
A Neural-Preconditioned Poisson Solver for
Mixed Dirichlet and Neumann Boundary Conditions

Kai Weixian Lan 1 Elias Gueidon 2 Ayano Kaneda 3 Julian Panetta 1 Joseph Teran 1

Abstract
We introduce a neural-preconditioned iterative
solver for Poisson equations with mixed bound-
ary conditions. Typical Poisson discretizations
yield large, ill-conditioned linear systems. Itera-
tive solvers can be effective for these problems,
but only when equipped with powerful precon-
ditioners. Unfortunately, effective precondition-
ers like multigrid (Brandt, 1977) require costly
setup phases that must be re-executed every time
domain shapes or boundary conditions change,
forming a severe bottleneck for problems with
evolving boundaries. In contrast, we present a
neural preconditioner trained to efficiently ap-
proximate the inverse of the discrete Laplacian
in the presence of such changes. Our approach
generalizes to domain shapes, boundary condi-
tions, and grid sizes outside the training set. The
key to our preconditioner’s success is a novel,
lightweight neural network architecture featuring
spatially varying convolution kernels and sup-
porting fast inference. We demonstrate that our
solver outperforms state-of-the-art methods like
algebraic multigrid as well as recently proposed
neural preconditioners on challenging test cases
arising from incompressible fluid simulations.

1. Introduction
The Poisson equation is ubiquitous in scientific computing:
it governs a wide array of physical phenomena, arises as a
subproblem in many numerical algorithms, and serves as a
model problem for the broader class of elliptic PDEs. Solv-
ing its discretized form, a linear system of equations involv-
ing the discrete Laplacian matrix, is the bottleneck in many
engineering and scientific applications. These large, sym-

1University of California, Davis, USA 2University of Califor-
nia, Los Angeles, USA 3Waseda University, Tokyo, Japan. Corre-
spondence to: Kai Weixian Lan <kai.weixian.lan@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

metric positive definite and sparse systems of equations are
notoriously ill-conditioned. Fast Fourier Transforms (Coo-
ley & Tukey, 1965) are optimal for these problems when
discretized on trivial geometric domains, but they are not
applicable for practical domain shapes. Direct methods
like Cholesky factorization (Golub & Loan, 2012) resolve
conditioning issues but suffer from loss of sparsity/fill-in
and are prohibitively costly in practice when per-time-step
refactoring is necessary (e.g., with changing domain shape
or coefficients). Iterative methods like preconditioned con-
jugate gradient (PCG) (Saad, 2003) and multigrid (Brandt,
1977) can achieve good performance, but an optimal pre-
conditioning strategy is not generally available. Though
multigrid preconditioners can guarantee modest iteration
counts, computational overhead associated with solver cre-
ation and other per-iteration costs can dominate runtimes
in practice. This is especially true for problems posed on
evolving domains, where multigrid hierarchies must be re-
built at each time step, and for nonlinear problems that re-
quire per-iteration rebuilds. Unfortunately, there is no clear
algorithmic solution.

Recently, machine learning techniques have shown
promise for these problems, eliminating setup costs at run-
time by training a general-purpose solver once on a di-
verse set of systems offline. Tompson et al. (2017) showed
that a network (FluidNet) can be used to generate an ap-
proximate inverse across domain shapes, albeit only with
Neumann boundary conditions. Kaneda et al. (2023) de-
veloped the Deep Conjugate Direction Method (DCDM),
which improves on FluidNet by applying a similar network
structure as a preconditioner for an orthogonalized gradient
descent on the matrix norm of the error, enabling highly
accurate solutions to be obtained. While DCDM is simi-
lar to PCG, the nonlinearity of their approximate inverse
required a generalization of the PCG method. Also, their
approach only supports Neumann pressure boundary con-
ditions. We build on the DCDM approach and generalize
it to domains with mixed Dirichlet and Neumann bound-
ary conditions. Notably, these problems arise in simulating
free-surface liquid flows. DCDM fails on these cases, yet
we show that a novel, lighter-weight network structure can
be used effectively in its iterative formalism. In contrast to
DCDM, our approximate inverse is a linear operator and

1

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

can handle mixed boundary conditions over time-varying
fluid domains. Furthermore, we demonstrate that this struc-
ture drastically improves performance over DCDM.

We design our network architecture to represent the dense
nature of the inverse of a discrete Laplacian matrix. That
is, the inverse matrix for a discrete Laplace operator has the
property that local perturbations anywhere in the domain
have non-negligible effects at all other domain points. Our
network structure uses a hierarchy of grid scales to improve
the resolution of this non-local behavior over what is possi-
ble with DCDM’s network architecture. In effect, the pro-
cess of transferring information across the hierarchy from
fine grid to increasingly coarse grids and back again facil-
itates rapid propagation of information across the domain.
This structure is similar to multigrid but has some impor-
tant differences. We incorporate the effects of Dirichlet and
Neumann conditions at irregular boundaries with a novel
convolution design. Specifically, we use stencils that learn
spatially varying weights based on a voxel’s proximity to
the boundary and the boundary condition types encoded
there. We show that our network outperforms state-of-the-
art preconditioning strategies, including DCDM, FluidNet,
algebraic multigrid, and incomplete Cholesky, performing
our comparisons across a number of representative free-
surface liquid and fluid flow problems.

In summary, our work makes the following contributions:

• We introduce a novel light-weight architecture em-
ploying spatially varying convolutional kernels that
is highly effective at approximating the inverse
of structured-grid Laplacian matrices with arbitrary
mixed Dirichlet and Neumann boundary conditions.

• We show that a simple loss function based on the
residual of the linear system suffices for training in an
unsupervised manner, producing a network that gen-
eralizes to systems not seen during training.

• We demonstrate through a comprehensive bench-
mark on challenging fluid-simulation test cases that,
when paired with an appropriate iterative method,
our neural-preconditioned solver dramatically outper-
forms state-of-the-art solvers like algebraic multigrid
and incomplete Cholesky, as well as recent neural pre-
conditioners like DCDM and FluidNet.

To promote reproducibility, we have released our full code
and a link to our pretrained model at https://github.
com/kai-lan/MLPCG/tree/icml2024.

2. Related Work
Many recent works leverage machine learning techniques
to accelerate numerical linear algebra computations.

Ackmann et al. (2020) use supervised learning to com-
pute preconditioners from fully-connected feed-forward
networks in semi-implicit time stepping for weather and
climate models. Sappl et al. (2019) use convolutional
neural networks (CNNs) (Lecun et al., 1998) to learn
banded approximate inverses for discrete Poisson equa-
tions arising in incompressible flows discretized over
voxelized spatial domains. However, their loss function
is the condition number of the preconditioned operator,
which is prohibitively costly at high resolution. Özbay
et al. (2021) also use CNNs to approximate solutions
to Poisson problems arising in incompressible flow
discretized over voxelized domains, but they do not
learn a preconditioner and their approach only supports
two-dimensional square domains. Our approach is most
similar to those of Tompson et al. (2017) and Kaneda
et al. (2023), who also consider discrete Poisson equations
over voxelized fluid domains, however our lighter-weight
network outperforms them and generalizes to a wider
class of boundary conditions. Li et al. (2023) build on the
approach of Sappl et al. (2019), but use a more practical
loss function based on the supervised difference between
the inverse of their preconditioner times a vector and
its image under the matrix under consideration. Their
preconditioner is the product of easily invertible, sparse
lower triangular matrices. Notably, their approach works
on discretizations over unstructured meshes. Götz &
Anzt (2018) learn Block-Jacobi preconditioners using
deep CNNs. The choice of optimal blocking is unclear for
unstructured discretizations, and they use machine learning
techniques to improve upon the selection. Kopaničáková
& Karniadakis (2024) develop a general collection of
neural DeepONet preconditioners. The most effective of
these is akin to a model reduction technique with a set of
reduced basis functions taken from a trained DeepONet.
However, each application of the preconditioner itself
requires solving a large (usually dense) linear system.

Numerous recent works use neural network architec-
tures that are analogous to a multigrid hierarchy. He &
Xu (2019) analyzed the similarities between the structure
of a convolutional network and that of the multigrid
method, and proposed their novel multigrid-structured
network MagNet. The UNet (Ronneberger et al., 2015)
and MSNet architectures (Mathieu et al., 2016) are similar
to a multigrid V-cycle in terms of data flow, as noted by
Cheng et al. (2021) and Azulay & Treister (2023). Cheng
et al. (2021) use the multi-scale network architecture
MSNet to approximate the solution of Poisson equations
arising in plasma flow problems. However, they only
consider flows over a square domain in 2D. Azulay &
Treister (2023) note the similarity between the multi-scale
UNet architecture and a multigrid V-cycle. They use
this structure to learn preconditioners for the solution of

2

https://github.com/kai-lan/MLPCG/tree/icml2024
https://github.com/kai-lan/MLPCG/tree/icml2024

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

heterogeneous Helmholtz equations. Eliasof et al. (2023)
also use a multigrid-like architecture for a general class
of problems. Huang et al. (2023) use deep learning to
generate multigrid smoothers at each grid resolution that
effectively smooth high frequencies: CNNs generate the
smoothing stencils from matrix entries at each level in
the multigrid hierarchy. This is similar to our boundary-
condition-dependent stencils, however we note that our
network is lighter-weight and allowed to vary at a larger
scale during learning. Furthermore, optimal stencils are
known for the problems considered in this work, and we
provide evidence that our solver outperforms them.

3. Motivation: Incompressible Fluid
Simulation with Mixed B.C.s

While our solver architecture can be applied to any Poisson
equation discretized on a structured grid, our original moti-
vation was to accelerate a popular method for incompress-
ible inviscid fluid simulation based on the splitting scheme
introduced by (Chorin, 1967). The fluid’s velocity u(x, t)
is governed by the incompressible Euler equations:

ρ

(
∂u

∂t
+ (u · ∇)u

)
+∇p = f ext s.t. ∇·u = 0 in Ω,

where Ω is the domain occupied by fluid, pressure p is
the Lagrange multiplier for the incompressibility constraint
∇ · u = 0, ρ is the mass density, and f ext accounts for ex-
ternal forces like gravity. These equations are augmented
with initial conditions u(x, 0) = u0(x) and ρ(x, 0) = ρ0

as well as the boundary conditions discussed in Section 3.1.
Incompressibility implies that mass density is conserved
throughout the simulation (ρ ≡ ρ0).

Chorin’s scheme applies finite differences in time and splits
the integration from time tn to tn+1 = tn + ∆t into two
steps. First, a provisional velocity field u∗ is obtained by an
advection step that neglects pressure and incompressibility:

u∗ − un

∆t
+ (un · ∇)un =

1

ρ0
f ext. (1)

Second, a projection step obtains un+1 by eliminating di-
vergence from u∗:

−∇ · 1

ρ0
∇pn+1 = − 1

∆t
∇ · u∗, (2)

un+1 − u∗

∆t
= − 1

ρ0
∇pn+1. (3)

Equations 1-3 hold inside Ω, and we have deferred discus-
sion of boundary conditions to Section 3.1. The bottleneck
of this full process is (2), which is a Poisson equation since
ρ0 is spatially constant.

3.1. Boundary Conditions

Our primary contribution is our
ability to handle both Neumann and
Dirichlet boundary conditions for
the Poisson equation. We assume
the computational domain D is de-
composed into D = Ω ∪ Ωa ∪ Ωs, as sketched in the inset,
where Ωa denotes free space and Ωs the region filled with
solid. This decomposition induces a partition of the fluid
boundary ∂Ω = Γn ∪ Γd. Boundary Γn contains the fluid-
solid interface and the intersection ∂Ω∩∂D (i.e., the region
outside D is treated as solid); on it a free-slip boundary
condition is imposed: u(x, t) · n̂(x) = uΓ

n(x, t), where n̂
denotes the outward-pointing unit normal. This condition
on u translates via (3) into a Neumann condition on (2):

n̂ · ∇pn+1 =
ρ0

∆t
(n̂ · u∗ − uΓ

n) on Γn. (4)

Free-surface boundary Γd represents the interface between
the fluid and free space. Ambient pressure pa then imposes
on (2) a Dirichlet condition pn+1 = pa on Γd. In our ex-
amples, we set pa = 0.

The Dirichlet conditions turn out to make solving (2) fun-
damentally more difficult: while the DCDM paper (Kaneda
et al., 2023) discovered that a preconditioner blind to the
domain geometry and trained solely on an empty box is
highly effective for simulations featuring pure Neumann
conditions, the same is not true for Dirichlet (see Figure 6).

3.2. Spatial Discretization

We discretize the full domain D using a regular marker-
and-cell (MAC) staggered grid with nc cubic elements
(Harlow, 1964). The disjoint subdomains Ω, Ωa, and Ωs

are each represented by a per-cell rasterized indicator field;
these are collected into a 3-channel image, stored as a ten-
sor I . In the case of a 2D square with nc = N2, this tensor
is of shape (3, N,N), and summing along the first index
yields a single-channel image filled with ones.

Velocities and forces are represented at the corners of this
grid, and for smoke simulations the advection step (1) is
implemented using an explicit semi-Lagrangian method
(Stam, 1999; Robert, 1981). For free-surface simulations,
advection is performed by interpolating fluid velocities
from the grid onto particles responsible for tracking the
fluid state, advecting those particles, and then transferring
their velocities back to the grid. We use a PIC/FLIP blend
transfer scheme with a 0.99 ratio (Zhu & Bridson, 2005).

Pressure values are stored at element centers, and the
Laplace operator of (2) is discretized into a sparse sym-
metric matrix AI ∈ Rnc×nc using the standard second-
order accurate finite difference stencil (with 5 points
in 2D and 7 in 3D) but with modifications to ac-

3

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

count for Dirichlet and Neumann boundary condi-
tions: stencil points falling outside Ω are dropped,

-1 -1 2
-1-14-1

-1 -1 2

-1 4
-1

Air (Dirichlet)

Fluid (No BC)

Solid (Neumann)

and the central
value (i.e., the di-
agonal matrix en-
try) is determined
as the number of
neighboring cells
belonging to ei-
ther Ω or Ωa. Ex-
amples of these
stencils are visualized in 2D in the inset. Rows
and columns corresponding to cells outside Ω are left
empty, meaning AI typically has a high-dimensional
nullspace. These empty rows and columns are removed
before solving, obtaining a smaller positive definite matrix
ÃI ∈ Rnf×nf , where nf is the number of fluid cells.

The right-hand side of (2) is discretized using the stan-
dard MAC divergence finite difference stencil into a vec-
tor b ∈ Rnc , which also receives contributions from the
Neumann boundary. Entries of this vector corresponding
to cells outside Ω are removed to form right-hand side vec-
tor b̃ ∈ Rnf of the reduced linear system representing the
discrete Poisson equation:

ÃI x̃ = b̃, (5)

where x̃ ∈ Rnf collects the fluid cells’ unknown pressure
values (a discretization of pn+1).

The constantly changing domains and boundary conditions
of a typical fluid simulation mean traditional precondition-
ers for (5) like multigrid or incomplete Cholesky, as well
as direct sparse Cholesky factorizations, must be rebuilt at
every time step. This prevents their high fixed costs from
being amortized across frames and means they struggle to
outperform a highly tuned GPU implementation of unpre-
conditioned CG. This motivates our neural-preconditioned
solver which, after training, instantly adapts to arbitrary
subdomain shapes encoded in I .

4. Neural-preconditioned Steepest Descent
with Orthogonalization

Our neural-preconditioned solver combines a carefully
chosen iterative method (Section 4.1) with a precondi-
tioner based on a novel neural network architecture (Sec-
tion 4.2.1) inspired by multigrid.

4.1. Algorithm

For symmetric positive definite matrices A (like the dis-
crete Laplacian ÃI from (5)), the preconditioned conjugate
gradient (PCG) algorithm (Shewchuk, 1994) is by far the
most efficient iterative method for solving linear systems

Ax = b when an effective preconditioner is available. Un-
fortunately, its convergence rate is known to degrade when
the preconditioner itself fails to be symmetric, as is the case
for our neural preconditioner (Section 4.2.2). Bouwmeester
et al. (2015) have shown that good convergence can be re-
covered for nonsymmetric multigrid preconditioners using
the “flexible PCG” variant at the expense of an additional
dot product. However, this variant turns out to perform sub-
optimally with our neural preconditioner, as shown in Ap-
pendix A.3. Instead, we adopt the preconditioned steepest
descent with orthogonalization (PSDO) method proposed
in (Kaneda et al., 2023), shown in Algorithm 1, which per-
forms well even for their nonlinear preconditioner.

Algorithm 1 Neural-preconditioned Steepest Descent with
A-Orthogonalization (NPSDO).

Given linear system (A, b), image I , and trained net-
work Pnet

r0 = b−Ax0

k = 0
while ‖rk‖ ≥ ε do

k = k + 1

dk = Pnet
(
I, rk−1

‖rk−1‖

)
for k − northo ≤ i < k do

dk = dk − d>k Adi

d>i Adi
di

end for
αk =

r>k−1dk

d>k Adk

xk = xk−1 + αkdk

rk = b−Axk

end while
return xk

The PSDO algorithm can be understood as a modifica-
tion of standard CG that replaces the residual with the
preconditioned residual as the starting point for gener-
ating search directions and, consequently, cannot enjoy
many of the simplifications baked into the traditional al-
gorithm. Most seriously, A-orthogonalizing against only
the previous search direction no longer suffices to achieve
A-orthogonality to all past steps. Therefore, iteration
k of PSDO obtains its step direction dk by explicitly
A-orthogonalizing the preconditioned residual against the
last northo directions (where northo is a tunable parame-
ter) before determining step length αk with an exact line
search. PSDO reduces to standard preconditioned steep-
est descent (PSD) when northo = 0, and it is mathemati-
cally equivalent to unpreconditioned CG when northo ≥ 1
and the identity operator is used as the preconditioner. In
the case of a symmetric preconditioner P = LL>, PSDO
differs from PCG by taking steps that are A-orthogonal
rather than LAL>-orthogonal. When combined with our
neural preconditioner, we call this algorithm NPSDO, pre-
sented formally in Algorithm 1. We empirically determined

4

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

northo = 2 to perform well (see Appendix A.4) and use this
value in all reported experiments.

4.2. Neural Preconditioner

The ideal preconditioner for all iterative methods described
in Section 4.1 is the exact inverseA−1; with it, each method
would converge to the exact solution in a single step. Of
course, the motivation for using an iterative solver is that
inverting or factorizing A is too costly (Figure 4), so in-
stead we must seek an inexpensive approximation of A−1.
Examples are incomplete Cholesky, which does its best to
factorizeAwith a limited computational budget, and multi-
grid, which applies iterations of a multigrid solver.

Our method approximates the map r 7→ A−1r by our neu-
ral network Pnet(I, r). Departing from recent works like
that of Kaneda et al. (2023), we use a novel architecture that
both substantially boosts performance on pure-Neumann
problems and generalizes to the broader class of Poisson
equations with mixed boundary conditions by considering
geometric information from I . The network performs well
on 2D or 3D Poisson equations of varying sizes, but to sim-
plify the exposition, our figures and notation describe the
method on small square grids of size N ×N .

We note that Algorithm 1 runs on linear system ÃI x̃ = b̃,
featuring vectors of smaller size nf , but the network al-
ways operates on input vectors of full size nc, reshaped into
(N,N) tensors. Therefore, to evaluate d̃ = Pnet(I, r̃), r̃ is
first padded by inserting zeros into locations corresponding
to cells in Ωa and Ωs, and then those locations of the output
are removed to obtain d̃ ∈ Rnf .

4.2.1. ARCHITECTURE

Our multi-resolution network architecture (Figure 1(a))
is inspired by UNet and geometric multigrid, aiming to
propagate information across the computational grid faster
than the one-cell-per-iteration of unpreconditioned CG.
The architecture is defined recursively, consisting of levels
1 ≤ ` ≤ L each executing the operations detailed in Algo-
rithm 2. A given level ` operates on an input image I` of
shape (3, N `, N `) and an input vector r`1. It performs a spe-
cial image-dependent convolution operation defined by our
custom convolution block CConv and then downsamples
the resulting vector x`

1, as well as I`, to the next-coarser
level ` + 1 using average pooling with kernel size 2 × 2.
The output of the level `+ 1 subnetwork is then upsampled
with bilinear interpolation, run through another convolu-
tion stage, and finally linearly combined with x`

1 to obtain
the output. At the finest level, I1 = I and r1

1 = r, while
at the coarsest level only a single convolution operation is
performed.

One crucial difference between our network and existing

(a) Full network architecture sketched for L = 3 levels.

Affine
map6 7 8

10

14

12

15 16

119

5

13

1 2 3 4

Spatially varying kernel :

9

5

13

1

2
5 6
1 1

5
3

6 7
2 2

6
4

7 8
3 3

7 8
4

9 10
1413

9 10 11
13 1514

10 11 12
14 1615

5 6
10

13 14
9

5 6 7
9
13

11
14 15
10

6 7 8
10
14

12
15 16
11

7 8
11
15 16
12

121 2
6

9 10
5

1 2 3
5
9

7
10 11
6

2 3 4
6
10

8
11 12
7

3 4
7
11 12

8

11 12
15 16

10

6

14

2

7

15

3

12

8

16

4

5
2

5 6
1 1

5
3

6 7
2 2

6
4

7 8
3

8
3
7 8
4

51 2
6

9 10
5

1 2 3
5
9

7
10 11
6

2 3 4
6
10

8
11 12
7

3 4
7
11 12

8

5 6
10

13 14
9

5 6 7
9
13

11
14 15
10

7 8
11
15 16
12

9 10
1413

9 10 11
13 1514

10 11 12
14 1615

11 12
15 16

Unfold

Group-wise
dot product

9

5

13

1

10

6

14

2

7

15

3

12

8

16

4

11

11

6 7 8
10
14

12
15 16
11

6 7 8

10

14

12

15 16

119

5

13

1 2 3 4

6 7 8

10

14

12

15 16

119

5

13

1 2 3 4

Unfolded :)

(b) Custom convolution block
CConv`

i with i = 1, 2.
(c) Affine block
Aff`

i with i = 1, 2.

Figure 1. Sketches of our network architecture.

Algorithm 2 Operations executed by an L-level network in
pseudocode form.

Given input vector r and image I
r1

1 = r
I1 = I
for ` = 1, · · · ,L − 1 do

I`+1 = Pooling(I`)
x`

1 = CConv`
1(r`1,I

`)
r`+1

1 = Pooling(x`
1)

end for
xL = CConvL1 (rL1 ,I

L)
for ` = L − 1, . . . , 1 do

r`2 = Interpolation(x`+1)
x`

2 = CConv`
2(r`2,I

`)
c`1 = Aff`

1(I`)
c`2 = Aff`

2(I`)
x` = c`1x

`
1 + c`2x

`
2

end for
return x1

neural solvers like FluidNet (Tompson et al., 2017) is how
geometric information from I is incorporated. Past archi-
tectures treat this geometric data on the same footing as in-
put tensor r, e.g. feeding both into standard multi-channel
convolution blocks. However, we note that I determines
the entries of AI , and so for the convolutions to act anal-
ogously to the smoothing operations of multigrid, this data
should inform the weights of convolutions applied to r.
This observation motivates our use of custom convolutional

5

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

blocks CConv whose spatially varying kernels depend on
local information from I . We note the close connection be-
tween these varying kernels and attention (Bahdanau et al.,
2014; Vaswani et al., 2017).

Each custom convolutional block (Figure 1(b)) at level `
learns an affine map from a 3 × 3 sliding window in I` to
a 3 × 3 kernel Ki,j . This affine map is parametrized by a
weights tensor W of shape (32, 3, 3, 3) and a bias vector
B ∈ R32

. Each entry of the block’s output is computed as:

[
CConv`(r,I`)

]
i,j

=

1∑
a,b=−1

Ki,j
a,bri+a,j+b,

Ki,j
a,b :=

3∑
c=1

1∑
l,m=−1

W3a+b,c,l,mI`c,i+l,j+m + B3a+b.

Out-of-bounds accesses in these formulas are avoided by
padding I` with solid pixels (i.e., the values assigned to
cells in Ωs) and x with zeros.

In multigrid, solutions obtained on coarser grids are correc-
tions that are added to the finer grids’ solutions; likewise,
our network mixes in upsampled data from the lower level
using the linear combination c`1x

`
1 + c`2x

`
2. The coefficients

in this combination are defined by (i) convolving I` with a
(spatially constant) kernel W of shape (3, 3, 3); (ii) averag-
ing to produce a scalar; and (iii) adding a scalar bias B. For
efficiency, these evaluation steps are fused into a custom
affine block (Figure 1(c)) that implements the formula:

Aff`(I) = B +
1

32nc

N`∑
i,j=1

3∑
c=1

1∑
l,m=−1

Wc,l,mI`c,i+l,j+m.

Our custom network architecture has numerous advan-
tages. Its output is a linear function of the input vector (un-
like the nonlinear map learned by (Kaneda et al., 2023)),
making it easier to interpret as a preconditioner. The ar-
chitecture is also very lightweight: a model with L = 4
coarsening levels has only ∼ 25k parameters. Its simplic-
ity accelerates network evaluations at solve time, critical to
make NPSDO competitive with the state-of-the-art solvers
used in practice. We note that our solver is fully matrix
free, with Pnet relying only on the image I of the simu-
lation scene to infer information about AI . Furthermore,
since all network operations are formulated in terms of lo-
cal windows into I and r, it can train and run on problems
of any size divisible by 2L−1.

The 3D version of our architecture is a straightforward ex-
tension of the 2D formulas above, simply using larger ten-
sors with additional indices to account for the extra dimen-
sion and extending the sums to run over these indices.

4.2.2. SYMMETRY AND POSITIVE DEFINITENESS

Our network enforces neither symmetry nor positive defi-
niteness, properties that would be needed to guarantee con-
vergence of the standard PCG algorithm (motiving our use
of NPSDO). However, we note that the additional opera-
tions in NPSDO vs PCG necessitated by asymmetry (e.g.,
the extraA-orthogonalizations) do not add significant over-
head compared to the cost of network evaluation, which
accounts for approximately 80% of the solver time. Fur-
thermore, the strong, albeit suboptimal, performance of the
plain PCG algorithm (Appendix A.3) suggests that the de-
viations of our preconditioner from symmetry and positive
definiteness are not severe; this is confirmed by experi-
ments reported in Appendix A.8 that measure the magni-
tude of symmetry violation of our trained operator on ran-
domly generated vectors.

Nevertheless, we experimented with enforcing positive def-
initeness by construction in two different ways: (i) concate-
nating our network with a transposed copy of itself; and
(ii) constraining “post-smoothing” convolution blocks to be
transposes of their corresponding “pre-smoothing” block
and modifying the shortcut connection. Both architecture
variants led to a significant degradation in preconditioner
quality when trained using the same methodology as our
proposed network (Appendix A.8).

4.2.3. TRAINING

We train our network Pnet to approximateAI∖b when pre-
sented with image I and input vector b. We calculate the
loss for an example (I, AI ,b) from our training dataset as
the residual norm:

Loss =
∥∥b−AIPnet(I,b)

∥∥
2
.

We found the more involved loss function used in (Kaneda
et al., 2023) not to benefit our network.

Our training data set consists of 107 matrices collected
from 11 different simulation scenes, some of domain shape
(128, 128, 128) and others (256, 128, 128). For each ma-
trix, we generate 800 right-hand side vectors using a sim-
ilar approach to (Kaneda et al., 2023) but with far fewer
Rayleigh-Ritz vectors. We first compute 1600 Ritz vectors
using Lanczos iterations (Lanczos, 1950) and then generate
from them 800 random linear combinations. These linear
combinations are finally normalized and added to the train-
ing set. To accelerate data generation, we create the right-
hand sides for different matrices in parallel; it takes be-
tween 0.5 and 3 hours to generate the data for each scene.
As Ritz vector calculation is expensive, we experimented
with other approaches, like picking random vectors or con-
structing analytical eigenmodes for the Laplacian onD and
masking out entries outside Ω. Unfortunately these cheaper
generation techniques led to degraded performance.

6

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

Figure 2. We demonstrate our solver with incompressible flow
simulations requiring the solution of mixed Neumann/Dirichlet
boundary conditions for the pressure Poisson equation.

In each epoch of training, we loop over all matrices in our
dataset in shuffled order. For each matrix, we process all
of its 800 right-hand sides in batches of 128, repeating five
times. The full training process takes around 5 days on an
AMD EPYC 9554P 64-Core Processor with an NVIDIA
RTX 6000 GPU. We utilize the transfer learning technique
(Pan & Yang, 2010), training first a 5-level network and
using those weights to initialize a 6-level network, which is
subsequently fine-tuned and used for all experiments.

4.2.4. IMPLEMENTATION

We built our network using PyTorch (Paszke et al., 2019),
but implemented our convolutional and linear blocks as
custom CUDA extensions. The neural network was trained
using single-precision floating point.

5. Results and Analysis
We evaluate the effectiveness and efficiency of our neural
preconditioned solver by comparing it to high-performance
state-of-the-art implementations of several baseline meth-
ods: unpreconditioned CG provided by the CuPy library
(Okuta et al., 2017), as well as CG preconditioned by
the algebraic multigrid (AMG) and incomplete Cholesky
(IC) implementations from the AMGCL library (Demidov,
2020). We furthermore compare against NVIDIA’s AmgX
algebraic multigrid solver (Naumov et al., 2015). All of
these baseline methods are accelerated by CUDA backends
running on the GPU, with the underlying IC implemen-
tation coming from NVIDIA’s cuSparse library. Where

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Speedup over CG

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(a) All systems

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Speedup over CG

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(b) Smallest 25% of systems

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Speedup over CG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(c) Largest 75% of systems

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Speedup over CG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX
DCDM

(d) Neumann only, 1283

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Speedup over CG

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(e) Neumann only, 2563

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Speedup over CG

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(f) Mixed, 1283 and 2563

Figure 3. Histograms of solution speedup vs. a baseline of unpre-
conditioned CG (a) for all solves; and (b-f) for certain subsets of
the systems to help tease apart different modes of the distribution.

appropriate, we also compare against past neural precon-
ditioners FluidNet (Tompson et al., 2017) and DCDM
(Kaneda et al., 2023). Finally, we include characteristic
performance statistics of a popular sparse Cholesky solver
CHOLMOD (Chen et al., 2008). In all cases, our method
outperforms these baselines, often dramatically. We em-
phasize that a single trained Pnet instance is used through-
out, demonstrating its capacity to generalize to across sim-
ulation scenarios and grid shapes (see also Appendix A.7).

We executed all benchmarks on a workstation featuring an
AMD Ryzen 9 5950X 16-Core Processor and an NVIDIA
GeForce RTX 3080 GPU. We used as our convergence cri-
terion for all methods a reduction of the residual norm by
a factor of 106, which is sufficiently accurate to eliminate
visible simulation artifacts. We evaluate our neural pre-
conditioner in single precision floating point for efficiency
but implement the rest of the NPSDO algorithm in double
precision for numerical stability. We note that this use of
single precision does not limit the solver’s overall accuracy,
as demonstrated empirically in Appendix A.9.

We benchmarked on twelve simulation scenes with
various shapes—(128, 128, 128), (256, 128, 128), and

7

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

104 105 106

Number of unknowns

2 6

2 3

20

23

26

29

Ru
nt

im
e

(s
)

AMG
AMGX
IC
CG
Ours
Cholesky

Figure 4. Solver scaling for mixed BC system matrices originat-
ing from a fixed-resolution domain (nc = 2563); matrix row/col
size nf is determined by the proportion of cells occupied by fluid.
The vast majority of total solve time is contributed by the high-
occupancy systems clustered to the right, where our method out-
performs the rest.

(256, 256, 256)—each providing 200 linear systems to
solve. For each solve, we recorded the number of itera-
tions and runtime taken by each solver. These performance
statistics are summarized visually in Figures 3-4 and Ap-
pendix A.1, as well as in tabular form in Appendix A.5.

Figure 3(a) summarizes timings from all solves in our
benchmark suite: for each system, we divide the unprecon-
ditioned CG solve time by the other methods’ solve times
to calculate their speedups and plot a histogram. We note
that our method significantly outperforms the others on a
majority of solves: ours is fastest on 95.6% of the systems,
which account for 98.0% of our total solve time.

Our improvements are more substantial on larger prob-
lems (Figures 3(b) and 3(c)) for two reasons. First, con-
dition numbers increase with size, impeding solvers with-
out effective preconditioners; this is seen clearly by com-
paring results from two different resolutions (Figures 3(d)
and 3(e)). Second, the small matrices ÃI correspond to
simulation grids with mostly non-fluid cells. While CG,
AMGCL, AmgX, and IC timings shrink significantly as
fluid cells are removed, our network’s evaluation cost does
not: it always processes all of D regardless of occupancy.
This scaling behavior is visible in Figure 4.

Our speedups are also greater for examples with Γd = ∅.
DCDM is applicable for these, and so we included in it
Figure 3(d) (but not in Figure 3(e) due to the network over-
spilling GPU RAM). DCDM’s failure to outperform CG
and IC in these results, contrary to (Kaneda et al., 2023),
is due to the higher-performance CUDA-accelerated im-
plementations of those baselines used in this work. With
Dirichlet conditions (Figure 3(f)), our preconditioner is less
effective, and yet we still outperform the rest on 93.27% of

0 200 400 600 800 1000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

0 2 4 6 8 10 12
Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

0 200 400 600 800 1000 1200
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

0 1 2 3 4 5 6 7
Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

Figure 5. Comparisons among AMG, IC, CG and NSPDO (Ours)
on a single frame at 2563 with Neumann only BC (top two) and
mixed BC (bottom two).

0 100 200 300 400 500 600
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours
DCDM
FN

0 1 2 3 4
Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours
DCDM
FN

0 100 200 300 400 500
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours
DCDM
FN

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours
DCDM
FN

Figure 6. Comparisons among AMG, IC, CG, DCDM, FluidNet
(FN) and NSPDO (Ours) on a single frame at 1283 with Neumann
only BC (top two) and mixed BC (bottom two).

frames, which account for 96.36% of our total solve time.
Statistics are not reported in this setting for DCDM and
FluidNet, which struggle to reduce the residual (Figure 6).

Further insights can be obtained by consulting Figures 5
and 6, which show the convergence behavior of each it-
erative solver on characteristic example problems. AMG
is clearly the most effective preconditioner, but this comes
at the high cost of rebuilding the multigrid hierarchy be-
fore each solve: its iterations cannot even start until long
after our solver already converged. Our preconditioner is
the second most effective and, due to its lightweight archi-
tecture, achieves the fastest solves. DCDM is also quite
effective at preconditioning Neumann-only problems but is
slowed by costly network evaluations. IC’s setup time is
shorter than AMG but still substantial, and it is much less
effective as a preconditioner; the same holds for AmgX.

We note that the smoke example (Figure 6) also includes
a comparison to FluidNet applied as a preconditioner for

8

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

PSDO. In the original paper, FluidNet was presented as a
standalone solver, to be run just once per simulation frame.
However, in this form it cannot produce highly accurate
solutions. Incorporating it as a preconditioner as we do
here in theory allows the system to be solved to controlled
accuracy, but this solver ended up stalling before reaching
a 106 reduction in our experiments; it was omitted from
Figure 3 for this reason.

On average, our solver spends 79.4% of its time evaluating
Pnet, 4.4% of its time in orthogonalization, and the remain-
ing 16.2% in other CG operations. In contrast, AMG takes
a full 90% of its time in its setup stage. IC’s quicker con-
struction and slower convergence mean it takes only 23%
in setup. Our architecture also confers GPU memory usage
benefits: for 1283 grids, our solver uses 1.5GiB of RAM,
while FluidNet and DCDM consume 5.2GiB and 8.5GiB,
respectively (Appendix A.6).

5.1. Ablation Studies

To demonstrate the necessity of each component of our
solver, we performed several ablation studies. Regarding
the network architecture, we evaluated a simple CNN with
fixed kernels and masked output, concatenating image and
input vectors into separate channels. However, this ap-
proach performed poorly compared to our network. Specif-
ically, the residual obtained by the masked CNN solver in-
creased after the first few iterations and remained high even
after reaching the 100 iteration cap applied in this experi-
ment. Table 1 summarizes this comparison. We also inves-
tigated the effectiveness of several PCG variants, discussed
in Appendix A.3.

5.2. Hyperparameter Selection and More Experiments

The ideal number of network levels L and orthogonaliza-
tions northo were determined empirically as detailed in Ap-
pendix A.2 and Appendix A.4, respectively.

To ensure fairness of our comparisons, we ran additional
experiments on examples from FluidNet’s original train-
ing dataset processed according to the instructions provided
with their open-source code release. Naturally, these ex-
amples contain only pure-Neumann boundary conditions.
We compared our model to DCDM and FluidNet, both as
a standalone solver and as a preconditioner. For all itera-
tive methods, except unpreconditioned Conjugate Gradient
(CG), we capped the maximum iteration count at 100. No-
tably, FluidNet, when used as a preconditioner, failed to
converge to a residual tolerance of 10−6. As a standalone
solver, FluidNet runs quickly but is highly ineffective at re-
ducing the residual. These results are reported in Table 2.

Table 1. Comparison among our current network and CNN with
masked output and CG

Methods Iteration count Time Residual

CG 390 0.1125 9.72× 10−7

Standard CNN 100 0.1025 3.23× 10−2

Ours 12 0.027 4.61× 10−7

Table 2. Comparison among FluidNet (as a solver and as a pre-
conditioner), DCDM, ours and CG

Methods Iteration count Time Final residual

CG 790 0.5615 1.00× 10−6

Ours 19 0.05237 8.77× 10−7

FluidNet 1 0.03084 2.035

FluidNet PSDO 100 3.116 2.10× 10−5

DCDM 39 12.35 9.81× 10−7

6. Conclusions
The neural-preconditioned solver we propose not only ad-
dresses more general boundary conditions than past ma-
chine learning approaches for the Poisson equation (Tomp-
son et al., 2017; Kaneda et al., 2023) but also dramatically
outperforms these solvers. It even surpasses state-of-the
art high-performance implementations of standard meth-
ods like algebraic multigrid and incomplete Cholesky. It
achieves this through a combination of its strong efficacy
as a preconditioner and its fast evaluations enabled by our
novel lightweight architecture.

Nevertheless, we see several opportunities to improve and
extend our solver in future work. Although we imple-
mented our spatially-varying convolution block in CUDA,
it remains the computational bottleneck of the network
evaluation and is not yet fully optimized. We are ex-
cited to try porting our architecture to special-purpose ac-
celeration hardware like Apple’s Neural Engine; not only
could this offer further speedups, but also it would free
up GPU cycles for rendering the results in real-time ap-
plications like visual effects and games. For applications
where fluid occupies only a small portion of the computa-
tional domain, we would like to develop techniques to ex-
ploit sparsity for better scaling (Figure 4). Finally, we look
forward to extending our ideas to achieve competitive per-
formance for problems posed on unstructured grids as well
as equations with non-constant coefficients, vector-valued
unknowns (e.g., elasticity), and nonlinearities.

9

https://www.dropbox.com/sh/5f3t9abmzu8fbfx/AAAkzW9JkkDshyzuFV0fAIL3a/bunny.capped.obj?e=1
https://www.dropbox.com/sh/5f3t9abmzu8fbfx/AAAkzW9JkkDshyzuFV0fAIL3a/bunny.capped.obj?e=1
https://github.com/google/FluidNet

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

Acknowledgements
Kai Lan was supported on a UC Multiple Campus Award
(MCA) MCA-001639-M23PL6076. Any opinions, find-
ings, conclusions, or recommendations expressed are those
of the authors and do not necessarily reflect the views of
the sponsor.

Impact Statement
This paper aims to advance the field of computational fluid
simulation. We do not foresee any potential societal conse-
quences resulting from our work that warrant discussion.

References
Ackmann, J., Düben, P. D., Palmer, T. N., and Smo-

larkiewicz, P. K. Machine-learned preconditioners for
linear solvers in geophysical fluid flows. arXiv preprint
arXiv:2010.02866, 2020.

Azulay, Y. and Treister, R. Multigrid-augmented deep
learning preconditioners for the helmholtz equation.
SIAM Journal on Scientific Computing, 45(3):S127–
S151, 2023. doi: 10.1137/21M1433514. URL https:
//doi.org/10.1137/21M1433514.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

Bouwmeester, H., Dougherty, A., and Knyazev, A.
Nonsymmetric preconditioning for conjugate gradient
and steepest descent methods. Procedia Computer
Science, 51:276–285, 2015. ISSN 1877-0509.
doi: https://doi.org/10.1016/j.procs.2015.05.241.
URL https://www.sciencedirect.com/
science/article/pii/S1877050915010492.
International Conference On Computational Science,
ICCS 2015.

Brandt, A. Multi-level adaptive solutions to boundary-
value problems. Math Comp, 31(138):333–390, 1977.

Chen, Y., Davis, T., Hager, W., and Rajamanickam, S.
Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate. ACM Trans. Math.
Softw., 35(3), oct 2008. ISSN 0098-3500. doi: 10.
1145/1391989.1391995. URL https://doi.org/
10.1145/1391989.1391995.

Cheng, L., Illarramendi, E., Bogopolsky, G., Bauer-
heim, M., and Cuenot, B. Using neural networks to
solve the 2d poisson equation for electric field com-
putation in plasma fluid simulations. arXiv preprint
arXiv:2109.13076, 2021.

Chorin, A. A numerical method for solving incompressible
viscous flow problems. J Comp Phys, 2(1):12–26, 1967.

Cooley, J. and Tukey, J. An algorithm for the machine cal-
culation of complex fourier series. Math Comp, 19(90):
297–301, 1965.

Demidov, D. Amgcl —a c++ library for efficient
solution of large sparse linear systems. Soft-
ware Impacts, 6:100037, 2020. ISSN 2665-9638.
doi: https://doi.org/10.1016/j.simpa.2020.100037.
URL https://www.sciencedirect.com/
science/article/pii/S2665963820300282.

Eliasof, M., Ephrath, J., Ruthotto, L., and Treister, E.
Mgic: Multigrid-in-channels neural network architec-
tures. SIAM Journal on Scientific Computing, 45(3):
S307–S328, 2023. doi: 10.1137/21M1430194. URL
https://doi.org/10.1137/21M1430194.

Golub, G. and Loan, C. V. Matrix computations, volume 3.
JHU Press, 2012.

Götz, M. and Anzt, H. Machine learning-aided numerical
linear algebra: Convolutional neural networks for the ef-
ficient preconditioner generation. In 2018 IEEE/ACM
9th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems (scalA), pp. 49–56, 2018.
doi: 10.1109/ScalA.2018.00010.

Harlow, F. The particle-in-cell method for numerical solu-
tion of problems in fluid dynamics. Meth Comp Phys, 3:
319–343, 1964.

He, J. and Xu, J. Mgnet: A unified framework of multigrid
and convolutional neural network. Science china mathe-
matics, 62:1331–1354, 2019.

Huang, R., Li, R., and Xi, Y. Learning optimal multigrid
smoothers via neural networks. SIAM Journal on Scien-
tific Computing, 45(3):S199–S225, 2023. doi: 10.1137/
21M1430030. URL https://doi.org/10.1137/
21M1430030.

Kaneda, A., Akar, O., Chen, J., Kala, V., Hyde, D., and
Teran, J. A deep conjugate direction method for itera-
tively solving linear systems. In Krause, A., Brunskill,
E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.
(eds.), Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 15720–15736. PMLR,
23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/kaneda23a.html.

Kopaničáková, A. and Karniadakis, G. Deeponet based
preconditioning strategies for solving parametric linear
systems of equations. arXiv preprint arXiv:2401.02016,
2024.

10

https://doi.org/10.1137/21M1433514
https://doi.org/10.1137/21M1433514
https://www.sciencedirect.com/science/article/pii/S1877050915010492
https://www.sciencedirect.com/science/article/pii/S1877050915010492
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995
https://www.sciencedirect.com/science/article/pii/S2665963820300282
https://www.sciencedirect.com/science/article/pii/S2665963820300282
https://doi.org/10.1137/21M1430194
https://doi.org/10.1137/21M1430030
https://doi.org/10.1137/21M1430030
https://proceedings.mlr.press/v202/kaneda23a.html
https://proceedings.mlr.press/v202/kaneda23a.html

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

Lanczos, C. An iteration method for the solution of the
eigenvalue problem of linear differential and integral op-
erators. 1950.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Li, Y., Chen, P., Du, T., and Matusik, W. Learning precon-
ditioners for conjugate gradient PDE solvers. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S.,
and Scarlett, J. (eds.), Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 19425–
19439. PMLR, 23–29 Jul 2023. URL https://
proceedings.mlr.press/v202/li23e.html.

Mathieu, M., Couprie, C., and LeCun, Y. Deep multi-scale
video prediction beyond mean square error, 2016.

Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., De-
mouth, J., Eaton, J., Layton, S., Markovskiy, N., Reg-
uly, I., Sakharnykh, N., Sellappan, V., and Strzodka, R.
Amgx: A library for gpu accelerated algebraic multi-
grid and preconditioned iterative methods. SIAM Journal
on Scientific Computing, 37(5):S602–S626, 2015. doi:
10.1137/140980260.

Okuta, R., Unno, Y., Nishino, D., Hido, S., and Loomis,
C. Cupy: A numpy-compatible library for nvidia gpu
calculations. In Proceedings of Workshop on Machine
Learning Systems (LearningSys) in The Thirty-first An-
nual Conference on Neural Information Processing Sys-
tems (NIPS), 2017. URL http://learningsys.
org/nips17/assets/papers/paper_16.pdf.

Özbay, A., Hamzehloo, A., Laizet, S., Tzirakis, P., Rizos,
G., and Schuller, B. Poisson cnn: Convolutional neural
networks for the solution of the poisson equation on a
cartesian mesh. Data-Centric Engineering, 2:e6, 2021.
doi: 10.1017/dce.2021.7.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22
(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 32, pp. 8024–8035. Curran As-
sociates, Inc., 2019.

Robert, A. A stable numerical integration scheme for the
primitive meteorological equations. Atm Ocean, 19(1):
35–46, 1981.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation,
2015.

Saad, Y. Iterative Methods for Sparse Linear Systems. So-
ciety for Industrial and Applied Mathematics, USA, 2nd
edition, 2003. ISBN 0898715342.

Sappl, J., Seiler, L., Harders, M., and Rauch, W.
Deep learning of preconditioners for conjugate gradi-
ent solvers in urban water related problems, 2019. URL
https://arxiv.org/abs/1906.06925.

Shewchuk, J. An introduction to the conjugate gradient
method without the agonizing pain. Technical report,
USA, 1994.

Stam, J. Stable fluids. In Siggraph, volume 99, pp. 121–
128, 1999.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin,
K. Accelerating Eulerian fluid simulation with convolu-
tional networks. In Precup, D. and Teh, Y. (eds.), Proc
34th Int Conf Mach Learn, volume 70 of Proc Mach
Learn Res, pp. 3424–3433. PMLR, 06–11 Aug 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Zhu, Y. and Bridson, R. Animating sand as a fluid. ACM
Trans Graph, 24(3):965–972, 2005.

11

https://proceedings.mlr.press/v202/li23e.html
https://proceedings.mlr.press/v202/li23e.html
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://arxiv.org/abs/1906.06925

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A. Appendix
A.1. Additional Histograms

The following histograms offer additional views into the data presented in Figure 3, focusing on the linear systems arising
from simulations with mixed boundary conditions (i.e., featuring both Dirichlet and Neumann conditions).

11 3 5 7 9 11 13 15 17
Speedup over CG

0.0

0.2

0.4

0.6

0.8

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(a) Smoke solid, (128, 128, 128)

11 3 5 7 9 11 13 15
Speedup over CG

0.0

0.2

0.4

0.6

0.8

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(b) smoke bunny, (128, 128, 128)

0 1 2 4 6
Speedup over CG

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(c) Scooping, (128, 128, 128)

0 1 2 4 6 8 10
Speedup over CG

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(d) Waterflow torus, (128, 128, 128)

0 1 2 4 6
Speedup over CG

0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(e) Waterflow ball, (128, 128, 128)

0 1 2 4 6 8 10
Speedup over CG

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(f) Dambreak pillars, (256, 128, 128)

0 1 2 4 6
Speedup over CG

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(g) Dambreak bunny, (256, 128, 128)

11 3 5 7 9 11 13 15 17 19 21 23 25
Speedup over CG

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(h) Smoke solid, (256, 256, 256)

11 3 5 7 9 11 13 15 17 19 21 23
Speedup over CG

0.0

0.2

0.4

0.6

0.8

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(i) Smoke bunny, (256, 256, 256)

0 1 2 4 6 8 10
Speedup over CG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(j) Scooping, (256, 256, 256)

0 1 2 4 6 8
Speedup over CG

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(k) Waterflow torus, (256, 256, 256)

0 1 2 4 6 8
Speedup over CG

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
ac

ti
on

 o
f s

ys
te

m
s

AMG
IC
Ours
AMGX

(l) Waterflow ball, (256, 256, 256)

Figure 7. Mixed BC examples split by linear system size into smallest 25% and largest 75%.

12

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A.2. Analysis on depth of the network

The depth L of our network model is a hyperparameter. To study its impact on the performace of our solver, we compared
the models for L = 3, 4, 5, 6 on a few examples.

0 10 20 30 40
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.00 0.05 0.10 0.15 0.20
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(a) Smoke solid, (128, 128, 128)

0 10 20 30 40
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0000.0250.0500.0750.1000.1250.1500.1750.200
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(b) smoke bunny, (128, 128, 128)

0 5 10 15 20 25
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.00 0.02 0.04 0.06 0.08
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(c) Scooping, (128, 128, 128)

0 5 10 15 20 25
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.00 0.02 0.04 0.06 0.08
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(d) Waterflow torus, (128, 128, 128)

0 10 20 30 40
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(e) Waterflow ball, (128, 128, 128)

0 10 20 30 40 50 60
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0 0.1 0.2 0.3 0.4
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(f) Dambreak pillars, (256, 128, 128)

0 20 40 60 80
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(g) Dambreak bunny, (256, 128, 128)

0 20 40 60 80
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0 0.5 1.0 1.5 2.0 2.5
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(h) Smoke solid, (256, 256, 256)

0 20 40 60 80 100 120
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(i) Smoke bunny, (256, 256, 256)

0 10 20 30 40 50 60 70
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(j) Scooping, (256, 256, 256)

0 10 20 30 40 50
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(k) Waterflow torus, (256, 256, 256)

0 25 50 75 100 125 150
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| L=6

L=5
L=4
L=3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(l) Waterflow ball, (256, 256, 256)

Figure 8. Comparisons among models with different depth L on 12 frames from all scenes at varying resolutions.

13

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A.3. PCG Solver Variant Comparisons

The following plots compare the performances of various iterative solvers preconditioned by Pnet. Statistics for unpre-
conditioned CG are also included for reference. While PCG and Flexible PCG both perform reasonably, PSDO achieves a
modest speedup over them.

0 100 200 300 400 500 600
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.0 0.2 0.4 0.6 0.8 1.0
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(a) Smoke solid, (128, 128, 128)

0 100 200 300 400 500 600
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.0 0.2 0.4 0.6 0.8 1.0
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(b) smoke bunny, (128, 128, 128)

0 50 100 150 200 250 300 350
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.00 0.05 0.10 0.15 0.20
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(c) Scooping, (128, 128, 128)

0 50 100 150 200 250 300 350
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.00 0.05 0.10 0.15 0.20
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(d) Waterflow torus, (128, 128, 128)

0 100 200 300 400 500
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(e) Waterflow ball, (128, 128, 128)

0 100 200 300 400 500 600 700
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(f) Dambreak pillars, (256, 128, 128)

0 100 200 300 400 500 600
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(g) Dambreak bunny, (256, 128, 128)

0 200 400 600 800 1000
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0 2 4 6 8 10 12
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(h) Smoke solid, (256, 256, 256)

0 200 400 600 800 1000
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0 2 4 6 8 10 12
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(i) Smoke bunny, (256, 256, 256)

0 100 200 300 400 500 600 700
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.0 0.5 1.0 1.5 2.0 2.5
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(j) Scooping, (256, 256, 256)

0 100 200 300 400 500 600 700
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0.0 0.5 1.0 1.5 2.0 2.5
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(k) Waterflow torus, (256, 256, 256)

0 200 400 600 800 1000 1200
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| NPSDO

PCG
Flexible PCG
NPSD
CG

0 1 2 3 4 5 6 7
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(l) Waterflow ball, (256, 256, 256)

Figure 9. Performance statistics for several solver variants on 12 frames from all scenes

14

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A.4. Number of Orthogonalizations

The following plots compare the performances of our NPSDO solver with different numbers of orthogonalization steps
(northo in Algorithm 1).

0 5 10 15 20
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.00 0.02 0.04 0.06 0.08 0.10
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(a) Smoke solid, (128, 128, 128)

0 5 10 15 20 25
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(b) smoke bunny, (128, 128, 128)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(c) Scooping, (128, 128, 128)

0 2 4 6 8 10 12 14 16
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(d) Waterflow torus, (128, 128, 128)

0 5 10 15 20
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.00 0.02 0.04 0.06 0.08
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(e) Waterflow ball, (128, 128, 128)

0 5 10 15 20 25 30 35 40
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.00 0.05 0.10 0.15 0.20 0.25
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(f) Dambreak pillars, (256, 128, 128)

0 50 100 150 200
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(g) Dambreak bunny, (256, 128, 128)

0 10 20 30 40 50
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(h) Smoke solid, (256, 256, 256)

0 10 20 30 40 50
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(i) Smoke bunny, (256, 256, 256)

0 10 20 30 40
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.0 0.2 0.4 0.6 0.8
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(j) Scooping, (256, 256, 256)

0 10 20 30 40
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.0 0.2 0.4 0.6 0.8
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(k) Waterflow torus, (256, 256, 256)

0 20 40 60 80
Iterations

10 6

10 3

100

lo
g

|r
|/|

r 0
| 0

1
2
3
4

0.0 0.5 1.0 1.5 2.0
Time

10 6

10 3

100

lo
g

|r
|/|

r 0
|

(l) Waterflow ball, (256, 256, 256)

Figure 10. Performance statistics for different northo on 12 frames from all scenes

15

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A.5. Timing Benchmarks

This section lists the average iteration count and runtime for each test case.

Table 3. Average iteration count and runtime across all frames for each test suite
AMGCL AMGX IC CG Ours

Examples Iteration Time Iteration Time Iteration Time Iteration Time Iteration Time

Smoke solid 1283 11.2 0.696 44.9 0.324 196.1 0.852 612.5 1.050 13.3 0.072

Smoke solid 2563 14.3 6.433 64.8 3.156 343.7 11.1 1076.8 13.245 20.5 0.636

Smoke bunny 1283 11.3 0.713 43.7 0.319 200.5 0.862 615.8 1.048 14.0 0.075

Smoke bunny 2563 14.3 6.046 63.7 3.119 345.7 10.9 1069.7 13.042 21.0 0.648

Scooping 1283 12.2 0.170 34.6 0.097 128.1 0.270 392.8 0.234 11.8 0.051

Scooping 2563 12.2 1.643 50.5 0.738 246.0 1.968 749.2 2.593 18.1 0.388

Waterflow torus 1283 9.4 0.086 20.6 0.046 66.9 0.129 208.6 0.095 12.0 0.048

Waterflow torus 2563 10.4 1.024 30.1 0.346 130.0 0.946 401.2 1.121 16.6 0.338

Waterflow ball 1283 11.2 0.173 32.7 0.098 136.5 0.275 405.4 0.257 16.1 0.068

Waterflow ball 2563 12.1 2.442 57.6 1.167 328.4 3.559 969.7 4.875 28.5 0.650

Dambreak pillars 256 · 1282 11.2 0.476 39.9 0.229 167.7 0.625 523.2 0.704 14.9 0.103

Dambreak bunny 256 · 1282 11.1 0.395 36.7 0.183 148.2 0.514 452.1 0.522 19.3 0.129

Average 11.7 1.691 43.3 0.819 203.2 2.667 623.1 3.232 17.2 0.267

A.6. Memory Usage

The following peak memory usage (in MiB) statistics were recorded with the command nvidia-smi on GeForce RTX
3080. Examples that threw out-of-memory error are marked as NA.

Table 4. Peak memory usage on a smoke simulation.

Resolution AMGCL AMGX IC CG NPSDO DCDM FN

1283 1248 2150 1668 1418 1548 8532 5170

2563 5032 7370 8214 3716 4776 NA NA

16

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A.7. New Grid Sizes

The following plots demonstrate the ability of our solver to generalize to domains of different resolutions without re-
training the preconditioner: it maintains consistently strong convergence behavior when applied to simulations with grid
dimensions not seen during training. We note that 2563 resolution simulations reported on in the main paper also were not
present in the training set.

0 200 400 600 800
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

0 1 2 3 4
Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

0 100 200 300 400 500 600
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

0.0 0.2 0.4 0.6
Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

lo
g

|r
|/|

r 0
|

AMG
AMGX
IC
CG
Ours

Figure 11. Convergence on a representative frame of a 1923-resolution Neumann-only simulation (top pair) and a (384, 128, 128)-
resolution mixed BC simulation (bottom pair).

17

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A.8. Analysis of and Enforcement of Symmetry

To analyze the deviation of our preconditioner from symmetry, we applied our network to pairs of test vectors x and y and
evaluated the following relative asymmetry measure:

S(x,y;I) :=

∣∣x ·Pnet(I,y)− y ·Pnet(I,x)
∣∣√∣∣x ·Pnet(I,x)

∣∣ ∣∣y ·Pnet(I,y)
∣∣ .

We did this using 100 test vector pairs for each system (image) in our training set, reporting the aggregate statistics in
Figure 13(b) and Figure 13(c) for two different types of test vectors: (a) random pairs of vectors from the training set, and
(b) fully random vectors from a normal distribution. Not only is the trained network’s asymmetry small, it is several orders
of magnitude smaller than that of the initial network, suggesting that training the network to approximate the inverse of the
discrete Laplace operator (a symmetric matrix) naturally promotes symmetry.

10 16 10 14 10 12 10 10 10 8 10 6 10 4 10 2 100
0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n

of
 li

ne
ar

 sy
st

em
s

Before training
After training

(a) Random pairs of training RHS vectors.

10 16 10 14 10 12 10 10 10 8 10 6 10 4 10 2 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
ac

tio
n

of
 li

ne
ar

 sy
st

em
s

Before training
After training

(b) Random vectors from normal distribution.

Figure 12. Histograms of relative symmetry metric S(x,y;I) across 100 test vector pairs (x,y) for each image I in the training set.

We furthermore constructed two variants of our network architecture that enforce symmetry and positive definiteness
by construction. The first concatenates the Pnet architecture with its transpose Pnet>, obtaining Pnet

sym,1(I, r) :=

Pnet>(I,Pnet(I, r)), while the second constrains the “pre-smoothing“ and “post-smoothing“ blocks to be transposes
of each other via weight sharing, obtaining Pnet

sym,2. However, even when training on a single frame, both of these variants
exhibit suboptimal performance: the training loss is not sufficiently reduced compared to our proposed model, and both
symmetric networks perform worse in terms of wallclock time than unpreconditioned CG.

0 250 500 750 1000 1250 1500 1750 2000

Epoch

200

400

600

800

1000

1200

1400

T
ra

in
in

g
lo

ss

Pnet

Pnet
sym,1

Pnet
sym,2

(a) Training loss

0 50 100 150 200 250 300 350 400

Iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

R
es

id
u

al

Pnet

Pnet
sym,1

Pnet
sym,2

CG

(b) Residual vs. iterations

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time

10−6

10−5

10−4

10−3

10−2

10−1

100

R
es

id
u

al

Pnet

Pnet
sym,1

Pnet
sym,2

CG

(c) Residual vs. time

Figure 13. Comparison between our proposed model and two symmetric models, with baseline method unpreconditioned CG.

18

A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions

A.9. Capacity for Residual Reduction

To confirm that our solver can achieve high accuracy despite the single-precision arithmetic used in evaluating Pnet, we
disabled the convergence test and ran for a fixed number of iterations (100), recording the final relative residual achieved
for each system in our test set in Figure 14. The median relative residual is 4.01× 10−15.

10 15 10 14 10 13 10 12 10 11

Residual after 100 iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
ac

ti
on

 o
f s

ys
te

m
s

Figure 14. Histogram of the final relative residual achieved after running 100 iterations without a convergence test.

19

