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ABSTRACT

Multi-modal Large Language Models (MLLMs) represent a significant advance-
ment in artificial intelligence. Among the growing capabilities exhibited by
MLLMs, abilities to understand and reason in real-world environments stand out as
particularly vital as a fundamental prerequisite for a wide array of real-world appli-
cations. The current methods for evaluating MLLMs often fall short in their ability
to comprehensively assess these crucial capabilities. However, being able to reason
on complex environment-scale spaces, for example, room spaces, building spaces,
and even urban spaces, and to predict the future and plan actions, is essential for
humans and various autonomous agents to survive in the real physical world. To ad-
dress these gaps, we propose a visual-question-answering benchmark, SpaCE-Eval
(Spatial Reasoning, Commonsense Knowledge and Environment Interaction), de-
signed to evaluate MLLM’s reasoning abilities in real-world environments. As the
name suggests, it challenges the models to reason on complex spatial scenarios, in-
voke commonsense knowledge of the physical world, and interact with the environ-
ment. The dataset consists of all new diagrams purposefully produced by humans,
where diagram-question pairs are meticulously refined and selected through a rigor-
ous pipeline. Additionally, with the benchmark, we evaluate a selection of leading
MLLMs, both proprietary and open source. The results suggest that significant en-
hancement of MLLMs in reasoning in the real physical world is necessary to realise
more advanced general artificial intelligence. Our code is available at https://
github.com/anonymous-author123/iclr2026-submission, and
the dataset is available at https://huggingface.co/datasets/
anonymous-author123/iclr2026_submission.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) have advanced rapidly in recent years, showing
growing capabilities in tasks that require joint visual and textual comprehension. Existing models,
either commercial models such as GPT-4o Hurst et al. (2024), Grok xAI (2024) and Gemini Team
et al. (2023), or open-source ones such as Qwen2.5-VL Bai et al. (2025), Llama 4 AI (2025) and
LLaVA-OneVision Li et al. (2024a), have achieved impressive performance on diverse visual question
answering (VQA) tasks Goyal et al. (2017); Masry et al. (2022); Singh et al. (2019); Mathew et al.
(2021); Lu et al. (2023).

As MLLMs are increasingly deployed in real-world applications, including robotics Driess et al.
(2023); Li et al. (2024b); Yue et al. (2024b), autonomous navigation Shah et al. (2023); Zhou
et al. (2024), and embodied agents Szot et al. (2024), it becomes critical to assess whether these
models can reason effectively in dynamic physical environments, which require spatial awareness,
commonsense understanding, and interaction with the environment.

A number of benchmarks have been proposed to evaluate MLLMs’ visual reasoning abilities, but
existing efforts fall short in several important aspects. First, existing spatial understanding and
reasoning datasets Wang et al. (2024); Chen et al. (2024); Liu et al. (2023); Cheng et al. (2024)
often focus on object scale understanding (e.g., household objects, table games), ignoring that
the environment we live in has much more diverse scales, ranging from a room, a building, to a
community and even a city. More importantly, the tasks are typically simple, such as object counting,
position understanding, and relative relationships (e.g., left or right, close or far etc.), whereas spatial
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Figure 1: VQA examples of the three categories in SpaCE-Eval. The ground truth is indicated with
underline.

relationships are more complicated in the real world, and require different types of reasoning abilities.
Second, while some datasets probe physical or social commonsense, for example, PIQA Bisk et al.
(2020), VisualCOMET Park et al. (2020) and CulturalVQA Nayak et al. (2024), they typically lack
spatial grounding, making it difficult to evaluate how well MLLMs integrate such knowledge with
physical context. Third, most existing datasets assess a static understanding of a given image, instead
of reasoning about options or actions to interact with the environment. However, predicting and
planning for what will happen next is essential for humans and autonomous agents to interact with
complex environments to survive.

To address these limitations, we introduce SpaCE-Eval (Spatial Reasoning, Commonsense Knowl-
edge and Environment Interaction), a new benchmark designed to evaluate MLLM’s capability to
reason in real-world environments. As shown in Figure 1, SpaCE-Eval consists of three categories:
(1) Spatial Reasoning assesses models’ spatial reasoning abilities in environments on multiple
scales. It requires the MLLMs to comprehensively reason on spaces which have complex spatial
configurations and relationships in real-world scenarios.; (2) Commonsense Knowledge tests the
MLLM’s background knowledge necessary to conduct reasoning in the real-world spaces at the
commonsense level. (2) Environment Interaction evaluates MLLMs’ ability to compare options,
make decisions and predict affordances in real-world conditions, as a user or a decision maker, in
order to better interact with the environment. The scale of spaces and reasoning subjects utilised in
all categories ranges from small items, rooms, buildings, to urban contexts. Together, these three
categories target core competencies required to deploy MLLMs in a real physical world.

To construct SpaCE-Eval, we employ a rigorous pipeline. First, human experts with design back-
grounds draw brand-new diagrams for every task category. Different from statistical charts, these
new diagrams are info-graphics. This approach offers two key benefits: (i) all diagrams are freshly
created, eliminating data-contamination risks and preventing models from relying on prior exposure
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to publicly available diagrams; and (ii) by encouraging contributors to follow professional standards
while retaining their personal drawing styles, we achieve greater visual diversity. Next, two carefully
crafted questions are written for every diagram, each with text or visual answer choices. Each item
then undergoes a three-stage quality process: peer review for clarity and correctness, adversarial
rewriting to remove linguistic shortcuts, and multiple rounds of verification by expert meta-annotators.
The final release contains 1,139 high-quality image-question pairs across the benchmark’s three main
categories.

Based on the newly introduced SpaCE-Eval benchmark, we evaluate a wide range of proprietary and
open-source MLLMs, covering different model families and sizes. SpaCE-Eval appears to be very
challenging across all sorts of models, especially with the Spatial Reasoning category. For instance,
the best overall result is only 48.64% across all tested models, while the highest accuracy in Spatial
Reasoning is merely 31.75% both achieved by claude-sonnet-4 Anthropic (2025). We also observe
that models perform significantly worse as the spatial scale increases, and visual understanding
consistently lags behind textual comprehension. Moreover, analysis reveals that many models rely
heavily on surface-level patterns rather than engaging with deeper conceptual or spatial structures.
These findings underscore the need for improved multi-modal reasoning capabilities and highlight
SpaCE-Eval as a robust benchmark for measuring progress in real-world MLLM reasoning.

2 RELATED WORK

MLLMs The remarkable progress of large language models (LLMs) has driven widespread adop-
tion of the Transformer architecture Vaswani et al. (2017) in the computer vision domain, leading
to the development of models like ViT Dosovitskiy et al. (2020), CLIP Radford et al. (2021), and
MAE He et al. (2022). Leveraging the foundational capabilities of LLMs, MLLMs such as GPT-
4o Hurst et al. (2024), Qwen2.5-VL Bai et al. (2025), LLaVa Liu et al. (2023) integrate information
across multiple modalities and have shown strong generalisation across a wide array of tasks. In
particular, these models have demonstrated increasingly sophisticated reasoning capabilities in real-
world environments, where understanding spatial relationships and physical constraints is critical.
In addition to excelling at tasks like different sorts of VQA Yue et al. (2024a); Singh et al. (2019);
Mathew et al. (2021); Masry et al. (2022) and mathematical reasoning Lu et al. (2023), these models
show growing competence in spatial Cheng et al. (2024); Chen et al. (2024) and commonsense Park
et al. (2020); Nayak et al. (2024) reasoning, marking a significant step toward grounded intelligence
in complex physical contexts.

Benchmarks Our work is mostly related to benchmarks and datasets that cover one or more aspects
of the three categories in SpaCE-Eval. We compare some representative benchmarks related to our
work in Table 1. Firstly, existing benchmarks on spatial reasoning Wang et al. (2024); Chen et al.
(2024); Liu et al. (2023); Cheng et al. (2024) focus on relative spatial relationships between objects,
such as relative position, adjacency and orientation. Benchmarks like SptialEval Wang et al. (2024)
test models’ ability to perform in table games, for example, navigate in mazes. Despite the challenging
spatial reasoning process, these are not the real physical world. Secondly, benchmarks Jassim et al.
(2023); Meng et al. (2024) that assess the commonsense knowledge of the models mainly concentrate

Table 1: Comparison of representative benchmarks in three categories.

Benchmark Spatial Reasoning Commonsense Knowledge Environment Interaction

Spatial VQA Chen et al. (2024) Simple relative location, dis-
tance, height, etc.

– –

SpatialEval Wang et al. (2024) Spatial map, maze, grid, etc. – –
GRASP Jassim et al. (2023) – Object grounding and intuitive

physics
–

CulturalVQA Nayak et al. (2024) – Geo-diverse cultural under-
standing

–

VisualCOMET Park et al. (2020) – Visual commonsense Events before and after, human
intent

CLEVRER Yi et al. (2019) Object trajectories, relative po-
sitions

Physical commonsense (e.g.,
collisions, feasibility)

–

Ours Complex spatial relations of
multiple spatial scales

Intuitive science, engineering,
physics, and culture

Interaction with environ-
ment
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on understanding physical features and laws, and do not contain cultural context Nayak et al. (2024)
that is also an important aspect of the real world. Lastly, datasets Shridhar et al. (2020); Padmakumar
et al. (2022); Fan et al. (2022) on interaction in various environments are mostly used to evaluate or
enhance embodied agents given instructions. In addition to these single-category benchmarks, some
benchmarks Park et al. (2020); Yi et al. (2019) cover two areas of the three.

3 THE SPACE-EVAL BENCHMARK

We introduce the SpaCE-Eval, a novel and meticulously curated benchmark to assess the reasoning
abilities of MLLMs in real physical world environments. The benchmark challenges the abilities of
MLLMs to perform complex reasoning on multiple scales of spaces. It provides questions which
require the integration of abstract visual perception, spatial simulation, commonsense knowledge and
deliberate reasoning abilities to answer. These abilities are essential for humans and autonomous
agents to navigate and survive in real physical world.

Figure 2: Overview of the dataset. (a) The dataset comprises three main categories: Spatial Reasoning
(SR), Commonsense Knowledge (CK), Environment Interaction (EI), and twelve subcategories, with
each category assigned a corresponding data ratio. (b) The benchmark challenges models to reason
on a wild range of spatial scales.

3.1 DATASET DESIGN

Considering the abilities and background knowledge required to understand and reason in the real
world, we design three parallel main categories of the dataset: Spatial Reasoning, Commonsense
Knowledge and Environment Interaction. To obtain more detailed insights, there are also four subcat-
egories within each main category. Figure 2 illustrates the composition of the dataset. Appendix A.0.1
displays examples of each category and subcategory.

Spatial Reasoning This category assesses models’ fundamental spatial reasoning abilities in real
world spaces with complex spatial relationships and of various scales, from rooms, buildings, to urban
contexts. It requires the MLLMs to comprehensively interpret spaces through various complicated
spatial reasoning process, including (i) Spatial Interpretation: reasoning the correct perspectives/views
from given angles and viewpoints, both indoor and outdoor, static and dynamic; (ii) Space Association:
associating spaces across different views (plan, section or elevation); (iii) View Analysis: analysing
visibility of items in complex spatial setups; and (iv) Form Transformation: predicting the new form
under explicitly or implicitly given transformation rules, etc.

Commonsense Knowledge This category tests the MLLMs’ background knowledge associated
with spaces necessary to conduct reasoning in the real world at the commonsense or intuitive level. It
consists of a wide range of fields categorised into four groups: (i) Material and Science: assessing

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

intuitive understanding of material science and structural stability; (ii) Construction and Fabrication:
evaluating logic of construction or fabrication of objects (e.g. joints, furniture) and small to large
spatial structures; (iii) Vernacular Living: examining the knowledge of unique living style of local
societies; and (iv) Cultural Context: testing model’s understanding of regional, historic, and religious
cultural representation.

Environment Interaction The environment interaction category evaluates MLLMs’ ability to
compare options, make decisions and predict affordances in real-world environments, as a user
or a decision maker of different spaces. User-Environment Interaction asks questions such as
how to choose spaces under different weather conditions from a space user’s perspective. Design-
Environment Interaction asks questions from a space decision maker’s view, for example, how to set
up a space to achieve desired goals. Mobility in Space challenges the models to select or plan the
navigation in various environments through different means of transportation or for different subjects
(e.g. humans, vehicles, other animals). Finally, Environment Sustainability tests the understanding of
models of environmental sustainability strategies and systems in the real world.

3.2 DATASET CONSTRUCTION

Data curation The dataset collection consists of two steps. First, 51 university students, the
majority of whom have design backgrounds, are asked to produce brand new diagrams for every
subcategory. This approach yields two key benefits: (i) all diagrams are freshly created, eliminating
data-contamination risks and preventing models from relying on prior exposure to publicly available
diagrams; and (ii) by encouraging contributors to follow professional standards while retaining their
personal drawing styles, we achieve greater visual diversity of the diagrams. Second, the contributors
are asked to carefully craft two questions for every diagram, each with text or visual answer choices.
Specific requirements are given to the contributors during the data generation process: (i) the diagrams
must accurately represent information aligned with specific categories; (ii) the questions should be
closely related to the diagram and the categories; (iii) reasoning process must be involved to answer
the questions to avoid simple pattern match.

Data format The type of question in the benchmark is visual question answering. All the questions
are single-answer multiple-choice questions with four choices. However, while some questions have
four text options, others have purely visual options, where question text contains only the labels of
the visual options in the image. To mitigate the potential model bias on the answer’s locations and
labels, the choices of all questions are randomly shuffled so that the probability of each position (A,
B, C and D) being the correct answer is approximately one-fourth.

Data quality control After collection, to further control the quality of the dataset, all 742 diagrams
and 1484 questions produced then undergo a four-stage refinement and screening process. First,
volunteers from various backgrounds representing the general population are invited to review all
image-question pairs and point out clarity issues, logic flaws, and any other errors for the contributors
to refine the diagrams and texts accordingly. Second, 50 questions are adversarially rewritten to
eliminate linguistic shortcuts where applicable. For example, options with features such as special
length and sentiment that make them appear more likely to be the correct answer are modified. This
involves a small proportion of questions. Third, multiple rounds of verification are conducted by
meta-annotators to ensure that referring to the visual input is necessary to answer the questions.
During this process, 1468 questions remain unchanged. Finally, all the data is filtered again by the
authors, where the key selection criteria include clarity, accuracy, relevance, and diversity of the
image-question pairs. In this process, 41 diagrams and 345 questions are excluded. As a result, 701
diagrams and 1139 questions that meet all requirements are kept.

3.3 DATA ANALYSIS

The dataset consists of 1139 image-question pairs in total, where Spatial Reasoning, Commonsense
Knowledge and Environment Interaction contribute 400, 395 and 344 questions respectively. The
proportion of each subcategories is displayed in Figure 2 (a).

In addition to the categories and subcategories, the dataset can be divided into nine groups according
to the scale of space each question requires to be reasoned on, namely: object (e.g. furniture, columns,
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decorative tiles), room space (e.g. a bedroom, a hall, a unit/apartment), building space (an individual
building or a building cluster, interior or exterior), spatial structure (e.g. a shell, a bridge, an arch),
urban space (e.g. street blocks, road networks, a park, a waterfront, a village), abstract geometry and
others. The distribution and example of each scale is illustrated in Figure 2 (b).

To further enhance models’ visual reasoning capabilities and reduce reliance on purely linguistic cues,
40% of the questions are provided with purely visual options. To correctly answer these questions,
the models need to not only perceive visual information of the question but also interpret the visual
descriptions of the options or simulate corresponding views. Figure 1 Spatial Reasoning part and
Figure 4 (b) demonstrate examples of questions with purely visual options. The rest 60% of questions
provide text options.

To check the similarity of the diagrams to existing images, Google Cloud (2025) Vision is deployed
to search for similar images of each diagram. An average cosine similarity is calculated between the
diagrams and their top most similar images found in the search using CLIP Radford et al. (2021)
embeddings. The comparison reveals that 75% of the diagrams achieve similarity scores under 0.723,
with 50% scoring below 0.665, and an overall mean of 0.654.

4 EXPERIMENTS

Based on the SpaCE-Eval benchmark, we conduct extensive evaluations on a selection of both
proprietary and open-source MLLMs and analyse the results.

4.1 MODELS

We consider a wide range of proprietary and competitive open-source MLLMs to perform a com-
prehensive evaluation on SpaCE-Eval. For proprietary models, we consider GPT-5 OpenAI (2025),
GPT-5-mini OpenAI (2025), GPT-4o Hurst et al. (2024), GPT-4o-mini Hurst et al. (2024),GPT-
o4-mini Hurst et al. (2024), grok-2-vision-1212 xAI (2024) (grok-2-vision), claude-3.7-sonnet An-
thropic (2024), claude-sonnet-4 Anthropic (2025) and gemini-2.5-flash-preview Team et al. (2023)
(gemini-2.5-flash). For open-source models, we evaluate the Llama-4 AI (2025) family, including
Llama-4-Maverick-17B-128E-Instruct (Llama-4-Maverick) and Llama-4-Scout-17B-16E-Instruct
(Llama-4-Scout); the gemma-3 Team et al. (2025a) family, including gemma-3-27b-it, gemma-3-
12b-it and gemma-3-4b-it; the Qwen2.5-VL Bai et al. (2025) family, including Qwen2.5-VL-72B-
Instruct (Qwen2.5-VL-72B) and Qwen2.5-VL-7B-Instruct (Qwen2.5-VL-7B); and other representa-
tive MLLMs including Pixtral-12B Agrawal et al. (2024), glm-4.1v-9b-thinking Team et al. (2025b)
(glm-4.1v-9b), Idefics3-8B-Llama3 Laurençon et al. (2024), llava-onevision-7b Li et al. (2024a),
Phi-4-multimodal-instruct Abouelenin et al. (2025) (Phi-4-multimodal) and smolvlm-2b Marafioti
et al. (2024). In addition, human volunteers of various backgrounds are invited to manually solve the
questions, through which average human performance (Human Avg.) is obtained.

We evaluate most models using the OpenRouter API OpenRouter (2025) for efficiency, for models
that are not supported by OpenRouter, we deploy the models using VLLM Kwon et al. (2023) and
use their default hyperparameter for inference. The detailed prompt structure and model API or links
are provided in Appendix A.0.2. When the model prediction is not exactly the same expression as the
ground truth (e.g. model prediction is not answer "A", but may have the same linguistic meaning as
option A), we use GPT-4o-mini Hurst et al. (2024) to classify whether the prediction is correct.

4.2 MAIN RESULTS

In this section, we present a comprehensive comparison of different MLLMs based on SpaCE-Eval,
the details are shown in Table 2. For each model, the accuracy is represented by the percentage of
correct predictions out of the total predictions in each category. We summarise our key finding as
follows.

Overall result SpaCE-Eval is a very challenging benchmark. The best result across all the tested
models is only 56.37% achieved by GPT-5 OpenAI (2025), The proprietary models achieve an overall
accuracy between 39.68% and 56.37%, and the majority of open-source models can only reach an
overall accuracy of less than 40%, except for Llama-4-Maverick AI (2025), glm-4.1v-9b Team et al.
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(2025b)and llava-onevision-7b Li et al. (2024a), whose accuracy is 45.92%, 43.37% and 42.41%
respectively.

Table 2: Evaluation results of various MLLMs on SpaCE-Eval. We evaluate the three main categories:
Spatial Reasoning, Commonsense Knowledge and Environment Interaction. For each main category,
we evaluate the four subcategories. SI, SA, VA and FT represent Spatial Interpretation, Space
Association, View Analysis and Form Transformation, respectively. MaS, CF, CC and VL represent
Materials and Structures, Construction and Fabrication, Cultural Context and Vernacular Living,
respectively. UEI, DEI, MiS and ES represent User-Environment Interaction, Design-Environment
Interaction, Mobility in Space and Environment Sustainability, respectively. Bold indicates the best
performance of each category, while underlined denote the second-best performance in each category.

Model Name Overall
Mean

Spatial Reasoning Commonsense Knowledge Environment Interaction

SI SA VA FT Mean MaS CF CC VL Mean UEI DEI MiS ES Mean

Human Avg. 79.00 84.92 89.19 92.24 76.24 84.18 81.48 65.32 58.2 81.86 71.83 72.64 80.82 91.84 80.17 81.34

Proprietary MLLMs

GPT-5 56.37 39.70 45.95 46.55 43.4 42.25 69.44 61.29 62.60 69.61 66.08 65.79 60.27 50.0 74.58 61.63

GPT-5-mini 52.15 33.67 45.95 39.66 38.68 37.00 70.37 58.06 53.66 62.75 61.27 58.77 54.79 53.06 76.27 59.3

GPT-4o-mini 39.68 16.08 27.03 32.76 29.25 23.00 62.96 45.16 36.59 47.06 47.85 55.26 45.21 36.73 66.10 49.71

GPT-o4-mini 45.04 25.63 29.73 37.93 25.47 27.75 61.11 56.45 47.51 56.86 54.94 56.14 42.47 47.96 72.88 53.78

grok-2-vision 42.32 30.15 24.32 32.76 30.19 30.00 59.26 45.16 35.77 54.90 48.61 55.26 35.62 41.84 67.80 49.42

claude-sonnet-4 48.64 29.65 37.84 41.38 28.30 31.75 64.81 53.23 53.66 63.73 59.24 57.89 49.32 50.00 71.19 56.10

claude-3.7-sonnet 47.41 26.63 16.22 41.38 33.96 29.75 65.74 53.23 46.34 63.73 57.22 54.39 47.95 56.12 72.88 56.69

gemini-2.5-flash 47.50 25.13 24.32 43.10 28.30 28.50 64.81 62.90 47.97 58.82 57.72 61.40 49.32 51.02 72.88 57.85

Open-source MLLMs

Qwen2.5-VL-72B 37.84 19.10 35.14 27.59 33.96 25.75 57.41 38.71 26.83 59.80 45.57 53.51 35.62 31.63 50.85 43.02

gemma-3-27b-it 39.77 23.12 21.62 39.66 21.70 25.00 57.41 58.06 32.52 55.88 49.37 46.49 52.05 34.69 55.93 45.93

Llama-4-Maverick 45.92 22.11 37.84 37.93 29.25 27.75 67.59 58.06 47.97 49.02 55.19 57.89 49.32 44.90 81.36 56.40

Llama-4-Scout 39.42 18.09 21.62 34.48 29.25 23.75 56.48 48.39 36.59 46.08 46.33 52.63 42.47 41.84 66.10 49.71

gemma-3-12b-it 37.05 19.10 16.22 36.21 22.64 22.25 52.78 45.16 33.33 50.00 44.81 42.11 39.73 35.71 74.58 45.35

Pixtral-12B-2409 39.77 25.13 27.03 37.93 33.96 29.50 50.93 45.16 34.96 48.04 44.30 49.12 39.73 30.61 76.27 46.51

glm-4.1v-9b 43.37 24.12 37.84 36.21 29.25 28.50 60.19 41.94 47.97 50.00 50.89 50.88 50.68 42.86 71.19 52.03

Idefics3-8B-Llama3 38.72 21.11 18.92 44.83 34.91 28.00 56.48 41.94 35.77 49.02 45.82 54.39 35.62 29.59 52.54 43.02

Qwen2.5-VL-7B 37.14 19.60 21.62 41.38 31.13 26.00 48.15 45.16 34.96 41.18 41.77 47.37 41.10 34.69 61.02 44.77

llava-onevision-7b 42.41 26.63 35.14 37.93 33.96 31.00 58.33 56.45 37.40 50.98 49.62 56.14 41.10 31.63 64.41 47.38

Phi-4-multimodal 38.72 27.14 29.73 31.03 35.85 30.25 49.07 30.65 36.59 41.18 40.25 45.61 47.95 37.76 62.71 46.80

gemma-3-4b-it 36.00 22.11 24.32 32.76 24.53 24.50 55.56 35.48 30.89 45.10 42.03 43.86 31.51 39.80 57.63 42.44

smolvlm-2b 36.00 28.14 32.43 27.59 33.96 30.00 58.33 41.94 34.96 35.29 42.53 38.60 27.40 33.67 42.37 35.47

Cross-category result Trained on large-scale data, the models achieve as highest as 66.08% and
61.63% in the Commonsense Knowledge and Environment Interaction categories. However, their
performance in the Spatial Reasoning is dramatically lower, with scores of only 42.25%, with the
majority of which only slightly higher than random guesses, highlighting a significant capability gap
between Spatial Reasoning and the other two categories.

Cross-model-scale result According to the results, generally, the models with larger sizes perform
better than those with smaller sizes. For example, in the Gemma Team et al. (2025a) series, the
largest model (gemma-3-27b-it) has the best performance (39.77%), the middle size version (gemma-
3-12b-it) has the medium accuracy (37.05%), and the smallest model (gemma-3-4b-it ) has the least
accuracy (36.00%). Similarly, Qwen2.5-VL-72B-Instruct Bai et al. (2025) has higher overall accuracy
than Qwen2.5-VL-7B-Instruct.

Human vs. model In contrast to model performances, the average human results in Table 2
demonstrate a different pattern. Humans achieve the highest results in Spatial Reasoning and the
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second highest in Environmental Interaction. Both categories require stronger reasoning abilities
than the Commonsense Knowledge category, especially for Spatial Reasoning. Noticeably, GPT-
5 OpenAI (2025) has surpassed human average results in the Cultural Context subcategory, under
Commonsense Knowledge. Despite such differences, human performance in spatial reasoning
(84.18%) and environment interaction (81.34%) is significantly higher than all the models (at best
42.25% and 61.63% respectively). This result suggests that humans are comparatively stronger in
reasoning than in memorisation, and maintain a clear advantage over current models in reasoning
ability.

Figure 3: (a) Model performances on questions with textual options and those with purely visual
options. (b) Model performances on questions with and without image input. (c) Models’ accuracy
across different scales. The dashed lines indicate models’ mean accuracy over all scales.

Visual vs. textual The evaluation reveals notable imbalance between textual and visual reasoning.
Figure 3(a) compares model performance on questions with textual options and those with purely
visual options. The best accuracy on visual-option questions is only 26.58%, which is close to random
guessing, whereas accuracy on text-option questions reaches 61.44%. This disparity indicates that
MLLMs possess substantially weaker capabilities in visual comprehension and reasoning compared
to textual reasoning. Additionally, Figure 3(b) further compares performance with and without
image input. When images are absent, model accuracy declines significantly, underscoring the strong
dependency of MLLMs on visual inputs to answer questions in our benchmark.

4.3 ANALYSIS OF CURRENT LIMITATIONS

A particularly prominent limitation revealed by the evaluation is the models’ incapacity to bridge
spatial scales, especially when reasoning across local-to-global and global-to-local relations. This
may stem from challenges in reasoning over larger spatial extents and in performing spatial simulation.
In addition, the models exhibit difficulties in abstract interpretation and reasoning.

Difficulty in reasoning on larger spatial scales As shown in Figure 3(c), the models exhibit
a consistent trend across different spatial scales: they achieve relatively strong performance in
object-scale reasoning, but performance declines as the scale expands to rooms, buildings, and urban
spaces, with abstract geometry reasoning posing the greatest challenge. In other words, models
demonstrate weaker understanding and reasoning capabilities for larger-scale spaces compared to
object-level reasoning, and their performance in these cases falls below the overall mean across
all scales. This trend can be resulted from the fact that many existing datasets primarily focus on
object-level reasoning, as noted in Section 1, highlighting the need for datasets and benchmarks that
target larger spatial scales. By contrast, performance on spatial-structure tasks is slightly higher, as
these tasks emphasise intuitive understanding of structural patterns rather than the more demanding
reasoning processes required in the other scale groups.
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Difficulty in spatial simulation Models demonstrate critical shortcomings when spatial simulation
is required in the tasks. This limitation often leads to failures in questions involving global–local
relationships. The evaluation shows that models frequently struggle to identify the view corresponding
to a given location, or to localise the position associated with a given view. Typical questions of
this type include: (i) given a global view, what would be observed when standing at position A
and looking in the direction of the arrow? or (ii) given a local view, at which position in the room,
building, or village would this perspective be obtained? Figure 4(a) presents an example of such
location–view association tasks, which are usually posed with pure visual options. Across models,
the accuracy on these questions remains low, with fewer than 22.73% of responses being correct.
Such failures commonly arise when models are unable to mentally simulate or infer the consequences
of spatial transformations, changes in perspective, or dynamic interactions within the environment.
This highlights a fundamental weakness of MLLMs in the spatial reasoning abilities essential for
real-world understanding.

Figure 4: (a) An example of location-view association. (b) An example of abstract representation of
distance. The ground truth is underlined.

Difficulty in abstract interpretation and reasoning When challenged with questions involving
spatial measurements, models often resort to comparing pixel-level distances rather than reasoning
with the abstract spatial relations encoded in the diagrams. As shown in Figure 4(b), GPT-4o Hurst
et al. (2024) bases its answer on the shorter pixel distance between the circles representing the Civic
Building and Block D, while disregarding the abstract distance indicated by dashed lines, which
reflect the actual spatial relationship in the real world. This illustrates a broader limitation: the models
tend to privilege surface-level visual patterns over the abstract principles that govern spatial and
physical phenomena. Such behavior raises concerns about their reliability in tasks where correct
interpretation requires abstraction beyond visual similarity, underscoring the gap between current
multimodal reasoning and human-like spatial understanding.

5 CONCLUSION

As existing benchmarks do not comprehensively assess the ability of MLLMs to understand and
reason in real-world contexts, we introduce SpaCE-Eval, a meticulously constructed benchmark
designed to evaluate several crucial aspects of real-world understanding. The benchmark undergoes a
rigorous preparation and selection process, followed by extensive experiments on a range of state-
of-the-art MLLMs. The results reveal that while current models approach human performance in
knowledge-intensive categories, they fall considerably short in reasoning-intensive ones, particularly
in spatial reasoning. Key limitations include difficulties in bridging spatial scales, performing spatial
simulation, and engaging in abstract reasoning, underscoring the need for continued advancements in
both benchmark datasets and MLLM architectures.

Use of LLMs LLMs are occasionally used to polish the writing.
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A APPENDIX

A.0.1 DATASET CATEGORY DETAILS

This section demonstrates examples of each subcategory of the four main categories in the data set.

Figure 5: Example of Spatial Reasoning/Spatial Interpretation.
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Figure 6: Example of Spatial Reasoning/Space Association.
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Figure 7: Example of Spatial Reasoning/View Analysis.
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Figure 8: Example of Spatial Reasoning/Form Transformation.
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Figure 9: Example of Commonsense Knowledge/Materials and Structures.
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Figure 10: Example of Commonsense Knowledge/Construction and Fabrication.
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Figure 11: Example of Commonsense Knowledge/Cultural context.
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Figure 12: Example of Commonsense Knowledge/Vernacular Living.
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Figure 13: Example of Environment Interaction/User-Environment Interaction.
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Figure 14: Example of Environment Interaction/Design-Environment Interaction.
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Figure 15: Example of Environment Interaction/Mobility in Space.
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Figure 16: Example of Environment Interaction/Environment Sustainability.
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A.0.2 EXPERIMENT DETAILS

This section explains additional details of the experiment.

Prompt

For each data case, the prompt includes an image and the text of the question formatted as illustrated
in Figure 17 (a). For questions with visual options, the options and the main diagram are prompted
as one image as shown in Figure 17 (b). The prompt for questions with text options is shown in
Figure 17 (c).

Figure 17: Prompt example used in the experiment, (a) structure of the prompt text. (b) prompt
example of questions with visual options. (c) prompt example of questions with text options.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Model Links

We provide all links to the APIs or models used in our experiments in Table 3.

Table 3: Links to the models in our experiment

Model API/Model Link

GPT-5 https://openrouter.ai/openai/gpt-5/api
GPT-5-mini https://openrouter.ai/openai/gpt-5-mini/api
GPT-4o https://openrouter.ai/openai/gpt-4.1-nano
GPT-4o-mini https://openrouter.ai/openai/gpt-4o-mini
GPT-o4-mini https://openrouter.ai/openai/gpt-4o-mini/api
grok-2-vision https://openrouter.ai/x-ai/grok-2-vision-1212
claude-sonnet-4 https://openrouter.ai/anthropic/claude-sonnet-4/api
claude-3.7-sonnet https://openrouter.ai/anthropic/claude-3.7-sonnet
gemini-2.5-flash https://openrouter.ai/google/gemini-2.5-flash-preview/api
Qwen2.5-VL-72B https://openrouter.ai/qwen/qwen2.5-vl-72b-instruct/api
gemma-3-27b-it https://openrouter.ai/google/gemma-3-27b-it/api
Llama-4-Maverick https://openrouter.ai/meta-llama/llama-4-maverick/api
Llama-4-Scout https://openrouter.ai/meta-llama/llama-4-scout/api
gemma-3-12b-it https://openrouter.ai/google/gemma-3-12b-it/api
Pixtral-12B-2409 https://openrouter.ai/mistralai/pixtral-12b/api
glm-4.1v-9b-thinking https://openrouter.ai/thudm/glm-4.1v-9b-thinking/api
Idefics3-8B-Llama3 https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3
Qwen2.5-VL-7B https://openrouter.ai/qwen/qwen-2.5-vl-7b-instruct/api
llava-onevision-7b https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf
Phi-4-multimodal https://openrouter.ai/microsoft/phi-4-multimodal-instruct/api
gemma-3-4b-it https://openrouter.ai/google/gemma-3-4b-it/api
smolvlm-2b https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct
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