Under review as a conference paper at ICLR 2026

RETHINKING LLM-AS-A-JUDGE: REPRESENTATION-
AS-A-JUDGE WITH SMALL LANGUAGE MODELS VIA
SEMANTIC CAPACITY ASYMMETRY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are widely used as reference-free evaluators via
prompting, but this “LLM-as-a-Judge” paradigm is costly, opaque, and sensitive to
prompt design. In this work, we investigate whether smaller models can serve as
efficient evaluators by leveraging internal representations instead of surface gen-
eration. We uncover a consistent empirical pattern: small LMs, despite with weak
generative ability, encode rich evaluative signals in their hidden states. This moti-
vates us to propose the Semantic Capacity Asymmetry Hypothesis: evaluation re-
quires significantly less semantic capacity than generation and can be grounded in
intermediate representations, suggesting that evaluation does not necessarily need
to rely on large-scale generative models but can instead leverage latent features
from smaller ones. Our findings motivate a paradigm shift from LLM-as-a-Judge
to Representation-as-a-Judge, a decoding-free evaluation strategy that probes in-
ternal model structure rather than relying on prompted output. We instantiate
this paradigm through INSPECTOR, a probing-based framework that predicts
aspect-level evaluation scores from small model representations. Experiments on
reasoning benchmarks (GSM8K, MATH, GPQA) show that INSPECTOR sub-
stantially outperforms prompting-based small LMs and closely approximates full
LLM judges, while offering a more efficient, reliable, and interpretable alternative
for scalable evaluation.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in generation, reasoning,
and alignment tasks (Achiam et al.l [2023; [Touvron et al., 2023). A growing number of works
leverage the paradigm of LLM-as-a-Judge, wherein powerful LLMs are prompted to assess the
quality of generated outputs without access to ground-truth references (Chang et al., 2024} Prasad
et al.,|2023)). This approach has achieved strong empirical results in reference-free evaluation across
domains such as summarization and complex reasoning (He et al., 2023; Zhang et al., 2024).

However, this prompt-based evaluation paradigm has important limitations. First, it requires autore-
gressive decoding, making it computationally expensive even for single-point evaluations. Second,
it relies on large proprietary models (e.g., GPT-4), whose internal mechanisms remain opaque and
unverifiable. Lastly, its effectiveness depends heavily on prompt engineering, raising concerns about
reproducibility, robustness, and scaling (Polo et al., 2024} |Voronov et al.,|2024; |[Mizrahi et al.,[2024).

A natural goal is to use smaller open-source LMs as evaluators, as they offer a more lightweight and
accessible alternative to large proprietary models. However, when prompted directly, their evalu-
ation performance is poor and highly inconsistent compared to large LLMs. Prior work (Li et al.,
2024a; |Waldis et al.| [2024) has shown that small models, despite weaker generation, often possess
semantic competence comparable to large models. This suggests that their poor evaluation perfor-
mance may stem from limitations in surface generation rather than a fundamental lack of understand-
ing. Building on this, we ask a more granular question: do small models encode evaluation-relevant
signals in their internal representations, even when generation is poor? This question represents
a broader insight: the ability to evaluate may place lower demands on semantic capacity than the
ability to generate. Even when generation fails, compact internal representations may already en-

Under review as a conference paper at ICLR 2026

LLM-as-a-Judge

4
é » 29 . @ Accurate
= X Resource-Intensive

SLM-as-a-Judge

N

(7
[y

[y
[ir7

2 2N I X Inaccurate

[Resource-Efficient

Representation-as-a-Judge

D

(7
[y

N
= "
8 W

A @ 2N . Accurate
Probing @ Resource-Efficient

Figure 1: Illustration of Representation-as-a-Judge.

code the features needed for judgment. We therefore formalize the Semantic Capacity Asymmetry
Hypothesis: The semantic capacity required for accurate evaluation is significantly lower than that
required for generation. Evaluation can be grounded in compressed internal representations of
small language models, even when generation requires full-model decoding.

Building on this hypothesis, we advance an alternative perspective on evaluation: Representation-
as-a-Judge. Rather than relying on prompted text generation, evaluative signals can be extracted
directly from the latent structure. This addresses key bottlenecks of prompt-based evaluation and
opens the door to lightweight, interpretable, and scalable systems.

To explore this perspective, we introduce INSPECTOR (INternal Signal Probing and EvaluaTion
Of Representations), a probing-based framework for reference-free evaluation. Given a (prompt,
response) pair, INSPECTOR performs the following steps: (1) obtain aspect-level evaluation scores
from a strong LLM judge across multiple aspects (e.g., logicality, fluency, consistency); (2) input the
same evaluation prompt to a small LM and extract internal representations; (3) identify informative
layers and train lightweight classifiers to approximate evaluation scores using latent embeddings.

Empirically, we validate this framework on reasoning benchmarks such as GSM8K, MATH, and
GPQA, and find that internal representations from small models (e.g., 1.7B) achieve high predictive
performance, substantially outperforming prompting-based baselines and in many cases approach-
ing the fidelity of full-scale LLM judges. Furthermore, we show that classifiers trained with this
method can be used to filter noisy reasoning data, leading to measurable gains in downstream super-
vised fine-tuning (Xu et al., [2024} |Albalak et al., [2024} |L1 et al., 2024b)).

Our contributions are threefold:

* We identify and analyze a consistent empirical phenomenon: small LMs, despite weak
generation, encode evaluation-relevant signals in their internal representations.

* We formalize this insight as the Semantic Capacity Asymmetry Hypothesis, positing
that evaluation requires less semantic capacity than generation and can be grounded in
intermediate representations.

* We advance a new perspective, Representation-as-a-Judge, and instantiate it through our
probing-based framework, INSPECTOR, demonstrating high-fidelity evaluation and effi-
cient data filtering for reasoning tasks. To the best of our knowledge, this is the first work
to investigate LLM probing for evaluation tasks.

2 RELATED WORK

Our work builds on two research directions: (i) data evaluation methods, particularly the emerging
LLM-as-a-Judge paradigm, and (ii) probing techniques for analyzing LLM representations. Below
we summarize progress in each line and position our contribution.

LLM Evaluation Recent studies in NLP have introduced reference-based evaluation metrics such
as BERTScore (Zhang et al.l 2019) and BARTScore (Yuan et al.,[2021), which leverage pretrained
language models to better align with human judgments. ROSCOE further develops unsupervised,
reference-free metrics that outperform traditional n-gram methods like ROUGE (Lin, 2004) and

Under review as a conference paper at ICLR 2026

N Representation @
- Quality? Frozen LM
[Input Q Labels
Fluency
D Factuality
ﬁ Probing Classifier %
= [| =,

Response X Response @ '
Figure 2: Overview of our proposed INSPECTOR. We freeze the small LMs and probe their rep-
resentations, training only a lightweight probing classifier to fit the proprietary LLM evaluations.

BLEU (Papineni et al., [2002), as well as several model-based metrics. With the emergence of LLMs,
many works have begun to treat LLMs themselves as evaluators (Zheng et al.,|2023; Liu et al., 2023;
Li et al.,[2024c), identifying and filtering high-quality data samples. A variety of techniques enhance
this LLM-as-a-Judge paradigm: Chain-of-Thought reasoning (Wei et al.,|2022)) to improve decision
quality, RECEVAL (Prasad et al.l 2023)) to assess reasoning chains via correctness and informative-
ness, and SOCREVAL (He et al.| 2023)) to let LLMs generate their own answers before evaluation.
However, these methods often rely on prompt engineering and proprietary LLMs, limiting both
their reliability and interpretability. Alternatively, we propose to probe and analyze critical internal
representations of small LMs, training lightweight classifiers to approximate state-of-the-art evalua-
tions from powerful LLMs. This yields a more efficient and explainable approach to data evaluation.

Probing LLM Representations There is a growing interest in probing the internal representations
of LLMs to uncover interpretable features. Early work by [Shi et al.| (2016) introduced probing by
training a logistic regression classifier on top of machine translation encoders to study the extent
of syntactic information. Building on this idea, later studies investigate more complex linguistic
phenomena. For example, [Starace et al.[(2023) examine how linguistic categories such as part-of-
speech (POS) and dependency relations are jointly encoded across layers of LLMs, revealing shared
and hierarchical structures in their representations. Beyond linguistic categories, recent research has
explored whether LLMs capture higher-level abstractions of world knowledge and state. [Zhang et al.
(2025) propose Sentinel, which probes decoder attention in small proxy LLMs to extract relevance
signals for context compression, framing probing as a lightweight understanding task rather than
a linguistic diagnostic. More works further probe the internal representations of world states in
Transformer models when processing game scripts and embodied sequences (Li et al.| 2023} |Jin &
Rinard, [2024; |D1 Palma et al., [2025]).

In contrast to prior work, which mainly seeks to understand what knowledge LLMs encode, we
leverage probing in a new direction: extracting critical internal representations that are predictive of
evaluation quality. To the best of our knowledge, this is the first work to bridge probing with the
LLM-as-a-Judge paradigm, enabling evaluation that is both more efficient and more interpretable.

3 METHODOLOGY

The Semantic Capacity Asymmetry Hypothesis suggests that evaluation can be grounded in com-
pact intermediate representations of small LMs, without requiring full decoding. To operationalize
and test this idea, we propose REPRESENTATION-AS-A-JUDGE: a new evaluation paradigm that
directly probes latent semantic structure rather than relying on surface-level outputs. We instantiate
this paradigm through INSPECTOR. Illustrated in Figure2] it consists of three components: LLMs
evaluation annotation, small LMs probing, and building probing classifiers, which we will discuss
in Sec. 4.1, 4.2, and 4.3, respectively.

3.1 LLMS EVALUATION ANNOTATION

Following established rubric definitions from prior work, including ROSCOE |Golovneva et al.
(2022) and Socreval He et al.| (2023), we adopt five widely used evaluation aspects /C to assess
the quality of reference-free rationales, with the corresponding few-shot prompts provided in Ap-

pendix [K}

* Semantic Consistency: Do the solution steps and final answer remain faithful to the prob-
lem facts (no invented events, omitted givens, or unstated assumptions)?

Under review as a conference paper at ICLR 2026

* Logicality: Does each inference and arithmetic step follow valid rules and correctly apply
operations?

 Informativeness: Does the rationale include the essential steps and intermediate calcula-
tions needed to verify the final answer?

* Fluency: Is the text grammatical, clear, and easy to follow, with proper punctuation, sen-
tence flow, notation, and presentation?

* Factuality: Are the claims, facts, evidence, references, and concrete assertions in the ra-
tionale factually correct and supported?

Let = denote a task instruction and y the corresponding model-generated response. We first employ
a medium-scale language model M4 (10-50B) to generate responses for all benchmark queries.
Unlike state-of-the-art LLMs M4;.gc (50-100B+), M,,,cq is less powerful, which is desirable be-
cause it produces more diverse evaluation distributions, containing both good and bad quality sam-
ples, across different aspects, thereby facilitating the subsequent probing process. This will construct
the response dataset D = {(x;,y;)}¥,, where z; is a benchmark question and y; = M,cq(7;) is
the corresponding response. For each evaluation aspect & € I, we construct an aspect-specific in-
struction 7y, and integrate (z,y) into it, yielding Zy (z, y) as the evaluation prompt. We then query
a state-of-the-art LLM M, to obtain evaluation scores along each aspect. For a given sample
(x,y), we prompt M age With Zj, (2, y) and obtain a scalar score sj, € [1, 5]:

Sik = Mlarge (Ik (4, yz)) .
Collecting these pairs yields the probing dataset

Dprob = U { (Tne(@i, i), sik) Hiia- (1
keK

To avoid bias toward over-represented quality levels, we construct a balanced probing dataset for
each aspect: we first determine the minimum number of samples among the five score levels (1-5),
and then randomly downsample the other levels to this size. This ensures that the multiclass probing
tasks are balanced across labels and not dominated by frequent scores.

Specifically, original scores (1-5) are treated as multiclass classification tasks, while responses
with scores higher than threshold 7 are labeled high quality and the rest low quality, forming a
simpler binary classification task. Since these aspects have been validated and the effectiveness
of powerful LLMs has been extensively studied in prior work, we treat the resulting scores as gold
labels for our subsequent LM probing experiments.

3.2 SMALL LMS PROBING

We use probing to test whether small LMs encode linearly recoverable evaluative cues in their hid-
den states, with the probe’s minimal capacity ensuring that any predictive signal reflects the model’s
own semantics. In our tasks, we observe that prompt-based evaluation inference from small LMs
Mman (0-10B) yields a large gap compared to the gold scores from Mg, primarily due to dif-
ferences in model capacity. To address this, instead of relying solely on the final decoded text, we
analyze internal representations layer by layer to identify those most predictive of the gold evaluation
scores. Specifically, we convert each prompt Z (x;, y;) € Dprop into a collection of per-layer, pooled
representation features, and fit these features with simple, cross-validated linear probes. More ex-
planations could be found in Appendix

Extraction and pooling. For a sample i, let S; denote the sequence length and ¢ = 1, ..., S; index
tokens, we input prompt Zy (z;, y;) and run My, in evaluation mode, obtaining per-layer £ hidden

states Hga and attention weights Agl). From HEZ) we compute a small but expressive set of pooled
vectors: mean, last, min, max, and concat. These pooling variants capture complementary token-
level and global signals across layers. For example:

r(-_o = % Z HY t,:] € RY

2

t=1 2)
O _ 1O . d * . .
r, o =H[t7,;] € RY, 7 = max{t : token ¢ non-pad}

Under review as a conference paper at ICLR 2026

Attention and statistical features. For each head h of layer ¢, we compute an attention-entropy

statistic ey,i and compress them into the number of attention heads R per layer:

1
WO = LSl o0 sy, maxel?. o
h

For each pooled vector r we also compute compact statistics, including its norm norm(r), variance
var(r), and entropy F(r).

Feature assembly. For each layer ¢ and pooling type p € {mean,last,min,max,concat}, we con-
struct a feature matrix by concatenating multiple components along the feature dimension:
[0 (¢ 011N
xr) — [PCAd(rl(.Jz) | [norm, var, F(-)] | [uf),O',E),m}?xe,gj)b]]i:1 4
N————

statistics

where PCA, denotes an optional dimensionality-reduction to d components. All transforms that
depend on the data (imputer, PCA, scaler) are applied inside a cross-validation pipeline to avoid
information leakage.

Probing and layer ranking. We treat gold labels s;; € {1,...,5} from Db as both (i) a

multiclass prediction target y?_’};“i = s;1 and (ii) a binary target y'l.’i}; = I[s;r > 7] with threshold

7 (high vs. low quality). For each X (“?) we fit a logistic probe and evaluate generalization with

stratified cross-validation. Based on the fitting results, we rank layer—pool—feature configurations
by a chosen criterion (binary or multiclass performance) for different downstream tasks.

The probing stage produces: (1) a ranked list of layer—pool—feature configurations with cross-
validated predictive performance, (2) per-layer progression plots that visualize where evaluative
signal accumulates inside M .- These results inform the subsequent section, where we build final
probing classifiers using the selected features.

3.3 BUILDING PROBING CLASSIFIERS

The probing stage produces a ranked list of layer—pool-feature configurations with predictive per-
formance. In this section we describe how we use that ranked list to assemble multi-layer feature
sets, train final probing classifiers, and select an optimal evaluator.

From ranked configurations to candidate layer sets. Let 7 denote the ranked list of
layer—pool—feature tuples produced after the previous probing stage. We take the Top-K unique
layers in 7 and start from the highest-ranked single layer, iteratively adding the next-ranked layer
only if the addition improves performance.

Feature concatenation for multi-layer probes. For a chosen subset of layers S = {{1,...,{g}
and a pooling method p, we construct a multi-layer feature matrix by horizontally concatenating
the per-layer features defined in Eq. equation[d] Concretely, for sample i we form the concatenated
feature vector .

~ (S, ¢ ¢ .

&P — [rz(v’;); r;;); co; rm'f‘] e RISl 5)
where d,, is the dimensionality of the pooled vector for pooling p. If attention summaries are in-
cluded, we append the per-layer attention summaries to form the final feature vector. The assembled

dataset for N examples is X(57) = [x(*?) . ({JP)]T.

Classifier training and selection. For each candidate feature assembly X (5P), we train a family
of simple, interpretable classifiers to predict both the multiclass target y™ ! and the binary target
y°". We select the final probing classifier by maximizing a task-specific performance criterion over
the candidate set S and probe families. Formally, letting C denote the set of classifier hyperparame-
terizations tested, we choose

(S*,p*,0") = atggm]zg(dgs’p’df), (S,p,clf) e S x P xC. (6)
Dy

Under review as a conference paper at ICLR 2026

where v € {bin, multi} denotes the classification task type (binary vs. multiclass), and 6* are the
learned classifier parameters for the selected configuration. In case of ties, we prefer the configura-
tion with smaller o (more stable performance) and with fewer layers.

This search yields a compact, high-performing probing classifier that uses a small subset of layers
identified by the probing stage, which is tuned for robust generalization via cross-validation and
grid search. It can serve as an efficient surrogate evaluator approximating M, judgments while
remaining orders of magnitude cheaper at inference time.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To prove the effectiveness on reasoning evaluation tasks, we picked three popular bench-
marks in Mathematics & Science Tasks: GSMS8K (Cobbe et al.l [2021), MATH (Hendrycks et al.,
2021), and GPQA (Rein et al.| 2024)). Datasets statistics are shown in Appendix@

Models. In our experiments, we select Llama-3-8B-Instruct (Dubey et al., [2024) as M ,eq for re-
sponse generation, as it achieves reasonable performance on the chosen benchmarks while produc-
ing diverse evaluation scores. For LLM-based evaluation annotation, we employ DeepSeek-V3 (Liu
et al., [2024) as Mu. OWIng to its strong reasoning ability and relatively low cost. To validate
the effectiveness of our pipeline across different small LMs, we consider Qwen3-0.6B (Yang et al.,
20235), Qwen3-1.7B (Yang et al.,|2025), Llama-3.2-1B-Instruct (Dubey et al., | 2024)), and Llama-3.1-
8B-Instruct (Dubey et al.,2024) as Mgyan.

Baselines. To the best of our knowledge, this is the first study to investigate LLM probing for
evaluation tasks, and therefore related work is limited. Accordingly, we compare our approach
against three baselines: (1) direct prompt-based inference on small LMs, (2) fine-tuning small LMs
(Qwen3-0.6B), and (3) RoBERTa (Liu et al.,|2019) on probing datasets to fit the evaluation scores.

Implementation Details. We set the score threshold 7 = 4, labeling samples with scores > 4 as
high-quality and those with scores < 4 as low-quality. For dimensionality reduction, we apply PCA
with d = 50 in the probing process. We use K = 5 for Top-K aggregation and experiment with
a variety of classifiers, including Logistic Regression, Random Forests, small Multilayer Percep-
trons (MLPs), and linear Support Vector Machines (SVMs). Since all pooling, layer, and classifier
variants operate on cached hidden representations, exploring these configurations incurs negligible
computational overhead. All test results are reported on the zero-shot prompt and weighted average
F1 score. Additional implementations are provided in Appendix D}

4.2 PROBING CLASSIFIERS RESULTS

We present the main results of our optimal probing classifiers across Mathematics & Science bench-
marks in Figure[3] Explicit statistics for the probing datasets and the numbers of main results can be
found in Appendix [E] [f| Notably, our strong results are obtained by only training on small probing
datasets (typically fewer than 100 samples per score) due to the downsampling strategy (3.1).

Probing is much more effective than prompt-based inference. Figure [3|shows substantial im-
provements of our methods over baselines, with average F1 scores increasing by more than 20%
on most tasks. This suggests that poor outputs from LLMs do not necessarily imply that the
models lack the underlying knowledge to solve the task. Instead, crucial information may be
already embedded in the internal representations, but remains hidden after the final decoding
process. Probing allows us to uncover and leverage these latent understandings, whereas direct text
generation can introduce noise and degrade human-interpretable performance. Importantly, the ef-
fectiveness of our approach is consistently observed across all evaluation aspects and for different
sizes of M, across multiple model families, including results after fine-tuning. This provides a
strong indication that our method can be applied to more general scenarios.

Under review as a conference paper at ICLR 2026

Multiclass Classification Results (score=1-5)

F1 Score (%)

2

Semantic Consistency Logicality Informativeness Fluency Factuality
Binary Classlfication Results (high vs low quality)

F1 Score (%)

K
K
K
K
o] |
11
["
bl [A
[[osvex])
Semantic Consistency Logicality Informativeness Fluency Factuality
Baseline Methods
RoBERTa = Liama 3 215 Instruct(
Quen3.0.6B(Promp) mm Cuwen3-17B(Pror

e e — e ————

[E——

18

g
<
£

o e

a
i -
-
a

s
S

&
B

]

&

=

B
X
X
[
[
[
K
K
K
K

A
i

Probing Classifier (Ours)
Qwen3-0.6B(Probing) B Qwen3-1.7B(Probing)
Llama-3.2-1 B2 Liama 3.

Figure 3: Weighted average F1 score (%) across reasoning benchmarks with multiclass classification
and binary classification tasks. Our probing method (colored bars with hatch marks) significantly
outperforms prompting on the same models (colored bars without hatch marks) across all tasks.

Larger LLMs do not necessarily provide stronger evaluation, either through inference or prob-
ing. Although Llama-3.1-8B-Instruct achieves the best results on several tasks, Qwen3-1.7B still
outperforms it on certain benchmarks despite being much smaller. Within the same model family,
both the Qwen3 and Llama3 series demonstrate that larger models do not consistently surpass their
smaller counterparts across all aspects. For instance, on MATH, Qwen3-0.6B outperforms Qwen3-
1.7B in prompt-based inference for logicality (18.18% vs. 15.06%), and Llama-3.2-1B-Instruct
surpasses Llama-3.1-8B-Instruct in binary probing for fluency (96.32% vs. 92.65%). These results
highlight that different models can exhibit distinct strengths across evaluation aspects, cautioning
against a blind reliance on scaling laws.

Probing classifiers for binary classification serve as highly reliable data filters. While the per-
formance of probing classifiers on multiclass prediction remains modest (approximately 50-60%),
this is expected given the difficulty of approximating a M, that is hundreds of times larger with
a Mman- In contrast, binary classification performance reaches 80-90%, making it sufficiently reli-
able to function as a reference-free coarse filtering mechanism. This capability is particularly valu-
able for common NLP applications such as curating high-quality data for supervised fine-tuning,
where the filter can efficiently separate high and low quality samples during initial screening and
thereby reduce the cost of further fine-grained annotation.

5 ANALYSIS

5.1 ABLATION STUDY OF POOLING AND CLASSIFIER METHODS

For each probing result in Figure [3] we don’t report the combinations of various pooling methods

(rl(.é) in Equation | and classifiers (clf in Equation [6). To better illustrate the effect of different
pooling and classifier choices, we conduct an ablation study on the Informativeness aspect of the
MATH dataset, using Qwen3-0.6B and Llama-3.2-1B-Instruct on binary classification, with results
shown in Figure [

The results demonstrate that mean pooling consistently outperforms other strategies, which is intu-
itive since averaging preserves critical information while producing compact feature representations.
Among classifiers, Logistic Regression achieves the best results. With limited data and potentially
noisy labels from LLMs scoring, calibrated probabilities and regularization from Logistic Regres-
sion can lead to a better overall F1 score. These patterns match findings from recent studies:

|Under review as a conference paper at ICLR 2026

tamneni et al.| (2025) show that complex probes often do not strongly outperform simpler pooling +
linear classifiers; demonstrates that averaging over all token vectors can beat using
only CLS or last token embeddings. Finally, these findings are consistent with the detailed results
shown in Table[TT} where top-performing configurations most often involve mean pooling combined
with Logistic Regression classifiers.

Pooling methods Classifier methods

90.0

I Qwen-0.6B BN Qwen-0.6B
87.5 £6.80 Llama-3.2-1B | £0.80 Llama-3.2-1B

85.0 8416 4 8416

82.7882.82 82.84 8278

82.5 E 81.48

80.19 79.04 80.20
80.0 1 78.87

71.56 7155

79.62

77.5 4 76.111

Weighted F1 (%)

75.0 1 73.57

72.54

mean last min max concat Logistic Regression Linear SVM Random Forest MLP

Figure 4: Ablation study of different pooling and classifier methods on binary classification tasks.
Left: logistic regression fixed. Right: mean pooling fixed.

5.2 DATA FILTERING AND SUPERVISED FINE-TUNING (SFT)

To assess the effectiveness of our data filtering approach, we apply the trained probing classifiers
of Qwen3-1.7B in a knowledge distillation setup, with Llama-3-8B-Instruct (Dubey et all [2024)
as the teacher and Llama-2-7B-Chat (Touvron et al, [2023)) as the student. For each benchmark,
the classifiers assign binary scores (0 or 1) to every response across five aspects, which are then
summed to yield a total score between 0 and 5. Responses are ranked by this score from high to
low to construct the training set, and the student is trained on progressively larger subsets in 10%
increments. We directly compare our probing-based filtering against two baselines: (i) the gold
DeepSeek-V3 filtering and (ii) random filtering. The result curves are summarized in Figure 3]
Comparison of data filtering methods for SFT Llama-2-7B-Chat on GPQA

0.350 —
=@= Probing filtered =jll= V3 filtered =fe= Random filtered
0.325 —

0.300 —

0.275 —

Average F1 score

0.250 —

0.225 —

0.200 T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100

Training data proportion (Top-k %)

Figure 5: Llama-2-7B-Chat SFT performance under different data filtering methods (probing clas-
sifier, DeepSeek-V3, and random) with incremental training subsets.

Our findings can be summarized as follows: (1) filtering training data with our probing classifiers
yields SFT performance comparable to using powerful LLM as the filter, indicating that our ap-
proach can approximate LLM-level data quality judgments; (2) both probing and DeepSeek-V3
consistently outperform random filtering, despite occasional mid-range fluctuations where random
sampling may incidentally capture higher-quality data, reinforcing the importance of quality-aware
data selection for downstream training; and (3) the observed up—down—up trend suggests that initial
gains derive from training on high-quality data, performance then declines as lower-quality data is
introduced, and subsequently recovers once the volume of training data becomes sufficiently large.
This supports claims in prior studies (Sajith & Kathalal, 2024} Tyer et al., 2024)): data quality plays
the primary role in low-resource settings, whereas data quantity may become a dominant fac-
tor as training data scales.

Under review as a conference paper at ICLR 2026

6 SEMANTIC CAPACITY ASYMMETRY IN EVALUATIVE SIGNALS

6.1 EVALUATIVE SIGNALS IN INTERMEDIATE REPRESENTATIONS

To better understand why small models can support accurate evaluation, we analyze the internal
representations used in our probing classifiers (§4)). Specifically, we examine how evaluative signals
vary across layers and what types of features most effectively capture them. We present representa-
tive results in Figure[6] with additional analysis provided in Appendix

(1) Representations Encode Strong Evaluative Signals. Across reasoning datasets, we observe
that hidden representations show substantial correlation with evaluation scores from the strong LLM
judge. These signals are especially strong in mid-to-upper layers, indicating that evaluative infor-
mation is embedded throughout intermediate layers, rather than being restricted to the output stage.

(2) Evaluative Features Reside in Structured Feature Subspaces. Probing feature spaces derived
from PCA-based subspaces often reveals evaluative signals more effectively than scalar or attention-
derived features. These observations suggest that evaluative signals are present across structured
feature subspaces, with PCA-based projections revealing them more clearly than simpler features.

Feature Type Performance by Layer Feature Type Performance by Layer

0.80 { —e— pca —o— paa
stats 07504 stats
—e— attention —e— attention

0.725 4

e
3

0.700

e
3
=

0.675

0.650

Binary Classification Accuracy
°
S
&

Binary Classification Accuracy

0.625

0.60 0.600

Layer Layer

Figure 6: Layer-wise probing accuracy for Factuality (left) and Semantic Consistency (right) using
Qwen3-1.7B on the MATH dataset. PCA features perform best, peaking in upper layers.

6.2 THE SEMANTIC CAPACITY ASYMMETRY HYPOTHESIS

These patterns observed above support the hypothesis that accurate evaluation requires much less
capacity than generation and can rely on intermediate representations. This reflects an intrinsic
asymmetry between the tasks: generation involves discourse planning and long dependencies that
demand substantial capacity and often require full decoding, while evaluation focuses on identifying
inconsistencies or content errors, which are already accessible in intermediate model states.

Prior work has shown that internal representations often encode much richer and more reliable se-
mantic information than what is reflected in surface outputs. Probing studies demonstrate that hid-
den states capture fine-grained linguistic and semantic structure (Waldis et al., 2024} Rogers et al.,
2020). Complementing this, latent-knowledge analyses reveal that task-relevant information can re-
main present in intermediate representations even when generated text is unreliable or intentionally
misled (Kadavath et al., 2022} Burns et al.,[2023; Mallen et al., 2023)). Building on these insights, we
show that intermediate representations not only encode general semantic structure but also contain
evaluation-relevant signals that can be directly leveraged for effective reference-free assessment.

7 CONCLUSION

Despite suboptimal generation, small LMs retain strong evaluative signals in their internal repre-
sentations. We validate the Semantic Capacity Asymmetry Hypothesis and introduce INSPECTOR,
a probing-based pipeline that extracts high-fidelity judgments from these latents. Experiments on
various reasoning benchmarks show the capability of our method, suggesting that Representation-
as-a-Judge can serve as a scalable and interpretable solution for evaluation and data curation.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All datasets and models used in our experiments are publicly accessible. We also provide additional
details in the Appendix, including dataset statistics, model parameters, and training hyperparame-
ters. We believe that the information provided is sufficient to reproduce our methods and results.
Furthermore, we will release all data and code in a public repository upon acceptance of the paper.

USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only for minor text polishing, such as grammar and phras-
ing. All ideas, experiments, analyses, and discussions were conducted solely by the authors. The
LLM did not contribute to the design and interpretation of our research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=ETKGubyOhcsl

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
transactions on intelligent systems and technology, 15(3):1-45, 2024,

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Dario Di Palma, Alessandro De Bellis, Giovanni Servedio, Vito Walter Anelli, Fedelucio Narducci,
and Tommaso Di Noia. Llamas have feelings too: Unveiling sentiment and emotion representa-
tions in llama models through probing. arXiv preprint arXiv:2505.16491, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning.
arXiv preprint arXiv:2212.07919, 2022.

Hangfeng He, Hongming Zhang, and Dan Roth. Socreval: Large language models with the socratic
method for reference-free reasoning evaluation. arXiv preprint arXiv:2310.00074, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Vivek Iyer, Bhavitvya Malik, Pavel Stepachev, Pinzhen Chen, Barry Haddow, and Alexandra Birch.
Quality or quantity? on data scale and diversity in adapting large language models for low-
resource translation. arXiv preprint arXiv:2408.12780, 2024.

10

https://openreview.net/forum?id=ETKGuby0hcs

Under review as a conference paper at ICLR 2026

Charles Jin and Martin Rinard. Emergent representations of program semantics in language models
trained on programs. In Forty-first International Conference on Machine Learning, 2024.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
els (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.

Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel Nanda.
Are sparse autoencoders useful? a case study in sparse probing. arXiv preprint arXiv:2502.16681,
2025.

Kihoon Lee, Gyuho Choi, and Chang Choi. Use all tokens method to improve semantic relationship
learning. Expert Systems with Applications, 233:120911, 2023.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
ICLR, 2023.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp. 14255-14273, August
2024a.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting LLM performance with self-guided
data selection for instruction tuning. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 7595-
7628, Mexico City, Mexico, June 2024b. Association for Computational Linguistics. URL
https://aclanthology.org/2024 .naacl-long.421.

Zhuochun Li, Yuelyu Ji, Rui Meng, and Daqing He. Learning from committee: Reasoning distilla-
tion from a mixture of teachers with peer-review. arXiv preprint arXiv:2410.03663, 2024c.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Alex Mallen, Madeline Brumley, Julia Kharchenko, and Nora Belrose. Eliciting latent knowledge
from quirky language models. arXiv preprint arXiv:2312.01037, 2023.

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky. State
of what art? a call for multi-prompt LLM evaluation. Transactions of the Association for Com-
putational Linguistics, 12:933-949, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Felipe Maia Polo, Ronald Xu, Lucas Weber, Mirian Silva, Onkar Bhardwaj, Leshem Choshen,
Allysson Flavio Melo de Oliveira, Yuekai Sun, and Mikhail Yurochkin. Efficient multi-prompt
evaluation of LLMs. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=Jjzkpwcj200.

11

https://aclanthology.org/2024.naacl-long.421
https://openreview.net/forum?id=jzkpwcj200

Under review as a conference paper at ICLR 2026

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and Mohit Bansal. Receval: Evaluating reasoning
chains via correctness and informativeness. arXiv preprint arXiv:2304.10703, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about
how BERT works. Transactions of the Association for Computational Linguistics, 8:842-866,
2020.

Aryan Sajith and Krishna Chaitanya Rao Kathala. Is training data quality or quantity more impactful
to small language model performance? arXiv preprint arXiv:2411.15821, 2024.

Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural mt learn source syntax? In
Proceedings of the 2016 conference on empirical methods in natural language processing, pp.
1526-1534, 2016.

Giulio Starace, Konstantinos Papakostas, Rochelle Choenni, Apostolos Panagiotopoulos, Matteo
Rosati, Alina Leidinger, and Ekaterina Shutova. Probing llms for joint encoding of linguistic
categories. arXiv preprint arXiv:2310.18696, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Anton Voronov, Lena Wolf, and Max Ryabinin. Mind your format: Towards consistent evaluation
of in-context learning improvements. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics: ACL 2024, pp. 6287-6310, August
2024.

Andreas Waldis, Yotam Perlitz, Leshem Choshen, Yufang Hou, and Iryna Gurevych. Holmes > a
benchmark to assess the linguistic competence of language models. Transactions of the Associa-
tion for Computational Linguistics, 12:1616-1647, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text gener-
ation. Advances in neural information processing systems, 34:27263-27277, 2021.

Qiyuan Zhang, Yufei Wang, Tiezheng Yu, Yuxin Jiang, Chuhan Wu, Liangyou Li, Yasheng Wang,
Xin Jiang, Lifeng Shang, Ruiming Tang, et al. Reviseval: Improving llm-as-a-judge via response-
adapted references. arXiv preprint arXiv:2410.05193, 2024.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Yong Zhang, Yanwen Huang, Ning Cheng, Yang Guo, Yun Zhu, Yanmeng Wang, Shaojun Wang,
and Jing Xiao. Sentinel: Attention probing of proxy models for llm context compression with an
understanding perspective, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

12

Under review as a conference paper at ICLR 2026

A LIMITATIONS

While the proposed method demonstrates competitive performance compared to other baselines, we
acknowledge that there are still potential limitations:

* Following prior work, we adopt five evaluation aspects and construct corresponding prompt
templates for our experiments. However, in the absence of standardized evaluation criteria,
our chosen definitions may not represent the optimal formulation for all tasks. Furthermore,
we observe that the difficulty of the selected evaluation aspects varies. For instance, fluency
appears to be the easiest, as the majority of responses consistently receive high scores
relative to other aspects. This suggests the need for further investigation into the design
and selection of evaluation aspects.

* Although we conducted experiments on various datasets, future work can explore more
general reasoning fields, such as commonsense and code generation tasks.

* We only use the DeepSeek-V3 as our rating model, due to its cost and availability. How-
ever, this may cause evaluation bias and affect our downstream probing classifier training
process. Exploring diverse rating LLMs from different organizations could be a valuable
direction for future research.

B SMALL LMS PROBING DETAILS

Notation and extraction. For a sample i, we input prompt Zj. (x;, y;) and run M,y in evaluation
mode, obtaining

H ¢ gSixd AY ¢ RRXSixS;

for layers £ = 1,..., L. Here S; is the token length, d the hidden dimension, and R the number of
attention heads.

Pooling and representation. From HZ(-Z) we compute a small but expressive set of pooled vectors.
These pooling variants capture complementary token-level and global signals across layers:

Si
ne
T mean — SL% H 6 Rd
=1
512151 = Hq()[7] € RY, tF = max{t : token ¢ non-pad},
i = min HO 6, rl, = maxH[t,),
¢ ¢ ¢ ¢
7(51C)0H03t = [rg,glin;rg,rzlax; z(',rzlean] € Rgd'

Attention and statistical features. For each head & of layer / we compute an attention-entropy
statistic (with small constant € > 0 for numerical stability):

s, s
&
I)z ZZAEEi)LstIOg A(f)zst+6)

Si s=1t=1
We compress head-wise entropies into low-dimensional summaries per layer:

1
WO = LS00, 9), maxel?,

h

For each pooled vector r we also compute compact statistics:

norm(r) = ||r||2, var(r) = Var(r), Zsoftmax m log softmax(r),,,

13

Under review as a conference paper at ICLR 2026

Feature assembly. For each layer £ and pooling type p € {mean,last,min,max,concat} we assem-
ble candidate feature matrices:
¢ 0 (¢ 01N
xWr) — [PCAd(r;;) | [norm, var, E(-)] | [uf),O',E),m}?xe,gj)b]]i:1
statistics

where PCA, denotes an optional dimensionality-reduction to d components. All transforms that
depend on the data (imputer, PCA, scaler) are applied inside a cross-validation pipeline to avoid
information leakage.

Probing and layer ranking. We treat gold labels s;; € {1,...,5} from D as both (i) a

multiclass prediction target y™! = s, ; and (ii) a binary target y?'» = I[s; > 7] with threshold 7

(high vs. low quality). For each X (“?) we fit a logistic probe (linear logistic regression; one-vs-rest
for multiclass) and evaluate generalization with stratified cross-validation.

Each candidate probe yields a performance tuple

—(&p) _(&p) —(&p) _(4p)

(abin > Obin > Omulti » mulli)

_(£,p) ~
where a,;)"" and a

and crlgfn’p), Jr(fu’f:i) their corresponding standard deviations across cross-validation folds. We rank

layer—pool—feature configurations by a chosen criterion (binary or multiclass accuracy mean) for
different downstream tasks.

(4,p)

i denote the mean accuracies of the binary and multiclass probes, respectively,

C DATASETS STATISTICS

We download datasets GSM8K and GPQA from Huggingface, MATH from their official project
website: https://github.com/hendrycks/math. GSM8K dataset is split according to
the official original split ratio. We use the official training set for Math and MATH-500 for the test
set due to its high representation and low cost. Since there is no official train/test split for GPQA, we
use gpqa_main and gpqa_extended as the training set, gpqa_diamond as the test set. Table [I|shows
the statistics of all datasets

Dataset Type #Train #Test

GSM8K Mathematics 7473 1319
MATH Mathematics 7500 500
GPQA Science 994 198

Table 1: Dataset statistics.

D IMPLEMENTATION DETAILS

Primary experiments are conducted on eight NVIDIA Quadro RTX 8000 and eight NVIDIA RTX
A6000 GPUs.

D.1 SMALL LMS PARAMETERS

The parameter settings for Mai: Qwen3-0.6B (Yang et al.,[2025), Qwen3-1.7B (Yang et al.,[2025),
Llama-3.2-1B-Instruct (Dubey et al.| 2024), and Llama-3.1-8B-Instruct (Dubey et al., [2024)).

D.2 MEDIUM LMS PARAMETERS

The parameter settings for M eq: Llama-3-8B-Instruct (Dubey et al., 2024)).

D.3 LARGE LMsS PARAMETERS

DeepSeek-V3 (Liu et al., [2024) is required by the official API: https://api-docs.
deepseek.com.

14

https://github.com/hendrycks/math
https://api-docs.deepseek.com
https://api-docs.deepseek.com

Under review as a conference paper at ICLR 2026

Parameter Value
temperature 0.6
max new tokens 256
do sample True
output_hidden_states True
output_attentions True
torch_dtype float16
attn_implementation ~ eager

Table 2: Small LMs parameter settings.

Parameter Value
temperature 0
max new tokens 512
do sample True
torch_dtype float16
top_p 1.0

Table 3: Medium LM parameter settings.

D.4 MODEL TUNING HYPERPARAMETER

We list the training hyperparameters for Llama-2-7B-Chat (Touvron et al.,|2023) in Section 6.4.

D.5 PROBING CLASSIFIER DETAILS

We train several probing classifiers on internal features to fit gold scores. All classifiers are imple-
mented in scikit-learn pipelines with StandardScaler for feature normalization. We perform hyper-
parameter search via 5-fold cross-validation using macro F1 as the scoring metric. Table [6] below
summarizes each classifier’s fixed parameters and the hyperparameter ranges considered in the grid

search.
Classifier Fixed Parameters Hyperparameter Grid
Logistic Regression max_iter=2000, C: [0.001,0.01,0.1,1];

class_weight="balanced",
solver="1bfgs"

penalty: ["127]

Random Forest

class_weight="balanced",
random_state=42

n_estimators:
[100,300,5001];
max_depth: [None,10,20];
min_samples_leaf:
[1,2,5]

Multi-layer Percep-
tron

hidden_layer_sizes=(256,128),
activation="relu",
alpha=le-4,
learning.rate_init=le-3,
max_iter=1000,
early_stopping=True,
random_state=42

alpha: [le-4,le-3,1e-2];
learning.rate_init:
[le-4,1e-3,1e-2];
hidden_layer_sizes:
[(200,100),(100,),(200,100,50)]

Linear SVM

kernel="1linear",
class_weight="balanced",
probability=True,
random_state=42

C:10.001,0.01,0.1,1,10,100]

Table 6: Probing classifiers including fixed parameters and grid search ranges for hyperparameter

tuning.

15

Under review as a conference paper at ICLR 2026

Parameter Value
temperature 0

max new tokens 2048

do sample True
model deepseek-chat

response_format

{"type’: ’json_object’ }

Table 4: Large LM parameter settings.

Hyperparameter Value
epoch 8
batch size 8
learning rate le-4
warmup_steps 100
max seq length 1024
gradient accumulation steps 4
lora_r 16
lora_alpha 32
lora_dropout 0.1
target_modules ["gproj", "v_proj"l]

Table 5: Student LM training hyperparameter settings.

E PROBING DATASETS STATISTICS

As explained in Section 4.1, we first determine the minimum number of samples n among the five
score levels (1-5), and then randomly downsample the other levels to this size. This ensures that
the multiclass probing tasks are balanced across labels and not dominated by frequent scores. Thus,
after downsampling, D,,.,; contains a total of 5 X n samples, and we split the dataset into training
and test sets with an 80:20 ratio. In the following tables, we mark the minimum number n of each
aspect in bold. These score distributions can reflect the difficulty evaluation levels among various

dataset questions and aspects.

Dy,pop statistics for GSM8K:

#score=1 #score=2 #score=3 #score=4 #score=5
Semantic Consistency 184 491 369 34 6435
Logicality 118 842 174 26 6353
Informativeness 46 81 111 49 7226
Fluency 17 23 70 86 7317
Factuality 377 300 479 85 6272

Table 7: Number of LLM-judge scores across five aspects of probing datasets on GSM8K.

Dy,yop statistics for MATH:
Dy op statistics for GPQA:

#score=1 #score=2 #score=3 #score=4 #score=5
Semantic Consistency 257 529 60 22 125
Logicality 267 463 145 31 87
Informativeness 197 164 327 163 142
Fluency 135 26 68 210 554
Factuality 306 475 119 46 47

Table 9: Number of LLM-judge scores across five aspects of probing datasets on GPQA.

16

Under review as a conference paper at ICLR 2026

#score=1 #score=2 #score=3 #score=4 #score=5

Semantic Consistency 441 467 1879 121 4575
Logicality 224 1288 1604 98 4269
Informativeness 75 180 748 2062 4418
Fluency 132 27 746 2857 3721
Factuality 609 945 1818 34 4077

Table 8: Number of LLM-judge scores across five aspects of probing datasets on MATH.

F DETAILED MAIN RESULTS

We show the specific numbers of results in Table [T0}

Method Informativeness ‘ Fluency Factuality

Consi 1 I
‘ GSM8K MATH GPQA ‘ GSMS8K MATH GPQA ‘ GSM8K MATH GPQA | GSMS8K MATH GPQA ‘ GSMS8K MATH GPQA
Multiclass Classification (score=1-5)
RoBERTa (Liu et al.[2019] | 7.03 28.34 5.59 ‘ 8.65 26.18 17.18 ‘ 6.40 11.65 28.14 ‘ 8.96 8.08 8.65 ‘ 6.73 7.03 8.50
Qwen3-0.6B (Yang et al.}2025)
Prompt Inference 2421 19.33 23.92 ‘ 17.46 18.18 22.12 ‘ 14.62 15.09 14.53 ‘ 14.66 20.47 10.10

24.50 14.65 15.96
29.35 15.23 15.16
43.80 55.18 50.67

Tuning 16.38 2476 16.00 16.64 17.68 29.03 14.63 16.01 28.14 18.18 21.91 19.84
Probing Classifier 40.92 47.73 40.48 51.93 5200 6423 45.18 61.07 57.97 5146 60.97 54.60
Llama-3.2-1B-Instruct (Dubey et al.|2024]
Prompt Inference ‘ 6.33 17.40 11.82 ‘ 9.55 13.32 11.73 ‘ 23.54 12.34 12.12 ‘ 17.11 17.52 8.45 ‘ 11.76 10.74 12.83

Probing Classifier 38.04 4847 40.69 47.16 5347 5581 42.33 5127 60.34 53.29 5516 50.13 43.29 4780 49.21
Qwen3-1.7B (Yang et al.|2025)

Prompt Inference 16.18 2198 1742 25.00 15.06 21.81 13.88 18.34 17.27 22.27 21.45 9.77 30.46 18.40 5.66
Probing Classifier ‘ 42.98 5845 4093 49.86 59.05 64.79 46.51 5142 59.79 47.39 60.97 45.02 48.86 58.34 54.37
Llama-3.1-8B-Instruct (Dubey et al.}[2024]

Prompt Inference 1472 2797 20.78
Probing Classifier 39.31 5110 3641

12.75 26.04 2534 30.20 3721 2735
50.00 59.63 5842 43.85 61.78 62.28
Binary-Classification (high vs low quality)
RoBERTa (Liu et al. 2019} | 43.57 4540 4390 | 46.89 4525 4658 | 46.06 45.00 44.83 | 43.57 44.10 46.89 | 45.00 43.57 46.06

Qwen3-0.6B (Yang et al.}2025)
Prompt Inference 4271 5113 4027 ‘ 57.22 51.99 49.93 ‘ 49.71 59.74 4821 ‘ 3529 56.08 6195

19.33 48.94 12.69
42.56 56.15 45.36

14.07 9.63 22.53
44.06 63.94 49.56

57.41 5726 55.99
45.00 5726 63.21
73.80 70.16 7637

Tuning 42.71 4540 4545 65.85 45.25 64.75 38.98 45.00 44.83 4743 50.73 53.85
Probing Classifier 79.28 76.07 72.95 68.43 78.80 71.16 65.48 84.16 78.73 82.35 92.65 9231
Llama-3.2-1B-Instruct (Dubey et al.}[2024]

Prompt Inference 4357 43.48 35.12 43.08 45.45 74.35 42.79 41.03 41.31 37.65 2293 52.75 44.44 46.28 71.17
Probing Classifier ‘ 82.35 68.07 63.64 65.00 7879 80.85 72.08 86.80 76.93 82.35 96.32 87.94 71.42 7336 80.52
Qwen3-1.7B (Yang et al.}2025)
Prompt Inference 38.95 53.88 34.66 61.54 51.34 63.28 38.94 56.28 50.26 41.58 5073 59.17
Probing Classifier ‘ 76.13 79.21 68.38 72.78 83.67 7447 72.08 85.48 80.96 88.32 92.65 96.11
Llama-3.1-8B-Instruct (Dubey et al.}[2024]

Prompt Inference 3402 58.01 45.10 29.22 64.80 5881 42.32 86.67 65.63 69.56 85.27 84.80 38.02 5226 5812
Probing Classifier ‘ 76.13 75.11 77.42 68.43 79.77 80.65 69.91 88.12 80.41 76.63 92.65 88.33 70.51 7647 7421

69.85 5822 49.90
81.26 73.36 87.11

Table 10: Average F1 score (%) across various reasoning benchmarks with multiclass classification
and binary classification tasks. The best performance among different classification tasks in each
benchmark is marked in bold.

We also report the specific layers, pooling, and classifier methods that achieve the best probing
performance, as summarized in Table @L across different benchmarks in Table @

17

Under review as a conference paper at ICLR 2026

GSMSK MATH GPQA
Multiclass Classification (score=1-5)
Semantic Consistency Qwen3-1.7B, layers=[14,25], Qwen3-1.7B, layers=[15], Qwen3-1.7B, layers=[2],
pool="mean”, LR pool="mean”, LS pool="mean”, LS
Logicality Qwen3-0.6B, layers=[17], Llama-3.1-8B-Instruct, lay- Qwen3-1.7B, layers=[13],
pool="mean”, LR ers=[17], pool="last”, LR pool="mean”, LS
Informativeness Qwen3-1.7B, layers=[16,17], Llama-3.1-8B-Instruct, lay- Llama-3.1-8B-Instruct, lay-
pool="mean”, LS ers=[10], pool="mean”, LS ers=[12], pool="mean”, LS
Fluency Llama-3.2-1B-Instruct, lay- Qwen3-1.7B, layers=[18], Qwen3-0.6B, layers=[18],
ers=[1], pool="last”, LS pool="mean”, LS pool="last”, LR
Factuality Qwen3-1.7B, layers=[14,18], Llama-3.1-8B-Instruct, lay- Qwen3-1.7B, layers=[15],

pool="mean”, LR

ers=[21], pool="mean”, LR

Binary-Classification (high vs low quality)

pool="last”, LR

Semantic Consistency Llama-3.2-1B-Instruct, lay- Qwen3-1.7B, layers=[15], Llama-3.1-8B-Instruct, lay-
ers=[3], pool="last”, LS pool="mean”, LR ers=[16], pool="last”, LR
Logicality Qwen3-1.7B, layers=[24], Qwen3-1.7B, layers=[18], Llama-3.2-1B-Instruct, lay-
pool="last”, LR pool="last”, LR ers=[3], pool="last”, LR
Informativeness Qwen3-1.7B, layers=[21], Llama-3.1-8B-Instruct, lay- Qwen3-1.7B, layers=[17],
pool="mean”, LS ers=[20], pool="last”, LS pool="mean”, LR
Fluency Qwen3-1.7B, layers=[1,11], Llama-3.2-1B-Instruct, lay- Qwen3-1.7B, layers=[14],
pool="last”, LS ers=[13], pool="last”, LR pool="mean”, LR
Factuality Qwen3-1.7B, layers=[16], Llama-3.1-8B-Instruct, lay- Qwen3-1.7B, layers=[18],
pool="mean”, LR ers=[28], pool="mean”, LR pool="last”, LS

Table 11: Detailed layers, pooling and classifiers selection for best probing performances. “’pool”
denotes different pooling methods in Equation[2] "LR” denotes Logistic Regression and ”LS” de-
notes linear SVM.

G OUT-0OF-DISTRIBUTION (OOD) PROBING

To evaluate the generalization abilities of our probing methods on Out-of-Distribution (OOD) data,
we conducted experiments using one mathematical reasoning dataset as the training set and another
dataset as the test set. Table[12| highlights the probing performance with Qwen3-1.7B as the Mgy
in OOD scenarios. Our analysis reveals two complementary patterns. First, multiclass (1-5) prob-
ing demonstrates limited transferability, with F1 scores dropping to approximately 10-25%, sug-
gesting that fine-grained score prediction is dataset-specific. In particular, transferring from more
challenging datasets (MATH) to simpler ones (GSM8K) proves more difficult than the reverse. Sec-
ond, binary probing demonstrates substantially greater robustness under distribution shift: out-of-
distribution F1 scores range from ~35-62%, comparable to in-distribution results in Table These
findings suggest that PCA-based linear probing reliably captures coarse, domain-general quality sig-
nals, whereas fine-grained distinctions are too difficult to transfer. Consequently, for claims of OOD
robustness, we emphasize binary evaluations and recommend controlling probe capacity when re-
porting cross-dataset transfer.

Method ‘ Semantic Consistency ‘ Logicality Informativeness ‘ Fluency ‘ Factuality
GSMSK MATH GSM8K MATH | GSM8K MATH | GSMS8K MATH | GSM8K MATH
Multiclass Classification (score=1-5)
Qwen3-1.7B
Probing Classifier 10.31 14.26 10.19 23.50 16.47 11.65 13.35 11.60 16.63 27.57
Binary-Classification (high vs low quality)
Qwen3-1.7B
Probing Classifier 35.76 61.04 27.20 62.90 ‘ 60.39 45.00 ‘ 41.58 23.59 ‘ 36.70 62.19

Table 12: Average F1 score (%) of test results across mathematics reasoning benchmarks in Out-
of-Distribution (OOD) scenarios. Specifically, we conducted experiments by training on GSM8K
and testing on MATH, as well as training on MATH and testing on GSM8K.

H EXTENDED RESULTS ON OPEN-ENDED BENCHMARK

While our primary focus is on reasoning evaluation, we additionally evaluated our approach on the
open-ended generation benchmark AlpacaEval 2.0 (Dubois et al.l [2024)), using the same experi-
mental settings as the three reasoning benchmarks in Table [L0] The results of AlpacaEval 2.0 are
shown in Table[I3] The results further supports the effectiveness and robustness of our approach on
a broader range of domains and tasks, including reference-free open-ended benchmarks.

18

Under review as a conference paper at ICLR 2026

Method

| Semantic Consistency | Logicality | Informativeness | Fluency | Factuality
Multiclass Classification (score=1-5)

RoBERTa (Liu et al.|[2019) | 7.56 | 808 | 8.32 | 1169 | 8.08
Qwen3-0.6B (Yang et al.|[2025)

Prompt Inference 22.40 11.11 16.94 11.82 8.89
Tuning 14.29 11.11 9.93 10.61 12.70
Probing Classifier 36.84 42.59 46.71 61.21 23.33
Llama-3.2-1B-Instruct (Dubey et al.[2024)

Prompt Inference 12.50 13.33 8.37 16.97 0.20
Probing Classifier 35.71 55.56 46.08 61.21 28.57
Qwen3-1.7B (Yang et al.|[2025)

Prompt Inference 7.14 20.11 22.70 25.19 20.00
Probing Classifier 35.12 45.93 42.01 65.10 23.70
Llama-3.1-8B-Instruct (Dubey et al.[[2024)

Prompt Inference 14.92 17.99 18.34 23.38 14.29
Probing Classifier 34.69 53.70 45.90 57.32 22.96

Binary-Classification (high vs low quality)

RoBERTa (Liu et al.|[2019) | 41.56 | 3968 | 46.58 | 4949 | 39.68
Qwen3-0.6B (Yang et al.|[2025)

Prompt Inference 55.24 43.00 49.93 46.36 44.44
Tuning 35.24 43.00 45.41 28.48 27.78
Probing Classifier 61.42 55.56 62.76 91.06 55.56
Llama-3.2-1B-Instruct (Dubey et al.[2024)

Prompt Inference 49.20 34.19 59.26 64.24 39.68
Probing Classifier 67.14 70.42 67.44 81.82 65.80
Qwen3-1.7B (Yang et al.|[2025)

Prompt Inference 50.24 65.80 45.03 45.45 55.56
Probing Classifier 67.14 75.93 70.71 91.06 77.78
Llama-3.1-8B-Instruct (Dubey et al.[[2024)

Prompt Inference 39.71 48.15 58.34 62.42 27.35
Probing Classifier 70.16 77.78 69.96 82.12 64.07

Table 13: Average F1 score (%) on AlpacaEval 2.0 with multiclass classification and binary classi-

fication tasks.

I ADDITIONAL ANALYSIS OF EVALUATIVE SIGNALS

To complement the main findings in Figure[6] we include detailed layer-wise analyses for additional
evaluation dimensions: Factuality, Informativeness, Logicality, and Semantic Consistency. These
results are based on Qwen3-1.7B evaluated on the MATH dataset. Each figure reports probing
accuracy across layers using three feature types: PCA-projected embeddings, statistical summaries,

and attention-derived vectors.

0.80

e
<
@

=4
o
&

Binary Classification Accuracy
o
=
S

0.60 4

Figure 7: Layer-wise diagnostic results for Informativeness. Peak correlation appears near Layer

Feature Type Performance by Layer

—e— pca
stats
—e— attention

10

15
Layer

20

25. PCA accuracy increases steadily, while stats features decline in upper layers.

19

Under review as a conference paper at ICLR 2026

Feature Type Performance by Layer

0.76 + —8— pca
stats

0.74 { —®— attention

0.68

Binary Classification Accuracy

T T T T T T
o 5 10 15 20 25
Layer

Figure 8: Layer-wise diagnostic results for Logicality. Signals concentrate around Layers 17 and

27. PCA features show rising accuracy toward the upper layers.
Feature Type Performance by Layer

0.90 1

S
o
a

A

S
@
S

Binary Classification Accuracy
° o
3 =
3 i
!

=4

o

G
L

—e— pca
stats
0.60] —8— attention

o 5 10 15 20 25
Layer

Figure 9: Layer-wise diagnostic results for Fluency. Evaluative signals show local peaks at Layer
17.

J CASE ANALYSIS

This case compares three evaluators scoring the same model-generated response: a strong LLM
judge (DeepSeek-V3), a probing-based judge that accesses intermediate representations of Qwen3-
1.7B, and a prompt-based judge that relies on the same model’s generated evaluation text. Consistent
with our main hypothesis, the probing-based scores closely match the strong judge, indicating that
the semantic and factual signals required for accurate evaluation are already encoded in the small
model’s latent states.

In contrast, the prompt-based evaluation from the same small model diverges: although its numeric
scores remain plausible, the generated justifications introduce spurious concerns, overinterpret mi-
nor details, or provide unreliable reasoning. These deviations reflect the higher capacity demands
of generating a coherent evaluation explanation. The pattern illustrates a core capacity asymme-
try—evaluation depends on localized semantic cues accessible from intermediate representations,
whereas producing well-formed meta-evaluative text requires long-range structuring and discourse
planning that small models struggle to express reliably.

GSMSK EXAMPLE

Question:

Keaton climbed a 30 feet ladder twenty times while working at the construction site. Reece, also working
at the same site, climbed a ladder 4 feet shorter than Keaton§ ladder 15 times. Whats the total length of
the ladders that both workers climbed in inches?

20

Under review as a conference paper at ICLR 2026

Gold Answer: 11880

Model Prediction:
Let’s break it down step by step.

Keaton climbed a 30 feet ladder 20 times. To find the total length of the ladder he climbed, we
need to multiply the height of the ladder by the number of times he climbed it:

30 feet/ladder x 20 times = 600 feet
Since there are 12 inches in 1 foot, we can convert the total length from feet to inches:
600 feet x 12 inches/foot = 7200 inches

Now, let§ calculate the total length of the ladder Reece climbed. Reece climbed a ladder that was
4 feet shorter than Keatons ladder, which means Reeces$ ladder was:

30 feet - 4 feet = 26 feet

Reece climbed the ladder 15 times, so the total length of the ladder he climbed is:
26 feet/ladder x 15 times = 390 feet

Converting this to inches:

390 feet x 12 inches/foot = 4680 inches

Now, lets add the total length of the ladders climbed by both workers:

7200 inches (Keaton) + 4680 inches (Reece) = 11,880 inches

So, the total length of the ladders that both workers climbed is 11,880 inches.

DEEPSEEK-V3 OUTPUT

Semantic Consistency (score 5): Every step strictly follows the problem facts without inventing events,
dropping givens, or adding unstated assumptions. The response correctly processes Keaton§ 30-foot lad-
der climbed 20 times, calculates Reeces ladder as 4 feet shorter (26 feet) climbed 15 times, converts both
totals from feet to inches using the standard conversion (12 inches per foot), and sums the results accu-
rately. The final answer is fully grounded in the given problem.

Logicality (score 5): All inferences and arithmetic are valid; each step follows logically from prior steps.
The response correctly interprets the problem, performs accurate calculations for both workers (including
the conversion from feet to inches), and sums the results appropriately.

Informativeness (score 5): Full, verifiable step-by-step derivation showing all essential calculations:
Keatons total feet (30 x 20 = 600), conversion to inches (600 x 12 = 7200), Reeces ladder height (30 - 4
= 26), Reeces total feet (26 x 15 = 390), conversion to inches (390 x 12 = 4680), and final sum (7200 +
4680 = 11880). Anyone can re-check the answer from these clear, complete steps.

Fluency (score 5): Clear, grammatical, well-punctuated, and easy to follow; uses readable notation and
step-by-step presentation that flows logically from one calculation to the next.

Factuality (score 5): All factual claims are correct and well-supported: accurate arithmetic (30x20=600,
30-4=26, 26x15=390, 600x12=7200, 390x12=4680, 7200+4680=11880), correct unit conversion (12
inches per foot), and proper application of the problems conditions. No errors, hallucinations, or unsup-
ported assertions.

QWEN3-1.7B PROBING EVALUATION

Predicted scores:

Semantic Consistency: 4
Logicality: 5
Informativeness: 5
Fluency: 5

Factuality: 5

21

Under review as a conference paper at ICLR 2026

QWEN3-1.7B PROMPT-BASED EVALUATION OUTPUT

Semantic Consistency (score 3): Solution follows the problem facts. Minor consistency lapse: the
rationale never states the tacit assumption that each ’climb’ is a single ascent. Also, unit management is
done per person instead of showing a single feet-to-inches conversion. These are small omissions that do
not change the numeric result, so mid-level credit is appropriate.

Logicality (score 3): Arithmetic steps are correct. Logical inefficiency exists: the chain converts each
person to inches separately rather than adding feet then converting once — a harmless but unnecessary
detour. Because all inferences are valid but the chain is slightly untidy, a middle score fits.
Informativeness (score 3): Key calculations are present. However, the explanation omits one explicit
grouped intermediate (explicitly writing ’total = 990 ft’ before conversion is not shown in every version),
and some steps are shown only implicitly. Enough detail to verify the answer, but not fully exhaustive —
hence partial credit.

Fluency (score 4): Language is clear, grammatical, and easy to follow. Sentences read naturally and
numeric steps are separated. Minor repetition and slightly verbose conversion phrasing prevent a perfect
score, but overall readability is high.

Factuality (score 2): While the final numeric answer is correct, there are factual/imprecision concerns
that lower confidence: (1) the rationale implicitly assumes ’climb’ means one ascent and does not state
this, which could be misread in other contexts; (2) converting per-person instead of converting total feet
introduces an avoidable chance for unit-handling mistakes in variants of the problem. These represent
multiple factual/imprecision issues significant enough to warrant a low factuality rating.

Figure: Complete evaluation outputs for the GSM8K case across three judges: DeepSeek-V3, Qwen3-1.7B
(probing), and Qwen3-1.7B (prompting).

K PROMPT TEMPLATES

We provide the one-shot evaluation prompt templates for five aspects defined in Section 4.1 across
three selected benchmarks: GSM8K, MATH, and GPQA. We use these prompts to get LLM evalu-
ation results. Some parts of the prompt design are inspired by SOCREVAL(He et al.| [2023).

It’s noticeable that when we use these same prompts to prob small LMs, we found the prompts
are too complex for small LMs to understand, which makes it difficult to acquire accurate probing
results. Thus, for probing prompts, we remove the one-shot example and ask it to directly output
the score, instead of JSON output. Specifically, for the probing evaluation prompt, we remove
the "Example question”, "Example generated response”, and "Example representation”. We also
change the final output requirement to: “Now evaluate the Question and Generated response above
based on the instruction. Return only the score.”

22

Under review as a conference paper at ICLR 2026

Evaluation Prompt of Semantic Consistency on GSM8K and MATH

nstruction:

You are a judge that scores Semantic Consistency of a step-by-step rationale for a reasoning problem. Definition: Semantic Consistency = the solution steps ant
final answer must stay faithful to the problem facts (no inventing events, no dropping givens, no added unstated assumptions). A step is inconsistent if it
contradicts the problem, introduces facts not present in the problem, or ignores givens. Scoring: integer 1-5.

5 — Every step and the final answer strictly follow the problem facts; no unstated assumptions or contradictions.

4 — Steps mostly follow the givens; one small unstated assumption that doesn’t change the outcome.

3 — Minor omission or one mild contradiction that slightly weakens trust in the chain.

2 — Noticeable contradictions or added facts that affect the reasoning or outcome.

1 — Steps contradict the problem or introduce major unstated facts; answer not grounded in the problem.

Example question:
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

Example generated response:
She sold 48 in April. In May she sold half as many but donated 3 of those to a friend, so May=24-3=21; total=69.

Example representation:
{"score": 2, "justification": "Introduces an unstated donation (3) not in the problem; solution no longer strictly follows the given facts."}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 10: Evaluation prompt of Semantic Consistency on GSM8K and MATH.

Evaluation Prompt of Logicality on GSM8K and MATH

Instruction:

You are a judge that scores Logicality of a step-by-step rationale for a reasoning problem. Definition: Logicality = whether each inference and arithmetic step
follows valid rules and correctly applies operations. Penalize invalid deductions or misapplied reasoning. Scoring: integer 1-5.

5 — All inferences and arithmetic are valid; each step follows logically from prior steps.

4 — One small inference leap or minor justification gap, but overall logic holds.

3 — Some steps are questionable or contain small mistakes, yet parts of reasoning remain sound.

2 — Multiple invalid inferences or arithmetic errors that materially affect the solution.

1 — Fundamentally illogical or nonsensical reasoning (steps do not connect).

Example question:
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

9
April = 48. 'Half as many in May' interpreted as add half of April to April, May = 48 + 48/2 = 72. Total = 48 + 72 = 120.

Example representation:
{"score": 1, "justification": "Misinterprets 'half as many' and performs an invalid reasoning step, producing an illogical total.”}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 11: Evaluation prompt of Logicality on GSM8K and MATH.

23

Under review as a conference paper at ICLR 2026

Evaluation Prompt of Logicality on GPQA

Instruction:

You are a judge that scores Logicality of a step-by-step rationale for a reasoning problem. Definition: Logicality = whether each inference and arithmetic step
follows valid rules and correctly applies operations. Penalize invalid deductions or misapplied reasoning. Scoring: integer 1-5.

5 — All inferences and arithmetic are valid; each step follows logically from prior steps.

4 — One small inference leap or minor justification gap, but overall logic holds.

3 — Some steps are questionable or contain small mistakes, yet parts of reasoning remain sound.

2 — Multiple invalid inferences or arithmetic errors that materially affect the solution.

1 — Fundamentally illogical or nonsensical reasoning (steps do not connect).

Example question:

A large gene has dozens of exons, of which the central ones code for folded triple helical repeats. Which structure below is not involved in the proposed therapy?
Options:

polyA tail

R-loops

antisense

lariat

Example generated response:
Morpholino blocks exon, so lariat must be involved, polyA tail not used, R-loops skipped, antisense binds randomly.

Example representation:
{"score": 2, "justification": "Some reasoning steps are invalid or contradictory; e.g., 'antisense binds randomly' is unsupported and illogical in context.”}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 12: Evaluation prompt of Logicality on GPQA.

Evaluation Prompt of Informativeness on GSM8K and MATH

nstruction:

You are a judge that scores Informativeness of a step-by-step rationale for a reasoning problem. Definition: Informativeness = whether the rationale shows the
essential steps and intermediate calculations needed to verify the final answer (not merely a terse final number). Reward verifiable, stepwise derivations. Scoring:
integer 1-5.

5 — Full, verifiable step-by-step derivation; anyone can re-check the answer from the steps.

4 — Most essential steps shown; one or two minor gaps but overall verifiable.

3 — Key steps present but several derivations omitted; partially verifiable.

2 — Very terse; crucial intermediate calculations missing so verification is hard.

1 — Only an answer or irrelevant details; no usable derivation.

Example question:
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

Example generated response:
After thinking, the answer is 72.

Example representation:
{"score": 1, "justification": "Only final number given; no intermediate steps or explanation to verify the computation.”}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 13: Evaluation prompt of Informativeness on GSM8K and MATH.

24

Under review as a conference paper at ICLR 2026

Evaluation Prompt of Informativeness on GPQA

Instruction:

You are a judge that scores Informativeness of a step-by-step rationale for a reasoning problem. Definition: Informativeness = whether the rationale shows the
essential steps and intermediate calculations needed to verify the final answer (not merely a terse final number). Reward verifiable, stepwise derivations. Scoring:
integer 1-5.

5 — Full, verifiable step-by-step derivation; anyone can re-check the answer from the steps.

4 — Most essential steps shown; one or two minor gaps but overall verifiable.

3 — Key steps present but several derivations omitted; partially verifiable.

2 — Very terse; crucial intermediate calculations missing so verification is hard.

1 — Only an answer or irrelevant details; no usable derivation.

Example question:

A large gene has dozens of exons, of which the central ones code for folded triple helical repeats. Which structure below is not involved in the proposed therapy?
Options:

polyA tail

R-loops

antisense

lariat

Answer: R-loops

Example representation:
{"score": 1, "justification": "Only the final answer is given; no step-by-step rationale to show how the answer was derived.”}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
ISON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 14: Evaluation prompt of Informativeness on GPQA.

Evaluation Prompt of Fluency on GSM8K and MATH

Instruction:

You are a judge that scores Fluency (readability and clarity) of a step-by-step rationale for a reasoning problem. Definition: Fluency = the text is grammatical,
clear, and easy to follow. Judge punctuation, sentence flow, readable notation and presentation. Fluency does NOT evaluate correctness. Scoring: integer 1-5.
5 — Clear, grammatical, well-punctuated, and easy to follow; notation readable.

4 — Mostly clear with small phrasing or punctuation issues.

3 — Understandable but awkward phrasing, punctuation, or notation that slows comprehension.

2 — Hard to follow; many grammatical issues or poor notation.

1 — Unreadable or incoherent language.

Example question:
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

sold 48 april then half may 24 total 72

Example representation:
{"score": 2, "justification": "Ungrammatical and terse; the meaning is recoverable but phrasing and punctuation are poor.”}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 15: Evaluation prompt of Fluency on GSM8K and MATH.

25

Under review as a conference paper at ICLR 2026

Evaluation Prompt of Fluency on GPQA

Instruction:

You are a judge that scores Fluency (readability and clarity) of a step-by-step rationale for a reasoning problem. Definition: Fluency = the text is grammatical,
clear, and easy to follow. Judge punctuation, sentence flow, readable notation and presentation. Fluency does NOT evaluate correctness. Scoring: integer 1-5.
5 — Clear, grammatical, well-punctuated, and easy to follow; notation readable.

4 — Mostly clear with small phrasing or punctuation issues.

8 — Understandable but awkward phrasing, punctuation, or notation that slows comprehension.

2 — Hard to follow; many grammatical issues or poor notation.

1 — Unreadable or incoherent language.

Example question:

A large gene has dozens of exons, of which the central ones code for folded triple helical repeats. Which structure below is not involved in the proposed therapy?
Options:

polyA tail

R-loops

antisense

lariat

Example generated response:
use morpholino. not involve r-loops

Example representation:
{"score": 2, "justification": "Short, ungrammatical phrasing and poor punctuation make it hard to read, although meaning is recoverable.”}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 16: Evaluation prompt of Fluency on GPQA.

Evaluation Prompt of Factuality on GSM8K and MATH

nstruction:

You are a judge that scores Factuality of a step-by-step rationale for a reasoning problem. Definition: Factuality = whether the claims, stated facts, evidence,
references, and concrete assertions in the rationale are factually correct and supported. Penalize incorrect facts, unsupported assertions, hallucinations, wrong
citations, or misapplied domain knowledge. Scoring: integer 1-5.

5 — All factual claims and referenced facts are correct and well-supported by the rationale or common knowledge. No hallucinations.

4 — Minor factual imprecision (typo, small numeric slip, or weakly-supported minor claim) that does not change the conclusion.

3 — Some factual errors or unsupported claims exist; the final answer may still be salvageable with corrections or additional evidence.

2 — Multiple factual mistakes or serious unsupported assertions that materially affect confidence in the conclusion.

1 — Major factual errors, clear hallucinations, or fundamentally wrong domain knowledge that render the answer incorrect.

Example question:
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

She sold 48/2 = 20 clips in May. Natalia sold 48+20 = 68 clips altogether. #### 68

Example representation:
{"score": 1, "justification": "Arithmetic is incorrect (48/2 \u2260 20), so factual claims and final numeric result are wrong.”}

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 17: Evaluation prompt of Factuality on GSM8K and MATH.

26

Under review as a conference paper at ICLR 2026

Evaluation Prompt of Factuality on GPQA

Instruction:

You are a judge that scores Factuality of a step-by-step rationale for a reasoning problem. Definition: Factuality = whether the claims, stated facts, evidence,
references, and concrete assertions in the rationale are factually correct and supported. Penalize incorrect facts, unsupported assertions, hallucinations, wrong
citations, or misapplied domain knowledge. Scoring: integer 1-5.

5 — All factual claims and referenced facts are correct and well-supported by the rationale or common knowledge. No hallucinations.

4 — Minor factual imprecision (typo, small numeric slip, or weakly-supported minor claim) that does not change the conclusion.

3 — Some factual errors or unsupported claims exist; the final answer may still be salvageable with corrections or additional evidence.

2 — Multiple factual mistakes or serious unsupported assertions that materially affect confidence in the conclusion.

1 — Major factual errors, clear hallucinations, or fundamentally wrong domain knowledge that render the answer incorrect.

Example question:

A large gene has dozens of exons, of which the central ones code for folded triple helical repeats. Which structure below is not involved in the proposed therapy?
Options:

polyA tail

R-loops

antisense

lariat

9
The polyA tail is not used; antisense and R-loops both irrelevant; lariat forms irrelevant loops.

Example representation:
{"score": 3, "justification
correct.”}

"Some claims are factually imprecise (e.g., lariat forms irrelevant loops is not supported by the question), but answer may still be

Question: {Input question}

Generated response: {Input response}

Now evaluate the Question and Generated response above based on the instruction and the format of the example representation. Return only the required
JSON format: {"score": <int 1-5>, "justification": "<text explaining the reason for the score>"}

Figure 18: Evaluation prompt of Factuality on GPQA.

27

	Introduction
	Related Work
	METHODOLOGY
	LLMs evaluation annotation
	Small LMs probing
	Building probing classifiers

	Experiments
	EXPERIMENTAL SETUP
	Probing Classifiers Results

	Analysis
	Ablation study of pooling and classifier methods
	Data filtering and Supervised Fine-Tuning (SFT)

	Semantic Capacity Asymmetry in Evaluative Signals
	Evaluative Signals in Intermediate Representations
	The Semantic Capacity Asymmetry Hypothesis

	Conclusion
	Limitations
	Small LMs probing Details
	Datasets Statistics
	Implementation Details
	Small LMs Parameters
	Medium LMs Parameters
	Large LMs Parameters
	Model Tuning Hyperparameter
	Probing Classifier Details

	Probing Datasets Statistics
	Detailed Main Results
	Out-of-Distribution (OOD) probing
	Extended results on open-ended benchmark
	Additional Analysis of Evaluative Signals
	Case Analysis
	Prompt templates

