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Abstract
Federated self-supervised learning (FedSSL)
methods have proven to be very useful in learn-
ing unlabeled data that is distributed to multiple
clients, possibly heterogeneously. However, there
is still a lot of room for improvement for FedSSL
methods, especially for the case of highly hetero-
geneous data and a large number of classes. In
this paper, we introduce federated representation
learning through clustering (FedRLC) scheme
that utilizes i) a crossed KL divergence loss with
a data selection strategy during local training and
ii) a dynamic upload on local cluster centers dur-
ing communication updates. Experimental results
show that FedRLC achieves state-of-the-art re-
sults on widely used benchmarks even with highly
heterogeneous settings and datasets with a large
number of classes such as CIFAR-100.

1. Introduction
By considering information security and accommodating
low-resource computing devices, federated learning (FL)
provides a means to train a neural network model over dis-
tributed data across multiple machines. However, most
existing FL methods (McMahan et al., 2017; Li et al., 2020;
Karimireddy et al., 2020; Li et al., 2021a) rely on labeled
data for supervised learning. Recently, self-supervised learn-
ing (SSL) methods have been proposed for learning repre-
sentations on unlabeled data. Most SSL paradigms (Chen
et al., 2020; Grill et al., 2020; He et al., 2020; Caron et al.,
2020; Chen & He, 2021; Le-Khac et al., 2020; Zbontar et al.,
2021) assume that the data is centralized.

Recently, Federated SSL (FedSSL) (Zhuang et al., 2022;
2021; Miao & Koyuncu, 2022; Zhang et al., 2020; Wang
et al., 2023) methods have been developed to learn represen-
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tations of unlabeled data that is distributed to several local
machines. For example, FedU (Zhuang et al., 2021) and
FedEMA (Zhuang et al., 2022) directly adapt a fundamen-
tal centralized SSL model that is referred to as “Bootstrap
Your Own Latent (BYOL) (Grill et al., 2020)” to federated
learning. However, combining BYOL and FL directly can
raise challenges: When the number of classes are large,
the learned representations from BYOL are typically non-
uniformly distributed over the representation space, leading
to sub-optimal performance.

In this paper, we aim to address the challenges of
FedSSL via our proposed Federated Representation Learn-
ing through Clustering (FedRLC) framework. A key idea
of FedRLC is to solve the clustering task to guide and aid
in finding accurate representations. We do this by introduc-
ing a novel crossed KL divergence loss with a data selec-
tion strategy to optimize the cluster centers and the BYOL
neural networks simultaneously. Intuitively, well-learned
cluster centers are beneficial to extract more distinct infor-
mation between different classes. Experimental results show
that FedRLC improves the performance of existing FedSSL
methods by a considerable margin and achieves state-of-the-
art results on benchmark datasets such as CIFAR-100.

The rest of this paper is organized as follows: We introduce
the BYOL approach and the FedSSL problem in Section 2.
In Section 3, we introduce our proposed FedRLC scheme.
Numerical results are provided in Section 4. We draw our
main conclusions in Section 5.

2. Preliminaries
Contrastive learning and non-contrastive learning are two
main directions in SSL learning. In this work, we focus on
a non-contrastive approach based on the BYOL scheme. In
fact, the existence of a large number of negative samples
in contrastive learning causes class collision issues. The
non-contrastive nature of BYOL circumvents this problem
and typically provides a better performance; the FedEMA
scheme (Zhuang et al., 2022) follows a similar approach.

In the following, we provide an overview of BYOL (Grill
et al., 2020), and its straightforward federated generaliza-
tion that we shall refer to as FedBYOL. Let Dk denote
the local unlabeled dataset on Client k. Given some data
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xi ∈ Dk, where i represents the data index, two samples
xa
i ≜ ta(xi) and xb

i ≜ tb(xi) are generated through the
augmentations ta and tb, respectively. The augmented data
tα(xi), α ∈ {a, b} are then processed by the so-called on-
line and target networks. The online network consists of
an online encoder fO and an online predictor gO, which
are trained by gradient descent.1 The target network only
consists of a target encoder fT . The weights of fT are
updated via the exponential moving average (EMA) of the
online encoder fO, as will be explained in the following.
Now, let zα,Oi ≜ gO

(
fO(tα(xi))

)
, α ∈ {a, b} and zα,Ti ≜

fT (tα(xi)), α ∈ {a, b} denote the d-dimensional represen-
tations that one would obtain from the online and the target
networks, respectively. Defining the scaled cosine similarity
loss function as δ(x, y) ≜ 2−2 xT y

∥x∥∥y∥ , BYOL uses the sym-

metrized loss xi 7→ L(xi) ≜ δ(za,Oi , zb,Ti ) + δ(zb,Oi , za,Ti ).
The local objective of user k is then given by

(fO, gO) 7→ LINS ≜
∑

xi∈Dk
L(xi), (1)

which signifies that only the online networks fO, gO are
updated via gradient descent. The subscript “INS” means
that we consider the instance-level loss without any consid-
eration about the clusters. The target network parameters
are instead updated through the EMA

fT ← σfT + (1− σ)fO, (2)

where σ ∈ [0, 1].

FedSSL aims to learn a global model over the dataset D ≜⋃K
k=1Dk. For example, one can aggregate the BYOL loss

functions of all clients in order to attain the objective

min
∑K

k=1
|Dk|
|D|

∑
xi∈Dk

L(xi). (3)

The objective (3) can be solved by using numerous FL algo-
rithms (Li et al., 2020; Karimireddy et al., 2020; McMahan
et al., 2017) such as the classic federated averaging (Fe-
dAvg) (McMahan et al., 2017). However, simply extending
the loss (1) to FL leads to suboptimal performance as the
learned features from BYOL are not uniform between dis-
tinct classes, especially for heterogeneous data. In this paper,
we propose FedRLC as a new alternative for FedSSL. Fe-
dRLC learns accurate representations through updating and
keeping track of the centroids of each class.

3. The FedRLC Framework
In this section, we will introduce the proposed FedRLC
framework. Our scheme relies on clustering to guide and
achieve good representations. The clustering is center-based.
Hence, at each client, we keep track of M cluster centers,
where the number of clusters M is assumed to be known

1We refer to the composition of the encoder and the projector
in the original BYOL work as simply the “encoder” in this paper.

a-priori. We start by introducing a novel crossed KL diver-
gence loss with data selection for optimizing cluster centers
to improve the quality of learned representations during lo-
cal training. We will then present a dynamic rule to update
the local cluster centers as well as the local neural networks
during training. The block diagram of the FedRLC frame-
work is illustrated in Figure 1 for local training at a certain
Client k. The first stages to obtain the instance representa-
tions zα,νi for sample xi (until LINS) apply verbatim from
the BYOL scheme. Note that we have similarly omitted to
indicate the dependence of the representations on the client
index for brevity. We now describe the next steps.

3.1. Crossed KL divergence loss with data selection

In FedRLC, we define a novel crossed KL divergence loss
(CKL) to learn a well-separated representation. CKL aims
at optimizing M cluster centers by a crossed divergence be-
tween probabilities calculated from the online network and
the target distribution from the target network. Specifically,
let µ1, . . . , µM ∈ Rd denote cluster centers at a certain
Client k . In practice, the cluster centers are initialized ran-
domly. Given α ∈ {a, b} and ν ∈ {O, T}, let qα,νi,m denote
the probability that the representation zα,νi belongs to clus-
ter m with center µm. Following DEC (Xie et al., 2016), we
model these cluster assignment probabilities with a student
t-distribution with one degree of freedom

∆m(z, {µn}Mn=1) ≜
(1 + ∥z − µm∥2)−

1
2∑

n(1 + ∥z − µn∥2)−
1
2

. (4)

Specifically, we set

qα,νi,m = ∆m(zα,νi , {µn}Mn=1), m ∈ {1, . . . ,M},
α ∈ {a, b}, ν ∈ {O, T}, ∀i. (5)

Effectively, each representation is assigned a probability
distribution. According to (4), the closer the representation
to a cluster center with index (say) m, the higher the be-
lief/probability that the corresponding sample should belong
to Cluster m.

To facilitate SSL, we now define a target distribution of the
probabilities qα,Tm that originate from the target networks
described in Section 2. Following (Xie et al., 2016), we set

pα,Ti,m =
(qa,Ti,m)2/

∑
i q

a,T
i,m∑

n

[
(qa,Ti,n )2/

∑
i q

a,T
i,n

] . (6)

The target distribution is computed by squaring the prob-
ability and normalizing it by the frequency of each class.
Squaring “hardens” the soft assignments, while frequency
normalization penalizes imbalanced clusters.

We can now compare the probabilities qα,Oi,m induced by the
online networks with the probabilities pα,Ti,m of the target
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Figure 1. The FedRLC framework during local training. sg means stop gradient. In the figure, we illustrate the construction of the first
terms of the symmetric loss function in (8); the second terms are similar.

networks. In this work, we utilize the KL divergence to
compare the probability distributions. Letting KL(p||q) ≜∑

m pm log pm

qm
, the crossed KL divergence objective can

be defined as

LCKL0 ≜ 1
N

∑
i

[
KL(pb,Ti ||q

a,O
i ) + KL(pa,Ti ||q

b,O
i )

]
, (7)

where N represents the batch size. The crossed KL ob-
jective (7) intends to optimize the local cluster centers by
incorporating information from both augmented tviews of
the input. The two augmented samples are supposed to
share similar probabilities because they are created from the
same data under different transformations.

Another novelty that we incorporate in FedRLC is to make
sure that the augmentations that are involved in the crossed
KL objective in (7) are not too far. Indeed, intuitively, com-
pletely irrelevant augmentations would harm, instead of
benefit the overall performance. This is why we only incor-
porate pairs whose hard decisions match in the KL diver-
gence losses. Let lα,νi = argmaxm(qα,νi,m) denote the hard
clustering decisions of the online and target networks with
different augmentations. Ties are broken in favor of the
smallest index.

The data is chosen to contribute to the crossed KL diver-
gence loss only when the predicted label from the online
and the target networks are the same. We thus modify the
loss in (7) to work with

LCKL ≜ 1
N

∑{
KL(pb,Ti ||q

a,O
i ) : lb,Ti = la,Oi

}
+

1
N

∑{
KL(pa,Ti ||q

b,O
i ) : la,Ti = lb,Oi

}
. (8)

As shown in Figure 1, we jointly optimize the cluster cen-
ters and the online/target networks during local training.
Therefore, the overall loss function is given by

Lk = LCKL + LINS, (9)

where LINS recalls the classical instance-level non-
contrastive loss defined in (1). Usually, a hyperparame-
ter can be incorporated to the loss function to control the
relative weight of the losses LCKL and LINS. In our ex-
periments, equal weights on the losses already provided
a good performance. We thus leave a detailed study on
hyperparameter tuning as future work.

3.2. Updates After Server-to-Client Communications

In this part, we describe the cluster center and online net-
work update mechanisms during the server-to-client commu-
nications. We use subscript ⋆ to denote the global models,
the subscript k to be the local model, and the superscript
O to be the online networks. Let r represent the current
training round. During the communication update, only the
cluster centers and the online network are updated. We now
introduce a novel rule to update the centers.

Specifically, given centers {µr−1
m,k ∈ Rd}Mm=1 in local user

k with local data Dk at round r − 1, global centers µr
m,⋆

at round r, the centers of Client k at round r are updated
according to

µr
m,k = ϵ

1+ϵµ
r−1
m,k +

(
1− ϵ

1+ϵ

)
µr
m,⋆, (10)

where ϵ is updated progressively by the KL divergence be-
tween the probability generated from the local and global
centers. Specifically, letting fr

⋆ and fO,r−1
k denote the

global encoder in round r and the local encoder in round r−
1 at Client k, respectively, we define z⋆,i,k ≜ 1

2 (f
r
⋆ (x

a
i,k) +

fr
⋆ (x

b
i,k)), zi,k ≜ 1

2 (f
O,r−1
k (xa

i,k) + fO,r−1
k (xb

i,k)) as the
mean representations of data xi,k under different augmen-
tations and with global and local networks. We now eval-
uate the soft class probabilities for the data of Client k
according to the global model at Round r as q⋆,i,m,k ≜
∆m(z⋆,i,k, {µr

n,⋆}Mn=1). Likewise, we can evaluate the class
probabilities according the local model at Round r − 1 as
qi,m,k ≜ ∆m(zi,k, {µr−1

n,k }Mn=1). We can now compute the
momentum parameter ϵ via

ϵ= 1
|Dk|

∑|Dk|
i=1 KL

(
{q⋆,i,m,k}Mm=1∥{qi,m,k}Mm=1

)
. (11)

When ϵ is large, the divergence between probabilities gen-
erated from global and local networks is large, so that the
cluster centers inherit more local knowledge. Otherwise,
a smaller ϵ gathers more information from global cluster
centers.

Finally, we discuss how to update the online networks of
the client. For this purpose, we follow the EMA scheme
(Zhuang et al., 2022). Specifically, the online networks at
Round r are updated as

(fO,r
k , gO,r

k )← γ(fO,r−1
k , gO,r−1

k )+

(1− γ)(fO,r
⋆ , g⋆c

O,r). (12)
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In (12), the parameter γ is used to control the weight
between the global model and the local model. An ex-
plicit formula for γ is given by (Zhuang et al., 2022)
γ = min(λk||fr

⋆ − fO,r−1
k ||, 1) where λk = τ

||f1
⋆−f0

k ||
is

a customized magnitude, τ is a tuned hyperparameter, and
f is the encoder. In EMA (Zhuang et al., 2022), λk is only
measured once at the first round. Algorithm 1 in appendix
B shows the overall FedRLC scheme.

4. Experiments
Baselines We evaluate FedRLC on linear evaluation and
semi-supervised learning tasks. Our baselines include
FedU (Zhuang et al., 2021) and FedEMA (Zhuang et al.,
2022), which are current state-of-the-art FedSSL methods.
We also evaluate FedBYOL, which refers to combining
BYOL (Grill et al., 2020) with federated averaging as in (3).
Single-Training refers to training each client independently,
and the accuracy is calculated by the average of all clients.

Settings: The IID and Non-IID data distribution are exactly
followed as FedU and FedEMA, where Non-IID scenarios
are splitting the data by class. CIFAR-10 and CIFAR-100
are used in our experiments. To simulate more Non-IID
cases, we consider Dirichlet distribution with a parameter
β to allocate the data and provide details in appendix C.1.
More implementation details are given by appendix C.2.

Linear Evaluation: To validate the quality of learned rep-
resentations, a linear classifier is trained on top of the frozen
representations learned from different FedSSL methods.
The results are shown in Tables 1 and 2. FedRLC constantly
outperforms other methods, especially for CIFAR-100 with
a large number of classes, where it improves by 2.77% and
1.62% on IID and non-IID data, respectively.

Semi-supervised Learning: We compare our model with
state-of-the-art works on semi-supervised learning tasks.
A new MLP is added on the top of the encoder in semi-
supervised learning, and we fine-tune the entire model with
10% labeled data. We compare different federated represen-
tation learning methods under IID and Non-IID setting for
CIFAR-10 and CIFAR-100 datasets. Tables 3 and 4 demon-
strate that our scheme achieves the best results in all cases.
In particular, FedRLC improves the performance of CIFAR-
100 by 1.68% under a highly heterogeneous scenario.

Table 1. Linear Evaluation: IID & Data-Split Non-IID.
Dataset CIFAR-10 CIFAR-100
Method IID Non-IID IID Non-IID

Single-Training 82.42 74.95 53.88 52.37

FedBYOL 84.29 79.44 54.24 57.51

FedU 83.96 80.52 54.82 57.21

FedEMA 86.26 83.34 58.55 61.78

FedRLC 87.06 84.08 61.32 63.40

BYOL (Centralized) 90.46 65.54

Table 2. Linear Evaluation: Dirichlet Non-IID.
Dataset CIFAR-10 CIFAR-100
β 0.5 0.1 0.5 0.1

Single-Training 83.42 83.08 58.45 57.20

FedBYOL 85.44 84.69 59.14 59.93

FedU 85.62 85.33 59.10 58.06

FedEMA 86.12 86.00 60.26 61.46

FedRLC 86.89 86.69 62.39 63.21

Table 3. Semi-Supervised Learning: IID & Data-Split Non-IID.

Dataset CIFAR-10 CIFAR-100
Method IID Non-IID IID Non-IID

Single-Training 78.08 69.06 43.50 39.99

FedBYOL 83.24 76.95 49.20 47.07

FedU 82.61 77.06 47.64 46.67

FedEMA 83.38 79.49 49.26 50.48

FedRLC 83.99 79.52 49.67 52.16

Table 4. Semi-Supervised Learning: Dirichlet Non-IID.

Dataset CIFAR-10 CIFAR-100
β 0.5 0.1 0.5 0.1

Single-Training 81.72 79.89 48.53 49.41

FedBYOL 82.84 82.20 50.00 50.12

FedU 81.33 81.66 49.25 49.31

FedEMA 83.18 82.06 50.11 51.07

FedRLC 83.41 82.73 50.41 51.19

5. Conclusions
We have proposed FedRLC, a federated self-supervised rep-
resentation learning scheme. A key idea of FedRLC is to
achieve good representations through the guide and aid of
clustering. In particular, FedRLC optimized a crossed KL
divergence loss between two augmented data with a data
selection mechanism and updated several cluster centers dy-
namically during communication. Evaluation on the learned
image features demonstrated that our approach learned bet-
ter semantic knowledge of the data compared with other
existing FedSSL methods. Moreover, FedRLC has achieved
state-of-the-art results on benchmark downstream tasks in-
cluding linear evaluation and semi-supervised learning.
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A. Related Works
A.1. Federated learning

FL has been extensively studied and implemented in various algorithms such as FedAvg (McMahan et al., 2017). FL trains
distributed data across different machines due to concerns under security challenges and low-resource computing devices.
The main challenge in FL is the inconsistency between local and global objectives caused by the heterogeneity of local
data. Numerous FL algorithms (McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020; Li et al., 2021a; Wang
et al., 2020a; He et al., 2020) try to solve this issue and can be divided into two parts. There are works (Li et al., 2021a;
2020) focusing on the local training phase, and some (Wang et al., 2020a;b) methods study the aggregation stage during
communication. For example, FedProx(Li et al., 2020) adds a proximal term to the local training to improve the performance
of FedAvg, while FedMA(Wang et al., 2020a) averages weights in a layer-wise fashion based on Bayesian non-parametric
model during the aggregation phase. However, these approaches rely on labeled data and are developed for supervised
learning.

A.2. Self-supervised representation learning

In the past few years, SSL deals with unlabeled data and archives competitive performance in computer vision tasks (Grill
et al., 2020; Chen et al., 2020; Chen & He, 2021; Zbontar et al., 2021; Caron et al., 2020; Le-Khac et al., 2020; Li et al.,
2021b; Huang et al., 2022; Caron et al., 2021). Contrastive learning (Chen et al., 2020; Li et al., 2021b) and non-contrastive
learning (Grill et al., 2020; Chen & He, 2021) are two popular methods in the community. BYOL-like methods are typically
referred to as non-contrastive methods as learning is accomplished through two augmented versions, or positive samples, of
the same input. Contrastive methods (Chen et al., 2020), which rely on comparing the input with many negative samples
have also been utilized for SSL. Nevertheless, BYOL suffers from learning non-uniform representation (Huang et al., 2022),
where data embeddings are not uniformly distributed over various class and not able to be separated well. Contrasitve
methods cause class collision issue where negative samples are not truly negative and require large memory. Besides, most
popular SSL paradigms (Chen et al., 2020; Grill et al., 2020; He et al., 2020) assume that the data is gathered centrally in a
server, unfortunately, which is not suitable when the data is distributed.

A.3. Federated clustering

A recent notable example is FeatARC (Wang et al., 2023), which also utilizes the novel idea of clustering clients for “FL in
groups.” FeatARC provides experiments in the same setup as in Table 1 for the CIFAR-10 dataset. It achieves an accuracy of
%86.74 and %84.63 for the IID and non-IID settings, respectively. FedRLC outperforms FeatARC in the IID case, while it
is worse in the non-IID case. We note that FeatARC relies on the significantly more memory and computationally-intensive
contrastive-learning methods, and do not provide numerical results for the CIFAR-100 dataset with a large number of
classes. Also, the data clustering methodology of FedRLC can be combined with the client clustering method of FeatARC
to potentially improve the performance of either method, as will be discussed in a future work. We note that there have
been several works on clustering centralized data (Caron et al., 2018; Xie et al., 2016; Li et al., 2021b; Huang et al., 2022;
Koyuncu, 2022), which are not immediately applicable to our distributed setting.

A.4. Federated self-supervised representation learning

FedSSL (Zhuang et al., 2022; 2021; Miao & Koyuncu, 2022; Zhang et al., 2020; Wang et al., 2020b) has been developed
effectively to take advantage of both FL and SSL by learning useful representation with unlabeled data and training across
several local machines with decentralized data. For example, recent state-of-the-art approaches FedU (Zhuang et al., 2021)
and FedEMA (Zhuang et al., 2022) directly adapt the centralized scheme BYOL (Grill et al., 2020) to FL. We have showed
the comparison between our method FedRLC and these works (Zhuang et al., 2022; 2021) in the experimental section 4. As
we have mentioned, training an SSL directly in local machines of FL leads to a performance drop due to the non-uniformity
of representations caused by BYOL and non-identity distribution from heterogeneous system.

In this paper, we have demonstrated the proposed framework FedRLC, which is a clustering-based self-supervised learning
algorithm specifically designed in FL. In FedRLC, several cluster centers are optimized to learn a more differentiated
embedding in local training. During aggregation, we dynamically update cluster centers to balance the divergence between
local and global models. The experiments in section 4 have showed that FedRLC outperforms the existing FedSSL methods
and achieves state-of-the-art results.
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B. FedRLC Algorithm
We summarize the overall FedRLC pipeline in Algorithm1.

Algorithm 1 FedRLC
Input: Number of communication rounds R, Number of clients K, Number of local epochs E.
Output: Global encoder f⋆ and predictor g⋆.

1: Server executes: Initialize server’s network parameters f⋆, g⋆, and µ⋆,m. Have the clients initialize local parameters
fO
k , gOk , and µk,m

2: for r = 1, . . . , R do
3: for k = 1, 2, . . . ,K in parallel do
4: Send global encoder f⋆, predictor g⋆, and cluster centers µ⋆,m to client k.
5: fO

k , gOk , µm,k ← ClientTraining(f⋆, g⋆, µ⋆,m).
6: end for
7: FedAvg: (fO

⋆ , g
O
⋆ , µ⋆,m)←

∑
k
|Dk|
|D| (f

O
k , g

O
k , µm,k).

8: end for
9: Return global encoder f⋆ and predictor g⋆.

10: ClientTraining(fO
k , gOk , µk,m)

11: Update the online networks and cluster centers via global parameters by (12) and (10), respectively.
12: for epochs = 1, . . . , E and size-N batch learning within each epoch over dataset Dk do
13: Update online networks and cluster centers via global parameters by descending the gradient of the local cost function

in (9).
14: Update the target network parameters fT

k via (2).
15: end for
16: Return the online networks fO

k and gOk .

C. Experiment Details

(a) IID FedBYOL (b) IID FedRLC (c) Non-IID FedBYOL (d) Non-IID FedRLC

Figure 2. t-SNE data visualization on CIFAR-10.

C.1. Data heterogeneity

We follow the exact settings of FedU (Zhuang et al., 2021) and FedEMA (Zhuang et al., 2022) for a fair comparison. Namely,
to simulate data heterogeneity in federated learning, each user only consists of samples from M/K classes, where M is
the number of classes, and K is the number of clients. This is referred to as the data-split scenario. For independent and
identically distributed (IID) data, each user has the same number of samples from M classes. In addition to the data-split
non-IID scenario, to evaluate on different non-IID scenarios, we sample a specific proportion of the data from class m to
client k, where the proportion is followed by the Dirichlet distribution with parameter β, which is also a widely-used method
to simulate non-IID data distribution. A smaller β indicates a more heterogeneous distribution. The results have been shown
in Tables1 2 3 4 in section 4.

C.2. Implementation details

For federated training, we adopt the SGD optimizer with a 0.032 initial learning rate. The learning rate is decayed by cosine
annealing. The batch size is 128, and the input size is 32× 32. We use ResNet18 to be the encoder, and the predictor is a
two-layer multiplayer perceptron (MLP) with the output dimension 2048. The σ of EMA is 0.99, and the τ = 0.7 is directly
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followed by (Zhuang et al., 2022) without tuning. We set both the number of local clients and the number of local epochs to
5. The total communication rounds are 100 in federated learning, which are the same as recent FedSSL approaches (Zhuang
et al., 2021; 2022) for a fair comparison. For linear evaluation, the AdamW optimizer is adopted with a learning rate of
0.022. The batch size of linear evaluation is 512, and we train the linear classifier for 200 epochs. For semi-supervised
evaluation, Adam optimizer is used with a learning rate of 0.001. We fine-tune the entire network for 100 epochs with 10%
labeled data.

C.3. Visualization of representations

To analyze the data features visually, we plot the t-SNE visualization of the CIFAR-10 learned from FedBYOL and FedRLC
in Figure 2, where different colors indicate different classes. From the comparison between FedBYOL and FedRLC, we
observe that the data representations obtained from FedRLC are separated more clearly. The linear and semi-supervised
evaluations in section 4 further verify the effectiveness of FedRLC.
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