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ABSTRACT

Multi-modal Large Language Models (MLLMs) represent a significant advance-
ment in artificial intelligence. Among the growing capabilities exhibited by
MLLMs, abilities to understand and reason in real-world environments stand
out as particularly vital as a fundamental prerequisite for a wide array of real-world
applications. The current methods for evaluating MLLM:s often fall short in their
ability to comprehensively assess these crucial capabilities. However, being able to
reason on complex environment-scale spaces, for example, room spaces, building
spaces, and even urban spaces, and to predict the future and plan actions, is essential
for humans and various autonomous agents to survive in the real physical world.
To address these gaps, we propose a visual-question-answering benchmark, SpaCE-
Eval (Spatial Reasoning, Commonsense Knowledge and Environment Interaction),
designed to evaluate MLLM’s reasoning abilities in real-world environments. As
the name suggests, it challenges the models to reason on complex spatial scenar-
ios, invoke commonsense knowledge of the physical world, and interact with the
environment. The dataset consists of all new diagrams purposefully produced
by humans, where diagram-question pairs are meticulously refined and selected
through a rigorous pipeline. Additionally, with the benchmark, we evaluate a
selection of leading MLLMs, both proprietary and open source. The results suggest
that significant enhancement of MLLMs in reasoning in the real physical world is
necessary to realise more advanced general artificial intelligence. Code and dataset
available at https://github.com/xuyou—-yang/SpaCE-Eval.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) have advanced rapidly in recent years, showing
growing capabilities in tasks that require joint visual and textual comprehension. Existing models,
either commercial models such as GPT-4o0 (Hurst et al., 2024), Grok (xAl, 2024} and Gemini (Gemini
Team Google et al., [2023)), or open-source ones such as Qwen2.5-VL (Bai et al.| 2025), Llama
4 (Meta AL 2025)) and LLaVA-OneVision (Li et al.}2024al)), have achieved impressive performance
on diverse visual question answering (VQA) tasks (Goyal et al., 2017; Masry et al., 20225 Singh et al.,
2019; Mathew et al., 20215 |Lu et al., [2023)).

As MLLMs are increasingly deployed in real-world applications, including robotics (Driess et al.}
2023} |L1 et al., 2024b; |Yue et al., 2024b)), autonomous navigation (Shah et al.| [2023; Zhou et al.,
2024)), and embodied agents (Szot et al., [2024), it becomes critical to assess whether these mod-
els can reason effectively in dynamic physical environments, which require spatial awareness,
commonsense understanding, and interaction with the environment.

A number of benchmarks have been proposed to evaluate MLLMs’ visual reasoning abilities, but
existing efforts fall short in several important aspects. First, existing spatial understanding and

*Corresponding author.


https://github.com/xuyou-yang/SpaCE-Eval

Published as a conference paper at ICLR 2026

Spatial Reasoning

A.Option1 B.Option2 C.Option3 D. Option 4

‘Which chair is relatively safer for a child to sit in?
A. Option A in the image

B. Option B in the image

C. Cannot compare from the diagram

D. Both are equally safe

Commonsense Knowledge

POINT 2 Option 1 Option 2
| =
|
N
: -
POINT1 ) =
b ~_|
Option 3 Option 4
It —
I
| | B
= - S—
| . L
- N D _
‘Which of the following perspectives correspond to how Jay will see Tom from his location?

E Block O]

Block04

H

-+« Circulation Path

If you can only walk in anti-clockwise direction, which point you
can reach the earliest from point D?

A. Point A
C. Point C

B. Point B
D. Point B and C

Figure 1: VQA examples of the three categories in SpaCE-Eval. The ground truth is indicated with
underline.

reasoning datasets (Wang et all, 2024} [Chen et al, 2024} [Liu et al 2023} [Cheng et all, [2024)

often focus on object scale understanding (e.g., household objects, table games), ignoring that
the environment we live in has much more diverse scales, ranging from a room, a building, to a
community and even a city. More importantly, the tasks are typically simple, such as object counting,
position understanding, and relative relationships (e.g., left or right, close or far etc.), whereas spatial
relationships are more complicated in the real world, and require different types of reasoning abilities.
Second, while some datasets probe physical or social commonsense, for example, PIQA
[2020), Visual COMET and CulturalVQA (Nayak et al,[2024)), they typically lack
spatial grounding, making it difficult to evaluate how well MLLMs integrate such knowledge with
physical context. Third, most existing datasets assess a static understanding of a given image, instead
of reasoning about options or actions to interact with the environment. However, predicting and
planning for what will happen next is essential for humans and autonomous agents to interact with
complex environments to survive.

To address these limitations, we introduce SpaCE-Eval (Spatial Reasoning, Commonsense Knowl-
edge and Environment Interaction), a new benchmark designed to evaluate MLLM’s capability to
reason in real-world environments. As shown in Figure[T} SpaCE-Eval consists of three categories:
(1) Spatial Reasoning assesses models’ spatial reasoning abilities in environments on multiple
scales. It requires the MLLMs to comprehensively reason on spaces which have complex spatial
configurations and relationships in real-world scenarios.; (2) Commonsense Knowledge tests the
MLLM’s background knowledge necessary to conduct reasoning in the real-world spaces at the
commonsense level. (2) Environment Interaction evaluates MLLMs’ ability to compare options,
make decisions and predict affordances in real-world conditions, as a user or a decision maker, in
order to better interact with the environment. The scale of spaces and reasoning subjects utilised in
all categories ranges from small items, rooms, buildings, to urban contexts. Together, these three
categories target core competencies required to deploy MLLMs in a real physical world.
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To construct SpaCE-Eval, we employ a rigorous pipeline. First, human experts with design back-
grounds draw brand-new diagrams for every task category. Different from statistical charts, these
new diagrams are info-graphics. This approach offers two key benefits: (i) all diagrams are freshly
created, eliminating data-contamination risks and preventing models from relying on prior exposure
to publicly available diagrams; and (ii) by encouraging contributors to follow professional standards
while retaining their personal drawing styles, we achieve greater visual diversity. Next, two carefully
crafted questions are written for every diagram, each with text or visual answer choices. Each item
then undergoes a three-stage quality process: peer review for clarity and correctness, adversarial
rewriting to remove linguistic shortcuts, and multiple rounds of verification by expert meta-annotators.
The final release contains 1,139 high-quality image-question pairs across the benchmark’s three main
categories.

Based on the newly introduced SpaCE-Eval benchmark, we evaluate a wide range of proprietary
and open-source MLLMs, covering different model families and sizes. SpaCE-Eval appears to be
very challenging across all sorts of models, especially with the Spatial Reasoning category. For
instance, the best overall result is only 56.37% across all tested models, while the highest accuracy
in Spatial Reasoning is merely 42.25% both achieved by GPT-5 (OpenAl, |2025). We also observe
that models perform significantly worse as the spatial scale increases, and visual understanding
consistently lags behind textual comprehension. Moreover, analysis reveals that many models rely
heavily on surface-level patterns rather than engaging with deeper conceptual or spatial structures.
These findings underscore the need for improved multi-modal reasoning capabilities and highlight
SpaCE-Eval as a robust benchmark for measuring progress in real-world MLLM reasoning.

2 RELATED WORK

MLLMs The remarkable progress of large language models (LLMs) has driven widespread adop-
tion of the Transformer architecture (Vaswani et al.,[2017) in the computer vision domain, leading
to the development of models like ViT (Dosovitskiy et al., [2020), CLIP (Radford et al., [2021]),
and MAE (He et al., 2022). Leveraging the foundational capabilities of LLMs, MLLMs such as
GPT-40 (Hurst et al.}2024), Qwen2.5-VL (Bai et al.||2025), LLaVa (Liu et al.,2023) integrate infor-
mation across multiple modalities and have shown strong generalisation across a wide array of tasks.
In particular, these models have demonstrated increasingly sophisticated reasoning capabilities in
real-world environments, where understanding spatial relationships and physical constraints is critical.
In addition to excelling at tasks like different sorts of VQA (Yue et al.l|2024a; [Singh et al., [2019;
Mathew et al.|[2021; Masry et al., [2022)) and mathematical reasoning (Lu et al.| 2023)), these models
show growing competence in spatial (Cheng et al.,|2024; |Chen et al., [2024) and commonsense (Park
et al.,|2020; Nayak et al.|[2024) reasoning, marking a significant step toward grounded intelligence in
complex physical contexts.

Benchmarks Our work is mostly related to benchmarks and datasets that cover one or more aspects
of the three categories in SpaCE-Eval. We compare some representative benchmarks related to our
work in Table[T] Firstly, existing benchmarks on spatial reasoning (Wang et al., [2024; [Chen et al.,
2024} Liu et al.|[2023|Cheng et al., 2024) focus on relative spatial relationships between objects, such

Table 1: Comparison of representative benchmarks in three categories.

Benchmark

Spatial Reasoning

Commonsense Knowledge

Environment Interaction

Spatial VQA (Chen et al.|[2024)

Simple relative location, dis-
tance, height, etc.

SpatialEval (Wang et al.;[2024)

Spatial map, maze, grid, etc.

GRASP (Jassim et al.| [2023)

CulturalVQA (Nayak et al[[2024)

Visual COMET (Park et al.[[2020)

Object grounding and intuitive
physics

Geo-diverse cultural under-
standing

Visual commonsense

Events before and after, human
intent

CLEVRER (Yi et al.l|2019)

Object trajectories, relative po-
sitions

Physical commonsense (e.g.,
collisions, feasibility)

Ours

Complex spatial relations of
multiple spatial scales

Intuitive science, engineer-
ing, physics, and culture

Interaction with environ-
ment
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as relative position, adjacency and orientation. Benchmarks like SptialEval 2024) test
models’ ability to perform in table games, for example, navigate in mazes. Despite the challenging
spatial reasoning process, these are not the real physical world. Secondly, benchmarks
[2023} Meng et al,[2024) that assess the commonsense knowledge of the models mainly concentrate
on understanding physical features and laws, and do not contain cultural context 2024)
that is also an important aspect of the real world. Lastly, datasets (Shridhar et al} [2020; Padmakumar]
let all 2022} [Fan et al.l 2022) on interaction in various environments are mostly used to evaluate or
enhance embodied agents given instructions. In addition to these single-category benchmarks, some
benchmarks (Park et al.| 2020} [Yi et al., 2019) cover two areas of the three.

3 THE SPACE-EVAL BENCHMARK

We introduce the SpaCE-Eval, a novel and meticulously curated benchmark to assess the reasoning
abilities of MLLMs in real physical world environments. The benchmark challenges the abilities of
MLLMs to perform complex reasoning on multiple scales of spaces. It provides questions which
require the integration of abstract visual perception, spatial simulation, commonsense knowledge and
deliberate reasoning abilities to answer. These abilities are essential for humans and autonomous
agents to navigate and survive in real physical world.
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Figure 2: Overview of the dataset. (a) The dataset comprises three main categories: Spatial Reasoning
(SR), Commonsense Knowledge (CK), Environment Interaction (EI), and twelve subcategories, with
each category assigned a corresponding data ratio. (b) The benchmark challenges models to reason
on a wild range of spatial scales.

3.1 DATASET DESIGN

Considering the abilities and background knowledge required to understand and reason in the real
world, we design three parallel main categories of the dataset: Spatial Reasoning, Commonsense
Knowledge and Environment Interaction. To obtain more detailed insights, there are also four subcat-
egories within each main category. Figure[2]illustrates the composition of the dataset. Appendix[A.0.1]
displays examples of each category and subcategory.

Spatial Reasoning This category assesses models’ fundamental spatial reasoning abilities in real
world spaces with complex spatial relationships and of various scales, from rooms, buildings, to urban
contexts. It requires the MLLMs to comprehensively interpret spaces through various complicated
spatial reasoning process, including (i) Spatial Interpretation: reasoning one correct perspective/view
from a given angle or viewpoint, including indoor and outdoor, static and dynamic conditions; (ii)
Space Association: associating spaces by linking different views (plan, section, or elevation); (iii)
View Analysis: analysing visibility of items or spaces in complex spatial setups; and (iv) Form
Transformation: predicting the new form under explicitly or implicitly given transformation rules.
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Commonsense Knowledge This category tests the MLLMs’ background knowledge associated
with spaces necessary to conduct reasoning in the real world at the commonsense or intuitive level. It
consists of a wide range of fields categorised into four groups: (i) Material and Science: assessing
intuitive understanding of material science and structural stability; (ii) Construction and Fabrication:
evaluating logic of construction or fabrication of objects (e.g. joints, furniture) and small to large
spatial structures; (iii) Vernacular Living: examining the knowledge of unique living style of local
societies; and (iv) Cultural Context: testing model’s understanding of regional, historic, and religious
cultural representation.

Environment Interaction The environment interaction category evaluates MLLMs’ ability to
compare options, make decisions and predict affordances in real-world environments, as a user
or a decision maker of different spaces. User-Environment Interaction asks questions such as
how to choose spaces under different weather conditions from a space user’s perspective. Design-
Environment Interaction asks questions from a space decision maker’s view, for example, how to set
up a space to achieve desired goals. Mobility in Space challenges the models to select or plan the
navigation in various environments through different means of transportation or for different subjects
(e.g. humans, vehicles, other animals). Finally, Environment Sustainability tests the understanding of
models of environmental sustainability strategies and systems in the real world.

3.2 DATASET CONSTRUCTION

Data curation The dataset collection consists of two steps. First, 51 university students representing
multiple nationalities, cultural backgrounds and design traditions are asked to produce brand new
diagrams for every subcategory. Students with design (mostly architecture-related) backgrounds
are intentionally chosen because they are trained to possess strong spatial abilities, including the
ability to create high-quality visual representations of the physical world from scratch. This approach
yields two key benefits: (i) all diagrams are freshly created, eliminating data-contamination risks
and preventing models from relying on prior exposure to publicly available diagrams; and (ii) by
encouraging contributors to follow professional standards while retaining their personal drawing
styles, we achieve greater visual diversity of the diagrams. Second, the contributors are asked to
carefully craft two questions for every diagram, each with text or visual answer choices. Specific
requirements are given to the contributors during the data generation process: (i) the diagrams must
accurately represent information aligned with specific categories; (ii) the questions should be closely
related to the diagram and the categories; (iii) reasoning process must be involved to answer the
questions to avoid simple pattern match; (iv) linguistic or positional shortcuts should be avoided.

Data format The type of question in the benchmark is visual question answering. All the questions
are single-answer multiple-choice questions with four choices. However, while some questions have
four text options, others have purely visual options, where question text contains only the labels of
the visual options in the image. To mitigate the potential model bias on the answer’s locations and
labels, the choices of all questions are randomly shuffled so that the probability of each position (A,
B, C and D) being the correct answer is approximately evenly distributed (25.46%, 25.37%, 25.46%,
and 23.71%, respectively).

Data quality control To further control the quality of the dataset, all 742 diagrams and 1484
questions produced then undergo a multi-stage refinement and screening process. Figure [3]illustrates
the pipeline of data quality control.

(i) During the data creation phase, contributors met weekly with the meta-annotators to review
a subset of their diagram—question pairs. In these meetings, ambiguous cases were discussed in
detail, and concrete examples were illustrated. This iterative feedback loop ensured that contributors
gradually converged to a shared understanding of the rubric, leading to de facto annotator agreement
over time rather than idiosyncratic interpretations by different students.

(ii) Volunteers from various backgrounds representing the general population are invited to review all
image-question pairs and point out clarity issues, logic flaws, and any other errors for the contributors
to refine the diagrams and texts accordingly.

(iii) A few dedicated reviewing sessions were conducted with external reviewers who were not
involved in the initial data creation. Their independent perspective helped to surface hidden biases or
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Figure 3: The pipeline of data quality control.

systematic issues that might not be obvious to the original creators, further increasing the soundness
and robustness of the dataset.

(iv) Multiple rounds of verification are conducted by meta-annotators. At this stage, 50 questions are
adversarially rewritten to eliminate linguistic shortcuts where applicable. For example, options with
features such as special length and sentiment that make them appear more likely to be the correct
answer are modified. This involves a small proportion of questions. Each data entry is examined to
ensure that referring to the visual input is necessary to answer the questions. During this process,
1468 questions remain unchanged.

(v) Finally, all the data is filtered again by the authors, where the key selection criteria include clarity,
accuracy, relevance, and diversity of the image-question pairs. In this process, 41 diagrams and 345
questions are excluded. As a result, 701 diagrams and 1139 questions that meet all requirements are
kept.

3.3 DATA ANALYSIS

The dataset consists of 1139 image-question pairs in total, where Spatial Reasoning, Commonsense
Knowledge and Environment Interaction contribute 400, 395 and 344 questions respectively. The
proportion of each subcategories is displayed in Figure 2] (a).

In addition to the categories and subcategories, the dataset can be divided into nine groups according
to the scale of space each question requires to be reasoned on, namely: object (e.g. furniture, columns,
decorative tiles), room space (e.g. a bedroom, a hall, a unit/apartment), building space (an individual
building or a building cluster, interior or exterior), spatial structure (e.g. a shell, a bridge, an arch),
urban space (e.g. street blocks, road networks, a park, a waterfront, a village), abstract geometry and
others. The distribution and example of each scale is illustrated in Figure[2] (b).

To further enhance models’ visual reasoning capabilities and reduce reliance on purely linguistic cues,
40% of the questions are provided with purely visual options. To correctly answer these questions,
the models need to not only perceive visual information of the question but also interpret the visual
descriptions of the options or simulate corresponding views. Figure[T| Spatial Reasoning part and
Figure[5](b) demonstrate examples of questions with purely visual options. The rest 60% of questions
provide text options.

To check the similarity of the diagrams to existing images, [Google Cloud|(2025) Vision is deployed
to search for similar images of each diagram. An average cosine similarity is calculated between the
diagrams and their top most similar images found in the search using CLIP (Radford et al., [2021)
embeddings. The comparison reveals that 75% of the diagrams achieve similarity scores under 0.723,
with 50% scoring below 0.665, and an overall mean of 0.654.
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4 EXPERIMENTS

Based on the SpaCE-Eval benchmark, we conduct extensive evaluations on a selection of both
proprietary and open-source MLLMs and analyse the results.

4.1 MODELS

We consider a wide range of proprietary and competitive open-source MLLMs to perform a com-
prehensive evaluation on SpaCE-Eval. For proprietary models, we consider GPT-5 (OpenAl, [2025),
GPT-5-mini (OpenAlL 2025), GPT-40 (Hurst et al.,2024), GPT-40-mini (Hurst et al., 2024),GPT-04-
mini (Hurst et al., [2024), grok-2-vision-1212 (xAlL 2024) (grok-2-vision), claude-3.7-sonnet (An-
thropic| |2024)), claude-sonnet-4 (Anthropic, 2025) and gemini-2.5-flash-preview (Gemini Team
Google et al.l 2023) (gemini-2.5-flash). For open-source models, we evaluate the Llama-4 (Meta Al
2025) family, including Llama-4-Maverick-17B-128E-Instruct (Llama-4-Maverick) and Llama-4-
Scout-17B-16E-Instruct (Llama-4-Scout); the gemma-3 (Gemma Team et al.| 2025) family, including
gemma-3-27b-it, gemma-3-12b-it and gemma-3-4b-it; the Qwen2.5-VL (Bai et al.| [2025)) family,
including Qwen2.5-VL-72B-Instruct (Qwen2.5-VL-72B) and Qwen2.5-VL-7B-Instruct (Qwen?2.5-
VL-7B); and other representative MLLMs including Pixtral-12B (Agrawal et al., 2024), glm-4.1v-9b-
thinking (GLM-V Team et al.| [2025) (glm-4.1v-9b), Idefics3-8B-Llama3 (Laurencon et al.| [2024]),
llava-onevision-7b (Li et al., [2024a)), Phi-4-multimodal-instruct (Abouelenin et al., 2025) (Phi-4-
multimodal) and smolvlm-2b (Marafioti et al.| 2024). In addition, human volunteers of various
backgrounds are invited to manually solve the questions, through which average human performance
(Human Avg.) is obtained.

We evaluate most models using the OpenRouter API (OpenRouter;, [2025) for efficiency, for models
that are not supported by OpenRouter, we deploy the models using VLLM (Kwon et al.| [2023)) and
use their default hyperparameter for inference. The detailed prompt structure and model API or links
are provided in Appendix[A.0.2] When the model prediction is not exactly the same expression as the
ground truth (e.g. model prediction is not answer "A", but may have the same linguistic meaning as
option A), we use GPT-40-mini (Hurst et al.l 2024)) to classify whether the prediction is correct.

4.2 MAIN RESULTS

In this section, we present a comprehensive comparison of different MLLMs based on SpaCE-Eval,
the details are shown in Table[2] For each model, the accuracy is represented by the percentage of
correct predictions out of the total predictions in each category. We summarise our key finding as
follows.

Overall result SpaCE-Eval is a very challenging benchmark. The best result across all the tested
models is only 56.37% achieved by GPT-5 (OpenAl| [2025)), The proprietary models achieve an
overall accuracy between 39.68% and 56.37%, and the majority of open-source models can only
reach an overall accuracy of less than 40%, except for Llama-4-Maverick (Meta Al |2025)), glm-4.1v-
9b (GLM-V Team et al.,2025)and llava-onevision-7b (Li et al., 2024a), whose accuracy is 45.92%,
43.37% and 42.41% respectively.

Cross-category result Trained on large-scale data, the models achieve as highest as 66.08% and
61.63% in the Commonsense Knowledge and Environment Interaction categories. However, their
performance in the Spatial Reasoning is dramatically lower, with scores of only 42.25%, with the
majority of which only slightly higher than random guesses, highlighting a significant capability gap
between Spatial Reasoning and the other two categories.

Cross-model-scale result According to the results, generally, the models with larger sizes perform
better than those with smaller sizes. For example, in the Gemma (Gemma Team et al.| 2025)) series,
the largest model (gemma-3-27b-it) has the best performance (39.77%), the middle size version
(gemma-3-12b-it) has the medium accuracy (37.05%), and the smallest model (gemma-3-4b-it )
has the least accuracy (36.00%). Similarly, Qwen2.5-VL-72B-Instruct (Bai et al.,|2025)) has higher
overall accuracy than Qwen2.5-VL-7B-Instruct.
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Table 2: Evaluation results of various MLLMs on SpaCE-Eval. We evaluate the three main categories:
Spatial Reasoning, Commonsense Knowledge and Environment Interaction. For each main category,
we evaluate the four subcategories. SI, SA, VA and FT represent Spatial Interpretation, Space
Association, View Analysis and Form Transformation, respectively. MaS, CF, CC and VL represent
Materials and Structures, Construction and Fabrication, Cultural Context and Vernacular Living,
respectively. UEI, DEI, MiS and ES represent User-Environment Interaction, Design-Environment
Interaction, Mobility in Space and Environment Sustainability, respectively. Bold indicates the best
performance of each category, while underlined denote the second-best performance in each category.

Model Name (I)\X:;“ Spatial Reasoning Commonsense Knowledge Environment Interaction

SI SA VA FT Mean MaS CF CC VL Mean UEI DEI MiS ES Mean
Human Avg. 79.00 84.92 89.19 92.24 76.24 84.18 81.48 65.32 582 81.86 71.83 72.64 80.82 91.84 80.17 81.34

Proprietary MLLMs

GPT-5 56.37 39.70 45.95 46.55 43.4 42.25 69.44 61.29 62.60 69.61 66.08 65.79 60.27 50.0 74.58 61.63
GPT-5-mini 52.15 33.67 45.95 39.66 38.68 37.00 70.37 58.06 53.66 62.75 61.27 58.77 54.79 53.06 76.27 59.3
GPT-40-mini 39.68 16.08 27.03 32.76 29.25 23.00 62.96 45.16 36.59 47.06 47.85 5526 4521 36.73 66.10 49.71
GPT-04-mini 45.04 25.63 29.73 37.93 2547 27.75 61.11 56.45 47.51 56.86 54.94 56.14 42.47 47.96 72.88 53.78
grok-2-vision 4232 30.15 24.32 3276 30.19 30.00 59.26 45.16 35.77 54.90 48.61 55.26 35.62 41.84 67.80 49.42
claude-sonnet-4 48.64 29.65 37.84 41.38 28.30 31.75 64.81 53.23 53.66 63.73 59.24 57.89 49.32 50.00 71.19 56.10

claude-3.7-sonnet 4741 26.63 16.22 41.38 33.96 29.75 65.74 53.23 46.34 63.73 57.22 54.39 47.95 56.12 72.88 56.69

gemini-2.5-flash 47.50 25.13 24.32 43.10 28.30 28.50 64.81 62.90 47.97 58.82 57.72 61.40 49.32 51.02 72.88 57.85

Open-source MLLMs
Qwen2.5-VL-72B  37.84 19.10 35.14 27.59 33.96 25.75 57.41 38.71 26.83 59.80 45.57 53.51 35.62 31.63 50.85 43.02
gemma-3-27b-it 39.77 23.12 21.62 39.66 21.70 25.00 57.41 58.06 32.52 55.88 49.37 46.49 52.05 34.69 55.93 45.93
Llama-4-Maverick 4592 22.11 37.84 37.93 29.25 27.75 67.59 58.06 47.97 49.02 55.19 57.89 49.32 44.90 81.36 56.40
Llama-4-Scout 39.42 18.09 21.62 34.48 29.25 23.75 56.48 48.39 36.59 46.08 46.33 52.63 42.47 41.84 66.10 49.71
gemma-3-12b-it 37.05 19.10 16.22 36.21 22.64 2225 52.78 45.16 33.33 50.00 44.81 42.11 39.73 35.71 74.58 45.35
Pixtral-12B-2409 39.77 25.13 27.03 37.93 33.96 29.50 50.93 45.16 34.96 48.04 44.30 49.12 39.73 30.61 76.27 46.51
glm-4.1v-9b 43.37 24.12 37.84 36.21 29.25 28.50 60.19 41.94 47.97 50.00 50.89 50.88 50.68 42.86 71.19 52.03
Idefics3-8B-Llama3 38.72 21.11 18.92 44.83 34.91 28.00 56.48 41.94 35.77 49.02 45.82 54.39 35.62 29.59 52.54 43.02
Qwen2.5-VL-7B 37.14 19.60 21.62 41.38 31.13 26.00 48.15 45.16 34.96 41.18 41.77 47.37 41.10 34.69 61.02 44.77
llava-onevision-7b ~ 42.41  26.63 35.14 37.93 33.96 31.00 58.33 56.45 37.40 50.98 49.62 56.14 41.10 31.63 64.41 47.38
Phi-4-multimodal 38.72  27.14 29.73 31.03 35.85 30.25 49.07 30.65 36.59 41.18 40.25 45.61 47.95 37.76 62.71 46.80
gemma-3-4b-it 36.00 22.11 24.32 32.76 24.53 24.50 55.56 35.48 30.89 45.10 42.03 43.86 31.51 39.80 57.63 42.44
smolvlm-2b 36.00 28.14 32.43 27.59 33.96 30.00 58.33 41.94 34.96 35.29 42.53 38.60 27.40 33.67 42.37 35.47

Human vs. model In contrast to model performances, the average human results in Table
demonstrate a different pattern. Humans achieve the highest results in Spatial Reasoning and the
second highest in Environmental Interaction. Both categories require stronger reasoning abilities
than the Commonsense Knowledge category, especially for Spatial Reasoning. Noticeably, GPT-
5 (OpenAlL 2025)) has surpassed human average results in the Cultural Context subcategory, under
Commonsense Knowledge. Despite such differences, human performance in spatial reasoning
(84.18%) and environment interaction (81.34%) is significantly higher than all the models (at best
42.25% and 61.63% respectively). This result suggests that humans are comparatively stronger in
reasoning than in memorisation, and maintain a clear advantage over current models in reasoning
ability.

Visual vs. textual The evaluation reveals notable imbalance between textual and visual reasoning.
Figure f[(a) compares model performance on questions with textual options and those with purely
visual options. Consistently, throughout all categories, the models perform significantly lower in
visual-only options compared to options with text. This disparity indicates that MLLMs possess sub-
stantially weaker capabilities in visual comprehension and reasoning compared to textual reasoning.
Additionally, Figure |b) further compares performance with and without image input. When images
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Figure 4: (a) Model performances on questions with textual options and those with purely visual
options. (b) Model performances on questions with and without image input. (c) Models’ accuracy
across different scales. The dashed lines indicate models’ mean accuracy over all scales.

are absent, model accuracy declines significantly, underscoring the strong dependency of MLLMs on
visual inputs to answer questions in our benchmark.

4.3 ANALYSIS OF CURRENT LIMITATIONS

A particularly prominent limitation revealed by the evaluation is the models’ incapacity to bridge
spatial scales, especially when reasoning across local-to-global and global-to-local relations. This
may stem from challenges in reasoning over larger spatial extents and in performing spatial simulation.
In addition, the models exhibit difficulties in abstract interpretation and reasoning. We briefly analyse
these failure patterns in this section. More in-depth diagnostic analysis are provided in[A.0.4] where
we detail how models arrive at incorrect answers and discuss the likely underlying causes of these
failures.

Difficulty in reasoning on larger spatial scales As shown in Figure fc), the models exhibit
a consistent trend across different spatial scales: they achieve relatively strong performance in
object-scale reasoning, but performance declines as the scale expands to rooms, buildings, and urban
spaces, with abstract geometry reasoning posing the greatest challenge. In other words, models
demonstrate weaker understanding and reasoning capabilities for larger-scale spaces compared to
object-level reasoning, and their performance in these cases falls below the overall mean across
all scales. This trend can be resulted from the fact that many existing datasets primarily focus on
object-level reasoning, as noted in Section [I] highlighting the need for datasets and benchmarks that
target larger spatial scales. By contrast, performance on spatial-structure tasks is slightly higher, as
these tasks emphasise intuitive understanding of structural patterns rather than the more demanding
reasoning processes required in the other scale groups.

Difficulty in spatial simulation Models demonstrate critical shortcomings when spatial simulation
is required in the tasks. This limitation often leads to failures in questions involving global-local
relationships. The evaluation shows that models frequently struggle to identify the view corresponding
to a given location, or to localise the position associated with a given view. Typical questions of
this type include: (i) given a global view, what would be observed when standing at position A
and looking in the direction of the arrow? or (ii) given a local view, at which position in the room,
building, or village would this perspective be obtained? Figure [5(a) presents an example of such
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location—view association tasks, which are usually posed with pure visual options. Across models,
the accuracy on these questions remains low, with fewer than 22.73% of responses being correct.
Such failures commonly arise when models are unable to mentally simulate or infer the consequences
of spatial transformations, changes in perspective, or dynamic interactions within the environment.
This highlights a fundamental weakness of MLLMs in the spatial reasoning abilities essential for
real-world understanding.

(a) ®)
Q:What is the perspective of the human in the image? What does he see? oC o,
A.Option4 B.Option2 C.Option3 D. Option 1 SN Ve Q: Which block
PrL. et~ is nearest to Civic
Building?
Option 1 Option 2 3
g . 580U 4 A. Block A
A & ‘@ B. Block D
& ffﬂ - g C.Block B
1 B D. Block C

Option 3 Option 4

c"/ 4 R,
Zoe® i
o i / GPT-4o: Based
%‘ on the image, the
: : o block nearest to the

Yook Civic Building is
JeS— 0 bk | “Block D

GPT-4o: The perspective of the human in the image matches with: A.
“Option 4”

Figure 5: (a) An example of location-view association. (b) An example of abstract representation of
distance. The ground truth is underlined.

Difficulty in abstract interpretation and reasoning When challenged with questions involving
spatial measurements, models often resort to comparing pixel-level distances rather than reasoning
with the abstract spatial relations encoded in the diagrams. As shown in Figure[5|(b), GPT-4o (Hurst
et al.|[2024) bases its answer on the shorter pixel distance between the circles representing the Civic
Building and Block D, while disregarding the abstract distance indicated by dashed lines, which
reflect the actual spatial relationship in the real world. This illustrates a broader limitation: the models
tend to privilege surface-level visual patterns over the abstract principles that govern spatial and
physical phenomena. Such behavior raises concerns about their reliability in tasks where correct
interpretation requires abstraction beyond visual similarity, underscoring the gap between current
multimodal reasoning and human-like spatial understanding.

5 CONCLUSION

As existing benchmarks do not comprehensively assess the ability of MLLMs to understand and
reason in real-world contexts, we introduce SpaCE-Eval, a meticulously constructed benchmark
designed to evaluate several crucial aspects of real-world understanding. The benchmark undergoes a
rigorous preparation and selection process, followed by extensive experiments on a range of state-
of-the-art MLLMs. The results reveal that while current models approach human performance in
knowledge-intensive categories, they fall considerably short in reasoning-intensive ones, particularly
in spatial reasoning. Key limitations include difficulties in bridging spatial scales, performing spatial
simulation, and engaging in abstract reasoning, underscoring the need for continued advancements in
both benchmark datasets and MLLM architectures.
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A APPENDIX

A.0.1 DATASET CATEGORY DETAILS

This section demonstrates examples of each subcategory of the four main categories in the data set.

Spatial Reasoning

Subcategory: Spatial Interpretation

skyscraper 1

skyscraper 5 skyscraper 2

skyscraper 3

skyscraper 4

Question

From which skyscraper was the perspective view shown on the right taken from?

A. Skyscraper 3 B. Skyscraper 4
C. Skyscraper 5 D. Skyscraper 2
Ground truth

A. Skyscraper 3
GPT-40 prediction

The perspective view on the right was taken from Skyscraper 2. Correct answer: D. Skyscraper 2

&J

Figure 6: Example of Spatial Reasoning/Spatial Interpretation.
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Spatial Reasoning

Subcategory: Space Association

——

== j RN

Question

Where is the highlighted roof (in the section diagram) located on the axonometric drawing?
A1 B. III C. IV D.1

Ground truth

B. III

GPT-40 prediction

The highlighted roof in the section diagram corresponds to location D (I) on the axonometric drawing.

(J

Figure 7: Example of Spatial Reasoning/Space Association.
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Spatial Reasoning

Subcategory: View Analysis

. STREET
&/ !

NAN i .

i . I i

TICKETS |/ .

S /

55 A /

CAFE /. . i ‘

Question

IfT am standing in front of the foyer, most likely which space is outside of my view?

A. none of the spaces B. cafe C. shops D. labs
Ground truth

B. cafe

GPT-40 prediction

D. labs

(J

Figure 8: Example of Spatial Reasoning/View Analysis.
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Spatial Reasoning

Subcategory: Form Transformation

=

Option 1 Option 2 Option 3 Option 4

Question

Given is a flat folding plan drawing of an origami box, what is the correct box this can produce?
A. Option 3 B. Option 1 C. Option 4 D. Option 2

Ground truth

B. Option 1

GPT-40 prediction

The correct answer is A. Option 3

(J

Figure 9: Example of Spatial Reasoning/Form Transformation.
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Commonsense Knowledge

Subcategory: Materials and Structures

Question

The wardrobe drawn above keeps toppling in the direction indicated by the arrow. What is the most likely reason?
A. The legs of the wardrobe have different lengths

B. The doors are heavier than the rest of the wardrobe

C. It is not placed against a wall

D. Items inside are places too close to the door

Ground truth

B. The doors are heavier than the rest of the wardrobe

GPT-40 prediction

Based on the image, the most likely reason the wardrobe is toppling in the direction indicated by the arrow is: A. The
legs of the wardrobe have different lengths. This would cause an imbalance and lead to toppling in one direction.

&J

Figure 10: Example of Commonsense Knowledge/Materials and Structures.
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Commonsense Knowledge

Subcategory: Construction and Fabrication

Question

‘What is the correct sequence to install a fastener in cement and concrete

A.EACBD
B. AECDB
C. EACDB
D. AECBD

Ground truth

A. EACBD

GPT-40 prediction

To determine the correct sequence, let’s analyze the sequence of steps visualized: 1. E - Drilling a hole in the concrete.

2. A - Clearing the hole of debris. 3. C - Inserting the fastener. 4. D - Setting the fastener with a tool. 5. B - Placing and
tightening the nut or washer. The correct sequence is EACDB. Answer: C. EACDB

&J

Figure 11: Example of Commonsense Knowledge/Construction and Fabrication.
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Commonsense Knowledge

Subcategory: Cultural Context

Question

Which color palette is best appropriate if the architecture in the diagram is influenced by Classical Mediterranean
architecture?

A1 B.1I C. I D.IV
Ground truth
B. 1T

GPT-40 prediction

The color palette best appropriate for architecture influenced by Classical Mediterranean architecture is: A. I This
palette contains earthy tones typical of the Mediterranean region.

(J

Figure 12: Example of Commonsense Knowledge/Cultural context.
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Commonsense Knowledge

Subcategory: Vernacular Living

Question

There are objects hanging from the roof of the Korean house. What are the objects?

A. Laundry B. Wind chimes C. Fruit put out to dry D. Ornamental beads
Ground truth

C. Fruit put out to dry

GPT-40 prediction

The objects hanging from the roof of the Korean house appear to be C. Fruit put out to dry.

Figure 13: Example of Commonsense Knowledge/Vernacular Living.
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Subcategory: User-Environment Interaction

Living/ “
Dining |

Kitchen

Flexible
Space

|
Shelter

Bath Alc

Question

From the diagram, please select the spaces least suitable for long-term comfort as a result of being stagnant-air zones.
A. Living and Dining Space
B. Kitchen

C. Flexible Space
D. Bath

Ground truth
C. Flexible Space

GPT-40 prediction

The space least suitable for long-term comfort due to being a stagnant-air zone is the “Flexible Space”.

Figure 14: Example of Environment Interaction/User-Environment Interaction.
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Subcategory: Design-Environment Interaction

.\
WhW T 77

| ]

Question

Which position would be the most ideal for photovoltaic panels to be installed. Consider maintenance and ease of
access.

A III B. III C. 1I D.IV

Ground truth

C.1I

GPT-4o prediction

Based on the image and considering maintenance and ease of access, the most ideal position for photovoltaic panels
would be: A. III

&J

Figure 15: Example of Environment Interaction/Design-Environment Interaction.
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Subcategory: Mobility in Space
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Question

Which point of the roundabout has the highest volume flow entering the roundabout?
A IV B. III C.V D.II

Ground truth

B. III

GPT-40 prediction

The point with the highest volume flow entering the roundabout is point “II”.

&

Figure 16: Example of Environment Interaction/Mobility in Space.
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Subcategory: Environment Sustainability

RO
— G
» L
> -
~
-
~
Al
- = =
canopy — upper canopy layer — = -~
— [ ~
P i 5 -t
- — — ~
g -’t/ ~ — N
, ’
!
—] lower canopy layer ) __ roof level
] i ~
) -

ij.u._u.mJ: —| 3rd storey
Wy L4
| L1 : 2nd storey

Tst storey

stilt areas
forest floor

Question

Why is the building on stilts?

A. To allow cyclists to traverse freely on ground.

B. To mitigate flooding.

C. To allow ground animals to roam freely with minimal obstruction.
D. To allow visitors to look at animals from above freely.”

Ground truth

C. To allow ground animals to roam freely with minimal obstruction.

GPT-40 prediction

B. To mitigate flooding.

&J

Figure 17: Example of Environment Interaction/Environment Sustainability.
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A.0.2 EXPERIMENT DETAILS

This section explains additional details of the experiment.

Prompt

For each data case, the prompt includes an image and the text of the question formatted as illustrated
in Figure[I8](a). For questions with visual options, the options and the main diagram are prompted
as one image as shown in Figure [T8](b). The prompt for questions with text options is shown in

Figure[T8](c).

(@)
Options:
Question: . A “Please select one correct
+ B.. + answer from the given options
(Questioatex) C.. based on the image.”
D..
(®)

Question: When standing at point A, looking in the direction where the arrow is pointing, which is the correct view?
Options:

“Option A in the image”,

“Option C in the image”,

“Option B in the image”,

“Option D in the image”

YOI GE  “Question: When standing at point A, looking in the direction where the arrow is pointing, which is the correct view?\nOptions:\nA. Option A
1n the image\nB. Option C in the image\nC. Option B in the image\nD. Option D in the image\nPlease select one correct answer from the given options based on
the image.”,

©)

Question: In the reciprocal structure shown above, if T increase its height without altering the pipes or layout, how will this affect the size of the highlighted area?
Options:

“Increase”,

“Increase then decrease”,
“Decrease”,

“Not Changing”

SIS G “Question: In the reciprocal structure shown above, if T increase its height without altering the pipes or layout, how will this affect the size of the

highlighted area?\nOptions:\nA. Increase\nB. Increase then decrease\nC. Decrease\nD. Not Changing\nPlease select one correct answer from the given options
based on the image.”,

Figure 18: Prompt example used in the experiment, (a) structure of the prompt text. (b) prompt
example of questions with visual options. (c) prompt example of questions with text options.
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Model Links

We provide all links to the APIs or models used in our experiments in Table

Table 3: Links to the models in our experiment

Model API/Model Link

GPT-5 https://openrouter.ai/openai/gpt-5/api
GPT-5-mini https://openrouter.ai/openai/gpt-5-mini/api
GPT-40 https://openrouter.ai/openai/gpt-4.1-nano
GPT-40-mini https://openrouter.ai/openai/gpt-4o0-mini
GPT-04-mini https://openrouter.ai/openai/gpt-4o-mini/api

grok-2-vision
claude-sonnet-4
claude-3.7-sonnet
gemini-2.5-flash
Qwen2.5-VL-72B
gemma-3-27b-it
Llama-4-Maverick
Llama-4-Scout
gemma-3-12b-it
Pixtral-12B-2409
glm-4.1v-9b-thinking
Idefics3-8B-Llama3
Qwen2.5-VL-7B
llava-onevision-7b
Phi-4-multimodal
gemma-3-4b-it
smolvim-2b

https://openrouter.ai/x-ai/grok-2-vision-1212
https://openrouter.ai/anthropic/claude-sonnet-4/api
https://openrouter.ai/anthropic/claude-3.7-sonnet
https://openrouter.ai/google/gemini-2.5-flash-preview/api
https://openrouter.ai/qwen/qwen2.5-v1-72b-instruct/api
https://openrouter.ai/google/gemma-3-27b-it/api
https://openrouter.ai/meta-llama/llama-4-maverick/api
https://openrouter.ai/meta-1lama/llama-4-scout/api
https://openrouter.ai/google/gemma-3-12b-it/api
https://openrouter.ai/mistralai/pixtral-12b/api
https://openrouter.ai/thudm/glm-4.1v-9b-thinking/api
https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3
https://openrouter.ai/qwen/qwen-2.5-vl-7b-instruct/api
https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf
https://openrouter.ai/microsoft/phi-4-multimodal-instruct/api
https://openrouter.ai/google/gemma-3-4b-it/api
https://huggingface.co/HuggingFaceTB/Smol VLM2-2.2B-Instruct
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A.0.3 NEGATIVE DATA EXAMPLES

This section shows examples of diagram—question pairs removed for failing quality control with
explanations.

Visual Independence

Which of the following pyramids is known for its significant role in shaping the ancient Egyptian view of the afterlife,
and what period did its construction reflect in terms of architectural and religious evolution?

A. The Pyramid of Khufu, around 2600 BCE

B. The Pyramid of Khafre, around 2500 BCE

C. The Step Pyramid of Djoser, around 2630 BCE

D. The Bent Pyramid, around 2570 BCE

Explanation: The question can be answered without visual input. The question can be fully answered based on
historical knowledge of Egyptian monuments and does not rely on interpreting the accompanying image.

Which ancient civilization is most closely associated with the construction of monumental stepped pyramids, and what
was the primary purpose of these structures?

A. Ancient Egypt B. Ancient Mesopotamia

C. Mesoamerican Civilizations D. Ancient Greece

Explanation: The question can be answered without visual input. The origins and purpose of stepped pyramids can be
identified from general historical knowledge, independent of the visual provided.

Figure 19: Examples of questions that do not require visual input to answer.
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Question Cannot be Answered

N
A B
w E
c D
S
Which combination of quadrants are the most suitable for living spaces and offices?
A.Aand B
B.AandC
C.BandC
D.Aand D

Explanation: The diagram does not provide enough information to answer the question. The diagram only shows
compass directions and a simple division into four quadrants. There is no information about climate, sunlight
orientation, prevailing winds, surrounding context, or functional requirements, without which it is impossible to
determine which quadrants would be most suitable.

What do the arrows in the diagram represent?
A. Wind direction in relation to the building
B. Viewpoints towards the building

C. Pedestrian movement through the site

D. Access routes to and from the building

Explanation: The diagram does not provide enough information to answer the question. The diagram shows arrows
originating from an undefined area and pointing toward the blue area, but it does not include labels, a legend, or
contextual cues. The graphic alone is insufficient to determine their specific meaning.

Figure 20: Examples of diagrams that do not provide sufficient information to answer the questions.
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Lack of Clarity

Option 1 Option 2

Option 3 Option 4

\‘J

When the two forms on the left are assembled, which final 3D shape will they create?
A. Option 1.
B. Option 2.
C. Option 3.
D. Option 4.

Explanation: The diagram does not provide enough visual information to determine whether the upper element is a flat
circle or a sphere. Without clarity on its dimensionality or how it interacts spatially with the cube, it is impossible to
identify which of the four configurations is correct.

Main Image

Option 1 Option 3

Optlon 2
N

Which view will you see when standing at the point marked X in the Main Diagram?
A. Option 1 B. Option 2 C. Option 3 D. Option 4

Explanation: The messy lines and curves make surfaces and volumes unclear. Without clarity in spatial relationships, it
is hard to determine which of the four provided views corresponds to the position marked X.

Figure 21: Examples of diagrams with insufficient visual clarity.
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A.0.4 DETAILED FAILURE CASE ANALYSIS

This section further demonstrates some typical failure cases, explaining how the model failed and
what maybe the reasons causing the failure in detail.

POINT 2 Option 1 Option 2
{ |
POINT 3 POINT 4 L

POINT1

Option 4

Which of the following perspectives correspond to how Jay will see Tom from his location?
A. Option 1 in the image B. Option 2 in the image
C. Option 3 in the image D. Option 4 in the image

GPT-5 Prediction

Jay’s location and viewing direction are clearly shown in the left diagram:

Jay is positioned inside a cluster of tall block-like walls.

Tom is farther down and slightly to Jay's left, but Jays view toward Tom is strongly obstructed by multiple walls.
Only a small gap allows Jay to see Tom, and the view would be:

Framed tightly by walls, almost like looking through a slot.

Tom appears low in the frame with walls very close on both sides.

Now compare the options:

Option 1

Too open. Jay would not see this much open ground; his view is blocked on both sides. Incorrect

Option 2

Still too open on the right. Jay is surrounded by higher and closer walls than shown here. Incorrect

Option 3

Tom is seen through a narrow opening, with:

A large wall overhead,

Tall walls on both sides,

A restricted field of view.

Matches Jay’s actual obstructed sightline

Option 4

Too clear and too open. Jay wouldn 't have a wide clear view like this given the wall cluster around him. Incorrect

Analysis

This is a failure of scale-aware spatial reasoning and egocentric viewpoint transformation. The model did not
recognise that the white blocks are in building scale compared to the size of Jay and Tom, and the openings are actually
large enough to permit visibility. It focused overly on the 2D size of the opening to eliminate options, and never
proceeds to the actual decisive factor: precisely simulating Jay’s first-person perspective to determine which elements
are truly visible or occluded along the sightline to Tom.

Possible reasons for failure:

- Misinterpretation of schematic scale: The models are less intentionally trained on large spatial scale (building scale or
above) reasoning data. They fail to infer that a gap spanning dozens of human-widths in the image is effectively a wide
opening.

- Weak mental rotation and simulation: Accurately answering requires constructing a 3D mental model, placing a
virtual camera at Jay’s position and then tracing rays toward Tom. Such capabilities remain weak in frontier models.

- Failure of local-to-global perspective mapping: The task demands bidirectional reasoning: using the global
perspective to predict local first-person visibility and vice versa. Most VLMs handle one direction poorly and
completely fail when both directions are required simultaneously.

Figure 22: Failure Case 1 Analysis.
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Which area is the perspective drawing framing?
A. Option A in the image B. Option B in the image
C. Option C in the image D. None of the labelled area

GPT-5 Prediction

We compare the floor plan (left) with the perspective drawing (right).
What the perspective shows:

A large opening (framed doorway or wall opening)
Steps leading up into a space

Inside that space:

A dining table with multiple chairs

A pendant light hanging from the ceiling

A sideboard / cabinet on the left

This is clearly a dining area.

Match with the plan:

Area A

Long corridor-like living space

Contains seating + spiral stair

Not a dining room — doesn 't match

Area B

Bathroom area (sink + bathtub)

Definitely not shown in perspective — doesn 't match
Area C

Contains a dining table with multiple chairs

A pendant light above the table

Adjacent to the large opening at the end of the unit
This matches the perspective exactly

Thus, the perspective drawing frames Area C

Analysis

This is a failure of fine-grained visual comparison and precise spatial layout verification. The model made some
coarse observations presented in both Area C and the perspective view. However, key differences in the perspective
such as the number and location of chairs, wardrobes on the left, steps in front of the table are ignored by the model.

Possible reasons for failure:

- Loss of spatial precision: Models excel at global layout but rapidly lose fine positional and counting accuracy.

- No systematic verification loop: Humans subconsciously run a mental “spot-the-difference” process (count chairs,
check what’s behind table, look left for closet, notice steps, etc.). Models almost never iterate or explicitly check for
absences; they accept the first plausible match.

Figure 23: Failure Case 2 Analysis.
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Houry svorago

m 0-50

W 50-100
100-150
150-200
200-250
250-500

W 500-750

W 750-1000

Above is a ‘gate count’ diagram, quantifying pedestrian flows through specified ‘gates’. Which route from start to end
should pedestrians take to meet as many people as possible?

A. Option A in the image B. Option B in the image

C. Option C in the image D. Option D in the image

GPT-5 Prediction

Why Route A has the highest encounters

You want the path from Start — End that passes through the largest total pedestrian counts, i.e., the route that intersects the warmest colors (orange/red =
500-1000 people per hour).

Key high-flow gates:

996 (dark red)

780, 753 (red)

596, 520 (orange)

Several 250—400 yellow gates

Which route intersects these?

Route A (long-dash) passes through:

780 (red)

753 (red)

596 (orange)

520 (orange)

296, 268, 256, 236, 204, 184, etc.

This route consistently stays on the highest-flow corridor, cutting through the warm-colored gates.
Other routes

B, C, D run through mostly greens and blues (low flows), intersecting only sparse mid-yellow segments.
They all avoid the key red/orange hotspot corridor.

Final Answer: A

Route A allows pedestrians to meet the maximum number of people.

Analysis

The model’s reasoning is flawed. It incorrectly assumes that route A maximises pedestrian encounters simply because
it “cuts through the warm-colored gates,” while routes “B, C, and D pass mostly through green and blue” gates. In
reality, the correct approach is to sum the actual number of pedestrians at each gate along every route. When calculated
propertly, route D yields the highest total.

Possible reason for failure:
- Over-reliance on high-level semantic priors: Once the model notices color patterns, it activates a learned bias that

warm colors correlate with crowds, a statistically valid prior from training data. This strong prior overrides the weaker,
noisier signal from actually parsing the numbers.

Figure 24: Failure Case 3 Analysis.
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When standing at point A, looking in the direction where the arrow is pointing, which is the correct view?
A. Option A in the image B. Option B in the image
C. Option C in the image D. Option D in the image

GPT-5 Prediction

You are standing at point A, looking toward point X (the small block at the front of a long, staggered corridor of blocks).
From A’s position:

On the left, you see the large detached cube very close.

Immediately after that on the left, you see a tall rectangular block.

The corridor ahead contains a sequence of blocks, each slightly shifted, getting progressively smaller in apparent size due to perspective.
On the right side, a long L-shaped block begins close to you and continues inward.

The view is a deep corridor composed of many receding vertical elements.

Among the four given views:

Why A, B, and D are incorrect

A shows the rightmost block much too large and too close.

B shows the central corridor blocked by a huge block that does not match the plan.

D has the right-hand blocks appearing in the wrong sequence and proportion.

Why C is correct

Shows:

A large block on the left close by (matches the big cube near point 4).

A tall block also on the left just behind it.

A long sequence of receding blocks straight ahead.

A right-hand block positioned at the correct depth.

Everything aligns with the 3D layout.

Analysis

The model fails to detect critical details. The difference between options C and D is extremely subtle: the only
distinction lies in the shape of the farthest building. From the bird’s-eye view on the left, it is clearly an L-shaped
building. Option C incorrectly renders it as a straight I-shape, whereas option D accurately depicts it as an L-shape.

Possible reasons for failure:
- Positional bias toward central/foreground objects: The models often prioritise foreground or center elements,

effectively ignoring low-salience background details.
- Lack of explicit spatial reasoning training: The model may have “seen” the pixels but never learned to treat exact
building match as decision-critical, so it defaulted to a superficial foreground match that looked plausible.

Figure 25: Failure Case 4 Analysis.

34



Published as a conference paper at ICLR 2026

Consider the diagram on the left. Which color is the white wall in the structure in the image on the right according to it?
A.green B. purple C. pink D. blue

GPT-5 Prediction

Reasoning

In the right-side perspective image, the white wall is a vertical wall located roughly in the middle of the tower stack.
To identify which colored wall it corresponds to in the left 3D diagram, we match:

- its height level

- its orientation

- its location relative to the colored frames

1. Identify the white wall in the right image

In the right image, the white wall stands between:

a blue frame below

a pink frame above

It is clearly the vertical wall at the third tier from the bottom.

2. Look at the left diagram

Find the third tier from the bottom:

Bottom: pink

2nd: blue

3rd: green « the only vertical wall at that level.

It has the exact same orientation and width as the white wall in the right perspective.
Therefore, the white wall in the perspective corresponds to the green wall.

Correct answer: C. green

Analysis

The model hallucinates the wrong neighboring colors for the white wall. The reasoning is sound, but it arrives at the
wrong answer due to a clear perceptual error: it misidentifies the position of the white wall. In the actual image (right
side), the white wall is positioned between a yellow frame below and a blue frame above.

Possible reason for failure:
- Local context confusion during patch-based processing: thin vertical features like walls can straddle patch boundaries

or occupy only a few pixels within a patch, causing their adjacent colors to be incorrectly associated after tokenization
and pooling.

Figure 26: Failure Case 5 Analysis.
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