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ABSTRACT

We develop and analyze DASHA: a new family of methods for nonconvex dis-
tributed optimization problems. When the local functions at the nodes have a
finite-sum or an expectation form, our new methods, DASHA-PAGE, DASHA-MVR
and DASHA-SYNC-MVR, improve the theoretical oracle and communication com-
plexity of the previous state-of-the-art method MARINA by Gorbunov et al. (2020).
In particular, to achieve an e-stationary point, and considering the random sparsifier
RandK as an example, our methods compute the optimal number of gradients
O (Vm/eym) and O (°/<*?x) in finite-sum and expectation form cases, respectively,
while maintaining the SOTA communication complexity O (¢/=./n). Furthermore,
unlike MARINA, the new methods DASHA, DASHA-PAGE and DASHA-MVR send
compressed vectors only, which makes them more practical for federated learning.
We extend our results to the case when the functions satisfy the Polyak-F.ojasiewicz
condition. Finally, our theory is corroborated in practice: we see a significant
improvement in experiments with nonconvex classification and training of deep
learning models.

1 INTRODUCTION

Nonconvex optimization problems are widespread in modern machine learning tasks, especially with
the rise of the popularity of deep neural networks (Goodfellow et al., 2016). In the past years, the
dimensionality of such problems has increased because this leads to better quality (Brown et al.,
2020) and robustness (Bubeck & Sellke, 2021) of the deep neural networks trained this way. Such
huge-dimensional nonconvex problems need special treatment and efficient optimization methods
(Danilova et al., 2020).

Because of their high dimensionality, training such models is a computationally intensive undertaking
that requires massive training datasets (Hestness et al., 2017), and parallelization among several
compute nodes' (Ramesh et al., 2021). Also, the distributed learning paradigm is a necessity in
federated learning (Konec¢ny et al., 2016), where, among other things, there is an explicit desire to
secure the private data of each client.

Unlike in the case of classical optimization problems, where the performance of algorithms is defined
by their computational complexity (Nesterov, 2018), distributed optimization algorithms are typically
measured in terms of the communication overhead between the nodes since such communication
is often the bottleneck in practice (Kone¢ny et al., 2016; Wang et al., 2021). Many approaches
tackle the problem, including managing communication delays (Vogels et al., 2021), fighting with
stragglers (Li et al., 2020a), and optimization over time-varying directed graphs (Nedi¢ & Olshevsky,
2014). Another popular way to alleviate the communication bottleneck is to use lossy compression
of communicated messages (Alistarh et al., 2017; Mishchenko et al., 2019; Gorbunov et al., 2021;
Szlendak et al., 2021). In this paper, we focus on this last approach.

'Altematively, we sometimes use the terms: machines, workers and clients.



Published as a conference paper at ICLR 2023

1.1 PROBLEM FORMULATION

In this work, we consider the optimization problem

: _Is
min {f(w) = ;fz(x)} ; QY

where f; : RY — R is a smooth nonconvex function for all i € [n] := {1,...,n}. Moreover, we
assume that the problem is solved by n compute nodes, with the i node having access to function f;
only, via an oracle. Communication is facilitated by an orchestrating server able to communicate
with all nodes. Our goal is to find an e-solution (e-stationary point) of (1): a (possibly random) point

% € RY, such that E [||Vf(§)||2] <e.

1.2 GRADIENT ORACLES

We consider all of the following structural assumptions about the functions {f;}?_;, each with its
own natural gradient oracle:

1. Gradient Setting. The ™ node has access to the gradient V f; : R* — R¢ of function f;.

2. Finite-Sum Setting. The functions { f;}7_; have the finite-sum form
1 m
i = ij ’ Vi e s 2
fi(@) m;fj(w) i€ n] )

where f;; : R? — R is a smooth nonconvex function for all j € [m]. For all i € [n], the i node has
access to a mini-batch of B gradients, £ jer, Vfij(+), where I; is a multi-set of i.i.d. samples of
the set [m], and |I;| = B.

3. Stochastic Setting. The function f; is an expectation of a stochastic function,

fi(z) = B¢ [fi(; )], Vi € [n], 3)
where f; : R? x Q¢ — R.Forafixed z € R, f;(x;€) is a random variable over some distribution
D;, and, for a fixed £ € €, f;(x; &) is a smooth nonconvex function. The i node has access to a
mini-batch of B stochastic gradients % Zle V fi(+; &i;) of the function f; through the distribution
D;, where {&;; le is a collection of i.i.d. samples from D;.

1.3 ORACLE COMPLEXITY

In this paper, the oracle complexity of a method is the number of (stochastic) gradient calculations
per node to achieve an e-solution. Every considered method performs some number 1" of communi-
cations rounds to get an e-solution; thus, if every node (on average) calculates B gradients in each
communication round, then the oracle complexity equals O (Biniy + BT') , where Bip;; is the number
of gradient calculations in the initialization phase of a method.

1.4 UNBIASED COMPRESSORS

The method proposed in this paper is based on unbiased compressors — a family of stochastic
mappings with special properties that we define now.

Definition 1.1. A stochastic mapping C : R? — R is an unbiased compressor if there exists w € R
such that
ElC(z)) =z, E [||C(x) - x\ﬂ <wlzl?, VzeR. @)

We denote this class of unbiased compressors as U(w).

One can find more information about unbiased compressors in (Beznosikov et al., 2020; Horvath
et al., 2019). The purpose of such compressors is to quantize or sparsify the communicated vectors in
order to increase the communication speed between the nodes and the server. Our methods will work
collection of stochastic mappings {C;}7 satisfying the following assumption.

Assumption 1.2. C; € U(w) for all ¢ € [n], and the compressors are independent.
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Table 1: General Nonconvex Case. The number of communication rounds (iterations) and the oracle

complexity of algorithms to get an e-solution (E [||V f(@)

2
|

} < ¢), and the necessity (or not) of

algorithms to send non-compressed vectors periodically (see Section 3).

Setting Method T := # Communication Rounds® Oracle Complexity ~ Full?®
Lre/vm
Gradient MARINA b T Yes
DASHA (Cor. 6.2) — T
Finite-Sum VR-MARINA Lhujvn v m+ BT Yes
(@) DASHA-PAGE (Cor. 6.5) Lre/vn | m + BT
€
: 1tw/vm o2 Vitwo
Stochastic VR-MARINA (online) IR g Ygges Bw + ](%T Yes
S DASHA-MVR (Cor. 6.8) Liwfvn o2y Bwy/ 2% + BT
w, n 2
DASHA-SYNC-MVR (Cor. 6.10) Lto/va 4 o ¢ Bw+ BT Yes

@ Only dependencies w.r.t. the following variables are shown: w = quantization parameter, n = # of nodes,
m = # of local functions (only in finite-sum case (2)), o2 = variance of stochastic gradients (only in stochastic case
(3)), B = batch size (only in finite-sum and stochastic case). To simplify bounds, we assume thatw +1 = © (4/¢c),
where d is dimension of z in (1) and (¢ is the expected number of nonzero coordinates that each compressor C;
returns (see Definition 1.3).

® Does the algorithm periodically send full (non-compressed) vectors? (see Section 3)

© One can always choose the parameter of Rand K such that this term does not dominate (see Section 6.5).

1.5 COMMUNICATION COMPLEXITY

The quantity below characterizes the number of nonzero coordinates that a compressor C returns.
This notion is useful in case of sparsification compressors.

Definition 1.3. The expected density of the compressor C; is (¢, := sup,cgra E [||Ci(z)||,], where
|||, is the number of nonzero components of 2 € R?. Let (¢ = max;e/,) Cc, -

In this paper, the communication complexity of a method is the number of coordinates sent to the
server per node to achieve an e-solution. If every node (on average) sends ¢ coordinates in each
communication round, then the communication complexity equals O (i + ¢T') , where T is the
number of communication rounds, and (i, is the number of coordinates sent in the initialization
phase.

We would like to notice that the established communication complexities are compared to previous
upper bounds from (Gorbunov et al., 2021; Szlendak et al., 2021; Mishchenko et al., 2019; Alistarh
et al., 2017), and in this line of work, the comparisons of the communication complexities are made
with respect to the number of send coordinates. As far as we know, in this sense, no lower bounds
are proved, and it deserves a separate piece of work. However, Korhonen & Alistarh (2021) proved
the lower bounds of the communication complexity with respect to the number of send bits in the
constraint optimization setting that x € [0, 1]%, so our upper bounds can not be directly compared to
their result because we operate on a different level of abstraction.

2 RELATED WORK

e Uncompressed communication. This line of work is characterized by methods in which the nodes
send messages (vectors) to the server without any compression. In the finite-sum setting, the current
state-of-the-art methods were proposed by Sharma et al. (2019); Li et al. (2021b), showing that after
O (1/¢) communication rounds and

ofos )
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Table 2: Polyak-¥.ojasiewicz Case. The number of communications rounds (iterations) and oracle
complexity of algorithms to get an e-solution (E [f(Z)] — f* < ¢), and the necessity (or not) of
algorithms to send non-compressed vectors periodically.

Setting Method T := # Communication Rounds © Oracle Complexity ~ Full?®
L(14w/vm)

Gradient MARINA w+ N T Yes
DASHA (Cor. 1.10) w+ LR T

Finite-Sum VR-MARINA w+ B LR L Vu(\l/;;)m BT Yes
@ DASHA-PAGE (Cor. 113) w2 LY BT

] ‘ LO4w/vi) | o | T¥eLo ,

Stochastic VR-MARINA (online) w+ (\)# + menB + 252 JonB BT Yes
® DASHAMVR (CorL16) W +wy /2oy + LUKV | _o® BT

w, n 0'2
DASHA-SYNC-MVR (Cor. 1.21) w+ LR e BT Yes

@ Logarithmic factors are omitted and only dependencies w.r.t. the following variables are shown: L = the worst case smoothness
constant, ;© = PL constant, w = quantization parameter, n = # of nodes, m = # of local functions (only in finite-sum case (2)),
o2 = variance of stochastic gradients (only in stochastic case (3)), B = batch size (only in finite-sum and stochastic case). To
simplify bounds, we assume that w + 1 = © (¢/¢¢) , where d is dimension of z in (1) and (¢ is the expected number of nonzero
coordinates that each compressor C; returns (see Definition 1.3).

® Does the algorithm periodically send full (non-compressed) vectors? (see Section 3)

© One can always choose the parameter of Rand K such that this term does not dominate (see Section 6.5).

calculations of V f;; per node, these methods can return an e-solution. Moreover, Sharma et al. (2019)
show that the same can be done in the stochastic setting after

o? o
@) ( —+ = /s ) (6)
en  €7/?n
stochastic gradient calculations per node. Note that complexities (5) and (6) are optimal (Arjevani
et al., 2019; Fang et al., 2018; Li et al., 2021a). An adaptive variant was proposed by Khanduri et al.

(2020) based on the work of Cutkosky & Orabona (2019). See also (Khanduri et al., 2021; Murata &
Suzuki, 2021).

o Compressed communication. In practice, it is rarely affordable to send uncompressed messages
(vectors) from the nodes to the server due to limited communication bandwidth. Because of this,
researchers started to develop methods keeping in mind the communication complexity: the total
number of coordinates/floats/bits that the nodes send to the server to find an e-solution. Two important
families of compressors are investigated in the literature to reduce communication bottleneck: biased
and unbiased compressors. While unbiased compressors are superior in theory (Mishchenko et al.,
2019; Li et al., 2020b; Gorbunov et al., 2021), biased compressors often enjoy better performance
in practice (Beznosikov et al., 2020; Xu et al., 2020). Recently, Richtarik et al. (2021) developed
EF21, which is the first method capable of working with biased compressors an having the theoretical
iteration complexity of gradient descent (GD), up to constant factors.

e Unbiased compressors. The theory around unbiased compressors is much more optimistic.
Alistarh et al. (2017) developed the QSGD method providing convergence rates of stochastic gradient
method with quantized vectors. However, the nonstrongly convex case was analyzed under the
strong assumption that all nodes have identical functions, and the stochastic gradients have bounded
second moment. Next, Mishchenko et al. (2019); Horvith et al. (2019) proposed the DIANA method
and proved convergence rates without these restrictive assumptions. Also, distributed nonconvex
optimization methods with compression were developed by Haddadpour et al. (2021); Das et al.
(2020). Finally, Gorbunov et al. (2021) proposed MARINA — the current state-of-the-art distributed
method in terms of theoretical communication complexity, inspired by the PAGE method of Li et al.
(2021a).

3 CONTRIBUTIONS

We develop a new family of distributed optimization methods DASHA for nonconvex optimization
problems with unbiased compressors. Compared to MARINA, our methods make more practical and
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simpler optimization steps. In particular, in MARINA, all nodes simultaneously send either compressed
vectors, with some probability p, or the gradients of functions { f;}_; (uncompressed vectors), with
probability 1 — p. In other words, the server periodically synchronizes all nodes. In federated learning,
where some nodes can be inaccessible for a long time, such periodic synchronization is intractable.

Our method DASHA solves both problems: i) the nodes always send compressed vectors, and ii) the
server never synchronizes all nodes in the gradient setting.

Further, a simple tweak in the compressors (see Appendix D) results in support for partial participa-
tion in the gradient setting , which makes DASHA more practical for federated learning tasks. Let us
summarize our most important theoretical and practical contributions:

o New theoretical SOTA complexity in the finite-sum setting. Using our novel approach to
compress gradients, we improve the theoretical complexities of VR-MARINA (see Tables 1 and 2) in
the finite-sum setting. Indeed, if the number of functions m is large, our algorithm DASHA-PAGE
needs v/w + 1 times fewer communications rounds, while communicating compressed vectors only.

o New theoretical SOTA complexity in the stochastic setting. We develop a new method, DASHA-
SYNC-MVR, improving upon the previous state of the art (see Table 1). When ¢ is small, the number
of communication rounds is reduced by a factor of v/w + 1. Indeed, we improve the dominant term
which depends on £%2 (the other terms depend on € only). However, DASHA-SYNC-MVR needs to
periodically send uncompressed vectors with the same rate as VR-MARINA (online). Nevertheless,
we show that DASHA-MVR also improves the dominant term when ¢ is small, and this method
sends compressed vectors only. Moreover, we provide detailed experiments on practical machine
learning tasks: training nonconvex generalized linear models and deep neural networks, showing
improvements predicted by our theory. See Appendix A.

o Closing the gap between uncompressed and compressed methods. In Section 2, we mentioned
that the optimal oracle complexities of methods without compression in the finite-sum and stochastic
settings are (5) and (6), respectively. Considering the Rand X' compressor (see Definition F.1),
we show that DASHA-PAGE, DASHA-MVR and DASHA-SYNC-MVR attain these optimal oracle
complexities while attainting the state-of-the-art communication complexity as MARINA, which needs
to use the stronger gradient oracle! Therefore, our new methods close the gap between results from
(Gorbunov et al., 2021) and (Sharma et al., 2019; Li et al., 2021b).

4 ALGORITHM DESCRIPTION

We now describe our proposed family of optimization methods, DASHA (see Algorithm 1). DASHA
is inspired by MARINA and momentum variance reduction methods (MVR) (Cutkosky & Orabona,
2019; Tran-Dinh et al., 2021; Liu et al., 2020): the general structure repeats MARINA except for the
variance reduction strategy, which we borrow from MVR. Unlike MARINA, our algorithm never sends
uncompressed vectors, and the number of bits that every node sends is always the same. Moreover,
we reduce the variance from the oracle and the compressor separately, which helps us to improve the
theoretical convergence rates in the stochastic and finite-sum cases.

First, using the gradient estimator g?, the server in each communication round calculates the next
point ¢! and broadcasts it to the nodes. Subsequently, all nodes in parallel calculate vectors hﬁ“
in one of three ways, depending on the available oracle. For the the gradient, finite-sum, and the
stochastic settings, we use GD-like, PAGE-like, and MVR-like strategies, respectively. Next, each
node compresses their message and uploads it to the server. Finally, the server aggregates all received
messages and calculates the next vector g1, We refer to Section H to get a better intuition about
DASHA.

We note that in the stochastic setting, our analysis of DASHA-MVR (Algorithm 1) provides a subopti-
mal oracle complexity w.r.t. w (see Tables 1 and 2). In Appendix J we provide experimental evidence
that our analysis is tight. For this reason, we developed DASHA-SYNC-MVR (see Algorithm 2 in
Appendix C) that improves the previous state-of-the-art results and sends non-compressed vectors
with the same rate as VR-MARINA (online). Note that DASHA-MVR still enjoys the optimal oracle and
SOTA communication complexity (see Section 6.5); and this can be seen it in experiments.
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Algorithm 1 DASHA

1: Input: starting point 2° € R?, stepsize v > 0, momentum a € (0, 1], momentum b € (0, 1]
(only in DASHA-MVR), probability p € (0, 1] (only in DASHA-PAGE), batch size B (only in
DASHA-PAGE and DASHA-MVR), number of iterations 7" > 1

2: Initialize g) € R?, hY € R? on the nodes and ¢° = 2 3™ | ¢ on the server

3: fort=0,1,..., 7T —1do

4: it =gt —~g!
. . 1, with probability p .

5. Fl tHl— 0 ly in DASHA-PAGE
tpacome 0, with probability 1 — p 1Y 11 )

6:  Broadcast z'*! to all nodes

7. fori=1,...,nin parallel do
Vfi(ztth) (DASHA)
. Vfi(ztth) ifctl =1 . .
. t+1 . (DASHA-PAGE)
oo Wit 5 Xjer (V@) = Vfi (@) if et =0
B t B
£ VT e + (1 - ) (hﬁ — 5> Vil §ffl)><DASHA-MVR)
o mit = C (W — A —a(g! — B)
10: gt =gt +mit!
11: Send m!* to the server
12:  end for
13 gifl=gt+ 150 mit!
" n 1= 7
14: end for

15: Output: 27 chosen uniformly at random from {xt}Z;Ol (or 2T under the PE.-condition)

5 ASSUMPTIONS

We now provide the assumptions used throughout our paper.
Assumption 5.1. There exists f* € R such that f(x) > f* forall z € R.
Assumption 5.2. The function f is L—smooth, i.e.,

IVf(x) = Vil < Lz -yl
for all z,y € R?.
Assumption 5.3. For all i € [n], the function f; is L;—smooth.2 We define L2 := LS L2

The next assumption is used in the finite-sum setting (2).

Assumption 5.4. For all ¢ € [n|,j € [m], the function f;; is L;j-smooth. Let Lyax =
MaXie(n],je[m] Lij-

The two assumptions below are provided for the stochastic setting (3).

Assumption 5.5. For all i € [n] and for all x € RY, the stochastic gradient V f;(z; €) is unbiased
and has bounded variance, i.e.,

Ee[Vfi@:&)] = Vi),  and  Ee [[Vi(@:8) - V@] <o,

where o2 > 0.

Assumption 5.6. For all i € [n] and for all z,y € R, the stochastic gradient V f;(x; &) satisfies the
mean-squared smoothness property, i.e.,

Be [IV/:(5:6) = Vily:€) — (Vfile) = VI)IP] < L2 o =y

“Note that one can always take L? = L? = % > L?. However, the optimal constant I can be much
2
better because L* < (L 37 L) < 13" L7
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6 THEORETICAL CONVERGENCE RATES

Now, we provide convergence rate theorems for DASHA, DASHA-PAGE and DASHA-MVR. All three
methods are listed in Algorithm 1 and differ in Line 8 only. At the end of the section, we provide a
theorem for DASHA-SYNC-MVR.

6.1 GRADIENT SETTING (DASHA)

Theorem 6.1. Suppose that Assumptions 5.1, 5.2, 5.3 and 1.2 hold. Let us take o = 1/ (2w + 1)
-1

, Y < (L + WME) ,and g9 = hY = V f;(2°) for all i € [n] in Algorithm 1 (DASHA),

n

then E [|[v£@7)|°] < 2,

The corollary below simplifies the previous theorem and reveals the communication complexity of
DASHA.

Corollary 6.2. Suppose that assumptions from Theorem 6.1 hold, and g{ = h? = V f;(x°) for all

i € [n], then DASHA needs T := (’)(i

(f(xO) _ f*) (L + %E) ] ) communication rounds

to get an e-solution and the communication complexity is equal to O (d + (cT') , where (¢ is the
expected density from Definition 1.3.

In the previous corollary, we have free parameters w and (. Now, we consider the Rand K’ compressor
(see Definition F.1) and choose its parameters to get the communication complexity w.r.t. only d and
n.

Corollary 6.3. Suppose that assumptions of Corollary 6.2 hold. We take the unbiased compressor
T F(20)— F*
RandK with K = (¢ < d/+/n, then the communication complexity equals O (d + W) .

n

6.2 FINITE-SUM SETTING (DASHA-PAGE)

Next, we provide the complexity bounds for DASHA-PAGE.

Theorem 6.4. Suppose that Assumptions 5.1, 5.2, 5.3, 5.4, and 1.2 hold. Let us take a = 1/ (2w + 1),
probability p € (0,1],

< <L+\/48w(2w+1) <(112L%1ax+32>+2<1pﬂ3m)

n pnB

—1

and g¥ = hY = V f;(2°) for all i € [n] in Algorithm 1 (DASHA-PAGE) then E [HVf(EET)HQ} <
2(f=")—")

T :
Let us simplify the statement of Theorem 6.4 by choosing particular parameters.

Corollary 6.5. Let the assumptions from Theorem 6.4 hold, p = B/(m+B), and ¢° = hY = V f;(2°)
forall i € [n]. Then DASHA-PAGE needs

reo| L) (b e () )

communication rounds to get an e-solution, the communication complexity is equal to O (d + (cT) ,
and the expected # of gradient calculations per node equals O (m + BT) , where (¢ is the expected
density from Definition 1.3.

The corollary below reveals the communication and oracle complexities of Algorithm 1 (DASHA-
PAGE) with Rand K.
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Corollary 6.6. Suppose that assumptions of Corollary 6.5 hold, B < \/™/n, and we use the unbiased
compressor RandK with K = (¢ = © (Bd//m) . Then the communication complexity of Algorithm 1

IO o px
O<d+LmaX(fi\/% f)d>, )

and the expected # of gradient calculations per node equals
1) <m+ Lmax (f(xo) B f*) \/"’77’> )
ev/n

®)

Up to Lipschitz constants factors, bound (8) is optimal (Fang et al., 2018; Li et al., 2021a), and unlike
VR-MARINA, we recover the optimal bound with compression! At the same time, the communication
complexity (7) is the same as in DASHA (see Corollary 6.3) or MARINA.

6.3 STOCHASTIC SETTING (DASHA-MVR)

Let ht := % Z?:l ht. This vector is not used in Algorithm 1, but appears in the theoretical results.

Theorem 6.7. Suppose that Assumptions 5.1, 5.2, 5.3, 5.5, 5.6 and 1.2 hold. Let us take a = ﬁ

n

in Algorithm 1 (DASHA-MVR). Then

1
be(0,1], 7 < <L+ \/96w(2w+1) ((1 b)°L +L2) + 4(1b7i’)BzL§> ,and g° = 19 foralli € [n]

B[|v@EI*] < % 21— Vi)

32bw 2w+1) 0 96w (2w + 1) 4 9 o
( }:Hh ~Vfi(z }]) -+< — +an)bom

Corollary 6.8. Suppose that assumptions from Theorem 6.7 hold, momentum b =

S) (min{ L,jmeB, ";f}) ,and g = hY = Bfm o 7 f3(20;€9,) for all i € [n], and batch
size Binyy = O (B/b) , then Algorithm 1 (DASHA-MVR) needs

1 . w =~ w o2 L, o?
1=02 WO)‘”(“W“(%* snB>\/§> =

communication rounds to get an e-solution, the communication complexity is equal to O (d + (cT) ,
and the number of stochastic gradient calculations per node equals O (B + BT), where (¢ is the
expected density from Definition 1.3.

The following corollary reveals the communication and oracle complexity of DASHA-MVR.
Corollary 6.9. Suppose that assumptions of Corollary 6.8 hold, batch size B < —Z—, we take Rand K

with K = (¢ =0 (%ﬁ) , and L= max{L, L, E} Then the communication complexity equals

do L(f(z°)—f*)d
ofdo . (f(z°) = f) ’ ©
\/ne \/ne
and the expected # of stochastic gradient calculations per node equals
2 i 0) _ ¢x
O(Ur U@sz)0>' (10)
ne elrn



Published as a conference paper at ICLR 2023

Up to Lipschitz constant factors, the bound (10) is optimal (Arjevani et al., 2019; Sharma et al., 2019),
and unlike VR-MARINA (online), we recover the optimal bound with compression! At the same time,
the communication complexity (9) is the same as in DASHA (see Corollary 6.3) or MARINA for small
enough €.

6.4 STOCHASTIC SETTING (DASHA-SYNC-MVR)

We now provide the complexities of Algorithm 2 (DASHA-SYNC-MVR) presented in Appendix C.
The main convergence rate Theorem 1.19 is in the appendix.

Corollary 6.10. Suppose that assumptions from Theorem 1.19 hold, probability p =
min{ Cc, ”EB} , batch size B' = © (Z—z) and hY = g9 = Zk‘ V fi(25€5,) for all i € [n],

initial batch size By, = © (max {Z—z, BC%}) , then DASHA-SYNC-MVR needs

T¢=Oi(f(w°)f)<L+ ( \/7\/;> ) v

communication rounds to get an e-solution, the communication complexity is equal to O (d + (cT) ,
and the number of stochastic gradient calculations per node equals O (B + BT), where (¢ is the
expected density from Definition 1.3.

Inll

Corollary 6.11. Suppose that assumptions of Corollary 6.10 hold, batch size B < f , we take
RandK with K = (¢ = © (%) , and L:= max{L, L,, L}. Then the communication complex-
ity equals
do L(f(z%) —f*)d
oL LUE) /) d) (11)
Vne Vne
and the expected # of stochastic gradient calculations per node equals
2 z 0\ _ r£x
O<U+ (f(”?) / )0>. (12)
ne e’2n

Up to Lipschitz constant factors, the bound (12) is optimal (Arjevani et al., 2019; Sharma et al., 2019),
and unlike VR-MARINA (online), we recover the optimal bound with compression! At the same time,
the communication complexity (11) is the same as in DASHA (see Corollary 6.3) or MARINA for
small enough €.

6.5 COMPARISON OF DASHA-MVR AND DASHA-SYNC-MVR

Let us consider RandK (note that w + 1 = d/¢c). Comparing Corollary 6.8 to Corollary 6.10
(see Table 1), we see that DASHA-SYNC-MVR improved the size of the initial batch from

C) <max {Zi, Buw,/ 7;—; }) to © (max {%Z’ Bw}) . Fortunately, we can control the parameter K

in Rand K, and Corollary 6.9 reveals that we can take K = © (%‘/ﬁ) and get Bw,/ 2 B <2

— ne’
As a result, the “bad term” does not dominate the oracle complexity, and DASHA-MVR attains the
optimal oracle and SOTA communication complexity. The same reasoning applies to optimization

problems under PE.-condition with K = © (%) .
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A EXPERIMENTS

We have tested all developed algorithms on practical machine learnings problems?. Note that the goal
of our experiments is to justify the theoretical convergence rates from our paper. We compare the
new methods with MARINA on LIBSVM datasets (Chang & Lin, 2011) (under the 3-clause BSD
license) because MARINA is the only previous state-of-the-art method for the problem (1). Moreover,
we show the advantage of our method on an image recognition task with CIFAR10 (Krizhevsky et al.,
2009) and a deep neural network. In all experiments, we take parameters of algorithms predicted by
the theory (stated in the convergence rate theorems our paper and in (Gorbunov et al., 2021)), except
for the step sizes — we fine-tune them using a set of powers of two {2¢ |i € [~10, 10]} — and use the
Rand K compressor. We evaluate communication complexity; thus, each plot represents the relation
between the norm of a gradient or function value (vertical axis), and the total number of transmitted
bits per node (horizontal axis).

A.1 GRADIENT SETTING

‘We consider nonconvex functions

n

2
1 ¢ 1
filw)i= -3 <1 - 1+exp(y]azj))

Jj=1

to solve a classification problem. Here, a;; € R4 is the feature vector of a sample on the 1™ node,
yi; € {—1, 1} is the corresponding label, and m is the number of samples on the i node. All nodes
calculate full gradients. We take the mushrooms dataset (dimension d = 112, number of samples
equals 8124) from LIBSVM, randomly split the dataset between 5 nodes and take K = 10 in Rand K.
One can see in Figure 1 that DASHA converges approximately 2 times faster.

MARINA: Step size: 0.25
MARINA: Step size: 0.5
MARINA: Step size: 1.0
DASHA: Step size: 0.25
DASHA: Step size: 0.5
DASHA: Step size: 1.0

1071

1073

SRERE:

1073

Number of nodes: 5
|| VA(x¥)] |2

1077

-9
10" %90 02 04 06 08 10 12
#bits / n le7

Figure 1: Classification task with the mushrooms dataset and gradient oracle.

3Code: https://github.com/mysteryresearcher/dasha

15


https://github.com/mysteryresearcher/dasha

Published as a conference paper at ICLR 2023

A.2 FINITE-SUM SETTING

Now, we conduct the same experiments as in Section A.1 with real-sim dataset (dimension d =
20,958, number of samples equals 72,309) from LIBSVM in the finite-sum setting; moreover, we
compare VR-MARINA versus DASHA-PAGE with batch size B = 1 in both algorithms. Results in
Figure 2 coincide with Table 1 — our new method DASHA-PAGE converges faster than MARINA.
When K = 100, the improvement is not significant because w dominates (see Table 1),

e/nB
and both algorithms get the same theoretical convergence complexity.

K = 100 K = 500 K = 2000
1074 1074 107

1073 1073

1073

Number of nodes: 5
[[Vfixk)] |2

10-° 1076

=¥~ VR-MARINA: Step size: 0.03125 =W~ VR-MARINA: Step siZe; 0.0625 -Y~ VR-MARINA*Step size: 0.25

—A~ VR-MARINA: Step size: 0.0625 =~ VR-MARINA: Step size: 0:125 —A- VR-MARINA: Step size: 0I5

—¢ VR-MARINA: Step size: 0.125 ~ VR-MARINA: Step size: 0.25 = ~ VR-MARINA: Step'size: 1.0 N\
-~ DASHA-PAGE: Step size: 0.03125 <P~ DASHA-PAGE: Step size: 0.25 - DASHA-PAGE: Step sizgy0.5

-l DASHA-PAGE: Step size: 0.0625 - DASHA-PAGE: Step size: 0.5 -l DASHA-PAGE: Step size: 1.0.

~@- DASHA-PAGE: Step size: 0.125 -@- DASHA-PAGE: Step size: 1.0 ~@- DASHA-PAGE: Step size: 2.0

1075 05 1o 15 2076 3 & 6 8 075 i 3 3
#bits / n le8 #bits / n le8 #bits / n le9

Figure 2: Classification task with the real-sim dataset and K € {100; 500; 2,000} in RandK in the
finite-sum setting.
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A.3 STOCHASTIC SETTING

In this experiment, we consider the following logistic regression functions with nonconvex regularizer
{fi}}_; to solve a classification problem:

eXp (aiT-a: ij) d {x }2
filwr,x2) = Bjopm) | —log <Z =y >+A > X el

ye{1,2} XP (a;;xy)

where z1,z2 € R?, {-}, is an indexing operation, a;; € R? is a feature of a sample on the i
node, y;; € {1,2} is a corresponding label, m is the number of samples located on the i™ node,
constant A\ = (0.001. We take batch size B = 1 and compare VR-MARINA (online), DASHA-MVR,
and DASHA-SYNC-MVR that depend on a common ratio @*/neB 4. We fix o*/neB € {10%,10°} and
K € {200,2000} in RandK compressors. We consider real-sim dataset from LIBSVM splitted
between 5 nodes. When we increase o°/ne B from 10* to 103, we implicitly decrease ¢ because other
parameters are fixed. In Figure 3, when ¢ is small, DASHA-MVR and DASHA-SYNC-MVR converge
faster than VR-MARINA (online).

10-4 K =200 10-4 K = 2000
-~ VR-MARINA .Vline): Step size:\0.0625 W~ VR-MARINA (online): Step size: 0.25
—A— DASHA-MVR:|Step size: 0.0625 —A— DASHA-MVR: Step size: 0.25
DASHA-SYNC:MVR: Step size: 0.125 <t DASHA-SWC-MVR: Step size: 0.5
S
s <
— Xx107° 107>
(IS
Bl —
10-° 107°
0.0 0.5 1.0 1.5 20 25 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1le9 #bits / n lelO
1074 107
W~ VR-MARINA (online): Step size: 0.015625 -W~ VR-MARINA (online): Step size: 0.03125
—A- DASHA-MVR: Step size: 0.0625 —A- DASHA-MVR: Step size: 0.125
— DASHA-SYNC-MVR: Step size: 0.0625 — DASHA-SYNC-MVR: Step size: 0.125
Q -5
§ NElO
X
S s
B> s
Bl 10
1077 1077
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
#bits / n lelO #bits / n lell

Figure 3: Classification task with the real-sim dataset, ©°/neB € {10%,10°}, and K € {200, 2000}
in Rand K in the stochastic setting.

“Indeed, in DASHA-SYNC-MVR and MARINA, the probability p = min{¥/a, 7¢B/52}. In DASHA-MVR,
the momentum b = min{X/q,/neB/s2 neB/s2}
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A.4 DEEP NEURAL NETWORK TRAINING

Finally, we test our algorithms on an image recognition task, CIFAR10 (Krizhevsky et al., 2009),
with the ResNet-18 (He et al., 2016) deep neural network (the number of parameters d ~ 107).
We split CIFAR10 among 5 nodes, and take K =~ 2 - 10% in RandK. In all methods we fine-
tune two parameters: step size v € {0.05,0.01,0.005,0.001} and ratio @*/neB € {2,10,20, 100}.
Moreover, we trained the neural network with SGD without compression as a baseline, with step size
v € {1.0,0.5,0.1,0.05,0.01,0.001}. All nodes have batch size B = 25.

Results are provided in Figure 4. We see that DASHA-MVR converges significantly faster than other
algorithms in the terms of communication complexity. Moreover, DASHA-SYNC-MVR works better
than VR-MARINA (online) and SGD.

¥/~ Vanilla SGD: Step size: 0.05
—A— VR-MARINA (online): Step size: 0.01; Batch Size B': 10
100 —¢ DASHA-MVR: Step size: 0.01; Momentum b: 0.1
—»— DASHA-SYNC-MVR: Step size: 0.01; Batch Size B": 10

Number of nodes: 5
f(xk) — fix™)

1073

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
#bits / n lel2

Figure 4: Classification task with CIFAR10 dataset and ResNet-18 deep neural network. Dimension
d~ 10" and K ~ 2 - 105 in RandK.

B EXPERIMENTS DETAILS

The code was written in Python 3.6.8 using PyTorch 1.9 (Paszke et al., 2019). A distributed
environment was emulated on a machine with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and
64 cores. Deep learning experiments were conducted with NVIDIA A100 GPU with 40GB memory
(each deep learning experiment uses at most 5GB of this memory).

When the number of nodes n does not divide the number of samples N in a dataset, we randomly
ignore N mod n samples from a dataset (up to 4 when n = 5).
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C DESCRIPTION OF DASHA-SYNC-MVR

In this section, we provide a description of DASHA-SYNC-MVR (see Algorithm 2). This algorithm
is closely related to DASHA-MVR (Algorithm 1), but DASHA-SYNC-MVR synchronizes all nodes
with some probability p. This synchronization procedure enabled us to fix the convergence rate
suboptimality of DASHA-MVR w.r.t. w.

Algorithm 2 DASHA-SYNC-MVR

—_

. Input: starting point z° € R, stepsize v > 0, momentum a € (0, 1], probability p € (0, 1],
batch size B’, number of iterations 7" > 1.

2: Initialize g9, h? on the nodes and g = 1 3" | g9 on the server

3: fort=0,1,..., 7T —1do

4 xt+1 — .Tt _ ,ygt
1, with probability p,
0, with probability 1 — p

6:  Broadcast 2/ to all nodes

7. fori=1,...,nin parallel do

8 if ¢!*! =1 then

5. =

9: Wt = & S VAL
10: mﬁ“ _ ngrl _ hﬁJrl
11: else
12: W = S V) b — 50 Vet e
13: mitt =¢; (hﬁ+1 —ht—a(g!— hf))
14: gt =gt + m’;“
15: end if
16: Send mﬁ“ to the server
17:  end for
18:  if ¢t =1 then
o g = I
20: else
21: gt-‘rl — gt + %Z;’L:l m’tb_-'rl
22:  end if
23: end for

24: Output: #7 chosen uniformly at random from {z*}]—}

D PARTIAL PARTICIPATION

A partial participation mechanism, important for federated learning applications, can be easily
implemented in DASHA. Let us assume that the i node either participates in a communication round
with probability p’, or sends nothing. From the view of unbiased compressors, it can mean that
instead of using a compressor C, we have use the following new stochastic mapping C, :

i . oy /
C(z) = p,C(x), W?th probablllllty P, (13)
0, with probability 1 — p’.

The following simple result states that the new mapping C, is also an unbiased compressor, which
means that our theory applies to this choice as well.

Theorem D.1. IfC € U(w), then C,y € U ("Jp—ﬂ - 1) .

In the case of partial participation, all theorems from Section 6 will hold with w replaced by
(w+1)/ p — 1.

E AUXILIARY FACTS

In this section, we recall well-known auxiliary facts that we use in the proofs.
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1. Forall z,y € R%, we have
lz +ylI” < 21lz)* + 2 lylI* (14)

2. Let us take a random vector £ € R4, then

B[] = B[lle - BLEI®] + NE [P (15)

F COMPRESSORS FACTS

Definition F.1. Let us take a random subset .S from [d], |S| = K, K € [d]. We say that a stochastic
mapping C : RY — R? is Rand K if

d
Cle) =+ > e,
jes
where {e;}<_, is the standard unit basis.
Informally, Rand K randomly keeps K coordinates and zeroes out the other.
Theorem F.2. IfC is RandK, then C € U (£ — 1) .
See the proof in (Beznosikov et al., 2020).

In the next theorem, we show that C,, (x) from (13) is an unbiased compressor.

Theorem D.1. IfC € U(w), then C,y € U (WP—“ - 1) :
Proof. First, we proof the unbiasedness:

E(Cy(x)] = ¢ (p,cm) LA p)0=Cla). Ve cR

Next, we get a bound for the variance:

1 2
;C(x) —z| |+ =p)|z|

Bllcy (@ ~2I’] = pE U

= 1B | (g le@I® -2 Sea ) + 1al?) | + (1= ) ol?

= SE[lC@I’] = =) el + (1 =) ol

_ lg [le@)I?] = lle*.

/

From C € U(w), we have

2 erl 2 2 erl 2
Blley@ —ol] £ 5ol ~ ol = (2% - 1) .

G POLYAK-LOJASIEWICZ CONDITION

In this section, we discuss our convergence rates under the (Polyak-Lojasiewicz) PL-condition:

Assumption G.1. A functions f satisfy (Polyak-Lojasiewicz) PL-condition:

IVF(@))? > 2u(f(z) - f), VzeR, (16)

where f* = inf, cpa f(z) > —00.
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Here we use a different notion of an e-solution: it is a (random) point Z, such that E [f(Z)] — f* < e.

Under this assumption, Algorithm 1 achieves a linear convergence rate O (In (1/¢)) instead of a
sublinear convergence rate O (1/<) in the gradient and finite-sum settings. Moreover, in the stochastic
setting, Algorithms 1 and 2 also improve dependence on . Related Theorems 1.9, I.12, I.15 and 1.20
are stated in Appendix I. Note that in the finite-sum and stochastic settings, Theorems .12 and 1.20
provide new SOTA theoretical convergence rates (see Table 2).

H INTUITION BEHIND DASHA

In this section, we want to outline an intuition of differences between the proofs of DASHA and
MARINA that helps us to improve the convergence rates.

H.1 DIFFERENT SOURCES OF CONTRACTIONS

In both algorithms the proofs analyze E¢ [H gitt — Vf(zkth) HQ} , anorm of a difference between a

gradient V f(x**1) and a gradient estimator g**!. For simplicity, we assume that n = 1, then for
MARINA, we have

Ec [[lg"+! = v £*)|*]

= p[|VS (@) = AP+ (1= p)Ee g +C (V) = T f(ah) = T f @]

= (1= p)Ec [[lg" +C (V@) = V(b)) = r @]

I* 4+ (= p)Ee [[le (VA1) = Vi) — (V) - V) ]

’ 2

PE 1) g - ViEh)

“) 2 2

<1 =plg' = VIO + A —pw V") = V5]

In order to get a contraction, i.e., E¢ {Hgt+1 - Vf(a:k“)Hz] <(1-p)|¢" - Vf(;v’“)”2 +en
MARINA has to send a full gradient V f(x*+1) with the probability p > 0.

Now, let us look how we get a contraction in DASHA:
Ee [g"" = V@]
= Ec [[lg +€ (V) = V@*) —a(g' = VF@H)) = V]
= Ec [[lg +C (VI = VF@h) —a(g' = ViEh)) - V)]
LY~ |lg - VIEh

+Ee [[[C (V@) = V@) = a (g = VIH)) = (V) = Vi6h) —alg' = V") []
<=0 [lg* ~ VIEH) P o V) - Vi) —a (ot - Vi)
(- @) + 2wa?) gt = V)| + 20 |V £ (@) = VF(a¥)
< (1-a)[lg" = VA" + 20 | VF@EH) = Vi)

In the last inequality we use that a < 1/2w+1. On can see that we get exactly the same recursion and
contraction. The source of contraction is a correction —a(g* — V f(z*)) inside the compressor C.

I

H.2 THE SOURCE OF IMPROVEMENTS IN THE CONVERGENCE RATES

Let us briefly explain why we get the improvements in the convergence rates of DASHA in the
finite-sum setting. The same intuitions implies to the stochastic setting.

In DASHA, we reduce variances from the compressors C and the random sampling 1 j separately:
we have two different control variables i} and g!, two different parameters the probability p and
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the momentum a. For simplicity, let us assume that the number of nodes n = 1. Let us consider a
Lyapunov function from our proofs:

E[f(@') - f*] +7 (4w +1)E Mgt - ht||2] + (; + 16w (2w + 1)) E [Hht - Vf(xt)Hz} :

In contrast, MARINA (VR-MARINA) has only one control variable g! and on parameter p. A Lyapunov
function of MARINA is

B[f") = 1]+ 5 Bl = ViE)IF]

MARINA has a simpler Lyapunov function that leads to a suboptimal convergence rate. Intu-
itively, having one control variable and one parameter is not enough to reduce variances from

two different sources of randomness. So in DASHA, the parameter p = mLiB7 while in MARINA
B _ ¢

p = min {m, 7} , because the parameter p of MARINA helps to reduce the variance from the
compressors C.

I THEOREMS WITH PROOFS

Lemma L1. Suppose that Assumption 5.2 holds and let x*+' = xt — ~vgt. Then for any g* € R* and
v > 0, we have
1 L

t t i NIK
Ft) < ) - TV - (5 - 5

NW“ﬁW+QwvmﬂW~<ﬂ>

The proof of Lemma I.1 is provided in (Li et al., 2021a).
There are two different sources of randomness in Algorithm 1: the first one from vectors { hﬁ“ 3

and the second one from compressors {C;}7;. In this section, we define Ej, [] and E¢ [-] to be

conditional expectations w.r.t. {h?rl »_, and {C;}_,, accordingly, conditioned on all previous
randomness.

Lemma L.2. Suppose that Assumption 1.2 holds and let us consider sequences gf"’l and h§+1 from
Algorithm 1, then

20w t 12 20 ¢ 12
Nl =R+ =) g 7
i=1

(18)

2 n
o s = sl i
=1
and

Be (o = m ] < 2wl|ntt = nt]* + (202w + (1= @) |lgb = 2])*, vie ). (19)

Proof. First, we estimate E¢ [Hg“r1 — httl ||2}1

Ec {HgtJrl _ ht+1H2]

2

1 n
= Ec gt+E;C¢(h§“—hf—a(gf—hf))—ht“
1 & 1 & ’
PV E |30 C (T h (b ) = 3 (0~ h—a (o)~ )
1=1 =1

+(1 —oz)2 Hgt — htHZ.

Using the independence of compressors and (4), we get

Ec [Hgtﬂ _ ht+1H2]
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1« 2
— 5 D e [[lC: (= hE —a (gl = B)) = (W~ ht = a (gl = nD))|’]
=1
+(1- a)2 Hgt - htH2

w t+1 t_ t_ pt)||2 N2t pt]|2
< g3 hE—a (gl hE)[" + (1 - ) |lg* —

=1
n

Sl [ G- o Y O Pt

=1 1=1

Analogously, we can get the bound for Ec [[|g/*" — nf*!|*]:

Ec [[lgf - ni )]

=B [[lgf +¢: (4~ ht —a (gt — ht)) — b+ 7]

= Ec [[lc: (i*! = b = a (g! = ) = (hf* = bt = a (g = 1)) ]

+(1—a)*[|gf — Rt
< wl|nf* = b —a (gt = hE)[" + (1 = )*[lgf — n*
< 2w ||A = b[* + 2% |lgi = B[P+ (1 - ) |lgi - i
= 2 [ = B+ (2020 + (1 - @)?) [|gf — )"

Lemma L3. Suppose that Assumptions 5.2 and 1.2 hold and let us take a = 1/ (2w + 1) , then
WL
K3
L
<B @) - JI956O - (5 - 5 ) ot =t +v||ht—w<xt>u2}

byt B [t ] + 2 [ZHf ] + £ D

E[f(")] + 7w+ 1)E [Hgtﬂ _ htHHQ}

LSS s P
n 7,=1 1 1 :

Proof. Due to Lemma I.1 and the update step from Line 4 in Algorithm 1, we have

B < Bl - SR - (g5 5 ) I = Sl - wse ]
) E_ SV - (555 ) I = St st v o
< E va H - (_§> th—H—$t||2—|—'y(||gt—htHz—l—Hht—Vf(xt)Hz}),

In the last inequality we use Jensen’s inequality (14). Let us fix some constants , 7 € [0, co) that we
will define later. Combining bounds (20), (18), (19) and using the law of total expectation, we get

E [f(xt+1)]

4 o g = 1] 4

Lt - WHQ]
<E[ o) = 2|V sEh)? —(—L)Wﬁﬂ_fW+WM¢—mW+wm_vﬂﬁwﬂ]
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n

+ kE

e Sl [T
=1 =

%$§]Mﬁlfﬂ!+@aw+ of) £ 32 i -

i=1

16 -3 vr n—(—fﬁnﬂﬂ—fn+wW—Vﬂfmﬂ
+ (’y+/<;(1fa) )E{Hg — | }

+<2Kfjw n (20% + (1 - a) )) lznt ht||]

-wW+u—wW¢—mﬂ

+nE

=K

2Kw 1 & 2
—— +2w)E |- R — BT . 21
O LRSI e
Now, by taking = = I, we can see that v + « (1 — a)® < &, and thus

(7))
# 2l -] e | D et

<E [ =5 IviE) - ( - L) |2+ — || 4 |0t - V)|
+gEMg—Mm

+ <27§w +1n (2a2w +(1— a)2)) E

2
+ (W + 277w) E
an

1 n
zmwmﬂ
n

i=1

RS t+1 t12
ﬁZHhi _hiH :
i=1

Next, by taking n = 277“’ and considering the choice of a, one can show that
(27% +n (2a2w +(1- a)Q)) < 7. Thus
E[f(z")]

e D[l 2 LS e e

<B |- JI5ON - (5 - 5 ) ot = oI+ - Vo]
720+ DB [[lg — ] + QVTWE [7112 gt — hgﬂ
(e 0 g S e ]

<E| )= JIVAN - (5 = ) e+ =l v 1 = 910
et 0l 4 2 | LS ot

SW’W 2w+1 ZHhtH B 1
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O

The following lemma almost repeats the previous one. We will use it in the theorems with Assumption
G.1.

Lemma L.4. Suppose that Assumptions 5.2, 1.2 and G.1 hold and let us take a = 1/ (2w + 1) and
v < i, then

1« t+1 t+1]2
= et =

B[f(a"+)] +29(20 + VE [[|g"** = n+1|] + MTME

i=1
< |fa) - Jvs u—(—L)uw—xtu“‘ﬂuhf—wuww]
+(1—7u)2y(2w+1)E{Hgt—htHQ}+(1— 87‘” [ ZHt ht||]
+207w2w—|—1 ZHhtH ht“

Proof. Up to (21) we can follow the proof of Lemma 1.3 to get

E [f(a")]

+#E [[lg"! = B ] + 0

DN
<E|1a) - J |0 s (L) A S G el
+(v+/<;(1—a ) [Hg—htH}

+<2H22w n (2020 + (1) )) lznt ht||]

2Kw 1 — 2
+<n+2nw)E E;thﬂ_hﬂ‘ ]

Now, by taking x = %7, we can see that 7 + (1 — a)® < (1 — %)k, and thus

E [f(«")]
2 1 —
4 Z’YE [Hgtﬂ B ht+1||2} +7E = ; ||gf+1 _ h;;+1”2
L
=F {f 2 Vsl - ( - )W“ft||2+v||htVf<xt>n2

#(-5) el -]

dvaw
+(”
n

<2a2w+(1—a)2))E izug;ﬁ_hgu?l
i=1
dw LSt
+<an T 2 )E L hi||].
Next, by taking n = S'YT“ and considering the choice of a, one can show that
(47% +1n (2a2w+ (1- a)Z)) < (1—%)n. Thus
E[f(z"*1)]
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+2y(2w + 1)E [Hgt“ - htHHQ} + 2 8’7‘” l Z ottt — hZHHQ]

1

< | - JIv sl - (5 - L) o = - 9161

2y
_ %) 2y(2w + 1)E [Hg - ht”ﬂ

1 7) 87w Z ng hﬁHQ]
he(w+1) | 167w ) Z e ]
<B |16 - Ivr6) - (5 - 5) e R e 2]

(1 2)272“1 [Ht htyﬂ
+(1-5) 28 13t - ]
W

Finally, the assumption v < - nnphes an inequality 1 — 5 <1 —ypu. O

_|_

+
/N /N

+
7 N\

1

_|_

20yw(2w + 1
+77

Lemma L.5. Suppose that Assumption 5.1 holds and
E[f@")] + 79+ <B[f(")] - B [[V/@)]*] + 79" +4C, (22)

where W' is a sequence of numbers, W' > 0 for all t € [T, constant C > 0, and constant ~y > 0.
Then

+ T 420,

9 JUO _ f® 0
B[[vran|’] < W 2; (23)

where a point TT is chosen uniformly from a set of points {mt};":ol

Proof. By unrolling (22) for ¢ from 0 to 7" — 1, we obtain
N
1 Z V5@ + E[fT)] + 797 < J(a°) +¥° +4TC.
t=0

We subtract f*, divide inequality by g, and take into account that f(x) > f* for all x € R, and
Wt > 0 forall t € [T], to get the following inequality:

TZ Ivsf] < 2= 2 e

It is left to consider the choice of a point Z” to complete the proof of the lemma. O

Lemma 1.6. Suppose that Assumptions 5.1 and G.1 hold and
B[f@)] 99 S E[f@)] - 2B [[|[VF@")]*] + (1 = 379" +4C,

where W' is a sequence of numbers, ¥t > 0 for all t € [T), constant C > 0, constant pn > 0, and
constant vy € (0,1/p). Then

E[f(z") = ] <@ =" ((f=°) = f*) + %) + % (24)
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Proof. We subtract f* and use PL-condition (16) to get
B[f@*) = ] +70* < B[f@") - ] - 2B |[VF@)|*] 19 +C

< (A=ywE[f(z') = f] + (1 —yu)y¥' +4C
(L—p) (E[f(z") = f*] +7¥") +1C.

A

Unrolling the inequality, we have

E[f@™) = f]+0 < (=)™ ((f@°) = ) +79°) +4C ) (1 —yp)
=0

. C
< (=) () = f) +790) + "
It is left to note that ¥* > 0 for all ¢ € [T]. O

Lemma L7. If0 < v < (L ++VA)™', L >0, and A > 0, then
1 _L 4

— > 0.
2y 2 2~

It is easy to verify with a direct calculation.

1.1 CASE OF DASHA

Despite the triviality of the following lemma, we provide it for consistency with Lemma I.14 and
Lemmal.11.

Lemma L.8. Suppose that Assumption 5.3 holds. Assuming that h9 = V f;(x°) for all i € [n], for
hﬁ“from Algorithm 1 (DASHA) we have

1.
By [ = v+ =o.
2.
En [[|h0 = Vi@ )|°] =0, Vi€l
3.

B [t = ] < 22+t - o)

, Yie[n].
Theorem 6.1. Suppose that Assumptions 5.1, 5.2, 5.3 and 1.2 hold. Let us take a = 1/ (2w + 1) and

-1
7 < <L + WE) ,and hY = V f;(x°) for all i € [n] in Algorithm 1 (DASHA), then

EMWWWﬂS;FUMwﬁﬂ@A m“?*”ﬁ

dw [1 &
+2(2w+1)[|g" - VFEO)|*+ = (n >_lls? - vfi(x°)||2> ] .
i=1
Proof. Considering Lemma 1.3, Lemma 1.8, and the law of total expectation, we obtain
l = t4+1 g t41(2
DRl
1 L

<E[f) = JITA - (5 -5 )l =o'l

B /)] + (20 + DB [[lg! -+ ] + e

n
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n

T )Y ol Ry PR [ I Rab Y PR
=1

=B [f(a")] - 3B [V f@")’]

2w [ 1
7@+ DE[|lg — bP| + 2B | = 37 gt - i)

n -
L =1

_ <1 _ £ _ WM22> E [HItJrl _ xtH?} '

2y 2 n

Using assumption about -y, we can show that % - L_ WEQ > 0 (see Lemma 1.7), thus

DTS wwﬂ
Do |15 1ot - .

In the view of Lemma 1.5 with ¥! = (2w + 1) E [Hgt - htlIQ} + 22E [% S llgt = thQ} we can
conclude the proof. O

E [f(xt+1)] ty(wt DE {Hgtﬂ ht+1H }

<E [f(xt)] _ 7E [va || } +72w+1)E [Hgt _htHQ}

Corollary 6.2. Suppose that assumptions from Theorem 6.1 hold, and g9 = hY = V fi(x°) for all

i € [n], then DASHA needs T := O(i

(f(2) = f*) (L + ﬁf) ] > communication rounds

fo get an e-solution and the communication complexity is equal to O (d + (¢T) , where (¢ is the
expected density from Definition 1.3.

Proof. The communication complexities can be easily derived using Theorem 6.1. At each commu-
nication round of Algorithm 1, each node sends (¢ coordinates. In the view of g¢ = V f;(x°) for
all ¢ € [n], we additionally have to send d coordinates from the nodes to the server, thus the total
communication complexity would be O (d + (cT) . O

Corollary 6.3. Suppose that assumptions of Corollary 6.2 hold. We take the unbiased compressor
T IO _px
RandK with K = (¢ < d/+/n, then the communication complexity equals O (d + W) .

Proof. In the view of Theorem F.2, we have w + 1 = d/K. Combining this and an inequality L < E,
the communication complexity equals

O(d+(T) = O<d+i (f(=) = f*) <KL+K\;%E> )
- @G+20“%—>(f wﬂ)
- O<d+1 (F(a°) — f* \dfz )

1.2 CASE OF DASHA UNDER PL-CONDITION

Theorem L.9. Suppose that Assumption 5.1, 5.2, 5.3, 1.2 and G.1 hold. Let us take a = 1/ (2w + 1) ,

—1
v < min { (L + 4/ ZM(ZME) ,2““} ,and hY = Vf;(z°) for all i € [n] in Algorithm 1
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(DASHA), then

E[f") -] <@ —w)" ((f(xo) — )+ 292w + 1) [|¢° - V)| + S%w (:l > lle?

i=1
Proof. Considering Lemma [.4, Lemma 1.8, and the law of total expectation, we obtain
T t+1)|2
NI
=1
ty 7 t 1 L 1 t|2
<B 1) - IV - (5 - 5 ) I+ =o'l

+ (1= ) 29w + VE [lg* = b*] + (1 = yu 8%’[ }:Ht mn]

20 2 1)~
" ’Yw(nw‘f‘ )L2th+1

=E[f")] - 3B [[V/E)|]

B[f("*)] + 2y(2w + DE [[|[g"*! = a4 "] + 8%“13

2
-

8
(1= ) 2920 + VE [lg* = b*] + (1 = y) 2B [ Z!lgz hﬂf]
1 L 20vw(@w+1)~ : 2
- (5 - 5 - DR a2,

Using the assumption about 7y, we can show that % — % — WEQ > 0 (see Lemma 1.7), thus

E [f(xt+1)] +29(2w + 1)E [Hgt+1 . ht-&-le} i 87“ l Z Hgt+1 h’;HHQ}
<E[f@")] - 2E [||V/@")]]

(1= ) 2920 + E [g" = #']*] + (1~ SW [312 hﬁ”ﬂ'

In the view of Lemma 1.6 with ¢ = 2(2w + 1)E {Hg —ht } + 8vg [l S llgk = h§||2] we

can conclude the proof. O

We use O (+), when we provide a bound up to logarithmic factors.

Corollary L.10. Suppose that assumptions from Theorem 1.9 hold, and g? = 0 for all i € [n], then

DASHA needs
~ L L
T:=0<w+#+“>. (25)

communication rounds to get an e-solution and the communication complexity is equal to O ((cT) ,
where (¢ is the expected density from Definition 1.3.

Proof. Clearly, using Theorem 1.9, one can show that Algorithm 1 returns an e-solution after
(25) communication rounds. At each communication round of Algorithm 1, each node sends
¢ coordinates, thus the total communication complexity would be O ({¢T") per node. Unlike
Corollary 6.2, in this corollary, we can initialize g?, for instance, with zeros because the corresponding
initialization error W° from the proof of Theorem 1.9 would be under the logarithm. O
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1.3 CASE OF DASHA-PAGE

Lemma L.11. Suppose that Assumptions 5.3 and 5.4 hold. For hﬁ“ from Algorithm 1 (DASHA-PAGE)
we have

1.

_ 2
E), “|ht+1 _ vf(xtH)H?] < % thﬂ _ thQ +(1-p) Hht _ vf(xt)||2.

_ 2
By [[n - Vet 7] < S s oot ()t VARG vi e ol

T2
Ep [th“ — thQ] < (MfiL“‘a" + 2Lzz> |2+t - xtHQ +2p ||kl = V fi(a")] ’ Vie [n].

Proof. Using the definition of httl we obtain

E, [Hht-s—l _ Vf(xtﬂ)Hz}
2

=(1-p)E, Z > (Vi) = V') = Vi@

=1 jEIt

2
(15)

%Z Z Vi (@) = Vi (@h) = (V) = V")

i=1

+ (1 —p)||p" = V(' )|| )

From the unbiasedness and independence of mini-batch samples, we get

E, [Hht+1 _ Vf(xtﬂ)’ﬂ

1—p
n2RB2 ZEh

i=1

—~

IN

> (W Fis@™h) = Vfis(a) = (Vfila™) = Vfi@t))HQ]

JEI?

+(1—p)||nt = V)|

_ (171;;) . (;ZH(VJCU( ) = Vi () = (Vila™) —Vfi(zt))||2)

(;l >[IV - Vfij<xt>“2)

j=1

—p)||nt = Vi@Eh)?

1—p)L2
(=) o a1 — -1 = ) = 9 16

In the last inequality, we use Assumption 5.4. Using the same reasoning, we have

By [[[A+ - 9G]

IA
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2
=B [ 52 (VA6 - Vo) A
Jel;
- 2
=(1-pEx % > (Vi ™) = Viih) — (V™) - V(")
jert
—p) ||nt = V()|
_ 2
< UoB B o) 4 (1 ) [t - V()
Finally, we consider the last ineqaulity of the lemma:
Bn [0 = B[]
2
= p|[V A ) = B (=) ||+ 5 S (V) = V() — B
jert
Do Vi) -
2
+-pE || 5 32 (VA - Vi) - (V™) - Vi)
jEI‘

+(1=p) VA = V|
Using the unbiasedness and independence of the gradients, we obtain
B [[|¢ = b

<p|[ Vi) -’

+(Z;”EhIEIWVﬂAﬂ“>—Vﬂxﬂ»—«Vﬂm#H ~Vfile w]

JelIt
+ (1= p) ||V fila™h) = V()|
= p||V /i) — Bl

p) (;ZH(Vﬁj(ztﬂ) — Vfis(a")) = (Vi) = V()| )

p) ||V fi(zt) = V()|
épHVﬁ (21 — n||?

( Z”Vf a1 Vfij(xt)’|2)

+(1-p) Hsz (' — V(2 H .

From Assumptions 5.3 and 5.4, we can conclude that

By [0 = ]

(ot ]2 _ Liax 2 t+1 _ t]]2
<p[[VAEH) =BT+ (=) (ALY ) [ - 2
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2
=p||V/fi(a"™) = Vf;(z") + Vfi(a") — h§||2 +(1-p) (L“Ba" + Lf) [ g;t||2

19 NoRE! ¢ _ L ax 2 41 )2
< 2|V fi(a™) = Vfih)||* + 2p||BE — V£i()|* + (1 - p) 2EALY) || ||

B

2 (|, t+1 t]|2 t L12nax 2 t+1 t)|2
< 2pL; H:c+ facH +2p||h — Vfi(z H +(1—-p) | ==+ L; ||xJr fo
_ 2
< ((1 pB)Lmax +2L?> ||$t+1 _l't||2+2p||h§—Vfi(xt)||2.

O

Theorem 6.4. Suppose that Assumptions 5.1, 5.2, 5.3, 5.4, and 1.2 hold. Let us take a = 1/ (2w + 1),
probability p € (0,1], and

1
2 - _ 2
<o+ 48w (2w +1) ((1—p)L2,, +12) + M
n B pnB

in Algorithm 1 (DASHA-PAGE) then

B[IVAETI] < 7 |2 (760 - 1)

X <L+\/48w(2:+1) ((1—32Lmax +L2> 2(pn;3Lr2MX>

+2(2w 4 1) [~ KO + 22 <i S le? - h9||2>
1=1

2 - v+ D (55 o)

Proof. Let us fix constants v,p € [0,00) that we will define later.

. Considering Lemma 1.3,
Lemma I.11, and the law of total expectation, we obtain

B/ )] 47 2w+ DB [ - 1] + 2%

12 ot - hﬁ“llﬂ
B| L3 et —vmt“)HQ]
<B ) - FIT5ON - (5 - 5 ) ot = atlP - Vs
T [ e P W R
L Sw (w1 ((1—12L?nax+232) 2+ — || + 2p= ZHht Vfix H]

_ 2
e R I T

+vE [[n = V7] +

E

nB

+ pE

1— L2 1 -
e R REE o LA
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After rearranging the terms, we get

E[f(xﬁ-l)] Yy (2wt 1)E [Hgtﬂ ht+1H }

Sl ]
B iznhz“—m(w)ﬂ
i=1

+ B [ = v )] +

<E[f@)] - SB[|[V/6)]
+9w+1)E (g = #*] + QLWE [1 Z = hgﬂ

1 1 Sw(w+1) ((1[))7“—&-2112 12 1— ) L2
_ (__ ) —V( ) max _p( p) max EI:th—i-l —l‘tH21|

2y 2 n nB B

+ (v +v(1=p)E[|[p = Vi()|[’]

WIS B L S —wmf] -
i=1

Next, let us fix v = 2| to get
P

E [f(xtﬂ)] +72w+1)E [Hg’”r1 ht+1|| }

ZH t-‘rl ht+1|| ‘|
%Zuhf-“ _WMHQ]
=1

e

<E[f6")] - IB[|Via))]
+7(2w+1)E [Hgt - htm + %%E lrll > llgi - hﬁ”ﬂ
i=1
Tg [t~ v iat)]

= p) (A-p)L5ax 2
i_£_8mu(2w+1)( +2L>_7(1 p) L.  (1—p) L%, B [l t|2

n <167pw (2w+1) L1 p)>

n

l . t NI
E n;Hhi Vfi(zh)

By taking p = W, we obtain

B[f(@)] + 7w+ DE[[lg - 1] + %TWE l; 3 |lgit - h§+1||21

n lE [Hhtﬂ _ Vf(JJtH)H ] 16w (2w + 1
P n

L3t - wae )]
<E[f")] - 3B [|vi6h]’]

+7(Q2w+1)E Mgf _ ht\ﬂ 4 Q%WE

1 n
=D —hﬁﬂ
i=1

T [ - v 2] + 20220 D iZth—m(xf)uQ]
i=1
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( ) ernax 167"‘] (2w + 1) (1 - p) Lr2nax t+1 12
B pnB B nB b [Hx -7 H }

<EB[f@")] - 2B [||V/E")]]

+y o+ DE [[lg - #7] + 228

RS gt —ht
|3 1ot -]

L2 16yw (2w + 1)
E (7 = V@) + =k ZIW Vi)’
_ 2
(1 L 24yw (2w + 1) ((1 %Lmax,jLL?) (1 =p) LR E[H 1 t’ﬂ
27 2 n B T T .

Next, considering the choice of v and Lemma [.7, we get

E (£ )] +7 (20 + DE g+~ 1] + 22K

Z HgtJrl ht+1H ]
LS - s
=1

+1E [Hhtﬂ _ Vf(xt+1)||2} 4 6w 2w+l
p n

<E[f()] - 1B [V r@)’]

+7Q2w+1E [Hgt — ht||2] + QVT”E

1 n
£S5t~
1=1

. 167w (2w + 1 ,
T ot v + g [ - v H]

Finally, in the view of Lemma 1.5 with

U= (2w+1)E[Hg ht||}+E[;Z||g§—h§|\2]
L3 sl

we can conclude the proof. O

n %E [Hht_ || } 16w 2w+1

Corollary 6.5. Let the assumptions from Theorem 6.4 hold, p = B/(m+B), and ¢° = h? = V f;(2°)
for all i € [n]. Then DASHA-PAGE needs

o ] e ) (e e (2 I o)

communication rounds to get an e-solution, the communication complexity is equal to O (d + (cT) ,
and the expected # of gradient calculations per node equals O (m + BT) , where (¢ is the expected
density from Definition 1.3.

Proof. Corollary 6.5 can be proved in the same way as Corollary 6.2. One only should note that the
expected number of gradients calculations at each communication round equals pm + (1 — p)B =

2mB
2mB < 9P, O
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Corollary 6.6. Suppose that assumptions of Corollary 6.5 hold, B < \/™/n, and we use the unbiased
compressor RandK with K = (¢ = © (Bd//m) . Then the communication complexity of Algorithm 1

0\ _ fx
O<d+Lmax(f£a:¢% f)d>’ -

and the expected # of gradient calculations per node equals

o (m \ Lnax (%) = 1) W) |

®)

evn

Proof. In the view of Theorem F.2, we have w + 1 = d/K. Combining this, inequalities L < L <
Lax,and K = © (5—%) =0 (%) , we can show that the communication complexity equals

O(d+GT) = O|d+-| (") - f)(KL+KfL+K<\/ﬁ+\/nWB> L;%x>

1 o[ d d ~ d

= 0 d-l-g (f(wo)—f)(\/ﬁL-ﬁ—fL T maX>
1 o [ d

= O d+g (f(mo)_f)(\/ﬁLmax)

And the expected number of gradient calculations per node equals

O(m+BT) = O m+§ (f®) = f7) <BL+B\L/%E+B(W+ :;}) L\/ﬁ*)

= 0 m+§ (f(«) = ) (ﬁme>

1.4 CASE OF DASHA-PAGE UNDER PE-CONDITION

Theorem 1.12. Suppose that Assumption 5.1, 5.2, 5.3, 1.2, 5.4, and G.I hold. Let
us take o = 1/(2w+1), probability p € (0,1], batch size B € [m], and

-1
~v < min (L + \/QOOw(QwH) ((l_p]);‘g“ax + 2E2) 4 A0=P)Lhay p’;)é"‘“) , 2#, 2#} in Algorithm 1

n

(DASHA-PAGE), then

E[fT) - 7] < (L—w)"| (F@®) - )+ 29w+ 1) [l — 20 + 8”“’1ZH° B
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%Hho—vf(ﬂfO)HQ M( ZHhO V/i(x )

Proof. Let us fix constants v,p € [0,00) that we will define later. Considering Lemma 1.4,
Lemma I.11, and the law of total expectation, we obtain

B [f()] + 23(20 + DBl — ] + 2B

1< 2
DWIARER

=1

+ B [ = V@] + pE

WIS
=1
<E |fa) - v s u—(—5)uw—wt||2+vuht—w<wt>u?]

(1) 292+ DB [lg" ~ 17] + (1 =) LR [ Z!lf il

20vw (2w + 1
L2 (n )

— 2 -~
B ((1 2Lmax+2L2) ot — at||” + 2p— ZHht Vfilx M

v [ s oot — )P () 1= 91
p)

(TxthﬂfthZJr(l*p)%ZHht sz H ]

=1

+ pE

After rearranging the terms, we get

E [f(a")] + 2y(2w + 1)E {Hgt*l _ ht-‘,—lHQ} 8%}

ZH t+1 ht+1“ ‘|
1 t+1 t+14](2
DRI

=1

+ B ([ = V] + pE

<E[f@")] - 2 [||VFa")]’]
8yw

17L
+(1—yu)2y(2w+1 [H K htHZ} + (1 —yw) TE EZ Hgf - hf“ﬂ
=1
L L 200wt 1) ((1=p)Lia 70 (=0 L (L=p) i 1 t))2
(35~ 2 (B o) -y - Bt o ]

+(y+v(1=p)E|[|n* = V()]

(e[S vsen]

n
,one can see that y+v(1—p) < (1 — 121) v and er

By taking v = %’Y and p = W

p(1—p) < (1—15)p, thus

B [f(z")] +29(2w + 1)B {Hgt—i-l _ ht+1H2} 87w

ZH t+1 ht+1” ]
%Z [~ Vfi(xf“)ﬂ
i=1

+ B [[[0 = V] + pE
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<E[f@")] - 2E [||VF@")]’]
+ (1 =) 2y(20 + 1)E {Hgt - htm +(1=p) MTME

+ (1 - g) %E [Hht — Vi }

(05

1 2

I £ _ 207‘*)(2“ + 1) ( )Lmax + 2L2
2y 2 n B

1 n
LSl -l
=1

)80fyw 2w+1)E ZHht Vi ]

27( )LIQnax 80’}/&) <2w+ 1) (1 _p) L12nax t+1 12
B pnB B nB B [Hx -7 H }

<E[f")] - 3E[|Vf@)]]

8yw

+ (1= ) 29(20 + DB [lg" — b|*] + @ =9 °E

1n t t12
SR
L3 - vt ]

_1_(1_7) ’YE[th Vi(z )H}_i_(l 2)M
(1 L 100w(2w+1)<( )LfnaXHLz)M)E[Hzmxtuzl

2
%757 n B pnB

Next, considering the choice of v and Lemma [.7, we get

E[f(21)] + 2v(2w + 1)E {Hgt—&-l _ ht+1H2:| 8%}

L3l - hz+1\12]
LS e wmwf]
=1

B [[[ = V] + pE

<E[f@")] - 2B [[|VF@")’]

8
+(1—w)27(2w+1)1«3[Hgt—ht”ﬂ+(1— g ZHt htM
80 2 +1)
+ (1= yp) WE[W via)|*] +( % ZHht Vi ]
In the view of Lemma 1.6 with
t _ PPTTE Y B R I R TP
T = 22w+ 1E [Hg h H ] + - E n;”% th ]

+ zE [Hht_ || ] 80w 2w+1

1 n
B3 - wael
n -
i=1
we can conclude the proof of the theorem. O

Corollary 1.13. Suppose that assumptions from Theorem 1.12 hold, probability p = B/(m + B),
and h? = g% = 0 for all i € [n], then DASHA-PAGE needs

~ L wf W \/m> Linax
T:=0 — 26

communication rounds to get an e-solution, the communication complexity is equal to O ({cT) , and
the expected number of gradient calculations per node equals O (BT) , where (¢ is the expected
density from Definition 1.3.
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Proof. Clearly, using Theorem 1.12, one can show that Algorithm 1 returns an e-solution after
(26) communication rounds. At each communication round of Algorithm 1, each node sends (¢
coordinates, thus the total communication complexity would be O ({¢T") . Moreover, the expected
number of gradients calculations at each communication round equals pm+ (1—p)B = % <2B,
thus the total expected number of gradients that each node calculates is O (BT') . Unlike Corollary 6.5,
in this corollary, we can initialize hY and g9, for instance, with zeros because the corresponding
initialization error W° from the proof of Theorem I1.12 would be under the logarithm. O

1.5 CASE OF DASHA-MVR

We introduce new notations: V f;(zt+1; &) = L Zle Vfi(zt fffl) and V f (2!t ¢t =
Ly V).

Lemma L.14. Suppose that Assumptions 5.3, 5.5 and 5.6 hold. For hﬁ"'l from Algorithm 1 (DASHA-
MVR) we have

1.

%02 2(1—0)° L% o1 42
nB + nB H‘T _$H

E, _Hht-i-l _ Vf(xt-ﬁ—l)H?} < + (1 - b)2 Hht _ Vf(xt)HQ )

2202 L20- b)* L2
B B

By [||hit - w@ﬂ)ﬂ < [+ = at||” + (1 = b)?||ht — Vi), Vi€ [n].

2b%02

- _1)\2 712
Ey |[|hit! - hﬂﬂ < +2 ((12@, - L?) [t — 2t ||* + 207 ||t — Vfi(«))||*, Vi € [n].

Proof. First, let us proof the bound for By, [+ — ¥ f(a+1)*]:

B |[ln = I

= By [ VA€ + (1= 0) (0 = VI (@'5€) = V)]

DB [[lp (VHa" 65 = V@) + (1= b) (V564 = V™) + V(') = Vi) ]
+ (1) ||nt = ViEh)?

< [V ) - V]
+2(1 =8 By VA6 = VA + V@) - V@]
+ (1) ||nt = ViEh)?

= iif Zn;Eh IV fia 6+ = Ve )]

+ M ZEh |:vai($t+l;§f+1) _ vfi(xt;glﬁ-l) _ (Vfi(l‘t—H) _ sz(xt))HQ]

n2 ,
=1

+ (1 —b)?||nt = V)|

20° ¢ & t+1, qt+1 t+14]]2
= s 2D B [[[VAGE e - Ve
i=1 j=1
2(1*17)2 e t+1, ot+1 t. et+1 t+1 t\) |12
n2 B2 > D En “Wfi(x 16 ) — Vi) — (VAE™) = Vi@ ))||}
i=1 j=1
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+ (1= b)?||nt = V)|
Using Assumptions 5.5 and 5.6, we obtain

21 20202 2(1—b)°L
Ej [Hht“—w(wt“)” } T ——y

Similarly, we can get the bound for Ej, [th“ — V() }ﬂ :

e ACS

= B [[[VAGTE) + (1 =0) (b - VA E) = VA

=B|[p (VAGTHET) = VAGET) + (1= 0) (VAETL ) = V@) + V@) = Vi) ]
+(1—0)*||nt - sz( H|1”

2b%0* (1_b> 1 _ )2 2||pt Nk
S e e

Now, we proof the last inequality of the lemma:
B [[|¢ — b
= B [[| VA ) + (1= 0) (bt - Vet ™)) - b
@Eh[||Vfi<xf“;s¢+1>—Vfi<:ct+1>+<1fb>(wi<x> Vet )]
IV A = Vi) — b (6] = Vi) |
= B [[[b (VAGE ) = VAET) + (0= 0) (VAET5E) = VAR - (Vh@E) - VhiE)) )]
+[| VAt = Vi) — b (= Vi)
< o [| Vi€ ~ V)]
+2(1 =0 By [ VAT - VAR ) - (VAR - V)|
+2||Vfi(xt+1) VEi(h)|® + 207 ||hl = V£

-2 ZEh [HW ) - At

3 t+1 t]|2 2|3t |2
2"t = 2t]]" + (1 = b)" ||n" = Vf(a")]".

h[HVfi(wt“ €51 = VL' €N = (Vhile™) = Vfie")|’]

+2 ||Vfi(xt+1) Vii(h)|® + 207 ||hl = V£
In the view of Assumptions 5.3, 5.5 and 5.6, we obtain

2 2 N2 72
R e T

)2 2| t+1 _ 2 2| pt _ T £ (t)]|2
= — ot° + 202 ot — of|” + 262 || Bt — V()|

O

Theorem 6.7. Suppose that Assumptions 5.1, 5.2, 5.3, 5.5, 5.6 and 1.2 hold. Let us take a =
-1

2w+1 be (0,1, and v < (L + \/%“’(i‘”“) <(1 bLE | L2) + W) , in Algorithm 1

(DASHA-MVR). Then

B[Ivr@I1] < 7 [2 (£ - 1)
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96w (2w+1) ((1—b)°L2 - 4(1—0b)* L2
L (e 2 [
x ( + $ n ( B HL nB

2t 1) g — 1 + (ZH° hou)

31 - v B (15 o g0

96w (2w + 1) 4 5
+< nB +an>b‘"

Proof. Let us fix constants v,p € [0,00) that we will define later. Considering Lemma 1.3,
Lemma I.14, and the law of total expectation, we obtain

E[f(xt-‘rl)] Yy (2wt 1)E |:Hgt+1 ht+1H }

E3 ol ]
g i2||h:“—wi<xf+1>llﬂ

=1
<E 1) - 95 H—(—5)fo“—xfr|2+v||hf—w<mt>u2}
1 ¢ t ]2
E3lit -

2 2 _1N2r2
2020 +2<( b) L”+L2> th+1 t” +2b2 ZHht Vfi(a ||1

+ B [ = O] +

+9 2w+ 1E (g = | } k)

8vw (2w + 1
L8 (n )

E

B B

2% 2(1-0b)212 et —

t2 N2 Bt NIK
+VE | = — |7+ (1 =b)"|A Vf(x)”]
2b22 _
o |7 RO st S - v
=1

After rearranging the terms, we get

E[f(z")] + 7 (2w + 1)E [Hgtﬂ _ htHHQ}

Lt - hwﬂ
%Znh:“ wwnﬂ
=1

+ B [[[ = V] + pE

<B[f@)] - 3B|[V@)’]

et 0l 4 2 | LS -

1 p 6w @ ) (D) g0 22 g0 opPLe .
( ( ) 20 gy

2y 2 n nB

+ (41 =) B [[|n = Vi )|]

2
+<16b’yw(2w+1) (1-b) >
n

WIS
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8yw(w+1) v 9 o
-1-2( G + B+B)ba.

By taking v = 7, one can see that v + v(1 — b)? < v, and

E[f(@")] +7 (2w + DE [l - a7 ] + 2w

1 n
nZHgf“—hE*lﬂ
=1
LS - )]
=1

+ 2B [0 = V@] + pB

<E[f@")] - B[ |[V/E")’]
e o0l + 220 151 -]
=1

S 1Ol

_1n\2712 o~
) ( L1 160w (2wt 1) (% +L2) 2y (1 - b)* L2 _2p(1 —b)° Lg) E [th+1 —xt||2]
B

2y 2 n bnB

16b%yw (2w + 1 1 «
+<77§)+p(1—b)2>E =3 |0 = Ve H]
=1
8w (2w +1) Y P\ 22
2( nB B B)YC

Next, we fix p = w. With this choice of p and for all b € [0,1], we can show that
w + p(1 = b)? < p, thus

E [f(xtﬂ)] +72w+1)E [Hg’fle ht+1|| }

ZH t-‘rl ht+1|| ‘|
|3 - vt
=1

+JE a1 = V|| + 16b7w (2w + 1) (jw 1

<E[f)] - 2E[|[V@)]]

2
72w+ DE [[lg* - 0| + Z2E

E3 k-]

P 16bw2w 1 ‘
7 ot - vt + 2 D 25 g - v ]

- (1 L 167w (2w + 1) ((1 % L +E2) C2y(1-b)*L2 32bw(2w+1)(1_b)2Lg) - [me —$t||2}

2y 2 n bnB nB

8w (2w +1) y 16byw 2w +1)\ 5 ,
b
2 ( nB * bnB * nB 7

<E[f@)] - 2B || V@) }

72+ DB [[lgf - nt|] + 22

E3 -l

+ 1B - wsy|] + 1Bt Dy ZHht Vi ]
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-~

1-b)2L2
1 L 48yw (2w + 1) (% + LQ) 2y (1 _ b)2 2

AL _ o 41t
2y 2 n bnB [HI H ]
Byww+1) 27\ .5 o

* ( wB an> b

In the last inequality we use b € (0, 1]. Next, considering the choice of 7 and Lemma 1.7, we get

DN
WIS

E[f(z"")] + 7 (2w + 1)E {Hgt+1 _ ht+1H2} 2%J

" %E [Hhtﬂ 21 ||2] 4 16w 2w+ 1) 16b’yw (2w + 1

<E[f(z)] - 3E [ V)]’

Fyw+ DE [Hgt _ ht]ﬂ + %E

1 n
E3lat -]
=1

b
+ 3 (I - sl BB [ i - 9 H]

BywPw+1) 27\ .5 o
+ < nB mp)U

In the view of Lemma 1.5 with

t_ bptl?] 4 2
v = e+ DE[|g —#] + =B

1 & 2
LSl -
16bw 2w+1 .
]+ B LS v H]

and C' = (% + 3 ) b202, we can conclude the proof. O

+ %E [n = s

Corollary 6.8. Suppose that assumptions from Theorem 6.7 hold, momentum b =

S} (min{ L, /neB neB }) ,and g} = h) = £ SO fi(29;€9,) for all i € [n), and batch
size Binit = O (B/v) , then Algorithm 1 (DASHA-MVR) needs

g

1 . w o~ w 2 L, o?
10| Wco)‘”(“ﬁ“(ﬁ* mB>\/§> B

communication rounds to get an e-solution, the communication complexity is equal to O (d + (cT) ,
and the number of stochastic gradient calculations per node equals O (B + BT), where (¢ is the
expected density from Definition 1.3.

Proof. In the view of Theorem 6.7, we have

B[IvA@E")]7]

1
T

(f(2%) — %) L+\/1—b Ay \F
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v+ (L5 - vsen)

w? 1 o2
z 2
* ( i bn) B

Note, that = © (max {w\ /-2, n; }) <0 (max {oﬂ, n‘;; }) , thus

B[|vr@EN|]

1 % w =~ La 02 Lo’
=0\ 7 (f@o)‘f)(“ﬁ(“@)* sz@>

31 e 2 (LS e vl | e
=1

Thus we can take

T=0

(O
=
8
N
|
=
VR
~
JF

Sle
/~
)
JF

h
SIS
N~
Sh
~__—

RS O s Ry

Note, that hj = ¢) = 5 2t 7 f;(9; €9,) for all i € [n]. Let us bound E {Hho - Vf(:co)HQ}:

2
E[[n0 - s = LSO pael) - i)
i—1 lmt k=1
n  Binit
- nzB2tZZE[HVﬁ V)]
mt ;=1 k=1
U
<
= nBiit
Likewise, £ 57, B [[[1¢ = V£i(e)*] < £ Allinall, we have
_ 1 0 * w = La' 0'2 L
o? bw?o?
+

bn Binit * 1 Binit
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1 . w [~ L4 02 L,
=0\ W’O)‘f)(“ﬁ(“@)* €n2B\/§>

1 w ([~ L o2 L, o2
=0| - L+ —=(L+Z% -
- | (f") f)( +\/ﬁ( +\/§)+ —5 f) +—%
In the view of Algorithm 1 and the fact that we use a mini-batch of stochastic gradients, the number
of stochastic gradients that each node calculates equals Bj, + 2BT = O(Biyi + BT). ]
Corollary 6.9. Suppose that assumptions of Corollary 6.8 hold, batch size B < f , we take Rand K
with K = (¢ = (@) , and L= max{L, L,, L}. Then the communication complexity equals

d E 0\ _ fx d
ofdo . (f(z%) = f) , ©
\/ne \/ne
and the expected # of stochastic gradient calculations per node equals
2 z 0\ _ r£x
o (a L LUE) — )a) | 10y
ne e’2n

Proof. Inthe view of Theorem F.2, we have w+1 = d/K. Moreover, K = © (%) =0 (%) ,
thus the communication complexity equals

0] d+§ (f(z°) — f)(KL—&—Kw

O (d + CcT)

And the expected number of stochastic gradient calculations per node equals

O (Binit + BT)

Vn VB BB

ENn

2 2 R 2
—0 Bg—m+3w Z—+1 (f(xo)—f*)<BL+B“<L+L">+B ”2 L”)
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1.6 CASE OF DASHA-MVR UNDER PL-CONDITION

Theorem IL.15. Suppose that Assumption 5.1, 5.2, 5.3, 1.2, 5.5 56 and

G.1 hold. Let us take o = 1/Q2w+1), b € (0,1] and ~r <
—1
. 400w(2w+1)<7(1 O ts +L2> 8(1-b)?L2 . .
min L+ — + =55 ° ,ﬁ, 5. (N Algorithm 1 (DASHA-
MVR), then

BT -] < Q)| (F0) — ) + 2920+ 1) o — 0|+ 2 (iZHgg_th?)
i=1

n QJHhO—Vf(a:O)HQJrM( ZHho Vii(x )

1 /200w (2w + 1) 4 9 9
- b2,
o ( nB sz> 7

Proof. Let us fix constants v,p € [0,00) that we will define later. Considering Lemma 1.4,
Lemma I.14, and the law of total expectation, we obtain

B [f(@*1)] + 2902w + DB [[lg+! - h 7] + 222 SW

ZHng hf+1||2]
1 - 41 o1y ][2
E3 ol - v
< ) - JIHON - (5 =5 ) It = v = w5
1 n
Zugf—hznﬂ
n <
=1
20252 1-0212 -
Ba +2<( B) a+L2> th+1 t|| —|—2b2 ZHht Vfl ”]

2 2 _
W 2L e tH2+<1—b>2!Iht—vf<xt>|‘2]

+VE [Hht“ — Vf(a:t“)Hz} + pE

8
+ (1 =yp) 272w+ 1E [Hgt - ht||2} + (1 =p) %E

20yw(2w + 1
n w(nW+)

E

+vE

nB nB

Wo” | 2(1- b)? L2

E
trelTp B

ottt - -0 L3 - Ve ]
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After rearranging the terms, we get

B (a"*)] + 23020+ B [+ - 0417 4 22

ZH t+1 ht+1||]
1 ¢ t+1 t+14 |2

LS -]

i=1

+vE [[nH = V)] + pE

<E[f6")] - TB[|Via))|]

+ (1 —yp) 2y(2w + DE {||gt—ht|\2]+(1— 87 —F

LSt -]

40yw (2w + 1 %—FLQ _ 2 N2 72
_(1 L ( >< B )_2y(1 b)’L:  2p(1-b)°L2 wa“rl—xtHQ]

2y 2 n nB B

+ (v + v =B B[ [I0 = 7 r(a)]]

40b%yw (2w + 1 1 «
+<77§)+p(1—b)2>E =3 |0 = Ve M
=1
20w (2w+1) v 5
+2(nB + B+B>ba.

By taking v = 277, one can see that v + v(1 — )2 < (1 — %) v, and

D3RR
1 ¢ t+1 t+1y 12
EZH}% — Vfi(z )H]

=1

E [f(xtﬂ)] + 292w+ 1)E {Hgt*l _ ht-‘,—lHQ} R 8%}

+ %’E [Hht“ - Vf(zt“)ﬂ + pE

<E[f@)] - 3B |[Vi@)]’]
+ (1 =) 2y(20 + DE [|lg" = b|*] + (1 -

+ (1 - b) Z%E [Hht - Vf(xt)”ﬂ

1 « 2
;Z h?”

2
A-b’L; T
1 L 407w(2w+1)( B +L2) Ay(1-b)"L2 2p(1—b)"L2 E[H t+1 t||2:|
2y 2 n nB B o N
4002w (2w + 1 1 & 2
+ <T(L) +p(1 - b)2> E|- > |[hk = Vi) 1
i=1
20w (2w +1) 2y 2,2
+2 ( " +i 5 +2 5 ) Vo
Next, we fix p = w. With this choice of p and for all b € (0, 1], we can show that

WOV w@etl) | (1 — )2 < (1 — L) p, thus

E[f(z"™)] +2y(20 + 1)E U\gt+1 - ht“\ﬂ + S%WE

LSl -]
n i=1
1 n
IFD L sz-<:v“1>||2]
i=1

80byw (2w + 1)

T %E [Hhtﬂ _ Vf(xt+1)||2] n -
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<E[f6")] - TB[|Vie))]

+ (1= ) 292w + VE [|lg* = b|*] + (1 - 8”‘”

LS -]
<1b>27E[Hht V)| + < )80"WW+1)E 5§:Hht Vii(x |}]

n =1
—b)°L T
( 1L 40w 1) (B 4 1)

2y 2 n

4y (1—b)° L2 160byw (2w + 1) (1 —b)* L2 1 a2
" B nB EW < }

200w (2w+1) 2y 80byw(2w+1)\ 5 o
2 b
* ( nB + bnB + nB 7

<E[f@")] - 2E[||VFa")’]

8
+ (1 —yp) 272w+ 1)E {Hgt - ht\ﬂ + (1 —p) %E

;ilrgf—hzr|2]
<1_b>27E[Hht Vf( H} < )80lww2w—i—1 ZHht Vix ]

1op 200wt ) (SR L) e )
(55 . e ot -]

2y 2 n bnB

200yw (2w +1) 4y \ 5 o
* ( nB * bnB bo”.

In the last inequality we use b € (0, 1]. Next, considering the choice of 7 and Lemma [.7, we get

ZH t—‘rl ht+1|| ‘|
1 t 2
¥ ;;W ~wn ]

E [f(:ctﬂ)] +2y(2w + 1)E [HgtJrl htHH }

<B[f(a")] - 3B [|v/6"]]
+ (1= ) 2(20 + DE [g* = b[*] + (1 = 7m) 87“ [ ZH ! htM

DR

80byw (2w + 1)
(1= ) 7Emht Vf(z M %

200w (2w +1) 4y \ 5 o
b*o*.
N ( nb * bnB 7

In the view of Lemma 1.6 with
¥ = 202w+ 1)E [Hgt 2} +E[ ZH F—nl| ]

2 80bw 20J-|—1
+ 2p|n - v ] + 2ot D) nzuhs—wmﬂ
=1
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and C = (M%er) +3 ) b%5%, we can conclude the proof. O

Corollary 1.16. Suppose that assumptions from Theorem 115 hold, momentum b =

© (min{ Ly ‘“;‘ZB “”SB }) ,and hY = g9 = 0 for all i € [n], then Algorithm I needs

~ o2 o? L wL w o L
T:=0|w+tw +——t—t——t| =t | — 27
( uneB  uneB  p py/n (\/ﬁ n B,u&) ,u\/§> @D
communication rounds to get an e-solution, the communication complexity is equal to O ({cT) , and
the number of stochastic gradient calculations per node equals O(BT), where (¢ is the expected
density from Definition 1.3.

Proof. Considering the choice of b, we have (% + %) b?0% = O (g) . Therefore, is it

enough to take the number of communication rounds equals (27) to get an e-solution. In the view
of Algorithm 1 and the fact that we use a mini-batch of stochastic gradients, the communication
complexity is equal to O ({¢T') and the number of stochastic gradients that each node calculates
equals O(BT). Unlike Corollary 6.8, in this corollary, we can initialize h? and gio, for instance, with
zeros because the corresponding initialization error ¥V from the proof of Theorem 1.15 would be
under the logarithm. O

I.7 CASE OF DASHA-SYNC-MVR

Comparing Algorithm 1 and Algorithm 2, one can see that Algorithm 2 has the third source of
randomness from c**1. In this section, we define E, [-] to be a conditional expectation w.r.t. ¢**1
conditioned on all previous randomness. And we define E;; [-] to be a conditional expectation

w.rt et {C ), {hlT'}2 | conditioned on all previous randomness. Note, that E;; [] =
Er, [Ec [E, [ 1]

Lemma 1.17. Suppose that Assumptions 5.3, 5.5 and 1.2 hold and let us consider sequences
{gt™1 Yy, and {hiT1}1 | from Algorithm 2, then

B [l -0

2w(l —p) (%3 + 22)

2a? w(
n la 1 —a*|* + ZH =R+ -p (=0 gt —nt|7,

and

Been [laf* - 5]

2
< 2%(1—p) (% +L§) o+ =o'l + (1 = p) (20 + (1= ) [l = ). Vi€ [l

Proof. First, we estimate E;,; [Hg”l - ht+1||2] Let us denote h;‘gl =
B B
% Zj:l Vfi(zwl;gf;_l) + hf - % Zj:l vfz(xtagfjl)
2
Eii [Hgt+1 — httY| }

=E¢ 1 [EP [Hgt+1 - hHlHQH

=(1—p)Ew1 |||g" + %icz (hﬁl hi —a(g; Z ht“
i1
2
1 n
27 0 e[|S0 05"~ a0~ 250 0651 - ot - 1)
i=1
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2
+(1-p)(1- a)2 ||gt — htH .
Using the independence of compressors and (4), we get

Eita [HgtH - ht“’ﬂ
[Ec [|le: (ni5! = ht = a(gf = b)) = (b5 =t —a (gf = m))|]]

+(1-p)(1—-a)?g" - n|”

LD S [t~ ht = a (gl — )] + (- p) (- )P [lgt ]

i=1
2w(1 — p) & 2a2w(1 — p) &
S LB [t = nil] A eI LR IR U
2w(1 — p) & 1< ’
— t+1 t+1 - t, qt+1
= n2 £ g B ];Vfl(‘r ?61] )
2aW1— ZH t ht” + 1_ _ ) Hgt_th2

2

B
Z vfz t+1 t+1)_vfi(mt;§5r1))_(vfi(xt-l-l)_vfi(xt))

(15) 2w(1 — p) —
22005 (o

i=1

+[|Vfilz") — Vﬁ-(wt)H?)

2wl op Zw B+ (1= p) (1= 0)? [lgt — 1|

- % > (3 S [IVAGE e - VhGSE - (VA - i) ]

i=1 j=1

+ [Vt = Vi) )
2“ w( t t )12
ZH — b+ (1 =p) (1= a)?[lg" = 1|

2w(1 — p) (% + Ez)

n

2aw17
< et Sl )

2
t+1 _xtH

Zflt R+ (1 —p) (1 —a)®||g" — A,

where in the inequalities we use Assumptions 1.2, 5.5 and 5.3, and (14). Analogously, we can get the
bound for E; 4, [Hg“rl hf“”2] for all i € [n]:

B a7~ 1]

= B B [+ — 1]

=(1—=p)Ein [Hgi +C; (hEF —hi—a (gf )) ht+1|| }

|l

2
<2w(l-p) (Ig + L?) |z — tH +2a*w(1 —p) ||g} — th2 +(1-p)(1—a)’ gt — hEHQ.

O
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We introduce new notaiions: Vfi(atth ety = 4 Zle V fi(xtt; ff;rl) and V f (2!t ¢ =
& Xy Vil g,
Lemma L.18. Suppose that Assumptions 5.5 and 5.6 hold and let us consider sequence {h?rl 3
from Algorithm 2, then

2

2 1— L2
e [ = 9] < 2220 LoD ot ot (1) = 950

Proof.
B [Hht-i-l . Vf(fEHl)HQ]

2

— 1 - 1 < t+1, ¢t+1 1
=P EZ‘Z?ZWW& )= V@™

k=1

(1= D) [[VF@ €40 + b = T f(at €4 = O f )|

< i(;, +(1—p)Ey [HVf(xf“;&t“) +h = Vf(ah et - Vf(mt“)“z} ’

where we use Assumption 5.5. Next, using Assumption 5.6 and (15), we have

Eir [Hht+1 _ vf(xt+1)||2}

IN

ig (1= p)Bn [[[ VA€ + b = V(€ - O]

= O+ =B [V = V@) = (V) = V1) ] + 0= p) 3 = V)]

2 1— n . \ . t t
= icfg, i nzp);Eh [||vfi(x HET) = Vit T = (Vile™) = Vi) } 1-p)||n* = Vf(h)|?

P02 (1—17) L t+1, ¢t+1 t+1 t+1
=5t ;;Eh[uvm ) = VL@ ET) - (V) = Vi) ]

+(1—p)||n = V"

2 o 2
po” 0 =Do e g2 4 (1= ) [0 = VY

<
~ nB’ nB

O
Theorem 1.19. Suppose that Assumptions 5.1, 5.2, 5.3, 5.5, 5.6 and 1.2 hold. Let us take a = Tlﬂ,

probability p € (0,1], batch size B' > 1 and
—1

\ e <L+ \/m(m +n1)(1 —p) (L; L2> (11;1%)@) |

in Algorithm 2. Then

1

B||IVAGEN[°] < 7 [2(F@") - 1)

. <L+\/12w(2w 4;11)(1—p) (LB2 +L2) (1p;g)Lg>

1 n
+22w+1) ¢ — 0| + “’(nZHg?—h?IIQ)

i=1
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2 0
+];||h - || ’I”LB/

Proof. Let us fix constants , 7, v € [0, 00) that we will define later. Using Lemma 1.1, we can get
(20). Considering (20), Lemma I.17, Lemma I.18, and the law of total expectation, we obtain

F2 -

B [f(@)] + kB [||g* = h+1*] + 0B

+uE [llff+1 — Vf(atth) HQ]

<E|fla) - § V16 n—(—L)fo“—xfr|2+v||gt—ht||2+vuht—wwf]

[m - p)
+ kE

2 N n
2w(1 — p) (Ig + L2> &+t — 2 ||* + (1 = p) (2a2w +(1- a)2) %Z g — hﬁHZ]

i=1

n

L2 ~
L+ 1) )
5 o+t a4 22 ZH% RIP+ (L =p) (- a) g - ht||]

+nE

- 2 2 2
+ E{ B,+%Hzt+uxt” Jr(lp)”htVf(xt)H].

After rearranging the terms, we get

E [f(a:t+1)] + kB [Hg“rl — ht+1||2} +nE

anl WHZ]

+ VB [[B = V)]

<E[f6")] - TB[|Via))]

- (1 L 2kw(1 —p) (f +f2) — ol — p) <L§ +E2> _ l/(lp)L?,) E [thﬂ fxtHQ}

2y 2 n B nB

+ (4 s = )1 = ) B [|lg" — 1|
N <2/<;a2w(1 - p)

n

+n(l— )(20‘,&]4’(1*& ))

DT

+ (o + (1= p)E [0 = V)|
vpo?
nB’’

@ = 2w+1,andn = QW .Thus y+rk(1—p)(1—a)® < K, y+v(1—p) = v,

2a°w + (1 — a) ) <, and

Letus take v = ;,n—

2ka’w(1—p) + 77(1 N p)

AQ\Q

LS gt —n

i=1

B[f(@)] + (20 + DE [[g+! — a*[*] + QVT”E

~y 2
+E a1 = V]

<Bf)] - 3B [IVfE)]]
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20w+ 1)(1-p) (% +12) 421 -p) (% +12) 2
(1 L 2l P)\B Y P)\B ~(1—p)Ls B {Hle B xtHQ}
2y 2 n n pnB

2 1 &
otz 0l 1)+ 225 [ £t ]
i=1
g [t - V)]

o’
nB’

<B[f6")] - 3B[|IV/6")]]
(1 L 6yw(2w +1)(1 — p) (LT;’ + EQ) (1 p)Lg) B [Hth B ItHQ}

2y 2 n pnB
2 1 &
+ 72w+ DE g = n'*] + Z2E [nz gt — h;ﬂ
i=1
g [t - vr@h)’]

o’

nB’’
In the view of the choice of v, we obtain

E[f(a")] + 72w+ DE {Hgt*l _ ht+1|ﬂ 2%)

Z H t+1 ht+1H ]
i t t 2
+oB (51 = )|

< {70 - JE[Io ]

entaars 0B [l + 22 | S k-]
VE ([0 =5 )]?]
70’2
+ nB'’
Finally, using Lemma 1.5 with
U = (w+1)E [Hg nt| } + —E ll > gl - hEIIZ]
i=1
1
+ B ([0 = 7 f@")|7]
and C = B, , we can conclude the proof. O

Corollary 6.10. Suppose that assumptlons from Theorem 1.19 hold, probability p =
min{ %, ”;QB} , batch size B' = © ( ) and hY = gf = Z- kB:‘l V fi(2%;€%) for alli € [n],

ne

initial batch size By = © (max { nz , BC—C }) , then DASHA-SYNC-MVR needs

T=0| 1| (f6") - f)<L+L+<+\/:n \/j) ) nB
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communication rounds to get an e-solution, the communication complexity is equal to O (d + (cT) ,
and the number of stochastic gradient calculations per node equals O (B + BT), where (¢ is the
expected density from Definition 1.3.

Proof. Considering Theorem I1.19 and the choice of B’, we have

B[|vsGI]

12w(2w + 1)(1 — p) (%’ + 22) 2(1 — p)L2
_"_ [

<206 - 1) L+J

2 0
+};||h - H TLB'

1202w+ 1)(1 —p) (L= + 12 2
g%z(f(xo)—f*) L+\J 2o+ 1)) (5 + >+2(1*p)L”

n pnB

2., L2

1 O 2)||” +3e
Duetop = min{ %C, "UEQB},WG: have
E[vs@ED)]°]
col Loy o [ 12620002 (FHL2) pan—piz 2020 -p)12
<O =|2(f@") —f + " T enB T aeme

d o? 0
#2(+aap) I - w1I | 5

L3 | T2

1 0 _ o A9 (F+E) an-prz 2000 p12
<0 TQ(f(JJ)—f) L+$ - + onB t

d o° 0 NIE 2
“(cﬁ )||h Fan)® | |+ 2e.

1 . w [~ L, d L, o2 L, d 2
r=0|- WO)‘”(“%(“@)* envE nQB\F> ( +>”h0 el
Note, that

B[ =via)|’] = E

%Z iwz §) - V)

1n1t
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n  Binit

= o DY B [IVAG% ) - Va6
lnltilkl

0.2

<

1 Binit

Next, by taking Bjp;; = max { B i} and using the last ineqaulity, we have

ne’ " (e

L, d L o

T=0|; <f<x°>—f*><“ﬁ(f+@>+ VB 35E>+<<d+3>m{

* w T L, d L, o2 Lo o?
e E <f<x0>—f><“m(“@>+ CnvB " B@> neB

Finally, it is left to estimate the communication and oracle complexity. On average, the number
of coordinates that each node in Algorithm 2 sends at each communication round equals pd +

(I -p)e < %d + (1 — —) Ce < 2(c. Therefore, the communication complexity is equal to

O (d+ ¢cT) . Considering the fact that we use a mini-batch of stochastic gradients, on average,
the number of stochastic gradients that each node calculates at each communication round equals

pB '+ (1—-p)2B <O (”SB "—Z) + 2B = O (B). Considering the initial batch size Biy;, the
number of stochastic gradients that each node calculates equals O(Bin + BT). O]

Corollary 6.11. Suppose that assumptions of Corollary 6.10 hold, batch size B < f , we take

RandK with K = (¢ = © (%) cand L := max{L, L,, L}. Then the communication complex-
ity equals

d E £ZJ0 _ fx d
ot LUEH—F)d) (11)
\/ne \/ne
and the expected # of stochastic gradient calculations per node equals
2 z .’IIO _ fx
o LU 3) ey (12)
ne e’2n

Proof. In the view of Theorem F.2, we have w+1 = d/ K. Moreover, K = © (%‘/ﬁ) =0 (

thus the communication complexity equals

%)

1

OWd+¢T) = Ofd+-|(fa")~f) <KL+K\;%(E > K\/»\F

do 1 N d ~
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-0 j;iﬁ FESESS (fﬁf)

And the expected number of stochastic gradient calculations per node equals

O (Binit + BT)
o2 d 1 . w Lo
o Zent |- (s n s (4 L) e my Tl s )

o o 1

1.8 CASE OF DASHA-SYNC-MVR UNDER PE-CONDITION

Theorem 1.20. Suppose that Assumption 5.1, 52, 1.2, 55 56 and G.I

hold. Let us take a = 1/(2w+1), probability p € (0,1] and ~ <
—1
40w (2w+1)(1—p) ( S +L2
min L+ \/ — < ) + 4(11;32L2’ , ﬁ, ﬁ in Algorithm 1, then

E[f")~f] < (Q-" (f(x“)f*)+2v(2w+1)|\goh°}|2+871‘”<i2||g?h?\!2>

i=1

202

nuB’

+ 2]77 R = V£ ()|

Proof. Let us fix constants &, 7, v € [0, 00) that we will define later. Using Lemma 1.1, we can get
(20). Considering (20), Lemma I.17, Lemma I.18, and the law of total expectation, we obtain

FY -

E[f(z"))] + kE [Hgtﬂ _ ht+1||2} B

+VE [Hht“ =V

1 L
< (1) = IV - (5 = 5 ) It =l o gt = v = 97 P
2w(1 —p) Loy 12 201 _ 2y
+KE C )|\xt“—xf!|2+2‘“‘j§i”)Zug:—hz\12+<1—p><1—a>2Hgt—htn?

n :
=1

+ nE

2 R n
2(1 - p) (f’g +L2> o+t =t + (1= p) (2620 + (1~ )®) 3 gt - hﬁl\Q]

i=1
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. 2
# B ot = | =) 1 = 91

vE
* {B’ nB

After rearranging the terms, we get

§:n¢+1 m+Wﬂ

E [f(zt+1)] 1 kE [Hgtﬂ _ htHHQ} B

LR [Hht-‘rl e Hﬂ

<E[f6")] - TB[|Vie))|]

- (1 L 2kw(1 —p) (fd +E2) — 2nw(1 — p) <I§, +E2> _ V(lgg)l’?f) E [thﬂ ,xtHz}

2y 2 n
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+<2/m2w(1—p)+n(1_p) <2a w4+ (1—a) ))

n

L3 et - @uﬂ

+ (o= p) B[ [0 - Vs )]

vpo?

nB’’
Letustakeuf% n:27 a—2w+1,and77— e - Thus 7 + #(1 = p)(1 —a)* < (1*%)"57
Yl —p) = (1= ), 22elon) g )(ZGW+(1—G) (1—%)n, and

LSl -]

B/()] + 2120+ DB g+ -0+ ] + 22

2y t+1 _ 2|12

+ g [t - v

<B[fa)] - 3B [IVFEI]
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( 1 Yw@w+1)(1-p) (% + EQ) 167w?(1 — p) (f + EQ) 29(1 — p)Lg) E [H t4+1 t||2:|
_ | = it —
2y

2 n n pnB

+(1- %) 272w+ 1)E {Hgt - ht‘ﬂ (1 - 5) 8:’;‘)

(
+(1-5) TRl - vre)]

n pnB
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1 L 20yw(2w + 1)(1 = p) ( 5 T L 2v(1 —p)L2 [+ )2
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2

2vo
nB’'’
40yw(2w+1)(1—p) (%4@2)
In the view of the choice of v and Lemma I.7, one can show that 5= — % - — -

%>0 1-%<1—qp,andl—5 <1—~pu,thus

n

l Z t+1 o h¢+1||21
n K3

=1

E[f(=')] + 2v(2w + 1)E [HgtJrl _ ht+1H2]

2y t+1 il 2

+ pE[Hh iCanl

<B[f(")] - 3B[[V@)’]
+ (1= ) 292w + VE [[lg* = B|*] + (1 = ) &W [ }:mh mn]

+(1—u) ”Eﬂmt v i)]’]

202
nB’ "

+

In the view of Lemma 1.6 with

vo= 2w+ E ||l - hw} ~E

1 n
LS gt - hzu"’]

i:l

+ %E [[n = v rh)|”]

and C = we can conclude the proof. O

B”
Corollary 1.21. Suppose that assumptions from Theorem 1.20 hold, probability p =
min § & “”EB} batch size B’ = © ( ) yand hY = ¢? = 0 for all i € [n], then DASHA-

d’ o2

SYNC-MVR needs

reofwsdy ot (Lywl (o Jd o ) L (28)
' (e mneB " popy/n o \Vn Cen  ny/Bpue ) uv/B
communication rounds to get an e-solution, the communication complexity is equal to O ({cT) , and

the number of stochastic gradient calculations per node equals O(BT), where (¢ is the expected
density from Definition 1.3.

pune

Proof. Considering the choice of B’, we have B, = O (e) . Therefore, is it enough to take the
number of communication rounds equals (28) to get an e-solution.

It is left to estimate the communication and oracle complexity. On average, in Algorithm 2, at
each communication round the number of coordinates that each node sends equals pd + (1 —
p)e < %Cd + (1 — %) (e < 2(c. Therefore, the communication complexity is equal to O ((¢T) .

Considering the fact that we use a mini-batch of stochastic gradients, on average, the number of
stochastic gradients that each node calculates at each communication round equals pB’+(1—p)2B =

(@] (” el o > + 2B = O (B), thus the number of stochastic gradients that each node calculates

o2 une

equals O(BT). Unlike Corollary 6.10, in this corollary, we can initialize h? and g?, for instance,
with zeros because the corresponding initialization error ¥° from the proof of Theorem 1.20 would
be under the logarithm. O
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J  EXTRA EXPERIMENTS

DASHA-MVR improves VR-MARINA (online) when ¢ is small (see Tables 1 and 2 and experiments
in Section A). However, our analysis shows that DASHA-MVR gets a term Bw 5‘7’1—; in the oracle

o2
penB
and PL settings accordingly. Both terms can be a bottleneck in some regimes; now, we verify this
dependence in the PE setting.

complexity and a term w in the number of communication rounds in general nonconvex

We take a synthetically generated stochastic quadratic optimization problem with one node (n = 1):
min {f(z;¢) = T (A+ €Dz — bTx} ,
z€eR

where A € R4 b e R A = AT »~ 0, and £ ~ Normal (0,02) .
We generate A in such way, that  ~ 1.0 < L ~ 2.0, take d = 10%, 0> = 1.0, RandK with K = 1

. 2 . . . .
(w = d), batch size B = 1, and ugn 5 = 10%. With this particular choice of parameters, w M&f‘; 5
. . . . _ 0-2 L(].Jr“’/\/ﬁ) 0_2
would dominate in the number of communication rounds 7' = w + w enD + m + enD +
Lo
n2/enB’

Results are provided in Figure 5. We consider DASHA-MVR with a momentum b from Corollary 1.16

and b = min{ 1 uneB

—, 57 ¢ - With the latter choice of momentum b, DASHA-MVR converges at the

same rate as DASHA-SYNC-MVR or VR-MARINA (online) but to an e-solution with a smaller €. On the
other hand, the former choice of momentum b guarantees the convergence to the correct e-solution,
but with a slower rate. Overall, the experiment provides the pieces of evidence that our choice of b is
correct and that our analysis in Theorem I.15 is tight.

If we decrease w from 10% to 10? (see Figure 6), or o2 from 1.0 to 0.1 (see Figure 7), or x from 1.0
to 0.1 (see Figure 8), then the gap between algorithms closes.

10— K=1
—V¥— VR-MARINA (online)
—A— DASHA-MVR
2
10 <~ DASHA-MVR b = min(3, )
—»— DASHA-SYNC-MVR
10° i
<
o 4 P I N |
= | <l
X107 S < k4 <]<<< It 44
S | \
= ‘ & « <]<] <
\ \
1074 | b
IF ll \ V ' M A || M r\ | I 1
i 1 ) N
) il , | II“ Tl R 0. g h'q‘l-' 1'4 'll‘;“' W " llll\ (g '
-6 \ i K . -~ I ~
10 ! i ‘ ' L 0V i [
107575 05 10 15 2.0 25 30
#bits / n 1le8

Figure 5: Comparison of algorithms on a synthetic stochastic quadratic optimization task
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Figure 6: Comparison of algorithms on a synthetic stochastic quadratic optimization task with
K =10
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Figure 7: Comparison of algorithms on a synthetic stochastic quadratic optimization task with
2=01
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104 k=1
—¥— VR-MARINA (online)
—A— DASHA-MVR
107 —<— DASHA-SYNC-MVR
10°
$10-2
B
1074
10°°
107575 05 10 5 20 25 30
#bits / n le8
Figure 8: Comparison of algorithms on a synthetic stochastic quadratic optimization task with
w=20.1
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