). Scatter plots of separated custom generated
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through a similar change in the normalized DIC values, which is
created by the same change in maximal conductances. As a result,
robust neuromodulation can be achieved through a simple, direct
rule if only one type of variability is present in the neuronal popu-
lation. However, derivation of a direct rule isimpossible if both vari-
ability types are present in the population, which is likely
considering the physiological significance of both types. Such a
rule would indeed need to be both additive and multiplicative
with a neuron-dependent ratio between both effects. Robust neuro-
modulation therefore requires an indirect rule involving a second
messenger in highly degenerate neurons, which is precisely the
mechanism observed in G protein-coupled receptor signaling.

A simple indirect rule for robust neuromodulation
in highly degenerate neurons

We showed that robust neuromodulation in highly degenerate
cells cannot rely on a simple rule directly targeting ion channels
but rather requires a more complex rule involving a second
messenger. This raises the questions of how complex a rule for
reliable neuromodulation should be, and whether a general,
model-independent rule could be derived. In an attempt to an-
swer these questions, we used the algorithm developed above to
construct reliable neuromodulatory paths in degenerate neurons
for both STG and DA models, moving from tonic spiking to burst-
ing of increasing burstiness (Fig. 8). Similar to the case presented
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above, the neuromodulatory algorithm targeted g, and g.,q in the
STGmodel, and §,; and Jg,y in the DA model. Many reliable neu-
romodulatory paths could be achieved in both models using a
simple rule whose objective is to increase the target threshold val-
ue for the slow DIC while moving from tonic spiking to bursting,
while keeping the ultraslow DIC value constant to maintain spik-
ing and bursting periods (7) (see Materials and methods). Figure 8
plots the neuromodulatory pathways in the (§.,s, ) plane (resp.
(Gcarr Gcan) Plane) for the STG model (resp. DA model) and exam-
ples of neuromodulated neuronal traces.

Interestingly, although a simple direct rule cannot be used, the
indirect rule resulted in linear neuromodulatory paths for both
models, where the direction of neuromodulation is constant and
only varies between neurons of different types. The nonlinearity
occurs in the distance the neuron has to move in the direction to
switch activity, which is affected by parameter variability (see the
variability in the color transitions of Fig. 8 top). These results high-
light that, even in the case of maximal degeneracy in neuron
parameters, the relative change in maximal conductances of ion
channels targeted by the same neuromodulatory receptor can be
hard wired in a neuron type, creating a robust neuromodulatory
path. The second messenger then has the role of controlling the
movement along that neuromodulatory path that would lead to
the target activity, strongly reducing the complexity of the reliable
neuromodulation process. Such control could for example be im-
plemented by sensing neuronal activity through intracellular
calcium oscillations, as already suggested in homeostatic models

(14, 25), or by sensing membrane voltage (23), creating activity-
dependent changes in targeted maximal conductances. Substantial
evidence of such activity-dependent neuromodulatory mecha-
nisms involving intracellular calcium can be found in the litera-
ture on experimental studies (31-34).

Discussion

Two physiologically relevant sources of neuronal
variability govern ion channel degeneracy

Touncover how so many different neuron types emerge, as well as
the mechanisms underlying neuromodulation and variable neur-
onal response to neuroactive drugs, it is critical to understand
how ion channels shape neuronal excitability (8, 13, 15, 17, 18).
However, the connection between ion channels and neuronal sig-
naling is complex due to channel degeneracy, and despite consid-
erable advances made on the subject through experimental,
computational, and mathematical work, a mechanistic under-
standing of ion channel variability and degeneracy in neurons re-
mains elusive (2-6). Here, we showed that neuronal variability can
be separated into two quantifiable, physiological components:
homogeneous scaling of conductances and variability in conduct-
ance ratios.

Homogeneous scaling refers to the fact that neurons can ex-
hibit similar activity if the relative difference in their channel
maximal conductances is similar for all channels expressed at
the membrane, whereby conductance ratios are maintained.
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This property has been observed experimentally in channel ex-
pression and shown to emerge from homeostatic rules (14, 27,
28). In this case, intrinsic characteristics are maintained, but re-
sponsiveness to synapticinputis altered due to differences in neu-
ron input resistance. Variability in conductance ratios refers to
the fact that neurons having a similar input resistance can exhibit
similar activity with different ratios in their voltage-gated conduc-
tances. In this case, intrinsic characteristics are maintained, but
the response to perturbations such as in temperature as well as
channel blockade is altered due to differences in the relative
role of each channel subtype on excitability.

Both sources of channel variability are physiologically relevant.
Homogeneous scaling is central for network homeostasis, as it
permits the tuning of neuron input/output response while keep-
ing the intrinsic properties of neurons stable (35). Homogeneous
scaling also permits compensation for changes in membrane cap-
acitance. On the other hand, variability in conductance ratios
permits improvement of the robustness against external pertur-
bations by creating an heterogeneous response to perturbations
affecting specific channel functions at the network level (36).
It could also lead to variable inter-individual responses to neuro-
active drugs.

The contributions of variability from homogeneous scaling and
conductance ratios are intertwined in any neuron degenerate da-
taset, making any attempt at quantification difficult. Combining
dimensionality reduction analysis and recent insights into the re-
duced dynamics of conductance-based models, we were able to
separate the contributions of the two sources of variability, allow-
ing the establishment of a mechanistic understanding of how
variable ion channels can lead to specific neuronal activity. This
enabled an understanding of the origin of ion channel variable
pairwise correlations and the derivation of a robust indirect rule
for reliable neuromodulation in degenerate neurons.

Variable channel correlations arise from the
interference between homogeneous scaling and
variability in conductance ratios

Separating the effects of homogeneous scaling and variability in
conductance ratios allowed analysis of the roles of the two sources
of variability on channel pairwise correlations. Homogeneous scal-
ing creates strictly positive correlations between all ion channels,
and different firing patterns/neuron subtypes lead to different re-
gression slopes, as observed in the channel expression data and
homeostatic models of neuronal excitability (14). These positive
correlations come from the passive role of ion channels on mem-
brane properties through Ohm'’s law: an increase of any channel
conductance decreases the membrane input resistance. Other
channels thus have to increase their conductance to maintain their
effect on membrane potential variations.

On the other hand, variability in conductance ratios creates
both positive and negative correlations between ion channel sub-
sets, but not all ion channels. Ion channels correlate to maintain
neuronal dynamics if their gating, representing either activation
or inactivation, occurs on a similar timescale. The sign of the
correlation is determined by the relative feedback provided by
each channel gating on membrane potential variations, which is
a key determinant of neuron dynamical properties as quantified
by dynamic input conductances, for example (7). Specifically,
activation of inward current and inactivation of outward current
produce positive feedback, whereas activation of outward cur-
rent and inactivation of inward current produce negative feed-
back. Two channels producing opposite feedbacks on a similar

timescale will correlate positively (such as e.g. g, and gc, in the
STG model), whereas two channels producing similar feedbacks
will correlate negatively (such as e.g. e, and g,y in the DA
model).

When both sources of variability are presentin a neuron degen-
erate set, the two types of correlations interfere with each other.
When the correlation emerging from variability in conductance
ratio is positive, both regression lines have a positive slope, creat-
ing an overall positive correlation whose intensity depends on the
alignment of the regression lines. However, when the correlation
emerging from variability in conductance ratio is negative, both
regression lines have opposite signs, which can lead to an uncor-
relation between two conductances even though there is a strong
correlation between their role in neuron dynamics and passive
properties. This situation could be indistinguishable from two
channels that actually do not correlate due to a lack of action
on a similar timescale. Therefore, variable correlations in channel
conductances in a degenerate dataset do not always relate to cor-
related or uncorrelated functions but could also arise from highly
correlated functions of opposite signs.

The importance of indirect neuromodulatory
pathways for reliable neuromodulation

in variable neurons

One prominent issue arising from channel degeneracy involves
how neuromodulation could be reliable across neurons when it
acts on degenerate conductances (15-18, 32, 37). We showed
that a simple direct rule for reliable neuromodulation could be de-
rived if either homogeneous scaling or variability in conductance
ratios, but not both, was present in a dataset. Indeed, homoge-
neous scaling requires a simple multiplicative rule due toits effect
on input resistance, whereas variability in conductance ratios re-
quires an additive rule. There is no direct rule if both variability
types exist, as it would need to be both additive and multiplicative
with a neuron-dependent ratio between the two effects.

We showed that a simple indirect rule could produce reliable
neuromodulation when both sources of variability are present
in the dataset. This rule is indirect in the sense that it uses an
intermediate signaling pathway to connect neuromodulation con-
centration with changes in channel conductances. In our computa-
tional study, this intermediate pathway encodes the values of the
slow and ultraslow dynamic input conductances around the
threshold potential: neuromodulator concentration tunes the tar-
getvalues forboth dynamic conductances, and a subset ofion chan-
nels arein turn modulated to reach these new targets. The presence
of an intermediate messaging pathway is a core property of GPCR
signaling, making such an indirect rule physiologically plausible.
Our work provides a quantitative framework that provides a new
angle of attack to study how intermediate signaling pathways could
lead to reliable neuromodulation in degenerate neurons.

Materials and methods

Programming language

The Julia programming language was used in this work (38).
Numerical integration was realized using DifferentialEquations.jl.

Regression lines and correlations were computed using Statistics.jl.
PCA was conducted using LinearAlgebra.jl.

Conductance-based models

For all experiments, single-compartment conductance-based mod-
els were employed. These models articulate an ordinary differential
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equation for the membrane voltage V, where N ion channels
are characterized as nonlinear dynamic conductances, and the
phospholipid bilayerisrepresented as a passive resistor-capacitance
circuit. Mathematically, the voltage-current relationship of any
conductance-based neuron model is expressed as follows:

dv
Ie= CE + Jleak(V = Ereak) = —lint + lext
== Z Gion(V, )(V = Eion) + lext-

ioneZ

Here, C represents the membrane capacitance, gi,, denotes the con-
sidered ion channel conductance and is non-negative, gated be-
tween O (all channels closed) and g, (all channels open), E;,, and
Eleax are the channel reversal potentials, 7 is the index set of intrinsic
ionic currents considered in the model, and Iy is the current exter-
nally applied in vitro, or the combination of synaptic currents. Each
ion channel conductance is nonlinear and dynamic, represented by
Gion(V, 1) = Gionmis, (V, t)hibon (V, t), where m;o, and hyy, are variables
gated between 0 and 1, modeling the opening and closing gates of
ion channels, respectively. Throughout this study, both the isolated
crab STG neuron model (25) and the adapted DA neuron model (26)
(where SK channels had been blocked to enable bursting) were
employed.

The STG model consists of seven ion channels that operate on
various time scales: fast sodium channels (g,); delayed-rectifier
potassium channels (Gy4); T-type calcium channels (Gegr);
A-type potassium channels (G, ); slow calcium channels (G,s); cal-
cium controlled potassium channels (Gyc,); and H channels (Gy).

The DA model consists of six ion channels that operate on vari-
ous time scales: fast sodium channels (gy,); delayed-rectifier po-
tassium channels (Gy4); L-type calcium channels (g, ); N-type
calcium channels (g, ); ERG channels (ggz); and NMDA channels
(Gnupa)- Note that, owing to the multicellular nature of NMDA
channels, they were excluded from this study but were still used
for simulations with baseline values.

Random sampling sets

Random sampling sets consist of 200 neuron models with varying
maximum ion channel conductances. These sets were created by
generating numerous random points in the space of maximum ion
channel conductances (within specified ranges). Subsequently, the
models underwent post-processing based on their firing patterns,
with only those fitting the desired phenotype being retained. For
the STG models, post-processing involved considerations of peak
and hyperpolarized voltages, intra- and interburst frequencies, the
number of spikes per burst, and burstiness (computed as in
Ref. (39)). Meanwhile, the DA models were post-processed based
on their peak and hyperpolarized voltages and spike frequency.

Dynamic input conductances

DICs consist of three voltage-dependent conductances that separ-
ate according to timescales: one fast, one slow, and one ultraslow,
denoted as g¢(V), gs(V), and gy (V), which can be computed as linear
functions of the maximal conductance vector g, € RV of an
N-channel conductance-based model at each voltage level V:

[95(V); 95(V); gu(V)] = foic(V) = S(V) - Gion »
where S(V) € R*¥ is a sensitivity matrix that can be built by:
Si;(V) = —(wy; ~g—)‘g%)/gleak, where 1 denotes the timescale, X; are
gating variables of the jth channel of the considered model and
w;; is a timescale-dependent weight which is computed as the

logarithmic distance of the time constant of X; and the timescale
1(7). While the complete curve of the DICs may be of interest, only
its value at the threshold voltage Vy, is used, as the values and
signs of the DICs at Vy, reliably determine the firing pattern (7).
Thus, the following linear system fpic(Vin) =S(Vin) - Gion Makes
the link between ion channel conductances and neuronal activity.

An efficient method to build sets that allow the separation
of the two sources of degeneracy

Throughout this study, a novel method for generating degenerate
datasets of conductance-based models has been developed,
which was proven to be significantly faster than the random sam-
pling approach (all figures were created using a dataset of 500 neu-
rons). The methodology for a N-channel conductance-based
model can be summarized as follows:

1. The leakage conductance g.qx is drawn from a physiological
uniform distribution: Jleak ~ u(gleak min» Jleak maX);
2. N —3 maximum ion channel conductances are drawn from a

physiological uniform distribution that is proportional to

G~ Jleak YN
9reak: Jion (G1eak min+31eak max)/2 u

3. The three remaining maximum ion channel conductances
are computed using the linear system fpic(Vin) = S(Vin) * Gion»
in which fpic(Viy) are fixed by the user to choose the firing pat-
tern of the population.

—3/= — .
(gunmod min’ Junmod max) ’

The normalization by gie,y in (2) allows the combination of the ef-
fects of homogeneous scaling and variability in conductance ra-
tios. The subsequent sets, each targeting either homogeneous
scaling or conductance ratio, were generated by using shared de-
terministic values for gjeqy or for the N — 3 maximum ion channel
conductances, respectively. The zero-sensitivity directions of
slow dynamical membrane properties were computed using the
equations for the slow dynamic input conductance, where the
two ion channel conductances of interest were treated as varia-
bles along this direction.

Neuromodulation algorithm

As a result of this newly developed method for generating degen-
erate neuronal sets, neuromodulation of these sets is achieved by
manipulating the linear system fpic(Vin) =S(Vin) - Jion. Once a
population is created, the values of fpic(Vy,) can be adjusted,
and the linear system can be solved for certain ion channel con-
ductances (the modulated ones) to achieve a new firing pattern.
Specifically, two maximum conductances are recalculated by tun-
ing the value of the slow dynamic input conductance while the ul-
traslow dynamic input conductance is kept unchanged. The latest
results were obtained by continuously adjusting this slow dynam-
ic input conductance value.

Supplementary Material

Supplementary material is available at PNAS Nexus online.
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