
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEST POSSIBLE Q-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fully decentralized learning, where the global information, i.e., the actions of
other agents, is inaccessible, is a fundamental challenge in cooperative multi-agent
reinforcement learning. However, the convergence and optimality of most decen-
tralized algorithms are not theoretically guaranteed, since the transition proba-
bilities are non-stationary as all agents are updating policies simultaneously. To
tackle this challenge, we propose best possible operator, a novel decentralized
operator, and prove that the policies of cooperative agents will converge to the
optimal joint policy if each agent independently updates its individual state-action
value by the operator when there is only one optimal joint policy. Further, to make
the update more efficient and practical, we simplify the operator and prove that the
convergence and optimality still hold with the simplified one. By instantiating the
simplified operator, the derived fully decentralized algorithm, best possible Q-
learning (BQL), does not suffer from non-stationarity. Empirically, we show that
BQL achieves remarkable improvement over baselines in a variety of cooperative
multi-agent tasks.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) trains a group of agents to maximize the
cumulative shared reward, which has great significance for real-world applications, including logis-
tics (Li et al., 2019), traffic signal control (Xu et al., 2021), power dispatch (Wang et al., 2021), and
games (Vinyals et al., 2019). Although most existing methods follow the paradigm of centralized
training and decentralized execution (CTDE), in many scenarios where the information of all agents
is unavailable in the training period, each agent has to learn independently without centralized infor-
mation. Thus, fully decentralized learning, where the agents can only use local experiences without
the actions of other agents, is highly desirable (Jiang & Lu, 2022).

However, in fully decentralized learning, as other agents are treated as a part of the environment and
are updating their policies simultaneously, the transition probabilities from the perspective of indi-
vidual agents will be non-stationary. Thus, the convergence of most decentralized algorithms, e.g.,
independent Q-learning (IQL) (Tan, 1993), is not theoretically guaranteed. Multi-agent alternate
Q-learning (MA2QL) (Su et al., 2022) guarantees the convergence to a Nash equilibrium, but the
converged equilibrium may not be the optimal one when there are multiple equilibria (Zhang et al.,
2021a). Distributed IQL (Lauer & Riedmiller, 2000) and I2Q (Jiang & Lu, 2022) can learn the op-
timal joint policy, yet are limited to deterministic environments. How to guarantee the convergence
of the optimal joint policy in stochastic environments remains open.

To tackle this challenge, we propose best possible operator, a novel decentralized operator to update
the individual state-action value of each agent, and prove that the policies of agents converge to the
optimal joint policy under this operator when there is only one optimal joint policy. However, it is
inefficient and thus impractical to perform best possible operator, because at each update it needs to
compute the expected values of all possible transition probabilities and update the state-action value
to be the maximal one. Therefore, we further propose simplified best possible operator. At each
update, the simplified operator only computes the expected value of one of the possible transition
probabilities and monotonically updates the state-action value. We prove that the policies of agents
also converge to the optimal joint policy under the simplified operator. We respectively instantiate
the simplified operator with Q-table for tabular cases and with neural networks for complex envi-
ronments. In the Q-table instantiation, non-stationarity is instinctively avoided, and in the neural

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

network instantiation, non-stationarity in the replay buffer is no longer a drawback, but a necessary
condition for convergence.

The proposed algorithm, best possible Q-learning (BQL), is fully decentralized, without using the
information of other agents. We evaluate BQL on a variety of multi-agent cooperative tasks, i.e.,
stochastic games, MPE-based differential games (Lowe et al., 2017), Multi-Agent MuJoCo (de Witt
et al., 2020b), SMAC (Samvelyan et al., 2019), and GRF (Kurach et al., 2020), covering fully and
partially observable, deterministic and stochastic, discrete and continuous environments. Empir-
ically, BQL substantially outperforms baselines. To the best of our knowledge, BQL is the first
decentralized algorithm that guarantees the convergence to the global optimum in stochastic envi-
ronments. More simplifications and instantiations of best possible operator can be further explored.
We believe BQL can be a new paradigm for fully decentralized learning.

2 METHOD

2.1 PRELIMINARIES

Consider N -agent MDP(Oliehoek et al., 2016) Menv =< S,O,A, R, Penv, γ > with the state
space S and the joint action space A. Each agent i chooses an individual action ai, and the envi-
ronment transitions to the next state s′ by taking the joint action a with the transition probabilities
Penv (s

′|s,a). Although in theoretical analysis, we assume all agents obtain the state s, in practice
each agent i can make decisions using local observation oi ∈ O or trajectory. All agents obtain a
shared reward r = R (s, s′) ∈ [rmin, rmax] and learn to maximize the expected discounted return
E
∑∞

t=0 γ
trt. In fully decentralized setting, Menv is partially observable, since each agent i only ob-

serves its own action ai instead of the joint action a. From the perspective of each agent i, there is an
MDP Mi =< S,Ai, R, Pi, γ > with the individual action space Ai and the transition probabilities

Pi (s
′|s, ai) =

∑
a−i

Penv (s
′|s, ai,a−i)π−i(a−i|s) (1)

where π−i denotes the joint policy of all agents except agent i, similarly for a−i. According to
(1), the transition probabilities Pi depend on the policies of other agents π−i. As other agents are
updating their policies continuously, Pi becomes non-stationary. On the non-stationary transition
probabilities, the convergence of independent Q-learning1

Qi(s, ai) = EPi(s′|s,ai)

[
r + γmax

a′
i

Qi(s
′, a′i)

]
(2)

is not guaranteed, and how to learn the optimal joint policy in fully decentralized settings is quite
a challenge. In the next section, we propose best possible operator, a novel fully decentralized
operator, which guarantees the convergence to the optimal joint policy in stochastic environments.

2.2 BEST POSSIBLE OPERATOR

First, let us consider the optimal joint Q-value

Q(s,a) = EPenv(s′|s,a)

[
r + γmax

a′
Q(s′,a′)

]
, (3)

which is the expected return of the optimal joint policy π∗(s) = argmaxa Q(s,a). Based on the
optimal joint Q-value, for each agent i, we define maxa−i Q(s, ai,a−i), which follows the fixed
point equation:

max
a−i

Q(s, ai,a−i) =max
a−i

EPenv(s′|s,a)

[
r + γmax

a′
i

max
a′
−i

Q(s, a′
i,a

′
−i)

]
(4)

=EPenv(s′|s,ai,π
∗
−i(s,ai))

[
r + γmax

a′
i

max
a′
−i

Q(s, a′
i,a

′
−i)

]
(5)

where π∗
−i(s, ai) = argmaxa−i

Q(s, ai,a−i) is the optimal conditional joint policy of other agents
given ai. (4) is from taking maxa−i

on both sides of (3), and (5) is by folding π∗
−i(s, ai) into Penv.

Then we have the following lemma.
1For simplicity, we refer to the optimal value Q∗ as Q in this paper, unless stated otherwise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Lemma 1. If each agent i learns the independent value function Qi(s, ai) = maxa−i
Q(s, ai,a−i),

and takes actions as argmaxai
Qi(s, ai), the agents will obtain the optimal joint policy when there

is only one optimal joint policy2.

Proof. As maxai
maxa−i

Q(s, ai,a−i) = maxa Q(s,a) and there is only one optimal joint policy,
argmaxai

Qi(s, ai) is the action of agent i in the optimal joint action a.

According to Lemma 1, to obtain the optimal joint policy is to let each agent i learn the value
function Qi(s, ai) = maxa−i

Q(s, ai,a−i). To this end, we propose a new operator to update Qi

in a fully decentralized way:

Qi(s, ai) = max
Pi(·|s,ai)

EPi(s′|s,ai)

[
r + γmax

a′
i

Qi(s
′, a′

i)

]
. (6)

Given s and ai, there will be numerous Pi(s
′|s, ai) due to different other agents’ policies π−i. To

reduce the complexity, we only consider the deterministic policies, because when there is only one
optimal joint policy, the optimal joint policy must be deterministic (Puterman, 1994). So the operator
(6) takes the maximum only over the transition probabilities Pi(s

′|s, ai) under deterministic π−i.
Intuitively, the operator continuously pursues the ‘best possible expected return’, until Qi reaches the
optimal expected return maxa−i Q(s, ai,a−i), so we name the operator (6) best possible operator.
In the following, we theoretically prove that Qi(s, ai) converges to maxa−i

Q(s, ai,a−i) under
best possible operator, thus the agents learn the optimal joint policy. Let Qk

i (s, ai) denote the value
function in the update k and Qi(s, ai) := Q∞

i (s, ai). Then, we have the following lemma.
Lemma 2. If Q0

i is initialized to be the minimal return rmin

1−γ , maxa−i
Q(s, ai,a−i) ≥

Qk
i (s, ai),∀s, ai,∀k, under best possible operator.

Proof. We prove the lemma by induction. First, as Q0
i is initialized to be the minimal return,

maxa−i
Q(s, ai,a−i) ≥ Q0

i (s, ai). Then, suppose maxa−i
Q(s, ai,a−i) ≥ Qk−1

i (s, ai), ∀s, ai.
By denoting argmaxPi(s′|s,ai) EPi(s′|s,ai)

[
r + γmaxa′

i
Qk−1

i (s′, a′i)
]

as P ∗
i (s

′|s, ai), we have

max
a−i

Q(s, ai,a−i)−Qk
i (s, ai)

=max
a−i

∑
s′

Penv

(
s′|s, ai,a−i

) [
r + γmax

a′
i

max
a′
−i

Q(s′, a′
i,a

′
−i)

]
−
∑
s′

P ∗
i (s

′|s, ai)

[
r + γmax

a′
i

Qk−1
i (s′, a′

i)

]

≥
∑
s′

P ∗
i (s

′|s, ai)

[
r + γmax

a′
i

max
a′
−i

Q(s′, a′
i,a

′
−i)

]
−
∑
s′

P ∗
i (s

′|s, ai)

[
r + γmax

a′
i

Qk−1
i (s′, a′

i)

]

=γ
∑
s′

P ∗
i (s

′|s, ai)

(
max
a′
i

max
a′
−i

Q(s′, a′
i,a

′
−i)−max

a′
i

Qk−1
i (s′, a′

i)

)

≥γ
∑
s′

P ∗
i (s

′|s, ai)

(
max
a′
−i

Q(s′, a′∗
i ,a′

−i)−Qk−1
i (s′, a′∗

i)

)
≥ 0,

where a′∗i = argmaxa′
i
Qk−1

i (s′, a′i). Thus, it holds in the update k. By the principle of induction,
the lemma holds for all updates.

Intuitively, maxa−i Q(s, ai,a−i) is the optimal expected return after taking action ai, so it is the
upper bound of Qi(s, ai). Further, based on Lemma 2, we have the following lemma.
Lemma 3. Qi(s, ai) converges to maxa−i

Q(s, ai,a−i) under best possible operator.

Proof. For clear presentation, we use Penv

(
s′|s, ai,π∗

−i

)
to denote Penv

(
s′|s, ai,π∗

−i(s, ai)
)
.

From (5) and (6), we have∥∥∥max
a−i

Q(s, ai,a−i)−Qk
i (s, ai)

∥∥∥
∞

= max
s,ai

(∑
s′

Penv

(
s′|s, ai,π

∗
−i

) [
r + γmax

a′
i

max
a′
−i

Q(s′, a′
i,a

′
−i)

]

−
∑
s′

P ∗
i (s

′|s, ai)

[
r + γmax

a′
i

Qk−1
i (s′, a′

i)

])
← (Lemma 2)

2We can use the simple solution proposed in I2Q to deal with the limitation of only one joint policy, which
is included in Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

≤max
s,ai

(∑
s′

Penv

(
s′|s, ai,π

∗
−i

) [
r + γmax

a′
i

max
a′
−i

Q(s′, a′
i,a

′
−i)

]

−
∑
s′

Penv

(
s′|s, ai,π

∗
−i

) [
r + γmax

a′
i

Qk−1
i (s′, a′

i)

])

≤γmax
s′,a′

i

(
max
a′
−i

Q(s′, a′
i,a

′
−i)−Qk−1

i (s′, a′
i)

)
=γ
∥∥∥max

a−i

Q(s, ai,a−i)−Qk−1
i (s, ai)

∥∥∥
∞
.

We have
∥∥maxa−i

Q(s, ai,a−i)−Qk
i (s, ai)

∥∥
∞ ≤ γk

∥∥maxa−i
Q(s, ai,a−i)−Q0

i (s, ai)
∥∥
∞. Let

k → ∞, then Qi(s, ai) → maxa−i
Q(s, ai,a−i), thus the lemma holds.

According to Lemma 1 and 3, we immediately have:

Theorem 1. The agents learn the optimal joint policy under best possible operator when there is
only one optimal joint policy.

2.3 SIMPLIFIED BEST POSSIBLE OPERATOR

Best possible operator guarantees the convergence to the optimal joint policy. However, to perform
(6), every update, each agent i has to compute the expected values of all possible transition probabil-
ities and update Qi to be the maximal expected value, which is too costly. Therefore, we introduce
an auxiliary value function Qe

i (s, ai), and simplify (6) into two operators. First, at each update, we
randomly select one of possible transition probabilities P̃i for each (s, ai) and update Qe

i (s, ai) by

Qe
i (s, ai) = EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s
′, a′i)

]
. (7)

Qe
i (s, ai) represents the expected value of the selected transition probabilities. Then we monotoni-

cally update Qi(s, ai) by

Qi(s, ai) = max (Qi(s, ai), Q
e
i (s, ai)) . (8)

We define (7) and (8) together as simplified best possible operator. By performing simplified best
possible operator, Qi(s, ai) is efficiently updated towards the maximal expected value. And we have
the following lemma.

Lemma 4. Qi(s, ai) converges to maxa−i
Q(s, ai,a−i) under simplified best possible operator.

Proof. According to (8), as Qi(s, ai) is monotonically increased, Qk
i (s, ai) ≥ Qk−1

i (s, ai) in the
update k. Similar to the proof of Lemma 2, we can easily prove maxa−i Q(s, ai,a−i) ≥ Qk

i (s, ai)

under (7) and (8). Thus, {Qk
i (s, ai)} is an increasing sequence and bounded above. According to

the monotone convergence theorem, {Qk
i (s, ai)} converges when k → ∞, and let Qi(s, ai) :=

Q∞
i (s, ai).

Then we prove that the converged value Qi(s, ai) is equal to maxa−i
Q(s, ai,a−i). Due to mono-

tonicity and convergence, ∀ϵ, s, ai,∃K,when k > K, Qk
i (s, ai) − Qk−1

i (s, ai) ≤ ϵ, no matter
which P̃i is selected in the update k. Since each P̃i is possible to be selected, when selecting
P̃i(s

′|s, ai) = argmaxPi(s′|s,ai) EPi(s′|s,ai)

[
r + γmaxa′

i
Qk−1

i (s′, a′i)
]
= P ∗

i (s
′|s, ai), by per-

forming (7) and (8), we have

Qk−1
i (s, ai) + ϵ ≥ Qk

i (s, ai) ≥ Qe
i (s, ai) =

∑
s′

P ∗
i (s

′|s, ai)
[
r(s, s′) + γmax

a′
i

Qk−1
i (s′, a′i)

]
.

According to the proof of Lemma 3, we have

max
s,ai

(
max
a−i

Q(s, ai,a−i)−Qe
i (s, ai)

)
≤ γmax

s,ai

(
max
a−i

Q(s, ai,a−i)−Qk−1
i (s, ai)

)
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Use s∗, a∗i to denote

argmax
s,ai

(
max
a−i

Q(s, ai,a−i)−Qk−1
i (s, ai)

)
.

Since Qk−1
i (s, ai) + ϵ ≥ Qe

i (s, ai),

max
a−i

Q(s∗, a∗i ,a−i)−Qk−1
i (s∗, a∗i)− ϵ ≤ γmax

a−i

Q(s∗, a∗i ,a−i)− γQk−1
i (s∗, a∗i).

Then, we have ∥∥∥max
a−i

Q(s, ai,a−i)−Qk−1
i (s, ai)

∥∥∥
∞

≤ ϵ

1− γ
.

Thus, Qi(s, ai) converges to maxa−i Q(s, ai,a−i).

According to Lemma 1 and 4, we also have:
Theorem 2. The agents learn the optimal joint policy under simplified best possible operator when
there is only one optimal joint policy.

2.4 BEST POSSIBLE Q-LEARNING

Best possible Q-learning (BQL) is instantiated on simplified best possible operator. We first con-
sider learning Q-table for tabular cases. The key challenge is how to obtain all possible transition
probabilities under deterministic π−i during learning. To solve this issue, the whole training pro-
cess is divided into M epochs. At the epoch m, each agent i randomly and independently initializes
a deterministic policy π̂m

i and selects a subset of states Sm
i . Then each agent i interacts with the

environment using the deterministic policy{
argmaxai Qi(s, ai) if s /∈ Sm

i ,
π̂m
i (s) else.

Each agent i stores independent experiences (s, ai, s
′, r) in the replay buffer Dm

i . As Pi depends
on π−i and agents act deterministic policies, Dm

i contains one Pi under a deterministic π−i. Since
Pi will change if other agents modify their policies π−i, acting the randomly initialized policy π̂m

i
on Sm

i in the epoch m not only helps each agent i to explore state-action pairs, but also helps other
agents to explore possible transition probabilities. When M is sufficiently large, given any (s, ai)
pair, any Pi(s, ai) can be found in a replay buffer.

After interaction of the epoch m, each agent i has a buffer series {D1
i , · · · ,Dm

i }, each of which has
different transition probabilities. At training period of the epoch m, each agent i randomly selects
one replay buffer Dj

i from {D1
i , · · · ,Dm

i } and samples mini-batches {s, ai, s′, r} from Dj
i to update

Q-table Qe
i (s, ai) by (7), and then samples mini-batches from Dj

i to update Qi(s, ai) by (8). The
Q-table implementation is summarized in Algorithm 1.

The sample efficiency of collecting the buffer series seems to be a limitation of BQL, and we further
analyze it. Simplified best possible operator requires that any possible Pi(s, ai) of (s, ai) pair can
be found in one buffer, but does not care about the relationship between transition probabilities of
different state-action pairs in the same buffer. So BQL ideally needs only |Ai| × |A−i| = |A| small
buffers to cover all possible Pi for any (s, ai) pair, which is very efficient for experience collection.
We give an intuitive illustration for this and analyze that BQL has similar sample complexity to the
joint Q-learning (3) in Appendix B.

In complex environments with large or continuous state-action space, it is inefficient and costly to
follow the experience collection in tabular cases, where the agents cannot update their policies during
the interaction of each epoch and each epoch requires adequate samples to accurately estimate the
expectation (7). Thus, in complex environments, same as IQL, each agent i only maintains one
replay buffer Di, which contains all historical experiences, and uses the same ϵ-greedy policy as
IQL (without the randomly initialized deterministic policy π̂i). Then we instantiate simplified best
possible operator with neural networks Qi and Qe

i . Qe
i is updated by minimizing:

Es,ai,s′,r∼Di

[
(Qe

i (s, ai)− r − γQi(s
′, a′∗i))

2
]
, a′∗i = argmax

a′
i

Qi(s
′, a′i). (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 BQL with Q-table for each agent i

1: Initialize tables Qi and Qe
i .

2: for m = 1, . . . ,M do
3: Initialize the replay buffer Dm

i and the exploration policy π̂m
i .

4: All agents interact with the environment and store experiences (s, ai, s′, r) in Dm
i .

5: for t = 1, . . . , n update do
6: Randomly select a buffer Dj

i from D1
i , · · · ,Dm

i .
7: Update Qe

i according to (7) by sampling from Dj
i .

8: Update Qi according to (8) by sampling from Dj
i .

9: end for
10: end for

Algorithm 2 BQL with neural network for each agent i

1: Initialize neural networks Qi and Qe
i , and the target network Q̄e

i .
2: Initialize the replay buffer Di.
3: for t = 1, . . . , n iteration do
4: All agents interact with the environment and store experiences (s, ai, s′, r) in Di.
5: Sample a mini-batch from Di.
6: Update Qe

i by minimizing (9).
7: Update Qi by minimizing (10).
8: Update the target networks Q̄e

i .
9: end for

And Qi is updated by minimizing:

Es,ai∼Di

[
w(s, ai)

(
Qi (s, ai)− Q̄e

i (s, ai)
)2]

, w(s, ai) =

{
1 if Q̄e

i (s, ai) > Qi (s, ai)
λ else. (10)

Q̄e
i is the softly updated target network of Qe

i . When λ = 0, (10) is equivalent to (8). However, when
λ = 0, the positive random noise of Qi in the update can be continuously accumulated, which may
cause value overestimation. So we adopt the weighted max in (10) by setting 0 < λ < 1 to offset
the positive random noise. In continuous action space, following DDPG (Lillicrap et al., 2016), we
train a policy network πi(s) by maximizing Qi(s, πi(s)) as a substitute of argmaxai

Qi(s, ai). The
neural network implementation is summarized in Algorithm 2.

Simplified best possible operator is meaningful for neural network implementation. As there is only
one buffer Di, we cannot perform (6) but can still perform (7) and (8) on Di. As other agents are
updating their policies, the transition probabilities in Di will continuously change. If Di sufficiently
goes through all possible transition probabilities, Qi(s, ai) converges to maxa−i Q(s, ai,a−i) and
the agents learn the optimal joint policy. That is to say, non-stationarity in the replay buffer is no
longer a drawback, but a necessary condition for BQL.

3 RELATED WORK

Most existing MARL methods (Lowe et al., 2017; Iqbal & Sha, 2019; Wang et al., 2020; Zhang
et al., 2021b; Su & Lu, 2022; Peng et al., 2021; Li et al., 2022; Sunehag et al., 2018; Rashid et al.,
2018; Son et al., 2019) follow centralized training and decentralized execution (CTDE), where the
information of all agents can be accessed in a centralized way during training. Unlike these meth-
ods, we focus on fully decentralized learning where global information is not available. The most
straightforward decentralized methods, i.e., independent Q-learning (Tan, 1993) and independent
PPO (IPPO) (de Witt et al., 2020a), cannot guarantee the convergence of the learned policy, because
the transition probabilities are non-stationary from the perspective of each agent as all agents are
learning policies simultaneously. Multi-agent alternate Q-learning (MA2QL) (Su et al., 2022) guar-
antees the convergence to a Nash equilibrium, but the converged equilibrium may not be the optimal
one when there are multiple Nash equilibria. Moreover, to obtain the theoretical guarantee, it has to
be trained in an on-policy manner and cannot use replay buffers, which leads to poor sample effi-
ciency. Following the principle of optimistic estimation, Hysteretic IQL (Matignon et al., 2007) sets

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

a slow learning rate to the value punishment. Distributed IQL (Lauer & Riedmiller, 2000), a special
case of Hysteretic IQL with the slow learning rate being zero, guarantees the convergence to the
optimum but only in deterministic environments. I2Q (Jiang & Lu, 2022) lets each agent perform
independent Q-learning on ideal transition probabilities and could learn the optimal policy only in
deterministic environments. Our BQL is the first fully decentralized algorithm that converges to the
optimal joint policy in stochastic environments.

In the next section, we compare BQL against these Q-learning variants (Distributed IQL is included
in Hysteretic IQL). Comparing with on-policy algorithms, e.g., IPPO, that are not sample-efficient
especially in fully decentralized settings, is out of focus and thus deferred to Appendix. Decentral-
ized methods with communication (Zhang et al., 2018; Konan et al., 2021; Li & He, 2020) allow
information sharing with neighboring agents according to a communication channel. However, they
do not follow the fully decentralized setting and thus are beyond the scope of this paper.

4 EXPERIMENTS

We first test BQL with Q-table on randomly generated cooperative stochastic games to verify its
convergence and optimality. Then, to illustrate its performance on complex tasks, we compare BQL
with neural networks against Q-learning variants on MPE-version differential games (Jiang & Lu,
2022), Multi-Agent MuJoCo (Peng et al., 2021), SMAC (Samvelyan et al., 2019), and GRF (Kurach
et al., 2020). The experiments cover both fully and partially observable, deterministic and stochastic,
discrete and continuous environments. Since we consider the fully decentralized setting, BQL and
the baselines do not use parameter sharing. The results are presented using mean and standard.
More details about hyperparameters are available in Appendix E.

4.1 STOCHASTIC GAMES

To support the theoretical analysis of BQL, we test the Q-table instantiation on stochastic games
with 4 agents, 30 states, and infinite horizon. The action space of each agent is 4, so the joint action
space |A| = 256. The distribution of initial states is uniform. Each state will transition to any state
given a joint action according to transition probabilities. The transition probabilities and reward
function are randomly generated and fixed in each game. We randomly generate 20 games and train
the agents for four different seeds in each game.

The mean normalized return and std over the 20 games are shown in Figure 1a. IQL cannot learn
the optimal policies due to non-stationarity. Although using the optimistic update to remedy the
non-stationarity, Hysteretic IQL (H-IQL) still cannot solve this problem in stochastic environments
and shows similar performance to IQL. In Appendix A, we thoroughly analyze the difference and
relationship between H-IQL and BQL. I2Q performs Q-learning on the ideal transition function
where the next state is deterministically the one with the highest value, which however is impossible
in stochastic tasks. So I2Q cannot guarantee the optimal joint policy in stochastic environments.
MA2QL guarantees the convergence to a Nash equilibrium, but the converged one may not be the
optimal one, thus there is a performance gap between MA2QL and optimal policies. BQL could
converge to the optimum, and the tiny gap is caused by the fitting error of the Q-table update. This
verifies our theoretical analysis. Note that, in Q-table instantiations, MA2QL and BQL use different
experience collection from IQL, i.e., exploration strategy and replay buffer. MA2QL only uses on-
policy experiences and BQL collects a series of small buffers. However, for sample efficiency, the
two methods have to use the same experience collection as IQL in complex tasks with neural net-
works. MA2QL- and BQL- respectively denote the two methods with the same experience collection
as IQL. Trained on off-policy experiences, MA2QL- suffers from non-stationarity and achieves sim-
ilar performance to IQL. Even if using only one buffer, as we have analyzed in Section 2.4, if the
non-stationary buffer sufficiently goes through all possible transition probabilities, BQL agents can
also converge to the optimum. Although going through all possible transition probabilities by one
buffer is inefficient, BQL- significantly outperforms IQL, which implies the potential of BQL with
one buffer in complex tasks.

Figure 1b shows the effect of the size of buffer Dm
i at the epoch m. If |Dm

i | is too small, i.e., 200,
the experiences in |Dm

i | are insufficient to accurately estimate the expected value (7). If |Dm
i | is too

large, i.e., 10000, the experiences in |Dm
i | are redundant, and the buffer series is difficult to cover

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d
BQL

BQL-

MA2QL

MA2QL-

I2Q

H-IQL

IQL

(a) stochastic games

5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d

|Dmi | = 200

|Dmi | = 1000

|Dmi | = 2000

|Dmi | = 5000

|Dmi | = 10000

(b) |Dm
i |

5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d

|Smi | = 12

|Smi | = 10

|Smi | = 8

|Smi | = 6

|Smi | = 4

(c) |Sm
i |

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

−12

−8

−4

0

4

8

re
w

ar
d

BQL

BQL-

MA2QL

MA2QL-

I2Q

H-IQL

IQL

(d) one-stage game
Figure 1: Learning curves on cooperative stochastic games (normalized by the optimal return).

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

MA2QL

I2Q

H-IQL

IQL

(a) β = 0.2

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

MA2QL

I2Q

H-IQL

IQL

(b) β = 0.3

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

I2Q

MA2QL

H-IQL

IQL

(c) β = 0.4

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

I2Q

MA2QL

H-IQL

IQL

(d) β = 0.5

Figure 2: Learning curves on MPE-based differential games with different β.

all possible transition probabilities given fixed total training timesteps. Figure 1c shows the effect
of the number of states on which the agents perform the randomly initialized deterministic policy
π̂m
i for exploration. The larger |Sm

i | means a stronger exploration for both state-action pairs and
possible transition probabilities, which leads to better performance.

We then consider a one-stage game that is wildly adopted in MARL (Son et al., 2019). There are 2
agents, and the action space of each agent is 3. The reward matrix is∣∣∣∣∣∣∣

a1/a2 A(1) A(2) A(3)

A(1) 8 −12 −12
A(2) −12 0 0

A(3) −12 0 0

∣∣∣∣∣∣∣
where the reward 8 is the global optimum and the reward 0 is the sub-optimal Nash equilibrium. As
shown in Figure 1d, MA2QL converges to the sub-optimal Nash equilibrium when the initial policy
of the second agent selects A(2) or A(3). But BQL converges to the global optimum easily.

4.2 MPE

To evaluate the effectiveness of BQL with neural network implementation, we adopt the 3-agent
MPE-based differential game used in I2Q (Jiang & Lu, 2022), where 3 agents can move in the
range [−1, 1]. Different from the original deterministic version, we add stochasticity to it. In each
timestep, agent i acts the action ai ∈ [−1, 1], and the position of agent i will be updated as xi =
clip(xi+0.1× ai,−1, 1) (i.e., the updated position is clipped to [−1, 1]) with the probability 1−β,
or will be updated as −xi with the probability β. β controls the stochasticity. The state is the vector
of positions {x1, x2, x3}. The reward function of each timestep is

r =


0.5 cos(4lπ) + 0.5 if l ≤ 0.25

0 if 0.25 < l ≤ 0.6

0.15 cos(5π(l − 0.8)) + 0.15 if 0.6 < l ≤ 1.0

0 if l > 1.0

, l =

√
2

3
(x2

1 + x2
2 + x2

3).

We visualize the relation between r and l in Figure 12. There is only one global optimum (l = 0
and r = 1) but infinite sub-optima (l = 0.8 and r = 0.3), and the narrow region with r > 0.3 is
surrounded by the region with r = 0. So it is quite a challenge to learn the optimal policies in a fully
decentralized way. Each episode contains 100 timesteps, and the initial positions follow the uniform
distribution. We perform experiments with different stochasticities β, and train the agents for eight
seeds with each β. In continuous environments, BQL and baselines are built on DDPG.

As shown in Figure 2, IQL always falls into the local optimum (total reward ≈ 30) because of
the non-stationary transition probabilities. H-IQL only escapes the local optimum in one seed in
the setting with β = 0.3. According to the theoretical analysis in I2Q paper, the value estimation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2.5× 105 5× 105

timestep

−150

−100

−50

0

50

100

150

200

re
w

ar
d

BQL

MA2QL

I2Q

H-IQL

IQL

(a) 2× 3 Swimmer

0 2.5× 105 5× 105

timestep

−200

0

200

400

600

800

1000

re
w

ar
d

BQL

MA2QL

I2Q

H-IQL

IQL

(b) 2× 4d Ant

0 2.5× 105 5× 105

timestep

−400

−200

0

200

400

600

800

1000

re
w

ar
d

BQL

MA2QL

I2Q

H-IQL

IQL

(c) 6|2 Ant

0 0.5× 106 1.0× 106

timestep

0

1000

2000

3000

4000

re
w

ar
d

BQL

MA2QL

I2Q

H-IQL

IQL

(d) 17× 1 Humanoid

Figure 3: Learning curves on Multi-Agent MoJoCo.

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(a) 2c vs 64zg

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%
BQL

MA2QL

I2Q

H-IQL

IQL

(b) 2s3z

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(c) 3s5z

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(d) 1c3s5z

Figure 4: Learning curves on SMAC.

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(a) 3 vs 1 with keeper

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(b) counterattack easy

0 2.5× 105 5× 105

timestep

−100

−50

0

50

100

150

200

re
w

ar
d λ = 0.0

λ = 0.2

λ = 0.5

λ = 0.8

λ = 1.0

IQL

(c) 2× 3 Swimmer

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

λ = 0.8

λ = 0.85

λ = 0.9

λ = 0.95

IQL

(d) 2c vs 64zg

Figure 5: (a) and (b): Learning curves on GRF. (c) and (d): Learning curves with different λ.

error of I2Q will become larger when stochasticity grows, which is the reason why I2Q shows poor
performance with β = 0.4 and 0.5. In neural network implementations, MA2QL and BQL use the
same experience collection as IQL, so there is no MA2QL- and BQL-. MA2QL converges to the
local optimum because it cannot guarantee that the converged equilibrium is the global optimum,
especially trained using off-policy data. BQL (λ = 0.01) can escape from local optimum in more
than 4 seeds in all settings, which demonstrates the effectiveness of our optimization objectives (9)
and (10). The difference between global optimum (total reward ≈ 100) and local optimum is large,
which results in the large variance of BQL. In the objective (10), λ controls the balance between
performing best possible operator and offsetting the overestimation caused by the operator. As
shown in Figure 2, the large λ, i.e., 0.1, will weaken the strength of BQL, while too small λ, i.e., 0,
will cause severe overestimation and destroy the performance.

4.3 MULTI-AGENT MUJOCO

To evaluate BQL in partially observable environments, we adopt Multi-Agent MuJoCo (Peng et al.,
2021), where each agent independently controls one or some joints of the robot. In each task, we
test four random seeds and plot the learning curves in Figure 3. Here, we set λ = 0.5. In the first
three tasks, each agent can only observe the state of its own joints and bodies (with the parameter
agent obsk = 0). BQL achieves higher reward or learns faster than the baselines, which verifies that
BQL could be applied to partially observable environments.

In the first three tasks, we only consider two-agent cases in the partially observable setting, because
the too limited observation range cannot support strong policies when there are more agents. We
also test BQL on 17-agent Humanoid with full observation in Figure 3d. BQL obtains significant
performance gain in this many-agent task, which can be evidence of the good scalability of BQL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.4 SMAC AND GOOGLE RESEARCH FOOTBALL

We also perform experiments on partially observable and stochastic SMAC tasks (Samvelyan et al.,
2019) with the version SC2.4.10, including both easy and hard maps (Yu et al., 2021). Agent num-
bers vary between 2 and 9. We build BQL on the implementation of PyMARL (Samvelyan et al.,
2019) and train the agents for four random seeds. The learning curves are shown in Figure 4. In gen-
eral, BQL outperforms the baselines, which verifies that BQL can also obtain performance gain in
high-dimensional complex tasks. In 2c vs 64zg, by considering the non-stationary transition proba-
bilities, BQL and I2Q achieve significant improvement over other methods. We conjecture that the
interplay between agents is strong in this task.

GRF (Kurach et al., 2020) is a physics-based 3D simulator where agents aim to master playing
football. We select two academy tasks with sparse rewards: 3 vs 1 with keeper (3 agents) and
counterattack easy (4 agents). We build BQL on the implementation of PyMARL2 (Hu et al., 2021)
and train the agents for four random seeds. Although I2Q shows similar results with BQL in some
SMAC tasks, BQL can outperform I2Q in GRF as shown in Figure 5a and 5b, because GRF is more
stochastic than SMAC and the value gap of I2Q will enlarge along with the increase of stochasticity.

4.5 HYPERPARAMETER λ

We further investigate the effectiveness of λ in Multi-Agent MuJoCo and SMAC. In the objec-
tive (10), λ controls the balance between performing best possible operator and offsetting the over-
estimation caused by the operator. As shown in Figure 5c and 5d, too large λ will weaken the
strength of BQL. When λ = 1.0, BQL degenerates into IQL. Too small λ, i.e., 0, will cause overes-
timation. If the environment is more complex, e.g., SMAC, overestimation is more likely to occur,
so we should set a large λ. In 2 × 3 Swimmer, when λ falls within the interval [0.2, 0.8], BQL can
obtain performance gain, showing the robustness to λ.

5 CONCLUSION

We propose best possible operator and theoretically prove that the policies of agents will converge
to the optimal joint policy if each agent independently updates its individual state-action value by the
operator. We then simplify the operator and derive BQL, the first decentralized MARL algorithm
that guarantees the convergence to the global optimum in stochastic environments. Empirically,
BQL outperforms baselines in a variety of multi-agent tasks. We also discuss the limitation of
unique optimal joint policy and sample efficiency, and provide corresponding solutions for BQL.

REFERENCES

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is Independent Learning All You Need in The StarCraft
Multi-Agent Challenge? arXiv preprint arXiv:2011.09533, 2020a.

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer,
and Shimon Whiteson. Deep Multi-Agent Reinforcement Learning for Decentralized Continuous
Cooperative Control. arXiv preprint arXiv:2003.06709, 2020b.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
arXiv e-prints, pp. arXiv–2102, 2021.

Shariq Iqbal and Fei Sha. Actor-Attention-Critic for Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning (ICML), 2019.

Jiechuan Jiang and Zongqing Lu. I2q: A fully decentralized q-learning algorithm. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sachin G Konan, Esmaeil Seraj, and Matthew Gombolay. Iterated reasoning with mutual informa-
tion in cooperative and byzantine decentralized teaming. In International Conference on Learning
Representations (ICLR), 2021.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajkac, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 2020.

Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learning in coop-
erative multi-agent systems. In International Conference on Machine Learning (ICML), 2000.

Hepeng Li and Haibo He. Multi-agent trust region policy optimization. arXiv preprint
arXiv:2010.07916, 2020.

Xihan Li, Jia Zhang, Jiang Bian, Yunhai Tong, and Tie-Yan Liu. A cooperative multi-agent rein-
forcement learning framework for resource balancing in complex logistics network. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2019.

Yueheng Li, Guangming Xie, and Zongqing Lu. Difference advantage estimation for multi-agent
policy gradients. In International Conference on Machine Learning (ICML), 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations (ICLR), 2016.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-Agent Actor-
Critic for Mixed Cooperative-Competitive Environments. Neural Information Processing Systems
(NeurIPS), 2017.

Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-learning: an algo-
rithm for decentralized reinforcement learning in cooperative multi-agent teams. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2007.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gra-
dients. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. In International Conference on Machine Learning (ICML), 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. arXiv preprint arXiv:1902.04043, 2019.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN: Learn-
ing To Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning (ICML), 2019.

Kefan Su and Zongqing Lu. Divergence-Regularized Multi-Agent Actor-Critic. In International
Conference on Machine Learning (ICML), 2022.

Kefan Su, Siyuan Zhou, Chuang Gan, Xiangjun Wang, and Zongqing Lu. MA2QL: A min-
imalist approach to fully decentralized multi-agent reinforcement learning. arXiv preprint
arXiv:2209.08244, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-Decomposition
Networks for Cooperative Multi-Agent Learning Based on Team Reward. In International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In International
Conference on Machine Learning (ICML), 1993.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
Level in StarCraft II Using Multi-Agent Reinforcement Learning. Nature, 575(7782):350–354,
2019.

Jianhong Wang, Wangkun Xu, Yunjie Gu, Wenbin Song, and Tim C Green. Multi-agent reinforce-
ment learning for active voltage control on power distribution networks. Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-policy
multi-agent decomposed policy gradients. In International Conference on Learning Representa-
tions (ICLR), 2020.

Bingyu Xu, Yaowei Wang, Zhaozhi Wang, Huizhu Jia, and Zongqing Lu. Hierarchically and co-
operatively learning traffic signal control. In AAAI Conference on Artificial Intelligence (AAAI),
2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-
agent reinforcement learning with networked agents. In International Conference on Machine
Learning (ICML), 2018.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321–384, 2021a.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. FOP: Factorizing Op-
timal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning. In International
Conference on Machine Learning (ICML), 2021b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A COMPARISON WITH HYSTERETIC IQL

Hysteretic IQL is a special case of BQL when the environment is deterministic. To thoroughly
illustrate that, we rewrite the loss function of BQL

w(s, ai)

(
Qi (s, ai)− EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s
′, a′i)

])2

,

w(s, ai) =

1 if EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s
′, a′i)

]
> Qi (s, ai)

λ else.

If λ = 0, the update of BQL is

Qi(s, ai) = max

(
Qi(s, ai),EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s
′, a′i)

])
.

Hysteretic IQL follows the loss function

w(s, ai)

(
Qi (s, ai)− r − γmax

a′
i

Qi(s
′, a′i)

)2

,

w(s, ai) =

{
1 if r + γmax

a′
i

Qi(s
′, a′i) > Qi (s, ai)

λ else.

If λ = 0, Hysteretic IQL degenerates into Distributed IQL (Lauer & Riedmiller, 2000)

Qi(s, ai) = max

(
Qi(s, ai), r + γmax

a′
i

Qi(s
′, a′i)

)
.

BQL takes the max of the expected target on transition probability P̃i(s
′|s, ai), while Hysteretic

IQL takes the max of the target on the next state s′. When the environment is deterministic, they
are equivalent. However, in stochastic environments, Hysteretic IQL cannot guarantee to converge
to the global optimum since the environment will not always transition to the same s′. BQL can
guarantee the global optimum in both deterministic and stochastic environments.

B EFFICIENCY OF BQL

deterministic

stochastic

Figure 6: Space of other agents’ policies π−i given an (s, ai).

We will discuss the efficiency of collecting the replay buffer for BQL. The space of other agents’
policies π−i given (s, ai) pair is a convex polytope. For clarity, Figure 6 shows a triangle space.
Each π−i corresponds to a Pi(s

′|s, ai). Deterministic policies π−i locate at the vertexes, while
the edges and the inside of the polytope are stochastic π−i, the mix of deterministic ones. Since
BQL only considers deterministic policies, the buffer series only needs to cover all the vertexes by
acting deterministic policies in the collection of each buffer Dm

i , which is efficient. BQL needs only
|Ai| × |A−i| = |A| small buffers, which is irrelevant to state space |S|, to meet the requirement of
simplified best possible operator that any one of possible Pi(s

′|s, ai) can be found in one (ideally
only one) buffer given (s, ai) pair. More specifically, |Ai| buffers are needed to cover action space,
and |A−i| buffers are needed to cover transition space for each action. We intuitively illustrate
this in Figure 7. Each state in Dm

i requires # samples to estimate the expectation in (7), so the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ideally 4 buffers cover all possible

Figure 7: Toy case for illustrating the ideal buffer number. |S| = 3, |Ai| = 2, and |A−i| = 2 corresponding to
P 1
i and P 2

i . We can see that any Pi(s, ai) can be found in the 4 buffers.

5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d

BQL

JQL

Figure 8: Learning curves of BQL and joint Q-learning (JQL). BQL shows similar sample efficiency to JQL.

sample complexity is O(|A||S|#). For the joint Q-learning (3), the most efficient known method
to guarantee the convergence and optimality in stochastic environments, each state-joint action pair
(s,a) requires # samples to estimate the expectation, so the sample complexity is also O(|A||S|#).
Thus, BQL is close to the joint Q-learning in terms of sample complexity, which is empirically
verified in Figure 8.

One may ask “since you obtain all possible transition probabilities, why not perform IQL on each
transition probability and choose the highest value?” Actually, this naive algorithm can also learn the
optimal policy, but the buffer collection of the naive algorithm is much more costly than that of BQL.
The naive algorithm requires that any one of possible transition probability functions of the whole
state-action space could be found in one buffer, which needs |A−i||S| buffers. And training IQL
|A−i||S| times is also formidable. BQL only requires that any one of possible transition probability
of any state-action pair could be found in one buffer, which is much more efficient.

However, considering sample efficiency, BQL with neural networks only maintains one replay buffer
Di containing all historical experiences, which is the same as IQL. Pi in Di corresponds to the aver-
age of other agents’ historical policies, which is stochastic. Therefore, to guarantee the optimality,
in theory, BQL with one buffer has to go through almost the whole π−i space, which is costly. As
shown in Figure 1d, BQL- (with one buffer) outperforms IQL but cannot achieve similar results as
BQL (with buffer series), showing that maintaining one buffer is costly but still effective. In neural
network instantiation, we show the results of BQL with the buffer series in Figure 9. Due to sample
efficiency, the buffer series cannot achieve strong performance, and maintaining one buffer like IQL
is a better choice in complex environments.

C OTHER BASE ALGORITHMS

Besides DDPG, BQL could also be built on other variants of Q-learning, e.g., SAC. Figure 10
shows that BQL could also obtain performance gain on independent SAC. Independent PPO (IPPO)
(de Witt et al., 2020a) is an on-policy decentralized MARL baseline. IPPO is not a Q-learning
method so it cannot be the base algorithm of BQL. On-policy algorithms do not use old experiences,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

one buffer

buffer series

(a) MPE, β = 0.4

0 2.5× 105 5× 105

timestep

−100

−50

0

50

100

150

200

re
w

ar
d

one buffer

buffer series

(b) 2× 3 Swimmer
Figure 9: BQL with one buffer and buffer series.

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL on SAC

SAC

BQL

IQL

IPPO

(a) MPE, β = 0.4

0 2.5× 105 5× 105

timestep

−500

−250

0

250

500

750

1000

re
w

ar
d

BQL on SAC

SAC

BQL

IQL

IPPO

(b) 2× 4d Ant
Figure 10: Learning curves of other base algorithms.

which makes them weak on sample efficiency (Achiam, 2018) especially in fully decentralized set-
tings as shown in Figure 10. Thus, it is unfair to compare off-policy algorithms with on-policy
algorithms.

Published as a conference paper at ICLR 2021

a2

a1 A(1) A(2) A(3)

A(1) 9.99 10 0
A(2) 10 0
A(3) 0 0

(a) Payoff of a harder matrix game

0 100 200 300 400 500
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX
QTRAN
QMIX
VDN

Qatten
OW-QMIX
CW-QMIX
Optimal

(b) Deep MARL algorithms

0 150 300 450 600 750
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX-3L10H
QPLEX-3L4H
QPLEX-2L10H
QPLEX-2L4H
Optimal

(c) Learning curves of ablation study

Figure 2: (a) Payoff matrix for a harder one-step game. Boldface means the optimal joint action
selection from the payoff matrix. The strikethroughs indicate the original matrix game proposed by
QTRAN. (b) The learning curves of QPLEX and other baselines. (c) The learning curve of QPLEX,
whose suffix aLbH denotes the neural network size with a layers and b heads (multi-head attention)
for learning importance weights λi (see Eq. (9) and (10)), respectively.

Proposition 2. Given the universal function approximation of neural networks, the action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

In practice, QPLEX can utilize common neural network structures (e.g., multi-head attention modules)
to achieve superior performance by approximating the universal approximation theorem (Csáji et al.,
2001). We will discuss the effects of QPLEX’s duplex dueling network with different configurations
in Section 4.1. As introduced by Son et al. (2019) and Wang et al. (2020a), the completeness of
value factorization is very critical for multi-agent Q-learning and we will illustrate the stability and
state-of-the-art performance of QPLEX in online and offline data collections in the next section.

4 EXPERIMENTS

In this section, we first study didactic examples proposed by prior work (Son et al., 2019; Wang et al.,
2020a) to investigate the effects of QPLEX’s complete IGM expressiveness on learning optimality and
stability. To demonstrate scalability on complex MARL domains, we also evaluate the performance of
QPLEX on a range of StarCraft II benchmark tasks (Samvelyan et al., 2019). The completeness of the
IGM function class can express richer joint action-value function classes induced by large and diverse
datasets or training buffers. This expressiveness can provide QPLEX with higher sample efficiency to
achieve state-of-the-art performance in online and offline data collections. We compare QPLEX with
state-of-the-art baselines: QTRAN (Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag
et al., 2018), Qatten (Yang et al., 2020), and WQMIX (OW-QMIX and CW-QMIX; Rashid et al.,
2020). In particular, the second term of Eq. (11) is the main difference between QPLEX and Qatten.
Thus, Qatten provides a natural ablation baseline of QPLEX to demonstrate the effectiveness of
this discrepancy term. The implementation details of these algorithms and experimental settings are
deferred to Appendix B. We also conduct two ablation studies to study the influence of the attention
structure of dueling architecture and the number of parameters on QPLEX, which are deferred to be
discussed in Appendix E. Towards fair evaluation, all experimental results are illustrated with the
median performance and 25-75% percentiles over 6 random seeds.

4.1 MATRIX GAMES

QTRAN (Son et al., 2019) proposes a hard matrix game, as shown in Table 4a of Appendix C. In this
subsection, we consider a harder matrix game in Table 2a, which also describes a simple cooperative
multi-agent task with considerable miscoordination penalties, and its local optimum is more difficult
to jump out. The optimal joint strategy of these two games is to perform action A(1) simultaneously.
To ensure sufficient data collection in the joint action space, we adopt uniform data distribution.
With this fixed dataset, we can study the optimality of multi-agent Q-learning from an optimization
perspective, ignoring the challenge of exploration and sample complexity.

As shown in Figure 2b, QPLEX, QTRAN, and WQMIX, which possess a richer expressiveness
power of value factorization can achieve optimal performance, while other algorithms with limited
expressiveness (e.g., QMIX, VDN, and Qatten) fall into a local optimum induced by miscoordination
penalties. In the original matrix proposed by QTRAN, QPLEX and QTRAN can also successfully
converge to optimal joint action-value functions. These results are deferred to Appendix C. QTRAN

6

0
0

(a) matrix game

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

9.980

9.985

9.990

9.995

10.000

10.005

10.010

re
w

ar
d

BQL

IQL

(b) learning curves
Figure 11: Learning curves on a one-stage matrix game with multiple optimal joint policies.

D MULTIPLE OPTIMAL JOINT POLICIES

We assume that there is only one optimal joint policy. With multiple optimal actions (with the max
Qi(s, ai)), if each agent arbitrarily selects one of the optimal independent actions, the joint action
might not be optimal. To address this, we use the simple technique proposed in I2Q (Jiang & Lu,
2022). Concretely, we set a performance tolerance ε and introduce a fixed randomly initialized
reward function r̂(s, s′) ∈ (0, (1 − γ)ε]. Then all agents perform BQL to learn Q̂i(s, ai) of the
shaped reward r + r̂. Since r̂ > 0, Q̂i(s, ai) > Qi(s, ai). In Q̂i(s, ai), the maximal contribution
from r̂ is (1−γ)ε/(1−γ) = ε, so the minimal contribution from r is Q̂i(s, ai)−ε > Qi(s, ai)−ε,
which means that the maximal performance drop is ε when selecting actions according to Q̂i. It is a
small probability event to find multiple optimal joint policies on the reward function r + r̂, because
r̂(s, s′) is randomly initialized. Thus, if ε is set to be small enough, BQL can solve the task with

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

multiple optimal joint policies. However, this technique is introduced to only remedy the assumption
for theoretical results. Empirically, this is not required, because there is usually only one optimal
joint policy in complex environments. In all experiments, we do not use the randomly initialized
reward function for BQL and other baselines, so the comparison is fair.

We test the randomly initialized reward function on a one-stage matrix game with two optimal joint
policies (1, 2) and (2, 1), as shown in Figure 11. If the agents independently select actions, they
might choose the miscoordinated joint policies (1, 1) and (2, 2). IQL cannot converge, but BQL
agents always select coordinated actions, though the value gap between the optimal policy and
suboptimal policy is so small, which verifies the effectiveness of the randomly initialized reward.

0.0 0.2 0.4 0.6 0.8 1.0

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 reward of l

density of lglobal optimum

local optimum

Figure 12: Curves of reward and density of l =
√

2
3

∑3
i=0 x

2
i in MPE. We plot the density of uniform state

distribution. There is only one global optimum, but the density of local optimum is high. So decentralized
agents will easily learn the local optimal policies.

E HYPERPARAMETERS

In MPE-based (MIT license) differential games, the relationship between r and l is visualized in
Figure 12.

In 2× 3 Swimmer, there are two agents and each of them controls 3 joints of ManyAgent Swimmer.
In 6|2 Ant, there are two agents. One of them controls 6 joints, and one of them controls 2 joints.
And so on.

In MPE-based differential games and Multi-Agent MuJoCo (MIT license), we adopt SpinningUp
(Achiam, 2018) implementation (MIT license), the SOTA implementation of DDPG, and follow all
hyperparameters in SpinningUp. The discount factor γ = 0.99, the learning rate is 0.001 with Adam
optimizer, the batch size is 100, the replay buffer contains 5 × 105 transitions, the hidden units are
256.

In SMAC (MIT license), we adopt PyMARL (Samvelyan et al., 2019) implementation and follow
all hyperparameters in PyMARL (Apache-2.0 license). The discount factor γ = 0.99, the learning
rate is 0.0005 with RMSprop optimizer, the batch size is 32 episodes, the replay buffer contains
5000 episodes, the hidden units are 64. We adopt the version SC2.4.10 of SMAC.

In GRF (Apache-2.0 license), we adopt PyMARL2 (Hu et al., 2021) implementation (Apache-2.0
license) and follow all hyperparameters in PyMARL2. The discount factor γ = 0.999, the learning
rate is 0.0005 with Adam optimizer, the batch size is 128 episodes, the replay buffer contains 2000
episodes, the hidden units are 256. We use simple115 feature (a 115-dimensional vector summariz-
ing many aspects of the game) as observation instead of RGB image.

In MPE-based differential games, we set λ = 0.01. In Multi-Agent MuJoCo, we set λ = 0.5, and
in SMAC, we set λ = 0.85 for 2c vs 64zg and λ = 0.8 for other tasks. In GRF, we set λ = 0.1 for
3 vs 1 with keeper and λ = 0.4 for counterattack easy.

The experiments are carried out on Intel i7-8700 CPU and NVIDIA GTX 1080Ti GPU. The training
of each MPE, MuJoCo, and GRF task could be finished in 5 hours, and the training of each SMAC
task could be finished in 20 hours.

16

	Introduction
	Method
	Preliminaries
	Best Possible Operator
	Simplified Best Possible Operator
	Best Possible Q-Learning

	Related Work
	Experiments
	Stochastic Games
	MPE
	Multi-Agent MuJoCo
	SMAC and Google Research Football
	Hyperparameter

	Conclusion
	Comparison with Hysteretic IQL
	Efficiency of BQL
	Other Base Algorithms
	Multiple Optimal Joint Policies
	Hyperparameters

