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ABSTRACT

Multi-modal Large Language Models (MLLMs) represent a significant advance-
ment in artificial intelligence. Among the growing capabilities exhibited by
MLLMs, abilities to understand and reason in real-world environments stand
out as particularly vital as a fundamental prerequisite for a wide array of real-world
applications. The current methods for evaluating MLLMs often fall short in their
ability to comprehensively assess these crucial capabilities. However, being able to
reason on complex environment-scale spaces, for example, room spaces, building
spaces, and even urban spaces, and to predict the future and plan actions, is essential
for humans and various autonomous agents to survive in the real physical world.
To address these gaps, we propose a visual-question-answering benchmark, SpaCE-
Eval (Spatial Reasoning, Commonsense Knowledge and Environment Interaction),
designed to evaluate MLLM’s reasoning abilities in real-world environments. As
the name suggests, it challenges the models to reason on complex spatial scenar-
ios, invoke commonsense knowledge of the physical world, and interact with the
environment. The dataset consists of all new diagrams purposefully produced
by humans, where diagram-question pairs are meticulously refined and selected
through a rigorous pipeline. Additionally, with the benchmark, we evaluate a
selection of leading MLLMs, both proprietary and open source. The results suggest
that significant enhancement of MLLMs in reasoning in the real physical world is
necessary to realise more advanced general artificial intelligence. Code and dataset
available at https://github.com/xuyou-yang/SpaCE-Eval.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) have advanced rapidly in recent years, showing
growing capabilities in tasks that require joint visual and textual comprehension. Existing models,
either commercial models such as GPT-4o (Hurst et al., 2024), Grok (xAI, 2024) and Gemini (Gemini
Team Google et al., 2023), or open-source ones such as Qwen2.5-VL (Bai et al., 2025), Llama
4 (Meta AI, 2025) and LLaVA-OneVision (Li et al., 2024a), have achieved impressive performance
on diverse visual question answering (VQA) tasks (Goyal et al., 2017; Masry et al., 2022; Singh et al.,
2019; Mathew et al., 2021; Lu et al., 2023).

As MLLMs are increasingly deployed in real-world applications, including robotics (Driess et al.,
2023; Li et al., 2024b; Yue et al., 2024b), autonomous navigation (Shah et al., 2023; Zhou et al.,
2024), and embodied agents (Szot et al., 2024), it becomes critical to assess whether these mod-
els can reason effectively in dynamic physical environments, which require spatial awareness,
commonsense understanding, and interaction with the environment.

A number of benchmarks have been proposed to evaluate MLLMs’ visual reasoning abilities, but
existing efforts fall short in several important aspects. First, existing spatial understanding and

*Corresponding author.

1

https://github.com/xuyou-yang/SpaCE-Eval


Published as a conference paper at ICLR 2026

Figure 1: VQA examples of the three categories in SpaCE-Eval. The ground truth is indicated with
underline.

reasoning datasets (Wang et al., 2024; Chen et al., 2024; Liu et al., 2023; Cheng et al., 2024)
often focus on object scale understanding (e.g., household objects, table games), ignoring that
the environment we live in has much more diverse scales, ranging from a room, a building, to a
community and even a city. More importantly, the tasks are typically simple, such as object counting,
position understanding, and relative relationships (e.g., left or right, close or far etc.), whereas spatial
relationships are more complicated in the real world, and require different types of reasoning abilities.
Second, while some datasets probe physical or social commonsense, for example, PIQA (Bisk et al.,
2020), VisualCOMET (Park et al., 2020) and CulturalVQA (Nayak et al., 2024), they typically lack
spatial grounding, making it difficult to evaluate how well MLLMs integrate such knowledge with
physical context. Third, most existing datasets assess a static understanding of a given image, instead
of reasoning about options or actions to interact with the environment. However, predicting and
planning for what will happen next is essential for humans and autonomous agents to interact with
complex environments to survive.

To address these limitations, we introduce SpaCE-Eval (Spatial Reasoning, Commonsense Knowl-
edge and Environment Interaction), a new benchmark designed to evaluate MLLM’s capability to
reason in real-world environments. As shown in Figure 1, SpaCE-Eval consists of three categories:
(1) Spatial Reasoning assesses models’ spatial reasoning abilities in environments on multiple
scales. It requires the MLLMs to comprehensively reason on spaces which have complex spatial
configurations and relationships in real-world scenarios.; (2) Commonsense Knowledge tests the
MLLM’s background knowledge necessary to conduct reasoning in the real-world spaces at the
commonsense level. (2) Environment Interaction evaluates MLLMs’ ability to compare options,
make decisions and predict affordances in real-world conditions, as a user or a decision maker, in
order to better interact with the environment. The scale of spaces and reasoning subjects utilised in
all categories ranges from small items, rooms, buildings, to urban contexts. Together, these three
categories target core competencies required to deploy MLLMs in a real physical world.
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To construct SpaCE-Eval, we employ a rigorous pipeline. First, human experts with design back-
grounds draw brand-new diagrams for every task category. Different from statistical charts, these
new diagrams are info-graphics. This approach offers two key benefits: (i) all diagrams are freshly
created, eliminating data-contamination risks and preventing models from relying on prior exposure
to publicly available diagrams; and (ii) by encouraging contributors to follow professional standards
while retaining their personal drawing styles, we achieve greater visual diversity. Next, two carefully
crafted questions are written for every diagram, each with text or visual answer choices. Each item
then undergoes a three-stage quality process: peer review for clarity and correctness, adversarial
rewriting to remove linguistic shortcuts, and multiple rounds of verification by expert meta-annotators.
The final release contains 1,139 high-quality image-question pairs across the benchmark’s three main
categories.

Based on the newly introduced SpaCE-Eval benchmark, we evaluate a wide range of proprietary
and open-source MLLMs, covering different model families and sizes. SpaCE-Eval appears to be
very challenging across all sorts of models, especially with the Spatial Reasoning category. For
instance, the best overall result is only 56.37% across all tested models, while the highest accuracy
in Spatial Reasoning is merely 42.25% both achieved by GPT-5 (OpenAI, 2025). We also observe
that models perform significantly worse as the spatial scale increases, and visual understanding
consistently lags behind textual comprehension. Moreover, analysis reveals that many models rely
heavily on surface-level patterns rather than engaging with deeper conceptual or spatial structures.
These findings underscore the need for improved multi-modal reasoning capabilities and highlight
SpaCE-Eval as a robust benchmark for measuring progress in real-world MLLM reasoning.

2 RELATED WORK

MLLMs The remarkable progress of large language models (LLMs) has driven widespread adop-
tion of the Transformer architecture (Vaswani et al., 2017) in the computer vision domain, leading
to the development of models like ViT (Dosovitskiy et al., 2020), CLIP (Radford et al., 2021),
and MAE (He et al., 2022). Leveraging the foundational capabilities of LLMs, MLLMs such as
GPT-4o (Hurst et al., 2024), Qwen2.5-VL (Bai et al., 2025), LLaVa (Liu et al., 2023) integrate infor-
mation across multiple modalities and have shown strong generalisation across a wide array of tasks.
In particular, these models have demonstrated increasingly sophisticated reasoning capabilities in
real-world environments, where understanding spatial relationships and physical constraints is critical.
In addition to excelling at tasks like different sorts of VQA (Yue et al., 2024a; Singh et al., 2019;
Mathew et al., 2021; Masry et al., 2022) and mathematical reasoning (Lu et al., 2023), these models
show growing competence in spatial (Cheng et al., 2024; Chen et al., 2024) and commonsense (Park
et al., 2020; Nayak et al., 2024) reasoning, marking a significant step toward grounded intelligence in
complex physical contexts.

Benchmarks Our work is mostly related to benchmarks and datasets that cover one or more aspects
of the three categories in SpaCE-Eval. We compare some representative benchmarks related to our
work in Table 1. Firstly, existing benchmarks on spatial reasoning (Wang et al., 2024; Chen et al.,
2024; Liu et al., 2023; Cheng et al., 2024) focus on relative spatial relationships between objects, such

Table 1: Comparison of representative benchmarks in three categories.

Benchmark Spatial Reasoning Commonsense Knowledge Environment Interaction

Spatial VQA (Chen et al., 2024) Simple relative location, dis-
tance, height, etc.

– –

SpatialEval (Wang et al., 2024) Spatial map, maze, grid, etc. – –
GRASP (Jassim et al., 2023) – Object grounding and intuitive

physics
–

CulturalVQA (Nayak et al., 2024) – Geo-diverse cultural under-
standing

–

VisualCOMET (Park et al., 2020) – Visual commonsense Events before and after, human
intent

CLEVRER (Yi et al., 2019) Object trajectories, relative po-
sitions

Physical commonsense (e.g.,
collisions, feasibility)

–

Ours Complex spatial relations of
multiple spatial scales

Intuitive science, engineer-
ing, physics, and culture

Interaction with environ-
ment
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as relative position, adjacency and orientation. Benchmarks like SptialEval (Wang et al., 2024) test
models’ ability to perform in table games, for example, navigate in mazes. Despite the challenging
spatial reasoning process, these are not the real physical world. Secondly, benchmarks (Jassim et al.,
2023; Meng et al., 2024) that assess the commonsense knowledge of the models mainly concentrate
on understanding physical features and laws, and do not contain cultural context (Nayak et al., 2024)
that is also an important aspect of the real world. Lastly, datasets (Shridhar et al., 2020; Padmakumar
et al., 2022; Fan et al., 2022) on interaction in various environments are mostly used to evaluate or
enhance embodied agents given instructions. In addition to these single-category benchmarks, some
benchmarks (Park et al., 2020; Yi et al., 2019) cover two areas of the three.

3 THE SPACE-EVAL BENCHMARK

We introduce the SpaCE-Eval, a novel and meticulously curated benchmark to assess the reasoning
abilities of MLLMs in real physical world environments. The benchmark challenges the abilities of
MLLMs to perform complex reasoning on multiple scales of spaces. It provides questions which
require the integration of abstract visual perception, spatial simulation, commonsense knowledge and
deliberate reasoning abilities to answer. These abilities are essential for humans and autonomous
agents to navigate and survive in real physical world.

Figure 2: Overview of the dataset. (a) The dataset comprises three main categories: Spatial Reasoning
(SR), Commonsense Knowledge (CK), Environment Interaction (EI), and twelve subcategories, with
each category assigned a corresponding data ratio. (b) The benchmark challenges models to reason
on a wild range of spatial scales.

3.1 DATASET DESIGN

Considering the abilities and background knowledge required to understand and reason in the real
world, we design three parallel main categories of the dataset: Spatial Reasoning, Commonsense
Knowledge and Environment Interaction. To obtain more detailed insights, there are also four subcat-
egories within each main category. Figure 2 illustrates the composition of the dataset. Appendix A.0.1
displays examples of each category and subcategory.

Spatial Reasoning This category assesses models’ fundamental spatial reasoning abilities in real
world spaces with complex spatial relationships and of various scales, from rooms, buildings, to urban
contexts. It requires the MLLMs to comprehensively interpret spaces through various complicated
spatial reasoning process, including (i) Spatial Interpretation: reasoning one correct perspective/view
from a given angle or viewpoint, including indoor and outdoor, static and dynamic conditions; (ii)
Space Association: associating spaces by linking different views (plan, section, or elevation); (iii)
View Analysis: analysing visibility of items or spaces in complex spatial setups; and (iv) Form
Transformation: predicting the new form under explicitly or implicitly given transformation rules.
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Commonsense Knowledge This category tests the MLLMs’ background knowledge associated
with spaces necessary to conduct reasoning in the real world at the commonsense or intuitive level. It
consists of a wide range of fields categorised into four groups: (i) Material and Science: assessing
intuitive understanding of material science and structural stability; (ii) Construction and Fabrication:
evaluating logic of construction or fabrication of objects (e.g. joints, furniture) and small to large
spatial structures; (iii) Vernacular Living: examining the knowledge of unique living style of local
societies; and (iv) Cultural Context: testing model’s understanding of regional, historic, and religious
cultural representation.

Environment Interaction The environment interaction category evaluates MLLMs’ ability to
compare options, make decisions and predict affordances in real-world environments, as a user
or a decision maker of different spaces. User-Environment Interaction asks questions such as
how to choose spaces under different weather conditions from a space user’s perspective. Design-
Environment Interaction asks questions from a space decision maker’s view, for example, how to set
up a space to achieve desired goals. Mobility in Space challenges the models to select or plan the
navigation in various environments through different means of transportation or for different subjects
(e.g. humans, vehicles, other animals). Finally, Environment Sustainability tests the understanding of
models of environmental sustainability strategies and systems in the real world.

3.2 DATASET CONSTRUCTION

Data curation The dataset collection consists of two steps. First, 51 university students representing
multiple nationalities, cultural backgrounds and design traditions are asked to produce brand new
diagrams for every subcategory. Students with design (mostly architecture-related) backgrounds
are intentionally chosen because they are trained to possess strong spatial abilities, including the
ability to create high-quality visual representations of the physical world from scratch. This approach
yields two key benefits: (i) all diagrams are freshly created, eliminating data-contamination risks
and preventing models from relying on prior exposure to publicly available diagrams; and (ii) by
encouraging contributors to follow professional standards while retaining their personal drawing
styles, we achieve greater visual diversity of the diagrams. Second, the contributors are asked to
carefully craft two questions for every diagram, each with text or visual answer choices. Specific
requirements are given to the contributors during the data generation process: (i) the diagrams must
accurately represent information aligned with specific categories; (ii) the questions should be closely
related to the diagram and the categories; (iii) reasoning process must be involved to answer the
questions to avoid simple pattern match; (iv) linguistic or positional shortcuts should be avoided.

Data format The type of question in the benchmark is visual question answering. All the questions
are single-answer multiple-choice questions with four choices. However, while some questions have
four text options, others have purely visual options, where question text contains only the labels of
the visual options in the image. To mitigate the potential model bias on the answer’s locations and
labels, the choices of all questions are randomly shuffled so that the probability of each position (A,
B, C and D) being the correct answer is approximately evenly distributed (25.46%, 25.37%, 25.46%,
and 23.71%, respectively).

Data quality control To further control the quality of the dataset, all 742 diagrams and 1484
questions produced then undergo a multi-stage refinement and screening process. Figure 3 illustrates
the pipeline of data quality control.

(i) During the data creation phase, contributors met weekly with the meta-annotators to review
a subset of their diagram–question pairs. In these meetings, ambiguous cases were discussed in
detail, and concrete examples were illustrated. This iterative feedback loop ensured that contributors
gradually converged to a shared understanding of the rubric, leading to de facto annotator agreement
over time rather than idiosyncratic interpretations by different students.

(ii) Volunteers from various backgrounds representing the general population are invited to review all
image-question pairs and point out clarity issues, logic flaws, and any other errors for the contributors
to refine the diagrams and texts accordingly.

(iii) A few dedicated reviewing sessions were conducted with external reviewers who were not
involved in the initial data creation. Their independent perspective helped to surface hidden biases or
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Figure 3: The pipeline of data quality control.

systematic issues that might not be obvious to the original creators, further increasing the soundness
and robustness of the dataset.

(iv) Multiple rounds of verification are conducted by meta-annotators. At this stage, 50 questions are
adversarially rewritten to eliminate linguistic shortcuts where applicable. For example, options with
features such as special length and sentiment that make them appear more likely to be the correct
answer are modified. This involves a small proportion of questions. Each data entry is examined to
ensure that referring to the visual input is necessary to answer the questions. During this process,
1468 questions remain unchanged.

(v) Finally, all the data is filtered again by the authors, where the key selection criteria include clarity,
accuracy, relevance, and diversity of the image-question pairs. In this process, 41 diagrams and 345
questions are excluded. As a result, 701 diagrams and 1139 questions that meet all requirements are
kept.

3.3 DATA ANALYSIS

The dataset consists of 1139 image-question pairs in total, where Spatial Reasoning, Commonsense
Knowledge and Environment Interaction contribute 400, 395 and 344 questions respectively. The
proportion of each subcategories is displayed in Figure 2 (a).

In addition to the categories and subcategories, the dataset can be divided into nine groups according
to the scale of space each question requires to be reasoned on, namely: object (e.g. furniture, columns,
decorative tiles), room space (e.g. a bedroom, a hall, a unit/apartment), building space (an individual
building or a building cluster, interior or exterior), spatial structure (e.g. a shell, a bridge, an arch),
urban space (e.g. street blocks, road networks, a park, a waterfront, a village), abstract geometry and
others. The distribution and example of each scale is illustrated in Figure 2 (b).

To further enhance models’ visual reasoning capabilities and reduce reliance on purely linguistic cues,
40% of the questions are provided with purely visual options. To correctly answer these questions,
the models need to not only perceive visual information of the question but also interpret the visual
descriptions of the options or simulate corresponding views. Figure 1 Spatial Reasoning part and
Figure 5 (b) demonstrate examples of questions with purely visual options. The rest 60% of questions
provide text options.

To check the similarity of the diagrams to existing images, Google Cloud (2025) Vision is deployed
to search for similar images of each diagram. An average cosine similarity is calculated between the
diagrams and their top most similar images found in the search using CLIP (Radford et al., 2021)
embeddings. The comparison reveals that 75% of the diagrams achieve similarity scores under 0.723,
with 50% scoring below 0.665, and an overall mean of 0.654.
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4 EXPERIMENTS

Based on the SpaCE-Eval benchmark, we conduct extensive evaluations on a selection of both
proprietary and open-source MLLMs and analyse the results.

4.1 MODELS

We consider a wide range of proprietary and competitive open-source MLLMs to perform a com-
prehensive evaluation on SpaCE-Eval. For proprietary models, we consider GPT-5 (OpenAI, 2025),
GPT-5-mini (OpenAI, 2025), GPT-4o (Hurst et al., 2024), GPT-4o-mini (Hurst et al., 2024),GPT-o4-
mini (Hurst et al., 2024), grok-2-vision-1212 (xAI, 2024) (grok-2-vision), claude-3.7-sonnet (An-
thropic, 2024), claude-sonnet-4 (Anthropic, 2025) and gemini-2.5-flash-preview (Gemini Team
Google et al., 2023) (gemini-2.5-flash). For open-source models, we evaluate the Llama-4 (Meta AI,
2025) family, including Llama-4-Maverick-17B-128E-Instruct (Llama-4-Maverick) and Llama-4-
Scout-17B-16E-Instruct (Llama-4-Scout); the gemma-3 (Gemma Team et al., 2025) family, including
gemma-3-27b-it, gemma-3-12b-it and gemma-3-4b-it; the Qwen2.5-VL (Bai et al., 2025) family,
including Qwen2.5-VL-72B-Instruct (Qwen2.5-VL-72B) and Qwen2.5-VL-7B-Instruct (Qwen2.5-
VL-7B); and other representative MLLMs including Pixtral-12B (Agrawal et al., 2024), glm-4.1v-9b-
thinking (GLM-V Team et al., 2025) (glm-4.1v-9b), Idefics3-8B-Llama3 (Laurençon et al., 2024),
llava-onevision-7b (Li et al., 2024a), Phi-4-multimodal-instruct (Abouelenin et al., 2025) (Phi-4-
multimodal) and smolvlm-2b (Marafioti et al., 2024). In addition, human volunteers of various
backgrounds are invited to manually solve the questions, through which average human performance
(Human Avg.) is obtained.

We evaluate most models using the OpenRouter API (OpenRouter, 2025) for efficiency, for models
that are not supported by OpenRouter, we deploy the models using VLLM (Kwon et al., 2023) and
use their default hyperparameter for inference. The detailed prompt structure and model API or links
are provided in Appendix A.0.2. When the model prediction is not exactly the same expression as the
ground truth (e.g. model prediction is not answer "A", but may have the same linguistic meaning as
option A), we use GPT-4o-mini (Hurst et al., 2024) to classify whether the prediction is correct.

4.2 MAIN RESULTS

In this section, we present a comprehensive comparison of different MLLMs based on SpaCE-Eval,
the details are shown in Table 2. For each model, the accuracy is represented by the percentage of
correct predictions out of the total predictions in each category. We summarise our key finding as
follows.

Overall result SpaCE-Eval is a very challenging benchmark. The best result across all the tested
models is only 56.37% achieved by GPT-5 (OpenAI, 2025), The proprietary models achieve an
overall accuracy between 39.68% and 56.37%, and the majority of open-source models can only
reach an overall accuracy of less than 40%, except for Llama-4-Maverick (Meta AI, 2025), glm-4.1v-
9b (GLM-V Team et al., 2025)and llava-onevision-7b (Li et al., 2024a), whose accuracy is 45.92%,
43.37% and 42.41% respectively.

Cross-category result Trained on large-scale data, the models achieve as highest as 66.08% and
61.63% in the Commonsense Knowledge and Environment Interaction categories. However, their
performance in the Spatial Reasoning is dramatically lower, with scores of only 42.25%, with the
majority of which only slightly higher than random guesses, highlighting a significant capability gap
between Spatial Reasoning and the other two categories.

Cross-model-scale result According to the results, generally, the models with larger sizes perform
better than those with smaller sizes. For example, in the Gemma (Gemma Team et al., 2025) series,
the largest model (gemma-3-27b-it) has the best performance (39.77%), the middle size version
(gemma-3-12b-it) has the medium accuracy (37.05%), and the smallest model (gemma-3-4b-it )
has the least accuracy (36.00%). Similarly, Qwen2.5-VL-72B-Instruct (Bai et al., 2025) has higher
overall accuracy than Qwen2.5-VL-7B-Instruct.
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Table 2: Evaluation results of various MLLMs on SpaCE-Eval. We evaluate the three main categories:
Spatial Reasoning, Commonsense Knowledge and Environment Interaction. For each main category,
we evaluate the four subcategories. SI, SA, VA and FT represent Spatial Interpretation, Space
Association, View Analysis and Form Transformation, respectively. MaS, CF, CC and VL represent
Materials and Structures, Construction and Fabrication, Cultural Context and Vernacular Living,
respectively. UEI, DEI, MiS and ES represent User-Environment Interaction, Design-Environment
Interaction, Mobility in Space and Environment Sustainability, respectively. Bold indicates the best
performance of each category, while underlined denote the second-best performance in each category.

Model Name Overall
Mean

Spatial Reasoning Commonsense Knowledge Environment Interaction

SI SA VA FT Mean MaS CF CC VL Mean UEI DEI MiS ES Mean

Human Avg. 79.00 84.92 89.19 92.24 76.24 84.18 81.48 65.32 58.2 81.86 71.83 72.64 80.82 91.84 80.17 81.34

Proprietary MLLMs

GPT-5 56.37 39.70 45.95 46.55 43.4 42.25 69.44 61.29 62.60 69.61 66.08 65.79 60.27 50.0 74.58 61.63

GPT-5-mini 52.15 33.67 45.95 39.66 38.68 37.00 70.37 58.06 53.66 62.75 61.27 58.77 54.79 53.06 76.27 59.3

GPT-4o-mini 39.68 16.08 27.03 32.76 29.25 23.00 62.96 45.16 36.59 47.06 47.85 55.26 45.21 36.73 66.10 49.71

GPT-o4-mini 45.04 25.63 29.73 37.93 25.47 27.75 61.11 56.45 47.51 56.86 54.94 56.14 42.47 47.96 72.88 53.78

grok-2-vision 42.32 30.15 24.32 32.76 30.19 30.00 59.26 45.16 35.77 54.90 48.61 55.26 35.62 41.84 67.80 49.42

claude-sonnet-4 48.64 29.65 37.84 41.38 28.30 31.75 64.81 53.23 53.66 63.73 59.24 57.89 49.32 50.00 71.19 56.10

claude-3.7-sonnet 47.41 26.63 16.22 41.38 33.96 29.75 65.74 53.23 46.34 63.73 57.22 54.39 47.95 56.12 72.88 56.69

gemini-2.5-flash 47.50 25.13 24.32 43.10 28.30 28.50 64.81 62.90 47.97 58.82 57.72 61.40 49.32 51.02 72.88 57.85

Open-source MLLMs

Qwen2.5-VL-72B 37.84 19.10 35.14 27.59 33.96 25.75 57.41 38.71 26.83 59.80 45.57 53.51 35.62 31.63 50.85 43.02

gemma-3-27b-it 39.77 23.12 21.62 39.66 21.70 25.00 57.41 58.06 32.52 55.88 49.37 46.49 52.05 34.69 55.93 45.93

Llama-4-Maverick 45.92 22.11 37.84 37.93 29.25 27.75 67.59 58.06 47.97 49.02 55.19 57.89 49.32 44.90 81.36 56.40

Llama-4-Scout 39.42 18.09 21.62 34.48 29.25 23.75 56.48 48.39 36.59 46.08 46.33 52.63 42.47 41.84 66.10 49.71

gemma-3-12b-it 37.05 19.10 16.22 36.21 22.64 22.25 52.78 45.16 33.33 50.00 44.81 42.11 39.73 35.71 74.58 45.35

Pixtral-12B-2409 39.77 25.13 27.03 37.93 33.96 29.50 50.93 45.16 34.96 48.04 44.30 49.12 39.73 30.61 76.27 46.51

glm-4.1v-9b 43.37 24.12 37.84 36.21 29.25 28.50 60.19 41.94 47.97 50.00 50.89 50.88 50.68 42.86 71.19 52.03

Idefics3-8B-Llama3 38.72 21.11 18.92 44.83 34.91 28.00 56.48 41.94 35.77 49.02 45.82 54.39 35.62 29.59 52.54 43.02

Qwen2.5-VL-7B 37.14 19.60 21.62 41.38 31.13 26.00 48.15 45.16 34.96 41.18 41.77 47.37 41.10 34.69 61.02 44.77

llava-onevision-7b 42.41 26.63 35.14 37.93 33.96 31.00 58.33 56.45 37.40 50.98 49.62 56.14 41.10 31.63 64.41 47.38

Phi-4-multimodal 38.72 27.14 29.73 31.03 35.85 30.25 49.07 30.65 36.59 41.18 40.25 45.61 47.95 37.76 62.71 46.80

gemma-3-4b-it 36.00 22.11 24.32 32.76 24.53 24.50 55.56 35.48 30.89 45.10 42.03 43.86 31.51 39.80 57.63 42.44

smolvlm-2b 36.00 28.14 32.43 27.59 33.96 30.00 58.33 41.94 34.96 35.29 42.53 38.60 27.40 33.67 42.37 35.47

Human vs. model In contrast to model performances, the average human results in Table 2
demonstrate a different pattern. Humans achieve the highest results in Spatial Reasoning and the
second highest in Environmental Interaction. Both categories require stronger reasoning abilities
than the Commonsense Knowledge category, especially for Spatial Reasoning. Noticeably, GPT-
5 (OpenAI, 2025) has surpassed human average results in the Cultural Context subcategory, under
Commonsense Knowledge. Despite such differences, human performance in spatial reasoning
(84.18%) and environment interaction (81.34%) is significantly higher than all the models (at best
42.25% and 61.63% respectively). This result suggests that humans are comparatively stronger in
reasoning than in memorisation, and maintain a clear advantage over current models in reasoning
ability.

Visual vs. textual The evaluation reveals notable imbalance between textual and visual reasoning.
Figure 4(a) compares model performance on questions with textual options and those with purely
visual options. Consistently, throughout all categories, the models perform significantly lower in
visual-only options compared to options with text. This disparity indicates that MLLMs possess sub-
stantially weaker capabilities in visual comprehension and reasoning compared to textual reasoning.
Additionally, Figure 4(b) further compares performance with and without image input. When images
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Figure 4: (a) Model performances on questions with textual options and those with purely visual
options. (b) Model performances on questions with and without image input. (c) Models’ accuracy
across different scales. The dashed lines indicate models’ mean accuracy over all scales.

are absent, model accuracy declines significantly, underscoring the strong dependency of MLLMs on
visual inputs to answer questions in our benchmark.

4.3 ANALYSIS OF CURRENT LIMITATIONS

A particularly prominent limitation revealed by the evaluation is the models’ incapacity to bridge
spatial scales, especially when reasoning across local-to-global and global-to-local relations. This
may stem from challenges in reasoning over larger spatial extents and in performing spatial simulation.
In addition, the models exhibit difficulties in abstract interpretation and reasoning. We briefly analyse
these failure patterns in this section. More in-depth diagnostic analysis are provided in A.0.4, where
we detail how models arrive at incorrect answers and discuss the likely underlying causes of these
failures.

Difficulty in reasoning on larger spatial scales As shown in Figure 4(c), the models exhibit
a consistent trend across different spatial scales: they achieve relatively strong performance in
object-scale reasoning, but performance declines as the scale expands to rooms, buildings, and urban
spaces, with abstract geometry reasoning posing the greatest challenge. In other words, models
demonstrate weaker understanding and reasoning capabilities for larger-scale spaces compared to
object-level reasoning, and their performance in these cases falls below the overall mean across
all scales. This trend can be resulted from the fact that many existing datasets primarily focus on
object-level reasoning, as noted in Section 1, highlighting the need for datasets and benchmarks that
target larger spatial scales. By contrast, performance on spatial-structure tasks is slightly higher, as
these tasks emphasise intuitive understanding of structural patterns rather than the more demanding
reasoning processes required in the other scale groups.

Difficulty in spatial simulation Models demonstrate critical shortcomings when spatial simulation
is required in the tasks. This limitation often leads to failures in questions involving global–local
relationships. The evaluation shows that models frequently struggle to identify the view corresponding
to a given location, or to localise the position associated with a given view. Typical questions of
this type include: (i) given a global view, what would be observed when standing at position A
and looking in the direction of the arrow? or (ii) given a local view, at which position in the room,
building, or village would this perspective be obtained? Figure 5(a) presents an example of such
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location–view association tasks, which are usually posed with pure visual options. Across models,
the accuracy on these questions remains low, with fewer than 22.73% of responses being correct.
Such failures commonly arise when models are unable to mentally simulate or infer the consequences
of spatial transformations, changes in perspective, or dynamic interactions within the environment.
This highlights a fundamental weakness of MLLMs in the spatial reasoning abilities essential for
real-world understanding.

Figure 5: (a) An example of location-view association. (b) An example of abstract representation of
distance. The ground truth is underlined.

Difficulty in abstract interpretation and reasoning When challenged with questions involving
spatial measurements, models often resort to comparing pixel-level distances rather than reasoning
with the abstract spatial relations encoded in the diagrams. As shown in Figure 5(b), GPT-4o (Hurst
et al., 2024) bases its answer on the shorter pixel distance between the circles representing the Civic
Building and Block D, while disregarding the abstract distance indicated by dashed lines, which
reflect the actual spatial relationship in the real world. This illustrates a broader limitation: the models
tend to privilege surface-level visual patterns over the abstract principles that govern spatial and
physical phenomena. Such behavior raises concerns about their reliability in tasks where correct
interpretation requires abstraction beyond visual similarity, underscoring the gap between current
multimodal reasoning and human-like spatial understanding.

5 CONCLUSION

As existing benchmarks do not comprehensively assess the ability of MLLMs to understand and
reason in real-world contexts, we introduce SpaCE-Eval, a meticulously constructed benchmark
designed to evaluate several crucial aspects of real-world understanding. The benchmark undergoes a
rigorous preparation and selection process, followed by extensive experiments on a range of state-
of-the-art MLLMs. The results reveal that while current models approach human performance in
knowledge-intensive categories, they fall considerably short in reasoning-intensive ones, particularly
in spatial reasoning. Key limitations include difficulties in bridging spatial scales, performing spatial
simulation, and engaging in abstract reasoning, underscoring the need for continued advancements in
both benchmark datasets and MLLM architectures.
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A APPENDIX

A.0.1 DATASET CATEGORY DETAILS

This section demonstrates examples of each subcategory of the four main categories in the data set.

Figure 6: Example of Spatial Reasoning/Spatial Interpretation.
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Figure 7: Example of Spatial Reasoning/Space Association.
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Figure 8: Example of Spatial Reasoning/View Analysis.
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Figure 9: Example of Spatial Reasoning/Form Transformation.
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Figure 10: Example of Commonsense Knowledge/Materials and Structures.
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Figure 11: Example of Commonsense Knowledge/Construction and Fabrication.
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Figure 12: Example of Commonsense Knowledge/Cultural context.
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Figure 13: Example of Commonsense Knowledge/Vernacular Living.
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Figure 14: Example of Environment Interaction/User-Environment Interaction.
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Figure 15: Example of Environment Interaction/Design-Environment Interaction.
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Figure 16: Example of Environment Interaction/Mobility in Space.
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Figure 17: Example of Environment Interaction/Environment Sustainability.
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A.0.2 EXPERIMENT DETAILS

This section explains additional details of the experiment.

Prompt

For each data case, the prompt includes an image and the text of the question formatted as illustrated
in Figure 18 (a). For questions with visual options, the options and the main diagram are prompted
as one image as shown in Figure 18 (b). The prompt for questions with text options is shown in
Figure 18 (c).

Figure 18: Prompt example used in the experiment, (a) structure of the prompt text. (b) prompt
example of questions with visual options. (c) prompt example of questions with text options.
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Model Links

We provide all links to the APIs or models used in our experiments in Table 3.

Table 3: Links to the models in our experiment

Model API/Model Link

GPT-5 https://openrouter.ai/openai/gpt-5/api
GPT-5-mini https://openrouter.ai/openai/gpt-5-mini/api
GPT-4o https://openrouter.ai/openai/gpt-4.1-nano
GPT-4o-mini https://openrouter.ai/openai/gpt-4o-mini
GPT-o4-mini https://openrouter.ai/openai/gpt-4o-mini/api
grok-2-vision https://openrouter.ai/x-ai/grok-2-vision-1212
claude-sonnet-4 https://openrouter.ai/anthropic/claude-sonnet-4/api
claude-3.7-sonnet https://openrouter.ai/anthropic/claude-3.7-sonnet
gemini-2.5-flash https://openrouter.ai/google/gemini-2.5-flash-preview/api
Qwen2.5-VL-72B https://openrouter.ai/qwen/qwen2.5-vl-72b-instruct/api
gemma-3-27b-it https://openrouter.ai/google/gemma-3-27b-it/api
Llama-4-Maverick https://openrouter.ai/meta-llama/llama-4-maverick/api
Llama-4-Scout https://openrouter.ai/meta-llama/llama-4-scout/api
gemma-3-12b-it https://openrouter.ai/google/gemma-3-12b-it/api
Pixtral-12B-2409 https://openrouter.ai/mistralai/pixtral-12b/api
glm-4.1v-9b-thinking https://openrouter.ai/thudm/glm-4.1v-9b-thinking/api
Idefics3-8B-Llama3 https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3
Qwen2.5-VL-7B https://openrouter.ai/qwen/qwen-2.5-vl-7b-instruct/api
llava-onevision-7b https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf
Phi-4-multimodal https://openrouter.ai/microsoft/phi-4-multimodal-instruct/api
gemma-3-4b-it https://openrouter.ai/google/gemma-3-4b-it/api
smolvlm-2b https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct
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A.0.3 NEGATIVE DATA EXAMPLES

This section shows examples of diagram–question pairs removed for failing quality control with
explanations.

Figure 19: Examples of questions that do not require visual input to answer.
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Figure 20: Examples of diagrams that do not provide sufficient information to answer the questions.
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Figure 21: Examples of diagrams with insufficient visual clarity.

30



Published as a conference paper at ICLR 2026

A.0.4 DETAILED FAILURE CASE ANALYSIS

This section further demonstrates some typical failure cases, explaining how the model failed and
what maybe the reasons causing the failure in detail.

Figure 22: Failure Case 1 Analysis.
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Figure 23: Failure Case 2 Analysis.
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Figure 24: Failure Case 3 Analysis.
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Figure 25: Failure Case 4 Analysis.
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Figure 26: Failure Case 5 Analysis.
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