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Learning Counterfactual Explanations for Recommender Systems
Anonymous Author(s)

ABSTRACT
We introduce the Learning to eXplain Recommendations (LXR)
framework, a post-hoc, model-agnostic framework for counterfac-
tual explanations of recommender systems. LXR can work with
any differentiable recommender and learns to score the impor-
tance of users’ personal data with respect to a recommended item.
The framework’s objective employs a novel self-supervised coun-
terfactual loss term that seeks to spotlight the user data most in-
strumental in the recommendation of an item. Additionally, we
propose several counterfactual evaluation metrics for assessing
explanations in recommender systems. Using these metrics, our
results demonstrate LXR’s capability to provide counterfactual ex-
planations for various recommendation algorithms across different
datasets. LXR’s code is publicly available at https://github.com/
ExplainingRecommendations/LXR.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
The growing complexity of artificial intelligence (AI) systems has
led to a surge in demand for eXplainable Artificial Intelligence (XAI)
methods. As an example, the European Union General Data Protec-
tion Regulation (GDPR)1 dictates that users have a basic “right to
an explanation” concerning algorithmic decisions based on their
personal information [17]. Similar legislation is under discussion
in other countries worldwide. This particularly concerns recom-
mender systems, which utilize user data to generate personalized
recommendations. However, despite the importance of explain-
ability in recommender systems, there remains a notable gap in
research focusing on model-agnostic counterfactual explanation
frameworks for recommender systems.
1https://www.consilium.europa.eu/en/policies/data-protection/data-protection-
regulation/
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Counterfactual explanations are explanations that address “what-
if” questions, providing insights by comparing the system’s recom-
mendations under different conditions. This approach is recognized
to be more comprehensible, technically verifiable, and informative
to users [52]. In our context, counterfactual explanations entail iden-
tifying the elements in a user’s personal data that, if altered, would
change the recommended item, distinguishing these elements from
other parts of the user’s data that can be changed without affecting
the recommendation.

The naive approach to generating counterfactual explanations
involves computationally expensive perturbations in which differ-
ent subsets of a user’s data are modified to observe the resulting
changes in the recommendation [60]. This poses a challenge that
hinders the ability to efficiently compute counterfactual explana-
tions for multiple items in real-time. Our solution overcomes this
obstacle by employing a novel framework in which an explainer
model learns the changes in a recommender’s output with respect
to changes in the user’s personal data.

We introduce the Learning to eXplain Recommendations (LXR)
framework. LXR is a model-agnostic, post-hoc approach for self-
supervised learning of counterfactual explanations in recommender
systems. LXR’s explainer generates counterfactual explanation
masks that score the significance of a user’s personal data with
respect to a given recommendation. Being model-agnostic, LXR can
work with any differentiable black-box recommender and does not
require knowledge of the recommender’s internal architecture or
access to its parameters. Its sole prerequisite for the recommender
model is its differentiability.

Our contributions can be summarized: (1) We introduce a pio-
neering, model-agnostic framework specifically designed for effi-
cient computation of counterfactual explanations in recommender
systems. A key advantage of LXR, especially when compared to
alternative counterfactual explanation techniques, lies in its ability
to rapidly generate explanations, bypassing the necessity for in-
tensive computations or perturbations. This proficiency positions
LXR as a leading choice for delivering on-demand explanations in
real-world systems. (2) LXR’s self-supervised optimization process
is guided by a novel counterfactual loss term, intricately incorpo-
rating any ‘black-box’ recommender in a distinctive configuration.
(3) We put forward a methodology for the counterfactual evalu-
ation of explanatory algorithms in recommender systems. This
methodology employs a fresh set of metrics, drawing inspiration
from saliency map evaluations in computer vision [9, 10, 37]. (4)
Using these metrics, we benchmark LXR against prevalent explana-
tory approaches, highlighting LXR’s superior capacity to explain a
variety of recommendation algorithms across multiple datasets.

2 RELATEDWORK
In recent years, the need for XAI methods has gained significant
interest from both the research community and the industry. In
the context of recommender systems, it has been shown that trans-
parency and interpretability foster trust in users [8, 22, 45]. Conse-
quently, numerous works have focused on deriving explanations for

1
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recommender systems. While it is not feasible to cover every work,
we attempt to provide a concise overview of the most prominent
approaches and refer the interested reader to [50, 58] for more on
the subject.

We categorize explanation methods for recommender systems
into several primary groups. Although this categorization is not
mutually exclusive, we find it useful for the sake of our discussion:

Model-specific methods: These methods are tailored for spe-
cific recommendation algorithms and rely on the unique properties
and structures of the explained model. For example, Abdollahi
and Nasraoui [1, 2] presented explanation approaches for matrix
factorization models (MF) [28]. In this category, we also include rec-
ommendation models designed to inherently induce interpretability
and reasoning with respect to the model’s predictions [7, 16, 33].
For example, ProtoMF [33] is a recommendation algorithm that
utilizes user prototypes to enable explainability. LXR inherently
differs from the above works since it is amodel-agnostic framework,
designed to work with any differentiable recommender algorithm
and not tailored to one specific recommendation model.

Post-hoc methods: Post-hoc methods are applied after a model
has been trained in order to generate explanations for its predic-
tions [13, 35, 36, 51]. For example, LIME-RS [35] is a model-agnostic
adaptation of LIME [41] which builds a simple surrogate model to
approximate the original recommender in order to explain it. FIA
(Fast Influence Analysis) [13] is a post-hoc approach for explana-
tions in latent factor models using influence functions [27]. Finally,
Tran et al. [51] presented ACCENT (Action-based Counterfactual
Explanations for Neural Recommenders for Tangibility), a general-
ization of [13] for model-agnostic counterfactual explanations in
recommender systems. Similar to the above works, the LXR model
in this paper belongs to the model-agnostic, post-hoc category.

Aspect-based methods: An extensive line of research deals
with methods that leverage external item features or ‘aspects’ [11,
12, 20, 24, 30, 46, 47, 53–55, 57, 59]. For example, [59] proposed the
Explicit Factor Model (EFM) that aligns latent factors with explicit
features such as color and price to generate explanation sentences.
The LXR model differs from this line of work as it does not depend
on any item features or aspects to generate explanations.

Counterfactual methods: Counterfactual methods [52] op-
erate by addressing “what-if” questions that attempt to assess
how the model’s recommendations would vary with respect to
different changes in the user’s personal data. These methods were
shown to be more user-friendly and easier to understand [52]. As
a consequence, several studies proposed counterfactual explana-
tion techniques for recommender systems [25, 47, 60]. However,
these methods usually depend on resource-intensive searches or
perturbations leading to increased computational costs that pro-
hibit real-time deployment in a commercial setting. For example,
the SHAP method [32], stemming from Shapley values [19] in game
theory, computes the marginal contribution of each data element
across different perturbations. However, computing perturbations
for every explanation hinders employing SHAP in real-world set-
tings where explanations are computed on demand in run-time.
In [60], SHAP was applied to recommender systems to create coun-
terfactual explanations using a limited set of 12 explainable features.
To overcome the computational challenge, the authors proposed
to heuristically select a subset of features on which to perform the

perturbations. In contrast to the above works, the LXR method does
not perform perturbations to compute explanations. Instead, LXR
overcomes the computational challenge by training a model that
employs a novel counterfactual loss function in order to learn the
changes in the recommender’s output with respect to changes in
the user’s personal data. At run-time, instead of performing ex-
pensive perturbations, LXR generates its explanations via a simple
feed-forward inference step.

3 THE LXR FRAMEWORK
3.1 Problem Setup and Preliminaries
Let U and V be the number of users and items, respectively. For a
specific user 𝑢, we denote by x𝑢 her personal data vector. In this
work, we chose to demonstrate LXR to explain implicit feedback
Collaborative Filtering (CF) recommenders [23, 38]. Accordingly,
x𝑢 ∈ {0, 1}V is a binary vector that indicates the historical items
consumed by 𝑢. We note that LXR is a general framework, not
limited to CF recommenders. Hence, in general, x may include any
user data.

Let 𝑓𝜃 : {0, 1}V → [0, 1]V be a CF recommender, parameterized
by 𝜃 , that receives user data x, and outputs a probability distribution
over the items. This recommender is already trained and our goal
is to explain its predictions with respect to the user data. Hence, we
treat the recommender 𝑓𝜃 as a “black box” that receives user data
vector x as input and produces user-item affinity scores which can
be used to rank items and produce personalized recommendations.

An explainer 𝑒𝜙 : {0, 1}V × {0, 1}V → [0, 1]V is a function,
parameterized by𝜙 , that receives a user data vector x, and a one-hot
vector y ∈ {0, 1}V , representing the recommended item (target
item) to be explained. The explainer’s output is an explanation
mask, a vector m ∈ [0, 1]V that attributes the relevance of each
item in the user’s history x with respect to the recommendation of
the target item y. Namely, m = 𝑒𝜙 (x, y), and m[𝑖] represents the
importance of the data in x[𝑖] to the recommendation of y. Note
that y, the target item to be explained, is determined according
to our choice. The property of an explanation algorithm to pro-
duce different explanations for different predictions is known as
“discriminability” [60].

Finally, we denote by x𝑚 the Hadamard product between the
user data vector x, and the explainer’s maskm. Formally, x𝑚 = x◦m.
Based on the explanation scores in m, the vector x𝑚 is essentially
a masked version of the user data x in which the most important
elements are kept, while the least important elements are removed.
Similarly, we denote by x1−𝑚 the Hadamard product between the
user data vector x, and the inversed mask (1−m). Formally, x1−𝑚 =

x ◦ (1 −m). Accordingly, x1−𝑚 is a masked version of the user’s
data x in which the most important elements are removed while
the least important elements are kept.

3.2 LXR Objective
In order to optimize the explainer 𝑒𝜙 , LXR employs a novel self-
supervised counterfactual objective as follows:

L𝐿𝑋𝑅 (x, y) = L𝑝𝑟𝑒𝑑 (𝑓𝜃 (x𝑚), y) + 𝜆𝑖𝑛𝑣L𝑖𝑛𝑣 (𝑓𝜃 (x1−𝑚), y)
+ 𝜆𝑚𝑎𝑠𝑘L𝑚𝑎𝑠𝑘 (𝑚).

(1)

2
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Figure 1: The LXR framework: The explainer 𝑒𝜙 is trained to explain the predictions generated by the (frozen) recommender
𝑓𝜃 . Note the backpropagation of the gradients, marked by the red dashed lines traversing through the recommender (yet
without updating it), back to the explainer. This unique setup enables the learning of counterfactual explanations for 𝑓𝜃 in a
self-supervised manner while avoiding the need to perform expensive perturbations that prohibit the implementation of other
counterfactual explanation techniques in real-world recommender systems.

The above objective consists of three terms: The first term, L𝑝𝑟𝑒𝑑 ,
is designed to encourage the explainer to output an explanation
mask that leads the recommender to keep the target item y at the
top of the recommendation list, even when it considers the masked
version of the user data x𝑚 . The second term, L𝑖𝑛𝑣 , is designed to
suppress the recommendation of y when the user’s data is masked
by the inverted mask (1−m) in which the most important elements
are removed. Finally, the goal of the third objective, L𝑚𝑎𝑠𝑘 , is to
enforce sparsity on the mask.

According to LXR’s design goals above, we experimented with
different implementations for the three loss terms in Eq. 1. In
this work, we set L𝑝𝑟𝑒𝑑 to the categorical cross-entropy between
𝑓𝜃 (x𝑚), and the target item y. Hence, L𝑝𝑟𝑒𝑑 strives to maintain
the original recommendations of y for the masked version of the
user input x𝑚 , in which only the most important elements are kept.
L𝑖𝑛𝑣 was set to −𝑙𝑜𝑔(1 − 𝑓𝜃 (𝑥1−𝑚) [𝑦]) with 𝑦 representing the
index of the target item. Consequently, L𝑖𝑛𝑣 strives to minimize
the probability score assigned to the target item when the recom-
mender sees x1−𝑚 , in which the most important data elements are
masked. Finally, L𝑚𝑎𝑠𝑘 was set to the L1 loss.

We wish to highlight the novelty in LXR’s objective from Eq. 1.
In essence, L𝑝𝑟𝑒𝑑 and L𝑖𝑛𝑣 are counterfactual loss terms that strive
to answer “what-if” questions with respect to potential inputs x𝑚
and x1−𝑚 induced by the explainer 𝑒𝜙 . To this end, LXR employs
an untraditional setup in which the recommender itself, 𝑓𝜃 , is em-
bedded inside the learning objective and takes an active part in the
optimization process. Nevertheless, the recommender’s weights,
𝜃 , are kept frozen, as we do not wish to change the object of our
explanations. This unique setup enables the learning of counterfac-
tual explanations for 𝑓𝜃 in a self-supervised manner. It also avoids
the need to perform expensive perturbations that prohibit the im-
plementation of other counterfactual explanation techniques in
real-world recommender systems.

3.3 LXR Optimization
During LXR’s training, for each train user 𝑢, we set the target item
to be explained 𝑣 , as the item with the highest score according to
the recommender (excluding the historical items that appear in x𝑢 ).
We then train 𝑒𝜙 according to:

𝜙∗ = argmin
𝜙

1
U

U∑︁
𝑢=1

L𝐿𝑋𝑅 (x𝑢 , y𝑡 (𝑢 ) ), (2)

where L𝐿𝑋𝑅 is LXR’s objective from Eq. 1, and

𝑡 (𝑢) = argmax
𝑖∈{ 𝑗 |x𝑢 [ 𝑗 ]=0}

𝑓𝜃 (x𝑢 ) [𝑖], (3)

is the recommended item to the user.
The LXR optimization process is carried out using stochastic gra-

dient descent. Equipped with the trained explainer 𝑒𝜙∗ (optimized
for recommender 𝑓𝜃 ), the explanation mask for the pair (x, y) is
given by 𝑒𝜙∗ (x, y) which requires a simple feed-forward operation
and avoids the need to perform perturbations. Figure 1 depicts a
schematic illustration of the LXR framework and its optimization.

3.4 The Explainer Architecture
The LXR framework, as described above, is versatile and does not
rely on either the explainer’s or the recommender’s architectures.
Significantly, the lack of dependence on the recommender’s archi-
tecture distinguishes LXR as a model-agnostic approach, setting it
apart from many current explanation frameworks in recommender
systems.

Regarding the explainer’s architecture, our experiments indicate
that LXR works well using different architectural choices. In this
work, the explainer 𝑒𝜙 was implemented as a neural network that
receives a user data vector x and the target item y as inputs and
applies linear mappings to produce the embeddings q𝑥 = W0x
and q𝑦 = W1y. These embeddings are concatenated to form a

3
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super-vector q = [q𝑥 , q𝑦] which is fed to an MLP network 𝑔𝜙𝑀𝐿𝑃
,

with 𝑛 Tanh activated hidden layers, followed by a sigmoid ac-
tivated layer with an output size V . The final explanation mask
is given by 𝑒𝜙 (x, y) = 𝑔𝜙𝑀𝐿𝑃

(q) ◦ x. The explainer’s parameters,
𝜙 = {W0,W1, 𝜙𝑀𝐿𝑃 }, were optimized according to the objective in
Eq. 2. The final implementation, including hyperparameter settings
are further detailed in Sec. 5 and provided in our GitHub repository.

4 COUNTERFACTUAL EVALUATION
Quantitative evaluation of explanation algorithms for recommender
systems is a challenging task. Many previous models focused on
generating aspect-based explanations, with evaluations often per-
formed on datasets containing item reviews from which the items’
aspects were extracted [14, 20, 24]. Similarly, Xian et al. [57] evalu-
ated their explanations based on the ability to identify the essential
attributes of recommended items. However, these approaches are
limited to aspect-based explanation methods where explanations
rely on item attributes. In contrast, LXR is a general explanation
method that does not necessitate any item information. In fact, in
this paper, we demonstrate LXR for CF recommenders, in which
the only available information is the user-item interaction matrix.

In the context of post-hoc, model-agnostic explanations for rec-
ommender systems, evaluations often focus on measuring model fi-
delity, as in [20, 35]. However, model fidelity in these works is a cov-
erage metric: Model Fidelity =

|Explainable Items∩Recommended Items |
|Recommended Items | ,

which does not consider the actual quality of the explanations. In
LXR, we can generate explanations for any recommendation, result-
ing in a Model Fidelity of 1. Hence, the objective of our evaluations
is not about LXR’s coverage, but rather its ability to produce accu-
rate counterfactual explanations with respect to the recommended
item. Other useful methods for evaluating explanations in recom-
menders include online experiments [57], user studies [34], and
various heuristics related to desirable explanation traits, such as
transparency, scrutability, trust, persuasiveness [48, 49].

4.1 Perturbation Tests
In this work, we diverge from the aforementioned evaluation meth-
ods and present a framework for counterfactual evaluation of ex-
planation algorithms for recommender systems based on a new
set of metrics, inspired by saliency map evaluations in computer
vision. Given the scarcity of counterfactual evaluation metrics for
recommender system explanations, we hope that this aspect of our
work would serve as an additional contribution to the community.

Our evaluation metrics draw inspiration from metrics such as
the area over the perturbation curve (AOPC) introduced by Samek
et al. [42], as well as the Prediction Gap on Unimportant (PGU) and
Prediction Gap on Important (PGI) metrics proposed by Agarwal
et al. [4] which are commonly employed for reporting explanation
results of saliency maps in computer vision [9, 10, 37]. In the case
of images, these tests involve gradually removing (e.g., blackening)
pixels based on their “explainability” score, either in ascending
or descending order while observing the change in the model’s
prediction. In a positive perturbation test the pixels are eliminated
in decreasing order of “explainability”, hence it is expected that the
model’s output will change rapidly and significantly. Conversely,
in a negative perturbation test, pixels are removed in increasing

order of “explainability”, hence it is anticipated that the model’s
output will change slowly and incrementally.

In the context of recommender systems, rather than image pixels,
we deal with users’ personal data. Specifically, in this work, we
focus on CF models in which the user data consists of x ∈ {0, 1}V ,
a binary vector that indicates the historical items consumed by
the user. User recommendations are organized as a ranked list of
items based on the recommender’s predictions, where 𝑓𝜃 (x𝑢 ) [𝑖] is
the recommender’s affinity score for a user data vector x𝑢 and an
item 𝑖 . Consequently, perturbations involve removing items from
the user’s vector x according to their “explainability” score pro-
vided by the explainer, while monitoring the recommended item to
be explained. Accordingly, in a positive perturbation test, the user
data is deleted in descending order of importance or “explainability”
with the expectation that the explained item’s score would decrease
quickly and the explained item would move down the recommen-
dation list. In a negative perturbation test, the user data is deleted
in ascending order, with the expectation that the recommended
item being explained would maintain its high user-item score and
continue to rank high in the recommendation list.

Building on these insights, we propose four new counterfactual
evaluation metrics for explanations in recommender systems. Our
metrics employ stepwise perturbations where on each step an ad-
ditional 1

𝑀
of the user’s data is deleted according to its relevance

score obtained from the explainer.𝑀 is a positive integer that serves
as a granularity factor for the number of perturbation steps. For
example, in this work, we set𝑀 = 10.

Let x𝑢 be the user 𝑢’s historical items vector. In a positive pertur-
bation test, we define x𝑝𝑜𝑠𝑢 (𝑚) to be the user’s𝑢 data after removing
𝑚
𝑀

of her most important personal data according to the explainer.
Similarly, for negative perturbations, we define x𝑛𝑒𝑔𝑢 (𝑚) to be the
user’s 𝑢 data after removing 𝑚

𝑀
of her least important personal data

according to the explainer. Accordingly, in either a positive or a
negative perturbation test, we perform𝑚 = 1, ..., 𝑀 steps, gradually
deleting the user’s historical items in decreasing or increasing order
of importance, respectively. At step𝑚 = 0, the user data is complete
i.e., x𝑝𝑜𝑠𝑢 (0) = x𝑛𝑒𝑔𝑢 (0) = x𝑢 . At the last step,𝑚 = 𝑀 , the entire user
data is deleted i.e., x𝑝𝑜𝑠𝑢 (𝑀) = x𝑛𝑒𝑔𝑢 (𝑀) = 0 (the zero vector). For
example, in a positive (negative) perturbation test, with𝑀 = 10, if
the number of items in the user history is 50, then at step𝑚 = 7,
we delete the ⌊50 × 7

10 ⌋ = 35 most (least) important items from
her user history. Finally, we denote by 𝑟𝑎𝑛𝑘 (x𝑢 ) the rank of the
explained item according to the recommender system for user 𝑢
with personal data vector x𝑢 .

Given the notation above, we assess the performance of expla-
nation models by measuring the area under the curve (AUC) with
respect to the following counterfactual perturbation tests:

POS-P@K: We define a positive perturbation test that monitors
if the explained item remains in the top 𝐾 recommendations when
user data is deleted in decreasing order of importance. Formally,
at step 1 ≤ 𝑚 ≤ 𝑀 , we define POS-P@K(m)=1

[
𝑟𝑎𝑛𝑘 (x𝑝𝑜𝑠𝑢 (𝑚)) ≤

𝐾

]
, where 1[·] is the indicator function. Namely, POS-P@K(m) is

an indicator function that denotes whether the explained item
remains at the top 𝐾 recommendations after deleting 𝑚

𝑀
of the

user’s most important data. The AUC is given by AUC POS-P@K =

4
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(a) Example User 1 (b) Example User 2

Figure 2: Examples of explaining user recommendations. The top image displays the original user history and the initial top
recommendations. The second and third images present explanations for different items from the user’s recommendation list.
The masked items in the user’s history are those identified as the most representative of the item being explained. By masking
the most representative items, we conduct a counterfactual test, showing that without these items, the recommended items
would no longer be recommended.

1
𝑀

∑𝑀
𝑚=1 POS@K(m). For this metric lower values are considered

better, as the explained item is expected to drop quickly when the
most important user data is deleted first.

NEG-P@K:We define a negative perturbation test that monitors
if the explained item remains in the top 𝐾 recommendations when
user data is deleted in decreasing order of importance. Formally,
at step 1 ≤ 𝑚 ≤ 𝑀 , we define NEG-P@K(m) = 1

[
𝑟𝑎𝑛𝑘 (x𝑛𝑒𝑔𝑢 (𝑚)) ≤

𝐾

]
, where 1[·] is the indicator function. Hence, NEG-P@K(m) is

an indicator function that denotes whether the explained item
remains at the top 𝐾 recommendations after deleting 𝑚

𝑀
of the

user’s least important data. The AUC is given by AUC NEG-P@K =
1
𝑀

∑𝑀
𝑚=1 NEG-P@K(m). For this metric, higher values are better, as

the explained item is expected to drop slowly when the least im-
portant user data is deleted first.

Note that POS-P@K and NEG-P@K are symmetric versions of each
other for the positive and the negative perturbation tests, respec-
tively. However, as we shall see next, these metrics focus on differ-
ent aspects of the explanations and their results do not necessarily
correlate.

NDCG-P:NormalizedDiscounted Cumulative Gain (NDCG) [56]
is a common metric in recommender systems evaluation. Hence,
we propose a positive perturbation test based on NDCG. At step
1 ≤ 𝑚 ≤ 𝑀 , we define: 𝑁𝐷𝐶𝐺 − 𝑃 (𝑚) = 1

log2
(
1+𝑟𝑎𝑛𝑘 (x𝑝𝑜𝑠𝑢 (𝑚) )

) ,
and the AUC is given by AUC NDCG-P= 1

𝑀

∑𝑀
𝑚=1 NDCG-P(x

𝑝𝑜𝑠
𝑢 (𝑚)).

Note that for this metric, lower values are considered better, as the
expectation is that the explained item will drop quickly when the
most relevant user data is deleted first.

DEL-P: The aforementioned metrics focus on the explained
item’s rank relative to other items. In contrast, the deletion pertur-
bation metric measures the decrease in the recommender’s con-
fidence as the user’s data is removed in decreasing order of im-
portance. Formally, at step 1 ≤ 𝑚 ≤ 𝑀 , we track the value of
𝑓 (x𝑝𝑜𝑠𝑢 (𝑚)) [𝑖] i.e., the score that the recommender assigns to a
user with the vector x𝑝𝑜𝑠𝑢 (𝑚) and the item 𝑖 . The AUC is given
by AUC DEL-P = 1

𝑀

∑𝑀
𝑚=1 𝑓 (x

𝑝𝑜𝑠
𝑢 (𝑚)) [𝑖]. Since the user data is re-

moved in decreasing order of importance, in this metric lower values
are considered better.

INS-P: The insertion perturbation metric measures the increase
in the recommender’s confidence as the user’s data is added in
decreasing order of importance. Starting from an empty user vector,
we gradually add items in decreasing order of importance. Note that
in terms of AUC, adding the items in decreasing order is equivalent
to removing the items in increasing order of importance, hence INS-
P can be formulated as a negative perturbation test. Formally, at
step 1 ≤ 𝑚 ≤ 𝑀 , we track the value of 𝑓 (x𝑛𝑒𝑔𝑢 (𝑀 −𝑚)) [𝑖] namely,
the score that the recommender assigns to the item 𝑖 and a user
with user data x𝑛𝑒𝑔𝑢 (𝑀 −𝑚) i.e., an empty user vector to which
𝑚
𝑀

of 𝑢’s most important items were added. The AUC is given by
AUC INS-P = 1

𝑀

∑𝑀
𝑚=1 𝑓 (x

𝑛𝑒𝑔
𝑢 (𝑀 −𝑚)) [𝑖]. Consequently, for INS-P,

higher values are considered better.
The metrics above are defined for a single user. We report our

evaluations based on the average value over a hidden test set of
users as explained next.
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5 EXPERIMENTAL SETUP AND RESULTS
Our evaluations are based on theMovieLens 1M (ML1M) dataset [18]
consisting of 1 million ratings from 6,040 users to 3,883 movies. In
addition, in the Appendix we report additional evaluations using
the Yahoo! Music dataset [15] and the Pinterest dataset [21].

We focus on the less explored, yet highly relevant, task of ex-
plaining CF models based on implicit user-item interactions [23, 38].
Hence, the rating value was disregarded, and the recommenders
learned to predict the binary user-item interaction matrix instead.
Each dataset was divided into distinct training and testing subsets
using user identifiers, following an 80% for training and 20% for
testing division. Additionally, we excluded 10% of the users from
the training subset for hyperparameter optimization. The evalua-
tions are based on the users in the testing subset. For every user,
we utilized her data to produce a ranked list of recommendations
and subsequently evaluated the ability to explain her top recom-
mendation.

We consider two CF recommendation models:
Matrix Factorization (MF): Matrix factorization models are a

class of collaborative filtering techniques that decompose a user-
item interaction matrix into lower-dimensional latent factor rep-
resentations [28]. While these methods have been around for a
while, recent reproducibility studies [39, 40] found that MF models,
like iALS [23], remain highly competitive compared to many more
recent models. We implemented a version of MF in which the model
receives a binary encoding of the user’s historical items from which
it computes the user’s latent representation via a simple projection
matrix. The user’s vector is then multiplied by the item’s vector
using the inner product followed by a sigmoid in order to produce
binary probabilities. The latent dimensionality of the recommender
was set to 𝑑 = 50.

Variational Autoencoder (VAE): Variational autoencoders
(VAEs) are generative models that learn to encode and decode data
while simultaneously learning a probabilistic latent representation
through optimization of a lower bound on the data likelihood [6].
VAEs have been successfully employed for CF recommendations
[31, 43] and have recently been shown to perform extremely well
against other baselines in an objective reproducibility study [39].
Hence, we included a recommender model based on a VAE with a
similar architecture to that of [31].

The exact implementations of the above recommendationmodels
can be found in our GitHub repository. All the experimentations in
this project were done using an Nvidia DGX V100 machine with 4
GPUs.

5.1 Baselines
As discussed in Section 2, while much work has been done on
explaining recommender systems, very little has been achieved in
the way of model-agnostic counterfactual methods. Consequently,
we compare LXR against the following baselines:

Jaccard Similarity (Jaccard): This baseline produces explana-
tions for a recommended item based on similarity to the items in the
user’s history using the Jaccard pairwise similarity [5] computed
on the users who interacted with both items.

Cosine Similarity (Cosine): This baseline produces explana-
tions for a recommended item based on similarity to the items in the

user’s history using the Cosine pairwise similarity [44] computed
on the users who interacted with both items.

LIME: LIME approximates the recommender using a locally
interpretable, linear surrogate model [41]. In [35], the LIME-RS
algorithmwas presented as an adaptation of LIME for recommender
systems. We employed LIME-RS on the user’s historical items. The
number of examples was carefully tuned using the validation set.

SHAP: SHAP is a counterfactual method based on computation-
ally expensive perturbations [32]. In the context of recommender
systems, a naive approach entails experimenting with multiple per-
mutations of the user’s historical items. However, the number of
possible perturbations is exponential in the number of items, mak-
ing it impractical for real-world settings where explanations are
computed ad-hoc. In [60], SHAP was applied to recommender sys-
tems using a limited set of 12 explainable features. In our case, we
wish to employ SHAP on the user’s historical items (not features).
Hence, we grouped each user’s items into 𝐾 = 20 clusters using
Jaccard similarity and the k-means algorithm. Shapley values were
computed for the aggregated item clusters in order to generate ex-
planations. Note that even with just 𝐾 = 20 clusters, this evaluation
required intensive computing efforts rendering it impractical for
real-world settings.

ACCENT: ACCENT (Action-based Counterfactual Explanations
for Neural Recommenders for Tangibility) [51] is a state-of-the-art
counterfactual explanation framework based on influence func-
tions [27]. It is a model-agnostic generalization of FIA [13] which
was originally presented for latent factor models only.

LXR: Our proposed model. LXR’s linear mappings W0,W1 ∈
R𝑑×V , were implemented with 𝑑 = 20. The MLP in the explainer
includes 𝑛 = 2 hidden layers (the output dimension of the first
and second MLP layers was set to 2𝑑 and 3𝑑 , respectively). The ex-
plainer was trained on the training users only, using the Adam [26]
optimizer with a learning rate 0.001 and batch size of 64, while mon-
itoring the POS-P@10 metric till convergence (training converged
after ∼ 10 epochs). 𝜆𝑖𝑛𝑣 and 𝜆𝑚𝑎𝑠𝑘 were set per dataset, according
to a separate validation set. Finally, we set the explainer to the
model checkpoint that obtained the best POS-P@10 value across
all epochs. We note that it is possible to monitor different metrics,
and potentially obtain improved results for each of the explanation
metrics from Section 4.

Finally, we also include two ablated versions of LXR as follows:
LXRpos: An ablated version of LXR in which the L𝑖𝑛𝑣 loss term

from Eq. 1 was removed. Hence, in this ablated version of LXR
the optimization is based on L𝑝𝑟𝑒𝑑 , which strives to maintain the
recommended item for the masked input x𝑚 , and L𝑚𝑎𝑠𝑘 , which
encourages a sparse mask.

LXRneg: An ablated version of LXR in which the L𝑝𝑟𝑒𝑑 loss
term from Eq. 1 was removed. Hence, in this ablated version of
LXR the optimization is based on L𝑖𝑛𝑣 , which strives to suppress
the recommended item for the inverted masked input x1−𝑚 , and
L𝑚𝑎𝑠𝑘 , which encourages a sparse mask.

5.2 Qualitative Examples
We commence the evaluation section of this paper with a few qual-
itative examples of counterfactual explanations. Figure 2 presents
two examples of recommendations to different users based on the
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Figure 3: Perturbation evaluation tests. The figures present POS-P@5, NEG-P@5, NDCG-P, INS-P and DEL-P perturbation vs.
the percentage of masked items in the user history.

VAE recommender and the ML1M dataset. In each example, the
top row displays the user’s historical items and the resulting rec-
ommendations. The second and third rows for each user display
explanations for different items from the user’s recommendation
list. The masked items in the user’s history are those identified
as the most responsible for the item being explained. By masking
the explaining items, we conduct a counterfactual test, akin to a
single positive perturbation that shows that without these items,
the original recommended item would no longer be recommended.
These examples also demonstrate LXR’s ability to provide different
explanations for different recommended items showcasing LXR’s
discriminability property [29].

5.3 Quantitative Results
We begin with a visual evaluation that presents the perturbation
process for different metrics. Figure 3 displays POS-P@5, NEG-P@5,
NDCG-P, INS-P, and DEL-P for LXR and the baselines when explaining
the MF recommender on the ML1M dataset. The x-axis depicts the
perturbation steps or the percentage of items that are masked. The
𝑚’th marker on the x-axis signifies the point where 𝑚

𝑀
of items from

the user’s history are masked based on their significance score with
respect to the item being explained. Keep in mind that for POS-P@K,
NDCG-P, and DEL-P lower values are better, while for NEG-P@K and
INS-P@K higher values are better.

The results in Fig. 3 show that LXR significantly outperforms the
baselines across the vast majority of the different perturbation tests.
On POS-P@5, NEG-P@5, and NDCG-P it is clear to see that LIME [35]
comes second. In fact, for the NEG-P@5 test, LXR and LIME seem
very close at the first three perturbations until LXR picks up on

the fourth perturbation. Additionally, we note that in the graph
for INS-P, LXR’s lead with respect to the baselines is less dominant.
We attribute these findings to the fact that during the LXR training
process, we monitored the POS-P@10metric, a positive perturbation
test. This may have caused LXR to be somewhat biased in favor
of positive perturbation tests over negative perturbation tests. We
plan to address this in future work by adding negative perturbation
tests to our monitoring.

We now turn to a more comprehensive quantitative evaluation
using the AUC of the metrics as outlined in Sec. 4. Tables 1-2
display the AUC values for POS-P@K andNEG-P@Kwith𝐾 = 5, 10, 20.
Additionally, values for the AUC of INS-P, DEL-P, and NDCG-P are
provided for LXR and baselines in explaining the MF recommender
(Tab. 1) and the VAE recommender (Tab. 2). On each evaluation,
the best result is emphasized with bold fonts, while the second-
best result is underlined. The distinction in results between the
top model and the next best was statistically verified using a t-test,
yielding a p-value of less than 0.05.

For the MF recommender (Tab. 1), LXR variants consistently
outperform across all metrics, with LIME [35] as the subsequent
contender. In explaining the VAE recommender (Tab. 2), LXR vari-
ants lead in most metrics except for NEG-P@10 and NEG-P@20. As
explained above, this may be attributed to the fact that during the
LXR training process, we monitored the POS-P@10 metric, a posi-
tive perturbation test, which may have caused LXR to be biased
in favor of positive perturbation tests over negative perturbation
tests. Nevertheless, these results underscore LXR’s prowess as a
universally applicable counterfactual explanation technique.
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Table 1: AUC values for explaining an MF recommender.

Method k=5 k=10 k=20
POS NEG POS NEG POS NEG INS DEL NDCG

Jaccard 0.25 0.46 0.27 0.48 0.32 0.54 0.98 0.85 0.31
Cosine 0.34 0.37 0.38 0.41 0.44 0.48 0.97 0.91 0.39
LIME 0.20 0.62 0.04 0.68 0.28 0.74 0.97 0.80 0.26
SHAP 0.36 0.33 0.41 0.39 0.47 0.44 0.93 0.88 0.41

ACCENT 0.13 0.28 0.16 0.32 0.18 0.38 0.87 0.62 0.21
LXRpos 0.04 0.53 0.058 0.603 0.075 0.66 0.971 0.43 0.14
LXRneg 0.031 0.70 0.046 0.781 0.056 0.82 0.987 0.232 0.13
LXR 0.03 0.71 0.048 0.78 0.057 0.83 0.99 0.23 0.12

Table 2: AUC values for explaining a VAE recommender.

Method k=5 k=10 k=20
POS NEG POS NEG POS NEG INS DEL NDCG

Jaccard 0.32 0.81 0.06 0.88 0.52 0.91 0.015 0.003 0.35
Cosine 0.64 0.67 0.73 0.75 0.79 0.81 0.009 0.004 0.35
LIME 0.54 0.54 0.46 0.88 0.55 0.90 0.012 0.0057 0.47
SHAP 0.53 0.54 0.62 0.63 0.70 0.71 0.008 0.007 0.41

ACCENT 0.37 0.58 0.45 0.70 0.53 0.79 0.013 0.0045 0.41
LXRpos 0.29 0.82 0.40 0.86 0.50 0.88 0.019 0.004 0.34
LXRneg 0.55 0.56 0.66 0.67 0.75 0.76 0.009 0.0067 0.52
LXR 0.27 0.83 0.37 0.87 0.46 0.89 0.013 0.002 0.33

In conclusion, we focus on the outcomes of our ablation test,
juxtaposing LXR with its two ablated versions, namely 𝐿𝑋𝑅𝑝𝑜𝑠 and
𝐿𝑋𝑅𝑛𝑒𝑔 . It’s evident that in the majority of scenarios (six out of the
nine tests for each dataset), the complete LXR model outperforms
its ablated counterparts. In Table 1, 𝐿𝑋𝑅𝑛𝑒𝑔 seems to have a slight
edge over 𝐿𝑋𝑅𝑝𝑜𝑠 , but the opposite appears to be the case in Ta-
ble 2. It appears that the two objective terms, L𝑝𝑟𝑒𝑑 and L𝑖𝑛𝑣 from
Eq. 1, are equally usefull. Nonetheless, these findings accentuate the
significance of integrating both terms into LXR’s objective, leading
to superior overall outcomes.

5.4 Sanity Test for Explanation Methods
Adebayo et al. [3] showed that some explanation methods, while
able to generate accurate explanations, are in fact insensitive to the
model being explained. For instance, an explanatory model might
justify a recommended item based on its external similarity to items
from the user’s past interactions. Although this might seem like
a coherent explanation to the user, it doesn’t originate from the
recommendation model under scrutiny. A comparable observation
has beenmade inmultiple prominent explanationmethods designed
for computer vision models [3].

In order to address the above issue, the parameter randomiza-
tion sanity test was proposed in order to evaluate the sensitivity of
explanation models to the model being explained. In our case, the
test entails comparing the explanations generated by LXR in two
distinct configurations: (1) a “normal” setup where the explained
model is an optimized VAE recommendation model on the ML1M
dataset, and (2) an “altered” setup, in which the same recommender
is used, but with the weights of its last 𝐾 layers scrambled. Figure 4
depicts the results of this test. To compare explanations from both

Figure 4: The parameter randomization sanity test for expla-
nation models [3]. At 𝐾 = 0 no randomization is employed.
As the randomization process begins, the correlation imme-
diately drops indicating the high sensitivity of LXR to the
model being explained.

cases, we employ Spearman’s correlation on the ranked list of user
data (items) according to the explainability score given by LXR in
each setting. At 𝐾 = 0, no randomization is employed, hence the
correlation is maximal. However, as the randomization process be-
gins, the correlation swiftly drops to zero. Such a result underscores
LXR’s profound sensitivity to the model being explained.

6 CONCLUSION
The LXR framework, outlined in this paper, is a post-hoc, model-
agnostic approach for counterfactual explanations of recommender
systems. Anchored around a novel counterfactual objective, LXR’s
self-directed learning seeks to pinpoint the most important user
data with respect to a recommended item. To achieve this, LXR
adopts a non-conventional design where the recommender system
is intrinsically intertwined within the learning objective and plays
a proactive role during optimization. A key advantage of LXR when
compared to alternative counterfactual explanation techniques, lies
in its efficiency to rapidly generate explanations, bypassing the
necessity for intensive computations or perturbations. This profi-
ciency positions LXR as a premier choice for delivering on-demand
explanations in real-world systems. Lastly, we introduce a set of
novel evaluation metrics specifically designed for counterfactual
evaluation of recommender systems. These metrics serve as an
additional contribution of this study, providing a valuable resource
for future researchers to assess and evaluate explanation methods
for recommender systems.
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7 APPENDIX
In the appended section, we provide supplementary evaluation
outcomes using the following datasets:

Yahoo! Music (Yahoo!): A random sample of 13,725 users with
10,265 items and 687,590 ratings from the Yahoo! Music dataset [15].

Pinterest: A random sample of 19,155 users with 9,639 items
and 500,000 ratings from Pinterest dataset [21].

Tables 3 and 4 present the AUC results for explaining an MF and
a VAE recommender on the Yahoo! dataset, respectively. Tables 5
and 6 present the AUC results for explaining an MF and a VAE
recommenders on the Pinterest dataset, respectively. The tables are
similar in structure to Tabs. 1-2 from Sec. 5. They depict the AUC
values for POS-P@K and NEG-P@K with 𝐾 = 5, 10, 20. Additionally,
values for the AUC of INS-P, DEL-P, and NDCG-P are provided for LXR
and the baselines. On each evaluation, the best result is emphasized
with bold fonts, while the second-best result is underlined. The
distinction in results between the top model and the next best was
statistically verified using a t-test, yielding a p-value of less than
0.05. These results strengthen the reliability and further emphasize
the advantage of the LXR framework with respect to its alternatives.

Table 3: MF recommender on the Yahoo! dataset.

Method k=5 k=10 k=20
POS NEG POS NEG POS NEG INS DEL NDCG

Jaccard 0.19 0.36 0.27 0.44 0.34 0.52 0.97 0.85 0.28
Cosine 0.27 0.28 0.36 0.37 0.43 0.44 0.95 0.88 0.34
LIME 0.14 0.49 0.18 0.56 0.23 0.62 0.98 0.71 0.18
SHAP 0.28 0.27 0.32 0.31 0.38 0.37 0.94 0.83 0.33

ACCENT 0.18 0.39 0.22 0.44 0.27 0.49 0.97 0.73 0.26
LXRpos 0.099 0.57 0.13 0.63 0.17 0.68 0.989 0.63 0.19
LXRneg 0.06 0.69 0.08 0.74 0.11 0.78 0.998 0.41 0.14
LXR 0.058 0.70 0.07 0.75 0.10 0.79 0.99 0.40 0.13

Table 4: VAE recommender on the Yahoo! dataset.

Method k=5 k=10 k=20
POS NEG POS NEG POS NEG INS DEL NDCG

Jaccard 0.33 0.74 0.42 0.81 0.52 0.86 0.03 0.009 0.36
Cosine 0.54 0.55 0.63 0.64 0.71 0.72 0.02 0.02 0.51
LIME 0.38 0.75 0.47 0.82 0.57 0.87 0.03 0.01 0.45
SHAP 0.53 0.47 0.62 0.56 0.71 0.65 0.02 0.013 0.49

ACCENT 0.48 0.52 0.56 0.66 0.65 0.76 0.024 0.013 0.48
LXRpos 0.30 0.76 0.39 0.81 0.51 0.84 0.04 0.0088 0.345
LXRneg 0.35 0.69 0.45 0.76 0.56 0.81 0.03 0.01 0.38
LXR 0.295 0.73 0.37 0.79 0.47 0.88 0.029 0.0087 0.342

Table 5: MF recommender on the Pinterest dataset.

Method k=5 k=10 k=20
POS NEG POS NEG POS NEG INS DEL NDCG

Jaccard 0.25 0.24 0.27 0.26 0.29 0.29 0.96 0.89 0.33
Cosine 0.24 0.24 0.26 0.26 0.29 0.30 0.96 0.90 0.33
LIME 0.12 0.48 0.13 0.51 0.16 0.55 0.99 0.70 0.20
SHAP 0.27 0.26 0.29 0.28 0.32 0.31 0.95 0.90 0.34

ACCENT 0.27 0.26 0.29 0.29 0.32 0.29 0.93 0.88 0.34
LXRpos 0.11 0.46 0.12 0.48 0.15 0.52 0.997 0.75 0.19
LXRneg 0.17 0.42 0.18 0.45 0.21 0.49 0.98 0.68 0.25
LXR 0.10 0.56 0.11 0.59 0.14 0.64 0.998 0.53 0.18

Table 6: VAE recommender on the Pinterest dataset.

Method k=5 k=10 k=20
POS NEG POS NEG POS NEG INS DEL NDCG

Jaccard 0.28 0.70 0.35 0.69 0.51 0.81 0.018 0.007 0.44
Cosine 0.46 0.57 0.55 0.67 0.64 0.74 0.013 0.008 0.45
LIME 0.32 0.70 0.41 0.76 0.50 0.816 0.017 0.006 0.35
SHAP 0.49 0.48 0.58 0.57 0.67 0.65 0.012 0.009 0.40

ACCENT 0.36 0.46 0.44 0.59 0.51 0.69 0.015 0.007 0.39
LXRpos 0.26 0.71 0.35 0.77 0.45 0.82 0.02 0.0053 0.39
LXRneg 0.27 0.71 0.345 0.76 0.46 0.84 0.19 0.0054 0.35
LXR 0.30 0.81 0.34 0.8 0.42 0.85 0.019 0.0059 0.34
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