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Abstract—The article developed a distributed security control
protocol of unmanned ships (USs) with the disturbances. To
constraint the tracking errors within a predefined boundary, an
infinite-time performance function and a logarithmic Lyapunov
function are simultaneously introduced. Using the novel distur-
bance estimator, the disturbances are estimated. With the aid
of the backstepping method, a distributed security controller is
obtained and it is given that all the states of the system are
bounded in finite time and the tracking errors can also meet
preset performance requirements. Eventually, unmanned ships
are given to show the utilizability of the obtained protocol.

Index Terms—finite-time control, security control, disturbance
estimator, unmanned ships (USs)

I. INTRODUCTION

Ss are primarily preferred for tasks characterized by

being dangerous or unsuitable for manned vessels. In
the future, they will be developed for ocean surveying, mete-
orological monitoring, maritime search and rescue, and more.
Due to its excellent characteristics, USs have been listed
as a key research object in the field of marine armaments
by countries around the world. In order to deal with the
US control issue effectively, some control strategies were
proposed [1]-[3]. Recently, the cooperative control for USs
has attracted more and more attention due to that multiple
USs can achieve the cooperative tasks efficiently [4]-[6]. In
general, the cooperative control problem includes the tracking
issue and the regulation issue. With regard to the control issue,
all the USs will eventually incline to a non-specified value that
is not previously known. Then, the follower USs can incline
to the reference formed by the leader US or the convex hull
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generated by the trajectories of the leader USs [7], [8]. When
there exist multiple leader USs, that is called the containment
control. As a matter of fact, it is invulnerable for multiple USs
if the follower USs incline to the convex hull generated by the
leader USs [9].

Although the backstepping control technique has become
one of the most common methods to overcome the control
issue of nonlinear systems [10]-[12], it is not difficult to
obtain that, utilizing the classical backstepping technique to
dispose the control issue of nonlinear systems, there exists the
complexity explosion problem that is produced by repeated
differentiation of virtual control variables. This may lead to
the rapid multiplication of the systems and further makes
the system performance unsatisfactory or even unstable [13].
Even if the proposed controller makes the performance of
the studied system satisfy our design requirements, it is clear
that the actual controller will become more complex [14].
It is obvious that the complex controller structure limits the
practicability of the proposed strategy. To solve the above
difficulty, the dynamic surface control method (DSCM) was
presented [15], such that, by the conventional backstepping
control technique, the designed first-order filter can be applied
to work out the intermediate control variable’s derivative at
each step. After that, the method was extended to handle
the control issue of different nonlinear systems, especially,
nonlinear multi-agent systems [16], [17].

However, in the above articles, the infinite time boundedness
of the states can be obtained. From the view of the convergence
time, this may restrict the use of the developed controllers.
Therefore, in the article, the finite-time first-order filter is ap-
plied to work out the intermediate control variable’s derivative
and, employing the finite-time control way, the convergence



of all the variables of USs will also be assured in finite time.
In reality, many real systems, such as temperature of chemical
reactor and physical stoppages, are with the constraints of the
output and such constraints may come from safety consider-
ation. Thus, it is very necessary to consider the problem of
output constraints during the engineering system analysis. In
order to handle such issue, the prescribed performance control
(PPC) was developed [18]-[22]. By using a PPC method, a
tracking controller was given for USs [23], and the PPC issue
was discussed for USs in [24].

Consequently, the article discuss the distributed security
control issue of USs with the disturbances. The major inno-
vations of this work are as follows:

(1) By utilizing the proposed finite-time disturbance estima-
tor, the disturbances existing in USs can be approximated.

(2) In this paper, by introducing the infinite-time per-
formance function, a finite-time distributed security control
scheme is obtained for USs with multiple leader USs.

The following paper structures are shown. Section II shows
the problem formulation and preliminaries. Main results are
shown in Section III. In Section IV, the simulation examples
will prove the utilizability of the obtained method. The con-
clusion is shown in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. US dynamics

Consider M USs including N follower USs and M — N
leader USs. The model of ¢th follower US is [25]

{ 0 = Ji(i)vi )

where 1; = [2;,v:,%;]T denote the position and direction.
v; = [ug,v;,;]T is the velocity. M is the inertia matrix, D
is the damping matrix, and 7; = [y, Tiv, Tir] . is the control
vector. d;(t) is the disturbance. It is assumed that the external
disturbances and the derivatives of them satisfy |7,| < Tiu,
|j—iv| é 77_iv’ ‘Tir| S ’firsi‘i_iuté 7Liu’7|7.—iv‘ S 7.—1'1)9 |T’L’l‘| S
Tir, Where Ty, Tivs Tir» Tiu» Tiv and 7;. represent positive
constants. .J;(¢;) is the rotation matrix described as J;(1;) =
[COS(¢i)7 - Sin(wi)a 0’ Sin(’wi)a COS(U%‘), Oa 07 07 1}

Then, define the reference of the jth leader US as 7;q =
{zjdYja,Yja}, where j =N +1,N+2,..., M.

Lemma 1 [26]: For the system & = f(x), if there is a
continuous function V(z) such that V(z) < —\V(z) —
VY (x) +n, where \y > 0, da > 0, 0 < v <
1, 0 < n < oo, then the trajectory of the system
& = f(z) is practical finite-time stable, and the resid-

ual set is lim; 7 V(z) < min{u-é’o),\l , ((1—(;]()))\2)7}
where 0 satisfies 0 < 6y < 1. The setting time is
bounded as T, < max{to+ 90/\1(11_” In oMV /\:(to)+>\2 sto+
1 MV (#0) 4002
A1(1—7) In = 90)\02 : .2 }
Lemma 2 [27]: Considering x; € R(i = 1,...,n) and
r € [0,1], one gets ([x1|+-+[xn)™ < Pal®+- -+ xal™
Lemma 3 [28]: For Z > 0 and = € R, it gets 0 < |a| — -
tanh(Z) < k2 with & = sup,~ o (3e7) = 0.2785.

Lemma 4 [29]: Define Q. = {e|le| < 0.8814v} where
U is a positive constant. If any e ¢ Q., we can obtain 1 —
2tanh”(£) < 0.

B. Basic graph theory

The information flow among M USs including N follower
USs and M — N leader USs is described by G = (T, E, A),
where T = {ry,ro,...,7,} is the set of USs, F C T x T
is the set of edges, and A = [a;;] € RM*M s the weighted
adjacency matrix. r; is the ith US and a directed edge (3, j)
means that USgé can obtain information from US{j, i.e., a;; >
0, otherwise, a;; = 0 and define a;; = 0. The set of neighbors
of USHi is denoted as N; = {j|(j,¢) € E}. The Laplacian
matrix is defined as L, = 2 — A € RM*M where 9 =
diag[@l, @2, ey @M]’ @Z = EjlviLj;éiaij’ 1= 17 2, ey M.
Since each follower US has at least one neighbor, and the
leader USs have no neighbors, L, can be represented as [30]
Lo = [Lia, Loa; Oarx N, Onrxar] where Ly, € RVXN with N
denoting the number of follower USs and Lo, € RV*M with
M denoting the number of leader USs.

The containment control scheme is designed such that
the position and direction of all follower USs converge
into the convex hulls Co(Xy), Co(Y4) and Co(v)4), respec-
tively, which are given by Co(Xy) = {2%+1cixid|ci >
0, E%Hci = 1},Co(Yq) = {Ef\v/[+1ciyid|ci > 07ZAN/I+101- =
1},Co(va) = {ZN, civiale; > 0,58, ,¢; = 1} where
Xg = {Z(N41)d> T(N+2)d> - - TMd}> Ya = {Y(N+1)d>
YN+2)d> - - - Ymd) and Ya = {Yny1yds Y(N42)ds - - PMd)-

Then the output synchronization error of the ith follower
US is

eint = BNy a(x; — a5) + S5y ag (s — 4a)
ein2 = X301 aij (i — v5) + 350 N aij (Y — yja) 2
eins = 0 ai; (Y — ¥5) + XN ai (Y — ¥ja)

C. Prescribed performance control

The PPC design is that the tracking error is included in
the preset residual set, such that the tracking error e;15,% =
1,2,...,N,j = 1,2,3, is included in a predefined range,
which is shown as

—v;5(t) < enr(t) < wvij(t), 3)

where i =1,2,...,N, j=z,y,9, k=1,2,3, v;;(t) satisfies
limy 00 v35(t) = vipi; and vep;; is the steady-state value of
€ilk-

Choose v;;(t) = (voij — vepij)e P9t + vypi; as the per-
formance function, where wg;;, v:;; and [;; are positive
constants and vg;; > Vi fi;. Voij = vi;(0) is chosen such that
—;5(0) < €;1£(0) < v;;(0). B;; represents the convergence
rate of e;15(t). Hence, by choosing vy;;, v¢ri; and §;; to make
the tracking error be included in the predefined range (3), the
PPC can be obtained.

For the PPC design, the following lemma is shown.

Lemma 5 [31]: For any positive function v(¢), we can know
that the following inequality is established, when e(t) remains

e’ (t)

’L)2
in the interval |e(t)| < v(¢): In UQ(t)_(te)Q(t) < Fo—em:




III. MAIN RESULTS

A. The Design of Disturbance Estimator

In this paper, they are assumed that M =
[m11,0,0;0,ma2,0;0,0,m33] and D = [d11,0,0;0, dag, da3;
0,ds2,ds3]. Then, substituting M and D into (1)
can yield my1i; = —diyu; + Tiw + diy, Mot =
—daav; —da3T; + Ty +diy, 33Ty = —d33r; —d32v; +Tir +dir.
Then, we create the following disturbance estimator.

—di1u; + Tiw + dAzu

miiu; =

i — ;)
diu = Biul€ior + u; — ;) — 5iufziu
Ma2l; = —daav; — dagr; + Tiw + diy
+kw1 tanh(vi_vl) + ka (Uz - ’L) (4)
div = Biv(€i22 +v; — 0;) — 6ivdi'UA
ma3fi = —ds3r; — ds2v; + Tir + dir
+k‘i7-1 tanh( T‘:_"T’) + kirg (’I“i — ’f‘l)

=7

r = Bir(€ioz +1; — 7)) — 5ird7r

where ki1, Ea;, Kiuz, Biws Oius Kiv1s Es;» Kivas Bivs Oivs Kir1,
Z#,s kira, Bir and J;. are positive constants; e;a1, €92 and
eio3 Will be defined later.

By deﬁning ﬂz = U; — ’&Z‘, f/z = V; — f}z and ’I:L =7Tr; — ’/‘Ai,
we can obtain

~ o~ 7 ~9
MU = Uidiy, — Kiw1i tanh(g ) — kiuo@;
1 B v ~o
M220;0; = Vidiy — kin10; tanh(g-) — kiya2?; 3)
i
~ A ~ 7 ,._,2
MasFit; = Tidiy — ki1 tanh(25) — kot

=5

B. The controller design process

We introduce the changes of coordinates as follows:

_ d

€i21 = Ui — Vg,
_ d

€i22 = Vi — Uy, (6)
_ d ;_

€i23 = T5 — Ujgrst = 1,27...,N

where vfdj, the first-order filter output signal, is given as

vl — vig

idj

~Fiapn tanh (S
'_'yzd]

Oy = ) — kigi2 (Vi — vig)  (7)

where v%

idj (0) = 'Uidj(o), J =u,v,r. Vidj is the input. k'z’djh
Hy, 4 and k;q2 are the design constants. The filter errors are
Yidj = Vjgj — Vidj»J = U, V,T-

Step 1. Firstly, considering the first equation in (2),
we can get €;11 = Z;Vilaij(eigl COS(’L/Ji) — €22 Sin(’t/Ji)) +
E;W 105 (Vidu cos(z/;i) Vido SIn(¥;)) Eéyzlaijij
S N1 @ijdia + 251100 (Yiau cos(¥i) — yiaw sin(pi)). Next,

— 1
m = 3

the Lyapunov function is V. . Subsequently,
. 1
the dynamics of V,,,, are
€i21€411 Z —1 @ij cos (s )
2 2
Viz — €11
M .
€i22€411 Z]:l aij sin(t;)

2 2
Viz — e1'11

‘/eill =

€ .
+711 Z azg Vidu COS(%) — Vidv Sln(%‘)

UZZE

—§ aiji;) E jid
j=1

J=N+1
22 — €2 4 b
20 =) 2 Sy Vit
€i1l Vix Viz ~ €11
+— €11 )+ vﬂ i (1 — 9tan hg(ezll))(_ Z’Uiin:z; )
v, —eh, Vig Vig Vie ~ €i11
M 2 M 2
(22j=1aij) (22j=1aij)
+nyi2du + nygdv (®)
Then, we design the following expression.
1 N
Tiw = 35— (—kiweinn + Zaiji'j
Zj:l Qg j=1
V2 2 ,
+ Z aiji g — A\ Y — %411 67,11) th(@)
€i11 Vig
j=N+1
VigpV; €;
X(* . 1T 112 )+ 711 ) (9)

2 2
Viz — CG11 Viz — Gl
where Tj; = Uiy €08(1;) — Ugip sin(e);) and kip, > 0.
Substituting (9) into (8), we have

€i21€i11 Z;Vil A5 COS(%) €i22€411 Z;Vil A sin(z/}i)

‘/eill = -

UiQm - 61211 U?x - 61211
2 .
gy Ly U (1 g ganh?( S ) (- tiein
iz 6111 Vig Vig Vie — €11
M 2 M 2
(25— aiz) (25— aiz)
S it T Yiaw (10)

Secondly, considering the second equation in (2), we can
get

M M
€12 = Z aij (€ia1 sin(;) +eig2 cos(1;)) +Z aij (Vidu sin(¢;)
=1 =1
M
Vi c08(¢;) ) Z aijiy — Y aijlia

j=N+1

M
+ 3 aij (Yiaw sin(¥;) + Yiaw cos(1);)) (11)

j=1



The following Lyapunov function candidate is defined as

Veiy = & 5 I — _‘i . Subsequently, the dynamics of V;,,, are
1y 112
M . M
. €i21€412 ijl Qi Sln(wi) €i22€412 ijl A5 COS(%‘)
‘/6i12 - ’U2 — 62 ’U2 — 62
iy 12 iy 12
€i12
- E @i (Vide, SIN(Y;) + Vg cOS(Y g ai;Y;
viy €a =
( 112) 2,612 Uiyffiy
E, Qijlid + ——————— nh(__ )(_2_2 )
J=N+1 12 Viy Viy — €i12
€i12 ; 12 Vi Vs
+—5—5)+ -2+ (1-2tan n2 (412 )(——5—%—)
Viy — €1 Viy Viy Uiy = €12
M 2 M 2
(Zj:l aij)® (Zj:l aij)® 12
+ 2 Yidu + 2 Yidv ( )
Then, we give the equation as follows:
1
Tiy = M zlyezl2 + § ngyj + § azjyzd
Zj:l am j=N+1
2 2
_2(viy — €i12) ta hz(euz)( ViyViy )
2 2
€i12 Viy Viy — €i12
€i12
v —e? ) (13)
iy i12

where Tjy = Vjgy, Sin(y;) + Vai cos(¢;) and ki1 > 0.
Substituting (13) into (12), we have

M . M
€i21€i21 ) 1 Qi SIN(Y;)  ein€i12 D7, aij cos

(%) 251“ d2 2yldu where dzu =dju —

V;zi12 =

2 .
L €i12 + ”w

2 2 2 2
Viy — €i12 Viy — €i12
Uiyviy )
—kiy _ Ty
v,2 2

€i12
+ (1 — 2tanh®(=—=)) (-
iy — G2 Uiy Uiy Uigy
M M
(Zj:l aij)? 2 (Zj:l a;)* 2
Yidu + Yido
2 2
Finally, considering the third equation in (2), we can
get €13 = EJleaij(eiQB + Vidr + Yiar) — Eé\/:laijwj -
EjM_ N+41@i5%iq. The Lyapunov function candidate is defined
2

2
— €12

_|_

as follows: Veq1 R
of V,

€i13

_ 1 Uiy
-2 In v?2 i€2
iy €i13

Subsequently, the dynamics
- e1213 2”iwi’iw(”z‘2w - 61213)

2 2
Vi (v Vip —
— 07, (203 Uiy — 2€413€013)

) 1 “Ew
‘/61' = 7(
®o2 €13)?

(v} Vip — €13)?
M

= €23 E a;5€413 +

6113
o2 A5 Vidr — azﬂb]
j=1 213 j=1

M 2 2
. 2(1}- —€h3)
*E:%W+—%4£
J=N+1 713
fo o3y U (g g anh?(S8))(— by
2 vii/) — €13 Viy Viafy in — €13
(Y)21 ai)?
2 ar

7M

e
tanh? (=22 5
Vg —

(m

2
€i13

(15)

(14)

Then, we design the following equation.

N M
1 . .
Ty = 35— (—kirpeis + Z aij¥; + Z ij¥ia
Zj:l Qi j=1 j=N+1
2(Uz‘2w — €f13) 9, €i13 Vigp Viap
- tanh (—7_ (———5)
€i13 Uiy Vi — €113
1 ens
+-—5—") (16)

2v5, — €13

where Ty = vigr and kj14 > 0.
Substituting (16) into (15), we have

2 .
V. — €i13 Vi 1
el = €i23 ;€13 — 21#)72 5— + +(
i Uiy — €i13 Viqp

. M 2
Viap Via )+ (ijl aij)

€413
—9tanh?(ZL2))(—
anb?(S1)) (- 51 )

2
. (17
iy Yidr ( )

2
Uiy

Define T; = [Ty, Tiy, Tiy)”. Then, according to (9), (13)
and (16), we can obtain v;y = J{l(wi)Ti where v;q =
[Uidua Vidv, Uidr]T

Step 2. Firstly, considering the first equation in (6), we
can get é;01 = u; — . The following Lyapunov function
candldate is deﬁned as |7 3 + gmud; +
d;,, and ﬁw > 0.

Using (5) and (7), the dynamics of V;,,,

. Y
Versy < €in1(—diiti + Tin + diy — m110%,

M M i
+6111 D=1 @ij €os(¢y) n ei12 )5 dij s1n(¢i))
v — e, vi2y — €a
3 s ~ 1
— ki1 tanh( =) — kol + dwdw + o= di(Biulein
S, 61’& Bzu
5 X Yid 1
—1;) — din) — Kidu1Yiaw tanh(Z225) — (Kiguz — §)y7,'2du
‘_'ywdu
1. ) €il1l Z —1 Qij COS("/’%)
+2 ('Uzdu) — €421 - vigx — 61211
€i12 EjM:l a;; sin(¢); )
—€21 - 2 2 (18)
Viy — €12

Subsequently, the force 7, in surge is designed as follows:

€421 5
) — kioou€iol + diiu; — diy

Tiu — _k7,21u tanh(
Seiol

4 Gill Zjle aij cos(t;)

TM11Vidy —

2 2
Viz — €11
M .
€312 Zj:l aij sin(;)
— 5 5 (19)
Viy — €i12

where ko1, > 0 and kjo0, > 0.



Substituting (4) and (19) into (18), we have

Subsequently, the force 7;, in sway is designed as follows:

. €i21 2 - Uu €22
Veinn < —ki21uei1 ’Ganh(,:z ) = kio2u€ioy — ki1t tanh(,:f ) Tiv = —kig1e tanh(==) — kizav€iza + da2v;
—€i21 —uq —e;i22
1 ~ . 0ir ~ Yid M .
k@2 + —dindin + = diudiy — k tanh (-2 ; €1 jq aijsin(iy)
BT gy, T g, e i i (Hyldu ) easri = div + maadig, + vJ.Q —e?,
M 1T K3
1 1. €i11 25—y Gij Cos(1h;)
—(kiguz — =)y + = (Vsau)? — ein1 - =1 % e Z _, aij cos(t;) o
2 2 Vig — €11 2 2 (24)
Uzy €i12
€i12 E _ 1 aq;sin();) 5
—Ci21- Uzzy 61212 ( O\l/here kio1o > 0 and k;90, > 0.

Utilizing Lemma 3 and Young’s inequality, we get

€; 1 —_
—kiz1ueiz1 tanh(= L) < —kira(ed)? + kintukEe,y,
—e€;i21
kzuluz tanh( ) S kzul( ) + klul"{—*ul
yzdul 2 1 —_
_kzdulyzdu tanh(i) S _kidﬂi(yidu)z + kidul”:ym,
“yzdu
1 - . Oiv 5 = 1 - .1 6 2 -
—diydin + - diudiy, < — 20— ——=d3,
1 . d;
di)? + =2 d2
1
— 21
+3 (21)
Combining (20) and (21), we have
Veiny < _ki21u(€§21)% — Kizou€ryy — kiul(ﬂ?)% — K2}
1 w1 Oiu—2 = 1 1
—(——d?)? — 2 @2 — Eigu1(¥2,) 2 — (Kiguz — =)y2
(Qﬁzu 1u) ﬁzu iU d 1(y1du) ( du2 2)yzdu
€i11 ijl aij cos(1);) €i12 Zj\il aij sin(t);)
—€i21 * 2 3 — €21 ° 3 3
Viz — €11 Viy — €12
+Te,,, (22)
where Telzl k‘zZluH—'elgl + kzulﬁ—*ul + kzdulfﬂuytdu +

zu

%(vidu)2 + 25 (d )2+ d?, + 1
Secondly, cons1der1ng the second equation in (6), we can get

éi00 = U; — U, . The Lyapunov function candidate is defined
as follows: V,,,, = 2m226122 + 3220} + 55— d2 + 2y2,
where d;, = djy — dw and (;, > 0. Using (5) and (7), the
dynamics of V,,,, are
Verss < €ina(—dogv; — dagri + Tiay + diny — mandy,
€i11 ijl aij sin(¢;) i €i12 Z]]Vil Qij COS(%‘))
vF, — e Uizy — el
. V; 5 1 - . 1 -
—kiv10; tanh(=—) — ki20; + ——dindiv + ——div(Biv(€i22
Es Biv Biv
- 3 Yidv 1 2
+Ui) - dw) - kzdvlyzdv tanh( ) - (kidUZ - i)yidv
_‘yuiv
M .
L, €11 Y=g ij sin(y;)
+7 . + €; .
9 (Uzdv) 122 ng — 6?11
M
€12 Ejzl aij cos(t;)
—€i22 - 3 (23)
Viy — €312

Substituting (4) and (24) into (23), we have

: €i22 2
Veina < —kiziveizz tanh(=—=) — Ki220€20
“eiz2
. Vs -9 Oiv «
—kiv10; tanh(?) - kinUi + dwdw + dwdw
S, ﬁw ﬁw

idv 1 1. .
_kzdvlyzdv tanh( J ) (kid'U? - §)y12dv + Q(Uid'u)2
‘_‘y7dv

M .
€i11 Zj:l aij sin(1);)
+ei22 : 2 2
Viz — €11

€i12 Z —1 Q45 COS(I/%)
—e;
e ”?y e?12

(25)

Utilizing Lemma 3 and Young’s inequality, we get

€; 1 —
—kigtveizs tanh(=22) < —kio1o(€29)? + kintohSe
'_‘6722
—Kiv10; tanh(_vi ) < —kini (7 )2 + kiv1 K5,
yzdvl 2 1 —
—kiav1Yiaw tanh(Z==—=) < —kiav1(Yia,)? + Kiav1K5Zy,4,
_‘yldv
1 -~ . Oiv ~ = 1 - .1 0; 2 ~
7divdi’u + ﬁdivdiv < —(=— 121) R dz2v
61’1) ﬂiv (2611; ) 2[321;
1 . 0;
div 2 o d2
+25iv( S 2B "
1
= 26
+5 (26)
Combining (25) and (26), we have
’ 1 o\ 1 .
Veins < —kio10(€392)2 — Kiooueing — kiv1 (07)2 — kipo 7
1 - .2 Oip — 2 ~ 1
_7d2§_“’ dg_kiv 2 2 — (Kidw
(2ﬁzv zv) 25“1 iv d 1(yldv) ( dv?2
Lo o e D Gy sin()
— 5 Yidv T €i22 *
2 viQ;c - e1211
M
€12 Y i—q @i cos(;)
—€i22 ]2 ! JQ + T5i22 (27)
Viy — €12
where T¢,,, kio1okZe,ny + kin1kZs, + Kigv1KZy,,, +

] iy
3 (Vido)? + 35— (din)* + ga=d3, + 3.
Finally, considering the third equation in (6), we can get
. The followmg Lyapunov functlon candldate
= 2m336123 + m337“ + 25 d2

6-223 - 7-'2
is defined as V

€i23 2 yzdr



where d;, = dj, —
dynamics of V,

A” and B; > 0. Using (5) and (7), the

23 are

Verns < €i23(— d32vz — d3z3r; + Tm« +di — mgsﬁlddr + diens)

€i23 —

1
_karlrz tanh( ) - kirQ'ri + dzrdzr + — 7,7‘ (/Bir(ei23
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+Ti) - dzr) - (kidr2 - §)yide _kzdrlyzdr tanh( )
'_'yldr
1
"3 Uv,dv" —€423 Z a;j€413 (28)

Subsequently, the force 7, in yaw is designed as follows:

e
_k1,21r tanh( 23

Tir = ) — kizareios + da2v; + dsar;

'_’6123

M
—dip + mazily, — > aijeis (29)

j=1
where k;21,- > 0 and k;o0, > 0.
Substituting (4) and (29) into (28), we have

y €423 2
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'_'9723
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HL) - kirZT? + 7dirdir
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kldT‘l Yidr tanh
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M
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1 1

—(Kidra — §)yi2dr + 5(@¢dr)2

Utilizing Lemma 3 and Young’s inequality, we get
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Combining (30) and (31), we have
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di T

€2y
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K2

— (Kiar2

o S _ki21r(61223)% — Kizor€las — — Kiraty
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1
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where T123 = k’b21’l”l€‘—‘6123 + kzrl"'i'—*rl + kzdrl“\—lymT +
+(Viar)? +2Bw(d r)? +2/;r 2.+ 1

C. Stability analysis

Theorem 1: Consider the networked USs (1) under the
distributed controllers (19), (24), (29), the first-order filters
(7) and the disturbance estimators (4). If the initial conditions
are bounded with e;11(0) < v;5(0), €:12(0) < v;,(0) and
ei13(0) < vy (0)(i = 1,2,...,N), the following properties
are true: i) All the state signals and disturbance estimation
errors are bounded in finite time. ii) The synchronization
tracking errors can be included in the specific decaying ranges.

Proof: The Lyapunov function is given as

N 2
1 v2 (1) 1 v;, (t)
V=>(zIn = +=In Y
; 2 v (t) —ehy 2 U?y(t) — s
1 7 () 1 1
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Zmogge’ -m v
2yzdu 2 22€422 9 22 2ﬁw Qv
1 1 1 1
+2y12dv + 2m336123 + 2m33r + 26’“” d?r + yzdrx33)

Taking the time derivative of V' yields

=5 bt
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i=1 ' Ivfx(t) - 61211

) tanhQ(z:))(—W

61212 Uzu(t)

B0 — Ay | v
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—ki1y—

2
—k €i13
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1 oyl
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By utilizing Lemma 5, we have

e? 1 v2 (1)
_kilx$ < (ki — =) In =t
07, (t) — €y 2 vg, (1) — efyy

vh(t) 11

(In vz (t) — €3y )P 2
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v vizy(t) —ehy iy 2) ! Ulzy(t) — ey

2, (t) — €71y 2
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' zqu (t) — €3 ' 2 vip (t) — efs
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gl WA Vg o4
(nvfw(t) —61213) " 2

(35)

Furthermore, by the definition of v;;(t), viy(t) and vy (t),
Viz (1), Viz(t), Viy(t), Viy(t), viy(t) and ;y(t) are bounded.

Then, the following results are true.

Vie (1) iy (1) iyt
Vi (t) iy (t) = o Vi (1)

where Kq; > 0, Ko; > 0 and K3; > 0.

S Klia

< K3y

(36)

Subsequently, substituting (35) and (36) into (34) gets

following result:
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€313 ¢ Qeil?,
to Lemma 4, based on the fact that
Uty(t)vly(t) > 0

2 tanh? (G ))(— LeDin®) <

we can obtain V <
d=3XN (24 K1+ Ko+ Ks; + Teio1 + Teina + Teins + ¢i).
Case 3: For e;11, e;12 and e;13, some are inside the set and
some are outside the set. Based on Case 1 and Case 2, we can
obtain V < —\V — AV +d where d = SN | (3 + K1, +
Ko + Ksi + Teio1 + Teioa + Teios + ¢;).
According to the above three cases, (38) can be rewritten
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In (38), according to Lemma 4, e;11, €;12 and e;13 re-
spectively determine the signs of 1 — Qtanhz(e“;), 1 -
2tanh®(<12) and 1 — 2tanh2(€“3) Therefore, the following
three cases will be given.
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(1- 2tanh2(%)) (-
Vi (i ()Y -
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is the upper boundedness Then, for (38) we can obtain

V<NV - )\QV2 + d where d = E

K3i + Teio1 + Teioo + Teioz + ¢i).
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According to Lemma 1, we can get
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where 0 < 6y < 1 and
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Fig. 1. Topology of communication graph.
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Fig. 2. Trajectories of US{1-USE5.

Then, we can obtain that, according to Lemma 4, all the
state signals and disturbance estimation errors are bounded
when ¢t > T..

By (39), it can be concluded that ln%
11

2 0)
2m1n{(1—00))\1a((1—90))\2) |3 In 02 (tl)l eﬂz <
. d d 2 w(t)
2mln{(1—6u’lo)>\1’((1—9;))\2)2} and I vi, (t)—efis =
2min{ g7 (=% ) 1 .
Subsequently, ~we  know  that s 723(2211 <
2 min{ T=goyay (r=doyrg ) AON <
’ vz, (t)— 8112 -
: d d 2
62m111{m»(m) } and ”up(t) <
. ., . (t) €3
2 it =iy (a=dgg) 3,
Because vy, (t) — €7, > 0, v} (t) — e, > 0
and 07, (t) — ez > 0, we have |eq| <
T
1- it X wlvie ()], leie] <
=y (T=b0)%3
1-— L Vg (t and |e; <
\/ 2mind =gy (T=iyag 90)A2>2}| iy (1)] leis| =
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|€z‘11\ € i@ leas) < Toiy (0], lens| <

: d d
mln{(l_eo))\l’v ((1_90)>\2 )2} > 0.
The proof is thus completed.

v (t)| where
|vi (1))

IV. SIMULATION RESULTS

For the utilizability of the obtained method, 5 USs
including 3 follower USs (USf#1-USg3) and 2 leader
USs (US#4-USt5) are given. The topological structure is
given in Fig. 1. The adjacency matrix is selected as A =

[0,0.4,0.5,0.5,0;0.4,0,0.5,0,0;0,0.5,0,0,0.4; 0,0,0,0,0; 0,
0,0,0,0].
The disturbance is

d; = [100000sin(0.1£), 100000 cos(t), 100000 sin(¢)]”

The structure parameters of the follower US{1-US#3 are
M = [5.3122 x 105,00, 0; 0, 8.2831 x 105, 0; 0, 0, 3.7454 x 107]
and D = [5.0242 x 10%,0,0;0,2.7229 x 10, —4.3933 x
10%;0, —4.3933 x 10%,4.1894 x 108].

In this paper, the trajectories from the leader US§4-US#5
are n4q = [0.5¢;10sin(0.05¢) + 50; arctan(cos(0.05¢))] and
M54 = [0.5¢, 10sin(0.05t) — 50, arctan(cos(0.05¢))].

The follower USs’ initial values are

71(0) = [0m, 3m, 0.5rad]”

v1(0) = [0m/s, Om/s, Orad/s]”
72(0) = [0m, —16m, 0.7854rad]”
v2(0) = [0m/s, Om/s, Orad/s]”
73(0) = [0m, —30m, 0.7854rad]”
v3(0) = [0m/s, Om/s, Orad/s]”

The controller gains are chosen as k;1; = kij1y = ki1g = 5,
Vig = Uiy = Vi = 1, kiptw = kizio = kioir = 2,
Kizou = kizay = Kizar = 5 and Ee,,, = ¢, = Ee,,, = 0.1
The disturbance estimators’ initial states are ©;(0) = [0,0, 0]
and the parameters are chosen as ki1 = kiy2 = kiv1 = kiv2 =
kiri = kiro = 1 and =4, = 5, = Z5, = 0.1. The design
parameters of first-order filters are k;qy1 = Kigo1 = Kidgr1 = 2,
kiquz = kigvz = kigre = 15 and Z,,, Eyide
Hy,ur = 0.1. The performance functions for the PPC are
’Um(t) = Uiy(t) = Uy (t) = (10 — 2)6_20t + 2.

Fig. 2 shows the curves of USf1-USH5. It is obtained that
the curves of USf1-USt3 are included in the convex hull
generated by the trajectories of USH4-USH5. From Fig. 3,
the synchronization errors of USf#1-US#3 are included in the
specified performance bounds.

The velocity curves of the follower US#1-US#3 are shown
in Fig. 4. Fig. 5 gives the controller responses of US{1-USH3.
From Fig. 4 and Fig. 5, the velocities and control inputs are
bounded. Fig. 6 shows the disturbance estimation errors, which
are finite-time bounded.

V. CONCLUSION

The article has discussed the distributed security control
issue for USs with the disturbances. To constraint the tracking
errors within predefined boundaries, infinite-time performance
functions have been introduced and the tracking errors were
successfully controlled within the prespecified ranges. The
disturbances were approximated by the disturbance estimators
with finite-time estimation errors. Compared with the coopera-
tive control of USs with one leader US, the obtained controller
can solve the distributed security control issue with multi-
ple leader USs and make further tracking errors satisfy the
transient and steady-state performances. Numerical simulation
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results have revealed that the synchronization tracking errors
satisfied the pre-specified prescribed performance.

However, in practice, the considered system states are nor-
mally unknown or unmeasurable. Therefore, the issue of how
to propose the observer-based containment control scheme can
be discussed in our future research.
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