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Abstract

In the era of big data and AI, recommender systems must adapt to

evolving user preferences and new users/items to maintain high-

quality recommendations. Fine-tuning, which updates model pa-

rameters using only new data, offers an efficient alternative to full

retraining but struggles to balance stability (retaining past knowl-

edge) and plasticity (adapting to new knowledge). While existing

methods prioritize stability to address catastrophic forgetting, we

argue that plasticity must also be explicitly strengthened, espe-

cially for users with rapidly changing preferences. In this work, we

propose PPPPPPPPPPPPPPPPPlastIIIIIIIIIIIIIIIIIcity and SSSSSSSSSSSSSSSSStAAAAAAAAAAAAAAAAAbility balancing continual recommender

systems (PISA), a novel framework that adaptively balances stabil-

ity and plasticity based on user preference shifts. PISA quantifies

preference shifts as changes in user distances to item clusters, and

then guides user embeddings by prioritizing stability for stable

users and plasticity for dynamic users. To achieve this, PISA lever-

ages backward knowledge from the previous model and forward

knowledge from fine-tuning on current data. During training, PISA
maximizes mutual information between user-specific parameters

and the relevant reference knowledge. Theoretically, we show that

enhancing plasticity mitigates distribution shifts more effectively

than fine-tuning alone. Empirically, extensive experiments on three

real-world datasets validate PISA’s superiority over existing meth-

ods and highlight the contributions of its components.
1

CCS Concepts

• Information systems→ Data mining; • Computing method-

ologies→Machine learning.
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1 Introduction

In the era of big data and AI, recommender systems continuously

gather vast amounts of user feedback, such as product purchases

on e-commerce platforms or movie ratings on streaming sites. As

new data continually flows in, models can quickly become stale and

outdated. To maintain high recommendation quality, models must

adapt to capture evolving user preferences and accommodate new

users and items. While periodic retraining from scratch using the

entire dataset (both historical data and new data) is an option, this

approach is highly time-consuming given the likely large volume

of historical data. A more efficient alternative is fine-tuning, which
updates existingmodel parameters using only newly collected data [3,
5, 7, 11, 15, 16, 29, 32, 33]. For example, a model pre-trained on one

year’s data can be fine-tuned weekly with the latest data.

Continual learning in recommender systems builds on fine-tuning

as a foundational strategy to effectively process new data. A core

property of continual learning is the ability to balance stability
(retaining past knowledge) and plasticity (adapting to new knowl-

edge) [2, 19, 24, 28, 37]. Although fine-tuning inherits past model

parameters, implicitly preserving stability, it may still sacrifice sta-

bility for plasticity by focusing solely on new data. This trade-off can

result in the loss of past knowledge, a phenomenon known as cata-

strophic forgetting [31]. Most existing methods [1, 21, 25–27, 34]

are designed to address this issue and can be broadly categorized

into two strategies: (1) experience replay and (2) knowledge dis-

tillation. Experience replay methods selectively reuse past data as
additional input for current training. For example, [21] uses uni-

form sampling of past data, while [1] samples past data inversely

proportional to its historical popularity. In contrast, knowledge dis-

tillation methods integrate past model parameters into the current

model during training by imposing constraints between past and

current parameters. For example, [25–27] minimize the discrepancy

https://github.com/hsyoo32/pisa
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3726302.3729964
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between past and current embeddings of users/items, as well as

their neighbors in interaction networks.

In this work, while the focus of existing methods on explicitly

enhancing fine-tuning’s stability remains important, we argue that

its plasticity can and should also be explicitly strengthened when

needed. Specifically, unlike stable users with small preference shifts,

dynamic users with significant preference shifts may benefit more

from focusing on new data, implicitly forgetting past knowledge

that may no longer be relevant to current preferences. For example,

some users may rapidly change interests or show high sensitivity

to trends and new items. Such dynamic users can appear on any

platforms but are especially common on platforms like short-form

video services or seasonal e-commerce (e.g., during Christmas). For

these users, past consumption patternsmay have little relevance—or

even contradict—current preferences. At the very least, current

consumption patterns would likely be more important than past

ones, suggesting the potential need to prioritize current data.

Our empirical observations further support the need for explic-

itly enhancing fine-tuning’s plasticity. Specifically, we find that,

unlike shuffled data, fine-tuning outperforms retraining in real-

world temporal settings, highlighting the benefit of prioritizing

current data. Additionally, dynamic users benefit more from fine-

tuning than stable users, emphasizing the importance of ensuring

plasticity for users with high preference shifts. These findings may

warrant an even greater emphasis on focusing exclusively on cur-

rent data. Detailed analyses are in Figure 2/Table 2 in Section 2.

Motivated by these insights, our goal is to enhance both aspects
of fine-tuning by adaptively balancing stability and plasticity based

on user preference shifts. The bottom part of Figure 1 illustrates this

philosophy: for a user, the “center part” represents the parameters

resulting from pure fine-tuning, the “left part” reflects the enhance-
ment of stability, and the “right part” represents the enhancement

of plasticity. Here, the plasticity axis is a novel dimension that is ab-

sent in prior methods. While some existing methods may adaptively

impose stability based on user preference shifts–thereby implicitly

achieving relative plasticity for dynamic users compared to sta-

ble ones–they are limited to adjustments along the stability axis,

determining only the extent of past knowledge retention [26]. In

contrast, our approach aims to go beyond fine-tuning’s inherent

plasticity, explicitly enhancing it for users who need it.

To achieve this goal, we propose PPPPPPPPPPPPPPPPPlastIIIIIIIIIIIIIIIIIcity and SSSSSSSSSSSSSSSSStAAAAAAAAAAAAAAAAAbility balanc-

ing continual recommender systems, named PISA, a novel continual
learning framework that involves two general steps: (1) quanti-

fying user preference shifts: preference shifts are measured as

changes in user distances to item clusters across successive time

stages, and (2) adjusting user embeddings: based on the degree

of preference shifts, user embeddings are adjusted to prioritize

stability or plasticity.

A core aspect of plasticity enhancement is improving adaptabil-

ity to rapid shifts in user preferences or the emergence of new

entities. To achieve this, we introduce reference parameters for

plasticity, termed “forward knowledge,” and adjust user embeddings

toward this knowledge. Forward knowledge is obtained through

pure fine-tuning on the current data and offers several advantages:

First, it captures latent patterns in the data, providing richer super-

vision for enhancing plasticity (e.g., similarities between entities in

the embedding space or potential interactions) compared to relying

Figure 1: Concepts and ideas of our PISA framework.

solely on input data-level signals. This is particularly valuable given

the high sparsity of user interaction data, especially in incremental

data blocks used for fine-tuning. Second, we theoretically demon-

strate that using forward knowledge for plasticity guidance more

effectively mitigates the impact of distribution shifts compared to

fine-tuning alone. Symmetrically, for stability enhancement, PISA
maintains "backward knowledge,” which corresponds to parameters

derived from the model at the previous time stage.

During training, PISA dynamically balances stability and plastic-

ity by maximizing mutual information [6, 35] (e.g., InfoNCE [9, 20])

between the current user embeddings—optimized with the rec-

ommendation loss—and the corresponding backward or forward

knowledge, based on the user’s degree of preference shifts. Also,

PISA selectively applies such stability/plasticity enhancement to

stable and dynamic users with the lowest and highest degrees of

preference shifts, respectively, reducing uncertainty for intermedi-

ate users. Furthermore, PISA incorporates the backward/forward

knowledge of a user’s neighboring items, providing richer and

more comprehensive guidance. Extensive experiments on three

real-world recommendation datasets empirically validate the effec-

tiveness of PISA and highlight the contributions of its individual

components.

In summary, the paper makes the following key contributions:

• Perspective. We introduce a new perspective that explicitly

enhancing the plasticity of fine-tuning is as critical as prior efforts

to enhance stability.

• Theory. We provide a theoretical analysis demonstrating that

fine-tuning with plasticity enhancement mitigates the impact

of distribution shifts more effectively than fine-tuning alone,

highlighting the need to explicitly emphasize plasticity.

• Algorithm. We propose PISA, a novel continual learning frame-

work that adaptively balances stability and plasticity based on

user preference shifts.

• Experiments. Extensive experiments on real-world continual

recommendation datasets validate the effectiveness of PISA, show-
ing an average increase of 7.25% compared to the best-performing

recent competitors.

2 Preliminaries and Related Works

In this section, we introduce key notations, review continual rec-

ommendation settings and related works, present motivational
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Table 1: Main symbols used in this paper.

Symbol Description

D𝑡 Dataset collected at time stage 𝑡

U𝑡 , I𝑡 , E𝑡 Sets of users, items, and their interactions at time stage 𝑡

Y𝑡 User-item interaction matrix at time stage 𝑡

W𝑡 Set of model parameters at time stage 𝑡

e𝑡𝑢 , e𝑡𝑖 User and item embeddings of 𝑢 and 𝑖 at 𝑡 , respectively

Lrec Recommendation loss

M𝑢𝑖 Set of negative items for (𝑢, 𝑖) for Lrec

LSE, LPE Stability and plasticity enhancement losses, respectively

Wbackward

𝑡 Backward knowledge at time stage 𝑡

Wforward

𝑡 Forward knowledge at time stage 𝑡

N(𝑢) Set of neighboring items of 𝑢 up to 𝑡 for LSE and LPE

𝜆𝑠𝑢 , 𝜆
𝑝
𝑢 User-specific stability and plasticity weights, respectively

p𝑡𝑢 Preference vector of user 𝑢 at time 𝑡

𝐿 Top-𝐿 selection percentage for stability/plasticity weights

analyses, and formally define the problem of balancing stability

and plasticity for each user in continual recommendations.

Notations. Table 1 provides a list of symbols used in this pa-

per. The dataset collected at time stage 𝑡 is denoted as D𝑡 =

{U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 },∀𝑡 ∈ {1, . . . ,𝑇 }, where U𝑡 is the user set, I𝑡 is

the item set, E𝑡 is the user-item interaction set, and Y𝑡 is the user-
item interaction matrix. We consider binary user-item interactions

in this work, where Y𝑡 [𝑢, 𝑖] = 1 if user 𝑢 has interacted with item 𝑖

within the 𝑡-th time stage, and Y𝑡 [𝑢, 𝑖] = 0 otherwise. The initial

user set, item set, user-item interaction set, and user-item inter-

action matrix prior to the first time stage (i.e., pretrain data) are

denoted asU0, I0, E0, and Y0, respectively. Lastly, the subscript :𝑡
represents data from the beginning up to time period 𝑡 .

Continual recommendations. We assume that an initial rec-

ommendation model has been pre-trained on the dataset D0 =

{U0,I0, E0,Y0} in an offline manner. Subsequently, a continual

model is updated in an online manner using the fine-tuning train-

ing strategy, relying solely on newly collected dataD𝑡 at each time

stage 𝑡, ∀𝑡 ∈ {1, . . . ,𝑇 }. Formally, the loss of fine-tuning at each

𝑡 can be represented as follows: L := Lrec (D𝑡 ;W𝑡 ), where Lrec

represents the recommendation loss (e.g., BPR loss [23]), andW𝑡

denotes the current model parameters (e.g., user/item embeddings)

being optimized. At the beginning of training at each 𝑡 ,W𝑡 is initial-

ized toW𝑡−1 (the parameters from the previous stage), implicitly

preserving stability. However, despite this implicit stability, the

model inevitably forgets some past knowledge as it learns solely

from the current data. To address this issue, existing methods ex-

plicitly enhance stability using two main techniques: experience

replay [1, 21, 36] and knowledge distillation [25–27].

Experience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replayExperience replay-based methods use a subset of past data and

can be formally represented as follows:

L := Lrec (D𝑡 ∪ D∗:𝑡−1;W𝑡 ), |D∗:𝑡−1 | = 𝛾 |𝐷𝑡 |, (1)

where D∗
:𝑡−1 is a selection of representative historical data (i.e.,

D∗
:𝑡−1 ⊂ D:𝑡−1), typically much smaller than the historical data

(e.g., 𝛾 = 1, making the selected data the same size as the incremen-

tal data). Different methods vary in how they construct D∗
:𝑡−1.

Figure 2: Performance comparison of Retraining and Fine-

tuning on shuffled and real temporal data. Fine-tuning out-

performs Retraining in the temporal setting, showing the

benefit of prioritizing current data in real-world scenarios.

Table 2: Recall@10(in %) of Fine-tuning andRetraining, along

with their difference, for stable and dynamic users. Dynamic

users gain more from Fine-tuning, highlighting the need for

plasticity to adapt to rapidly evolving user preferences.

Datasets User group Retraining Fine-tuning Diff. (C2-C1)

Amazon

(CDs and Vinyls)

Stable 0.97±0.09 1.07±0.18 0.10±0.23

Dynamic 0.81±0.02 1.17±0.18 0.36±0.18

Amazon

(Video Games)

Stable 1.07±0.19 1.33±0.19 0.26±0.19

Dynamic 0.77±0.10 1.21±0.17 0.44±0.16

Knowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillationKnowledge distillation-based methods use past model parame-

ters and are represented as follows:

L := Lrec (D𝑡 ;W𝑡 ) + 𝜆 ·
∑︁
𝑢∈U:𝑡

L𝐾𝐷 (W𝑡 (𝑢),W𝑡−1 (𝑢)), (2)

where L𝐾𝐷 is the knowledge distillation loss, which minimizes

discrepancies (e.g., differences or negative mutual information)

between past and current parameters,W(𝑢) is user-specific param-

eters, and 𝜆 is a scaling factor for the distillation loss.
2
Different

methods vary in how they design the distillation loss. For instance,

[27] incorporates local and global structure, and self-information

from interaction networks, while [25] updates layer-wise parame-

ters of graph-based models for users and their neighbors via con-

trastive distillation. Recent work [26] proposes a personalized ap-

proach, assigning distinct stability weights 𝜆𝑢 to each user, i.e.,

𝜆𝑢 ·
∑
𝑢∈U:𝑡

L𝐾𝐷 , where 𝜆𝑢 is expected to learned as inversely pro-

portional to each user’s degree of preference shifts. The intuition is

that stable users, whose preferences changeminimally, benefit more

from retaining past knowledge (i.e., stability). While this method

personalizes stability enhancement, it lacks an explicit mechanism

to enhance plasticity for users who need it. Our work introduces a

new dimension of plasticity enhancement, complementing stability,

to better personalize the balance between the two.

After training at each 𝑡 using the corresponding loss, the model

generates a top-𝑁 recommendation list [𝑖1, . . . , 𝑖𝑁 ] for each user 𝑢,

ranked by predicted scores Ŷ𝑡 [𝑢, 𝑖],∀𝑖 .
Motivational analyses. As mentioned in Section 1, we provide

motivational analyses highlighting the need for explicitly enhanc-

ing fine-tuning’s plasticity. First, Figure 2 shows that with shuffled

interaction data (i.e., no temporal sequence), retraining outperforms

fine-tuning at each time stage on datasets like Amazon-CDs and

2
We omit the item-side KD loss for brevity, but it can be implemented analogously.
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Video Games. However, this trend reverses with chronologically

ordered data, indicating that in real-world temporal scenarios, fine-

tuning benefits from prioritizing current data rather than treating

all data equally—a limitation when temporal information is ignored.

Second, we analyze stable and dynamic user groups (see Sec-

tion 4.3 for classification details). Table 2 shows the average per-

formance over time for those groups, along with their difference

(Fine-tuning - Retraining) in the last column. The results reveal that

both groups benefit from fine-tuning, with dynamic users gaining

more than stable users, underscoring the importance of ensuring

plasticity, particularly for users with rapidly evolving preferences.

Problem definition. Our problem is formally defined as follows:

Problem 1 (Personalized Balance between Stability and Plastic-

ity). Input: (1) a pre-trained recommendationmodel with parameters
W0; (2) a continually collected dataset D𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 },∀𝑡 ∈
{1, . . . ,𝑇 }; Output: a continual model that achieves high-quality rec-
ommendation at each time stage 𝑡 by adaptively balancing stability
and plasticity for each user during fine-tuning.

3 Proposed Framework

In this section, we propose PPPPPPPPPPPPPPPPPlastIIIIIIIIIIIIIIIIIcity and SSSSSSSSSSSSSSSSStAAAAAAAAAAAAAAAAAbility balancing contin-

ual recommender systems, named PISA, a novel continual learning
framework designed to explicitly enhance both stability and plas-

ticity for each user. An illustration of PISA is shown in Figure 1.

3.1 Overview and Outline

We begin by outlining the high-level objective of PISA and provide

an overview of its key components. The overall loss is written as:

L := Lrec (D𝑡 ;W𝑡 )︸            ︷︷            ︸
fine-tuning

+ 𝛼
[ ∑︁
𝑢∈U:𝑡

𝜆𝑠𝑢LSE (W𝑡 ,Wbackward

𝑡 ;𝑢)︸                             ︷︷                             ︸
stability adjustment

+ 𝜆𝑝𝑢LPE (W𝑡 ,Wforward

𝑡 ;𝑢)︸                           ︷︷                           ︸
plasticity adjustment

]
,

(3)

where 𝛼 is global scaling parameter andLrec (D𝑡 ;W𝑡 ) corresponds
to fine-tuning with the current data. In this work, we use Bayesian

personalized ranking (BPR) loss [23], defined as:

Lrec := −
1

|E𝑡 |
∑︁

(𝑢,𝑖,𝑡 ) ∈E𝑡

1

|M𝑢𝑖 |
∑︁

𝑖′∈M𝑢𝑖

log(𝜎 (𝑠𝑢𝑖 − 𝑠𝑢𝑖′ )), (4)

where 𝜎 (·) is the sigmoid function, andM𝑢𝑖 is a set of sampled

negative items for (𝑢, 𝑖). The recommendation scores 𝑠𝑢𝑖 between

a user 𝑢 and an item 𝑖 is modeled as the dot product of their em-

beddings. The remaining terms in Eq. (3) represent PISA’s effort
to balance stability and plasticity for each user through two key

components: (1) the losses for stability (LSE) and plasticity (LPE)

enhancement, respectively, and (2) adjusting the degree of those

enhancements using the corresponding weights for stability (𝜆𝑠𝑢 )

and plasticity (𝜆
𝑝
𝑢 ), based on each user’s preference shifts. In the

subsequent subsections, we introduce each component of PISA and

relevant analyses in the following order:

• (Section 3.2) A core contribution of PISA is the novel design

to explicitly enhance plasticity through LPE. This involves the

careful design of “forward knowledge” (Wforward

𝑡 ) as reference

parameters, providing richer supervision for plasticity. For stabil-

ity enhancement (LSE), PISA maintains “backward knowledge”

(Wbackward

𝑡 ). To leverage these two types of knowledge, PISA
maximizes mutual information between the current user embed-

dings and their corresponding backward or forward knowledge,

as well as the knowledge of neighboring items.

• (Section 3.3) Our theoretical analysis further shows that fine-

tuning with plasticity enhancement more effectively mitigates

the impact of distribution shifts compared to fine-tuning alone.

• (Section 3.4) To personalize the degree of stability and plasticity

enhancements, we introduce user-specific stability and plasticity

weights (𝜆𝑠𝑢 and 𝜆
𝑝
𝑢 ), based on individual preference shifts.

• (Section 3.5) Finally, we detail the training procedure based on

the final loss function of PISA.

3.2 Stability and Plasticity Enhancements

First, we define backward/forward knowledge and introduce a for-

mulation for adjusting user embeddings toward these types of

knowledge. Backward knowledge captures historical context, repre-

sented by the parameters from the previous time stage (𝑡 − 1), while
forward knowledge reflects recent as well as latent preferences,

obtained via pure fine-tuning on the current data at 𝑡 , as follows:

Wbackward

𝑡 :=W𝑡−1, (5)

Wforward

𝑡 := fine-tuneW𝑡
Lrec (D𝑡 ;W𝑡 ). (6)

Intuitively, backward knowledge ensures that embeddings retain

the user’s past preferences, preserving long-term behavior. In con-

trast, forward knowledge captures recent preference shifts and

infers latent preferences that may not be directly observable in the

data (e.g., similarities between entities in the embedding space or

potential interactions). It also accounts for newly emerged users

and items, which is absent in backward knowledge, enabling the

embeddings to adapt effectively to new information.

To incorporate these references into user embeddings, we max-

imize a lower bound of the mutual information (MI), known as

InfoNCE [10, 20], between the reference knowledge (Wbackward

𝑡 or

Wforward

𝑡 ) and the user embeddings. Specifically, for each user 𝑢,

we minimize the negative mutual information between its embed-

ding and (1) its self-corresponding reference, and (2) the references

of its neighboring items. The first part involves minimizing LMI-S,

referred to as the self-reference-loss:

LMI-S (W𝑡 ,Wref

𝑡 ;𝑢) = − log exp(sim(eref𝑢 , e𝑡𝑢 ))
1

| ˆU|
∑ | ˆU|
𝑢′∈ ˆU

exp(sim(eref𝑢 , e𝑡
𝑢′ ))

, (7)

where ref ∈ {backward, forward}, eref𝑢 is the embedding for user 𝑢

derived from the reference knowledge, sim(·, ·) denotes a similarity

function (e.g., cosine similarity), and
ˆU represents the set of nega-

tive users sampled fromU:𝑡 . The second part involves minimizing

LMI-N, referred to as the neighboring-reference-loss.

LMI-N (W𝑡 ,Wref

𝑡 ;𝑢) =
∑︁

𝑖∈N(𝑢 )
− log

exp(sim(eref
𝑖
, e𝑡𝑢 ))

1

| ˆU|
∑ | ˆU|
𝑢′∈ ˆU

exp(sim(eref
𝑖
, e𝑡
𝑢′ ))

,

(8)

where N(𝑢) is the set of neighboring items of user 𝑢 up to time 𝑡 .

These neighboring item references provide richer context to refine

the user embedding beyond its self-reference. Combining these



Embracing Plasticity: Balancing Stability and Plasticity in Continual Recommender Systems SIGIR ’25, July 13–18, 2025, Padua, Italy

components, the final stability and plasticity enhancement losses

(from Eq. (3)) are:

LSE = LMI-S (W𝑡 ,Wbackward

𝑡 ;𝑢) + LMI-N (W𝑡 ,Wbackward

𝑡 ;N(𝑢)),
(9)

LPE = LMI-S (W𝑡 ,Wforward

𝑡 ;𝑢) + LMI-N (W𝑡 ,Wforward

𝑡 ;N(𝑢)) .
(10)

With these losses, we can guide user embeddings toward stability

or plasticity as needed.

3.3 Theory on Plasticity Enhancement

Plasticity enhancement is a novel component introduced by PISA.
We provide a theoretical justification for its effectiveness in address-

ing distribution shifts. Specifically, we build on Theorem 3.1 of [30],

which provides a generalization bound for fine-tuning under distri-

bution shift and shows that fine-tuning outperforms full retraining.

We extend this result by demonstrating that fine-tuning with plastic-
ity enhancement can be even more effective than fine-tuning alone.

Assumption 1 (Losses andData Size). Consider a time-horizon
of 𝑡te (test time) stages. Suppose the model is trained on D0 ∪ · · · ∪
D𝑡te−1 and tested on D𝑡te .
• Let L𝑡 (W) := ED𝑡

[
LD𝑡
rec
(W)

]
denote the true generalization

error of the recommendation loss.
• Let L∗𝑡 := infW L𝑡 (W) denote the optimal L𝑡 (W) loss value.
• For each time stage 𝑡 , let𝑚𝑡 := |E𝑡 | be the size of dataset D𝑡 . In
realistic scenarios, we assume𝑚1 = · · · =𝑚𝑡te−1 ≪𝑚0, meaning
the pre-training dataset D0 is significantly larger than each of the
incremental data blocks.

(See Appendix A.1 for further assumptions on distribution shifts, prox-
imal fine-tuning, and plasticity enhancement.)

We use a theoretical measure of the distribution shift between a

given stage 𝑡 and the test time 𝑡te, denoted by 𝑑𝑡,𝑡te . This measure

captures both covariate shift (e.g., changes in user/item attributes)

and concept drift (e.g., changes in user preferences). See Definition 1

in Section A.1 for details. In addition, we assume that larger time

gaps lead to larger distribution shifts:𝑑0,𝑡te > 𝑑1,𝑡te > · · · > 𝑑𝑡te−1,𝑡te .
Using this measure of distribution shift, we theoretically analyze the

generalization bound of fine-tuning with plasticity enhancement,

and compare it to that of fine-tuning alone (Theorem 3.1).

Theorem 3.1 (Fine-tuning with Plasticity Enhancement).

Let L𝑡te(𝛽) denote the recommendation loss (e.g., BPR loss) on the test
setD𝑡te when the pre-trained model is fine-tuned with Lrec + 𝛽 · LPE

onD1, . . . ,D𝑡te−1. Suppose that at each time period 𝑡 ≥ 1, the number
of fine-tuning epochs is chosen according to the proximity assumption
[22] with some 0 < 𝛾 < 1, reflecting the influence of prior knowledge
on new training. Under assumptions in Appendix A.1, including a
constant 𝐶 > 0, with probability at least 1 − 𝛿 ,

L𝑡te(𝛽) ≤ L∗𝑡te + 2𝛾
𝑡te−1𝑑0,𝑡te + 2

𝑡te−1∑︁
𝑡=1

(1 − 𝛾)𝛾𝑡te−𝑡−1𝑑𝑡,𝑡te

+ 4
√√(𝛾2𝑡te−2

𝑚0

log𝑚0

+ (1 + 𝛾) (1 − 𝛾
2𝑡te−4)

(1 − 𝛾) 𝑚1

log𝑚1

)
log

2

𝛿
, where 𝛾 =

𝛾

1 +𝐶𝛽 + 𝛾 .

(11)

Note that L𝑡te(0) corresponds to the test loss when the pre-trained
model is fine-tuned only with Lrec (i.e., pure fine-tuning). Thus, fine-
tuning with plasticity enhancement (i.e., 𝛽 > 0, thus smaller 𝛾 ) more

effectively mitigates the distribution shifts {𝑑𝑡,𝑡te }
𝑡te−1
𝑡=0

than pure fine-
tuning alone (i.e., 𝛽 = 0, thus bigger 𝛾 ).

Proof of Theorem 3.1 is in Appendix A.2. Note that the conclusion

of Theorem 3.1 assume significant distribution shifts for all users

over time. However, real-world scenarios often involve users with

varying degrees of preference shifts. Thus, we further quantify the

degree of these shifts and use them to weight stability/plasticity

enhancements, as detailed in the next subsection.

3.4 Balancing Stability and Plasticity Using

Preference Shifts

We quantify preference shifts for each user, and personalize the

balance between stability and plasticity based on those preference

shifts. Intuitively, users with larger shifts lean toward plasticity,

while those with smaller shifts favor stability.

3.4.1 Quantifying Preference Shifts. In PISA, preference shifts are
measured by tracking changes in user distances to item clusters

across successive time steps. Formally, the preference vector of user

𝑢 at time 𝑡 (p𝑡𝑢 ∈ R1×𝑚
) is defined as:

p𝑡𝑢 := [e𝑡𝑢 · (c1)T, · · · e𝑡𝑢 · (c𝑚)T], (12)

where e𝑡𝑢 ∈ R1×𝑑
represents the user embedding of 𝑢 at 𝑡 with

dimension 𝑑 , derived from the current model parametersW𝑡 , and

[c1, · · · , c𝑚] are𝑚 cluster centroids of current item embeddings,

{e𝑡
𝑖
}𝑖∈I:𝑡 , obtained via an off-the-shelf clustering method such as𝐾-

means, with each centroid having the same𝑑 as the user embedding.

Then, the plasticity weight 𝜆
𝑝
𝑢 , proportional to the degree of

preference shifts, is defined as the sigmoid of the mean-adjusted

Jensen-ShannonDivergence (JSD) [8, 18] between preference vector

at 𝑡 and 𝑡−1; and the stability weight 𝜆𝑠𝑢 complements 𝜆
𝑝
𝑢 as follows:

𝜆
𝑝
𝑢 := 𝜎 (JSD(p𝑡𝑢 , p𝑡−1𝑢 ) − E𝑢∈U [JSD(p𝑡𝑢 , p𝑡−1𝑢 )]), (13)

𝜆𝑠𝑢 := 1 − 𝜆𝑝𝑢 , (14)

where 𝜎 (·) is a sigmoid function. When successive preference

vectors are identical, the JSD is 0, while larger shifts result in higher

JSD values. The sigmoid function ensures that 𝜆
𝑝
𝑢 lies within [0, 1].

By subtracting the mean JSD across users, the median plasticity

weight is normalized to 0.5. This adjustment allows PISA to differen-

tiate effectively between dynamic users (𝜆
𝑝
𝑢 > 0.5) and stable users

(𝜆
𝑝
𝑢 < 0.5). The complementary condition 𝜆

𝑝
𝑢 + 𝜆𝑠𝑢 = 1 balances

plasticity and stability.

3.4.2 Balancing Stability and Plasticity. PISA leverages theseweights

to capture both short-term and long-term preferences while reflect-

ing their relative importance. A key challenge in continual rec-

ommendation is handling the diverse spectrum of user behaviors:

highly dynamic users, highly stable users, and intermediate users.

Therefore, applying these weights universally may be suboptimal,

especially when many users exhibit intermediate behavior, with

only a small fraction being highly dynamic or stable. To address

this, we propose selectively applying weights to the top-𝐿% most

dynamic and stable users:

𝜆
𝑝
𝑢 :=

{
𝜆
𝑝
𝑢 if 𝜆

𝑝
𝑢 ≥ Top-𝐿%(𝜆𝑝 )

0 otherwise,

𝜆𝑠𝑢 :=

{
𝜆𝑠𝑢 if 𝜆𝑠𝑢 ≥ Top-𝐿%(𝜆𝑠 )
0 otherwise,

(15)



SIGIR ’25, July 13–18, 2025, Padua, Italy Hyunsik Yoo, SeongKu Kang, Ruizhong Qiu, Charlie Xu, Fei Wang, & Hanghang Tong

where 𝐿 is a hyperparameter. This approach offers two key ben-

efits. First, for highly dynamic or stable users, adjustments focus

exclusively on plasticity or stability, ensuring targeted optimization.

Second, for intermediate users, it avoids applying either weight,

relying instead on fine-tuning to prevent over-adjustment and mit-

igate uncertainty. This is possible because fine-tuning inherently

achieves a partial balance between stability and plasticity by in-

heriting parameters and updating them with new data. Note that

when 𝐿 = 100, PISA applies both weights to all users.

3.5 Training Procedure

The overall procedure is detailed in Algorithm 1. Here, we highlight

the essential aspects of the training process. The current model

parameters to be optimized,W𝑡 , and the backward knowledge,

Wbackward

𝑡 , are both initializedwith the previousmodel parameters,

W𝑡−1 (Line 3). Forward knowledge,Wforward

𝑡 , is obtained through

one full process of pure fine-tuning on the current datasetD𝑡 (Line
4). At each epoch, clustering is performed on the current item

embeddings, {e𝑡
𝑖
}𝑖∈I:𝑡 , to yield up-to-date centroids that capture

evolving item embeddings (Line 6).

Initially, since the currentmodel parameters and backward knowl-

edge are identical (e𝑡𝑢 = e𝑡−1𝑢 ), the preference vectors are also iden-

tical (p𝑡𝑢 = p𝑡−1𝑢 ). This leads to equal stability and plasticity weights,

𝜆𝑠𝑢 = 𝜆
𝑝
𝑢 = 0.5 (before applying top-𝐿% selection). As training pro-

gresses, these weights adjust to reflect users’ preference shifts, as

captured by the evolving embeddings. The top-𝐿% selection fur-

ther refines these weights, targeting adjustments for only highly

dynamic or stable users (Lines 18–19). This automatic adjustment

enables PISA to reflect each user’s changing behavior over time. By

integrating these weights (𝜆𝑠𝑢 and 𝜆
𝑝
𝑢 ) with the stability/plasticity

enhancement losses (LSE andLPE) (Line 22), alongwith fine-tuning

using the recommendation loss (Lrec) (Line 21), PISA effectively

balances stability and plasticity in the embeddings (Line 23).

4 Experiments

We design experiments to answer the key research questions (RQs):

RQ1. To what extent does PISA outperform its competitors?

RQ2. How does PISA benefit both stable and dynamic users?

RQ3. How does each component in PISA affects its performance?

4.1 Experimental Settings

4.1.1 Datasets. We use the following real-world temporal datasets.

• Amazon (Video Games)
3
: This contains 93,471 ratings provided

by 9,826 users on 16,172 products in the Video Games category.

It spans 2,064 days, from Jan. 1, 2018, to Aug. 27, 2023. The avg.

number of new users/items per new data block is 373/570.

• Amazon (CDs and Vinyls): This contains 74,093 ratings pro-

vided by 5,488 users on 14,622 products in the CDs and Vinyls cat-

egory. It spans 2,050 days, from Jan. 1, 2018, to Aug. 13, 2023. The

avg. number of new users/items per new data block is 182/985.

• Gowalla
4
: This location-based social network dataset contains

1,716,274 check-in interactions shared by 61,302 users on 636,558

locations. It spans 52 days, from Sept. 1, 2010, to Oct. 23, 2010. The

avg. number of new users/items per new data block is 1,725/36,826.

3
https://amazon-reviews-2023.github.io/

4
https://snap.stanford.edu/data/loc-gowalla.html

Algorithm 1 Training procedure of PISA at time stage 𝑡

1: Input:Model parametersW𝑡−1, scaling parameter𝛼 , incoming

dataset D𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 }
2: Output: Updated model parametersW𝑡

3: W𝑡 ←W𝑡−1;Wbackward

𝑡 ←W𝑡−1;
4: Wforward

𝑡 ← fine-tuneW𝑡
Lrec (D𝑡 ;W𝑡 );

5: for epoch do

6: Perform clustering ofW𝑡 (I) and get [c1, · · · , c𝑚];
7: for mini-batch B obtained from E𝑡 do
8: Negative interaction setM← {};
9: User setU← {};
10: Negative user set

ˆU← {};
11: for user-item interaction (𝑢, 𝑖) ∈ B do

12: Sample negative items asM𝑢𝑖 ;

13: UpdateM←M ∪ {(𝑢, 𝑖′)}𝑖′∈M𝑢𝑖
;

14: UpdateU←U ∪ {𝑢}
15: end for

16: for user 𝑢 ∈ U do

17: Sample negative users and add to
ˆU;

18: Compute stability weight 𝜆𝑠𝑢 by Eq. (12)-(15);

19: Compute plasticity weight 𝜆𝑠𝑝 by Eq. (12)-(15);

20: end for

21: Compute the rec loss Lrec with B ∪M by Eq. (4);

22: Compute LSE and LPE withU ∪ ˆU ∪N(𝑢) by Eq. (9)

and Eq. (10);

23: UpdateW𝑡 based on 𝛼 , Lrec, 𝜆
𝑠
𝑢 , LSE, 𝜆

𝑝
𝑢 , LPE;

24: end for

25: end for

Following [1, 26, 27], we preprocess the Amazon datasets by

binarizing the 5-star ratings. Specifically, we set Y[𝑢, 𝑖] = 1 if user𝑢

rates item 𝑖 higher than 2, and Y[𝑢, 𝑖] = 0 otherwise. We use the lat-

est 5.5 years of data, starting from January 1 2018, and remove users

or items with fewer than ten interactions. To simulate continual

learning, we sort the interactions in each datasetD chronologically.

Following [1, 26, 27], we split 60% of the interactions as pre-training

data D0 and the remaining 40% as incremental data. The incremen-

tal data is further divided into five stages (𝑇 = 5), each containing

an equal number of interactions, resulting in {D0,D1, . . . ,D𝑇 }.
For evaluation, after training the model on D𝑡 (𝑡 = 0, ...,𝑇 − 1), we
use the first half of the next incremental data block D𝑡+1 as the
validation set and the second half as the test set.

4.1.2 Compared methods. We compare PISA with several competi-

tors designed to handle incremental data effectively in continual

learning settings. For a fair comparison, we use LightGCN [12] as

the base model for all methods, and employ the Bayesian Personal-

ized Ranking (BPR) loss [23] as the recommendation loss Lrec.

We first include basic baselines: full-retraining and fine-tuning.

• Retraining: This refers to retraining with all historical and new

data {D0,D1, . . . ,D𝑡 } with Lrec at each time stage 𝑡 .

• Fine-tuning: This fine-tunes only with new data D𝑡 with Lrec.

The continual learning competitors are divided into two categories.

First, experience replay-based competitors aim to enhance stability

by selectively reusing past input data:

https://amazon-reviews-2023.github.io/
https://snap.stanford.edu/data/loc-gowalla.html
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• Uniform [21]: This method samples a fixed number of past inter-

actions uniformly in random.

• Inv-degree [1]: This method samples past interactions with se-

lection probabilities proportional to the inverse degree of their

users, prioritizing stability for nodes with fewer interactions.

Second, knowledge distillation-based competitors aim to enhance

stability by integrating past model parameters through distillation:

• GraphSAIL [27]: It integrates three types of past knowledge for

each user–local structure, global structure, and self-information–

into the current model.

• LWC-KD [25]: It integrates past model parameters of each user

and their neighbors into the current model using contrastive

distillation loss.

• LWC-KD-PIW [26]: It builds upon LWC-KD by using adaptively

learned personalized weights for knowledge distillation for each

user. These weights are trained via a multi-layer perceptron that

captures user preference shifts in an end-to-end manner.

For a fair comparison, all knowledge distillation-based competitors,

as well as PISA, employ only user-side distillation, excluding item-

side distillation. Additionally, to conduct an ablation study of PISA,
we introduce two variants of PISA as follows:

• PISA(S): A special version of PISA that only uses stability en-

hancement loss (Eq. (9)) with fine-tuning.

• PISA(P): A special version of PISA that only uses plasticity en-

hancement loss (Eq. (10)) with fine-tuning.

For the main comparison, we report both PISA and PISA(P) as our
proposed methods that employs explicit plasticity enhancement,

which is a novel contribution of this work.

4.1.3 Evaluation metrics. We use the all-item-ranking method,

where all items a user has not interacted with are treated as candi-

date items for recommendation, to evaluate top-𝑁 recommenda-

tion accuracy [14]. The evaluation metrics include Recall@𝑁 and

NDCG@𝑁 (normalized discounted cumulative gain), with 𝑁 = 10

or 20. We report results averaged over all𝑇 incremental data blocks.

4.1.4 Implementation details. For all compared methods, we en-

sure consistency by using four negative user-item pairs for each

positive user-item pair in the BPR loss, setting the learning rate

to 0.001, and applying L2 regularization with a value of 0.00001.

Model parameters are optimized using the Adam algorithm [13],

and the dimension of user and item embeddings is set to 64.

For the experience replay-based method, we use a subset of

past data equal in size to the incremental data block (i.e., 𝛾 = 1 in

Eq. (1)). For the knowledge distillation-basedmethod, we choose the

global weight for the knowledge distillation loss from [0.1,0.5,1.0]

(i.e., 𝜆 in Eq. (2)). Note that LWC-KD-PIW automatically learns

the personalized weight for different users. For PISA and PISA(P),
we choose 𝐿 values from [0.2, 0.4, 0.6, 0.8, 1.0] and 𝛼 values from

[0.1,0.5,1.0]. Specifically, we set 𝐿 = 1.0 for Amazon (CDs and Vinyl),

and 𝐿 = 0.2 for Amazon (Video Games) and Gowalla, with 𝛼 = 0.5

for all cases in both PISA and PISA(P). To ensure reproducibility,

we use five fixed random seeds for experimentation and report the

mean and standard deviation values across these five runs. The

source code will be released upon the publication of the paper.

4.2 Main Results

To address RQ1, we compare PISA with all seven competitors, eval-

uating their recommendation performance in continual settings.

Table 3 presents the results across four metrics and three datasets.

For clarity, we use double-underline, single-underline, and bold text

to highlight the 1st, 2nd, and 3rd best results, respectively. First,

regarding the basic baselines, Fine-tuning consistently outperforms

Retraining, demonstrating the inherent adaptability of fine-tuning

in capturing continuously evolving user preferences. This aligns

with the motivational analyses in Figure 2 and Table 2.

Second, although several competitors surpass Fine-tuning, none
consistently dominates across all metrics and datasets. In contrast,

PISA (or PISA(P)) consistently outperforms all competitors, achiev-

ing an average improvement of 6.79% over the best competitor in

each case, with specific improvements of 11.68% and 7.25% over Inv-
degree and LWC-KD-PIW, respectively. Existing continual learning

approaches—whether based on experience replay or knowledge

distillation—exhibit two key limitations: (1) they focus primarily

on enhancing stability, neglecting plasticity, and (2) they apply this

enhancement uniformly across all users. Although LWC-KD-PIW
introduces personalized weights for users, its personalization is

limited to stability enhancement, falling short to explicitly address

plasticity. In contrast, PISA effectively balances stability and plastic-

ity based on stability and plasticity losses combined with dynamic

user-specific adjustments.

Lastly, in some cases, PISA(P) is comparable to or slightly out-

performs PISA for certain metrics on Amazon (Video Games) and

Gowalla. This reveals two insights: (1) Even without explicit sta-

bility enhancement, fine-tuning alone can preserve stability to

some extent through parameter inheritance. For example, Fine-
tuning outperforms all competitors in R@20 and N@20 on Ama-

zon (Video Games). When combined with plasticity enhancement,

this achieves an effective balance between stability and plasticity.

(2) Some datasets may contain highly dynamic users who require

targeted plasticity enhancement. This observation will be explored

further in Section 4.4 (RQ3).

4.3 Results on Stable/Dynamic Users

To answer RQ2, we conduct a fine-grained evaluation of user groups

with varying behaviors. Users’ preference shifts are measured using

Eq.(13) after pure fine-tuning and classified into two groups: stable

users (lowest half of shifts) and dynamic users (highest half). This

classification is updated at each time stage. Figure 3 shows the

results for each user group onAmazon (CDs and Vinyl) and Amazon

(Video Games) for Fine-tuning, two knowledge distillation-based

methods (LWC-KD, LWC-KD-PIW), and PISA.
First, the results demonstrate that PISA achieves superior per-

formance for both stable and dynamic users on both datasets, com-

pared to LWC-KD and LWC-KD-PIW, which focus solely on sta-

bility enhancement. While LWC-KD-PIW provides more benefits

to dynamic users than LWC-KD by assigning different weights

to stability enhancement, it sometimes sacrifices performance for

stable users (e.g., on Amazon (CDs and Vinyl)), indicating a sub-

optimal balance between stability and plasticity. In contrast, PISA
effectively balances these two aspects. Moreover, PISA outperforms

Fine-tuning in most cases (with one slight exception) while the

other competitors perform worse than Fine-tuning for either the



SIGIR ’25, July 13–18, 2025, Padua, Italy Hyunsik Yoo, SeongKu Kang, Ruizhong Qiu, Charlie Xu, Fei Wang, & Hanghang Tong

Table 3: Recommendation performance averaged across time stages for PISA, PISA(P), and seven competitors. PISA or PISA(P)

consistently outperforms all competitors across all metrics on both datasets, showcasing its superior ability to balance between

stability and plasticity for each user in continual scenarios (values are in %, e.g., 0.71±0.03 represents 0.0071 with 0.0003 stdev.).

Amazon (CDs and Vinyls) Amazon (Video Games) Gowalla

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

Retraining 0.71±0.03 0.46±0.01 1.40±0.03 0.66±0.01 0.88±0.05 0.55±0.03 1.44±0.09 0.73±0.03 2.15±0.02 1.57±0.01 3.07±0.02 1.86±0.01

Fine-tuning 0.86±0.07 0.56±0.05 1.39±0.11 0.72±0.05 1.38±0.10 0.93±0.04 2.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.142.42±0.14 1.24±0.04 2.69±0.03 2.01±0.02 3.99±0.01 2.41±0.01

Uniform 0.90±0.07 0.55±0.03 1.50±0.05 0.73±0.03 1.22±0.06 0.72±0.02 2.07±0.16 0.98±0.04 2.60±0.03 1.92±0.01 3.79±0.01 2.29±0.01

Inv-degree 0.93±0.04 0.63±0.02 1.49±0.05 0.80±0.03 1.29±0.07 0.81±0.06 2.14±0.11 1.07±0.07 2.87±0.02 2.11±0.02 4.20±0.02 2.52±0.02

GraphSAIL 0.77±0.09 0.49±0.06 1.31±0.07 0.65±0.05 1.26±0.13 0.79±0.07 2.14±0.14 1.05±0.08 1.98±0.00 1.44±0.01 2.98±0.01 1.75±0.00

LWC-KD 0.92±0.08 0.60±0.04 1.47±0.10 0.77±0.04 1.35±0.20 0.91±0.10 2.03±0.11 1.11±0.07 2.55±0.04 1.89±0.04 3.74±0.07 2.26±0.04

LWC-KD-PIW 0.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.050.95±0.05 0.60±0.02 1.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.081.53±0.08 0.77±0.03 1.42±0.11 0.94±0.04 2.31±0.14 1.22±0.05 2.88±0.02 2.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.002.16±0.00 4.19±0.01 2.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.002.56±0.00

PISA(P) 0.92±0.08 0.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.020.63±0.02 1.52±0.10 0.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.030.81±0.03 1.61±0.04 1.07±0.03 2.40±0.12 1.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.061.32±0.06 2.91±0.04 2.16±0.03 4.35±0.04 2.60±0.02

PISA 1.03±0.09 0.67±0.03 1.65±0.07 0.86±0.02 1.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.101.57±0.10 1.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.061.06±0.06 2.42±0.14 1.33±0.07 2.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.012.90±0.01 2.13±0.01 4.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.034.26±0.03 2.55±0.00

Imp. / best 8.42% 6.35% 7.84% 11.69% 13.38% 13.83% 4.76% 9.02% 1.04% 0.00% 3.57% 1.56%

Figure 3: Performance comparison for stable and dynamic

user groups. PISA consistently outperforms the stability-

focused competitors (LWC-KD and LWC-KD-PIW) for both

user groups, highlighting the advantage of explicitly enhanc-

ing both stability and plasticity.

Figure 4: Impact of the weight selection parameter (𝐿) on the

performance of PISA(S), PISA(P), and PISA.

stable or dynamic group. This further confirms PISA’s effectiveness
in achieving balance within the fine-tuning training strategy.

4.4 Component/Hyperparameter Analysis

To answer RQ3, we present the average performance across all four

metrics (R@10, N@10, R@20, N@20) for PISA(S), PISA(P), and PISA
with varying values of weight selection parameter 𝐿 (Eq.(15)), where

𝐿 ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0], in Figure 4. Here, 𝐿 = 0 represents

pure fine-tuning without stability or plasticity losses.

For PISA, the results show that 𝐿 > 0 consistently outperforms

𝐿 = 0, indicating that incorporating stability and plasticity en-

hancement losses improves the effectiveness of fine-tuning. On

Amazon (CDs and Vinyl), as 𝐿 increases, the performance of PISA
tends to steadily improve. In contrast, on Amazon (Video Games),

performance tends to decrease as 𝐿 increases.

The steady changes suggest that the stability and plasticity

weights accurately capture users’ preference shifts. Additionally,

the differing trends between datasets provide further insights. On

Amazon (CDs and Vinyl), the distribution of users’ preference shifts

appears to be relatively balanced, with no extreme outliers in terms

of stability or dynamism. This allows stability and plasticity en-

hancements to benefit all users synergistically, resulting in PISA
outperforming both PISA(S) and PISA(P).

In contrast, for Amazon (Video Games), the dataset likely in-

cludes a small subset of highly dynamic users alongside interme-

diate users. This is evidenced by two observations: (1) the best

performance occurs when plasticity enhancement is applied only

to the top 20% most dynamic users (𝐿 = 0.2), and (2) while PISA(P)
performs comparably to PISA, PISA(S) performs significantly worse.

Notably, PISA(S) performs even worse than pure fine-tuning, high-

lighting the importance of explicitly enhancing plasticity to adapt

to user preference shifts or dataset-specific characteristics.

5 Conclusion

In this work, we highlight the importance of balancing stability and

plasticity in continual recommender systems. To address the limi-

tations of existing methods that focus only on stability, we propose

PISA, a novel framework that adaptively enhances both stability and

plasticity based on user preference shifts. By introducing forward

knowledge to guide plasticity and backward knowledge to maintain

stability, PISA dynamically adjusts user embeddings to optimize

recommendation quality for both stable and dynamic users. Our

theoretical analysis demonstrates the benefits of plasticity enhance-

ment in mitigating distribution shifts, while extensive experiments

on real-world datasets confirm the superiority of PISA over exist-

ing methods, validating its effectiveness in balancing stability and

plasticity for each user.

A Theoretical Analyses

A.1 Assumptions and Setup

Our main theorem builds on Theorem 3.1 of [30], which provides

a generalization error for fine-tuning under distribution shift and

shows its advantage over full retraining. We extend this result to

show that fine-tuning with plasticity enhancement is even more

effective than fine-tuning alone.
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Definition 1 (Measures of Distribution Shifts). Distribu-
tion shifts over time can arise from two main sources:
• Covariate shift: Changes in the distribution of user/item attributes
(i.e., the distribution of (U𝑡 ,I𝑡 , E𝑡 )).
• Concept drift: Changes in user preferences (i.e., the conditional
distribution Y𝑡 | (U𝑡 ,I𝑡 , E𝑡 )).
A classic measure of covariate shift is the discrepancy distance [17],

a generalization of theHΔH distance [4]:

𝑑HΔH
𝑡,𝑡te

:= sup

W,W′

��� (L𝑡 (W) − L𝑡 (W′)) − (
L𝑡te (W) − L𝑡te (W′)

) ���.
If no covariate shift occurs between 𝑡 and 𝑡te, then for any two models
W,W′, the difference in L remains unchanged, leading to 𝑑HΔH

𝑡,𝑡te
=0.

A classic measure of concept drift is the combined error [4]:
𝑑comb

𝑡,𝑡te
:= inf

W

(
L𝑡 (W) + L𝑡te (W)

)
− L∗𝑡 − L∗𝑡te .

If no concept drift exists, then 𝑑comb

𝑡,𝑡te
= 0 because a single model can

achieve the optimal losses at both times. Combining these, we define
the unified distribution shift as follows: 𝑑𝑡,𝑡te := 𝑑

HΔH
𝑡,𝑡te

+ 𝑑comb

𝑡,𝑡te
.

Assumption 2 (Distribution Shifts Over Time). Distribution
shifts grow with larger time gaps, i.e., 𝑑0,𝑡te > 𝑑1,𝑡te > · · · > 𝑑𝑡te−1,𝑡te .

Assumption 3 (Loss with PE). For training, we use both rec-
ommendation and plasticity enhancement terms: for 𝑡 ≥ 1,

LD𝑡
rec
(W) + 𝛽 · LD𝑡

PE
(W), (16)

where LD𝑡

PE
(W) is the plasticity enhancement loss that mitigates

distribution shifts by aligning user embeddings to forward knowledge,
and 𝛽 ≥ 0 is the weight of the plasticity enhancement loss. When
𝛽 = 0, the loss function is the pure recommendation loss.

Assumption 4 (Plasticity). We assume that the plasticity en-
hancement lossLD𝑡

PE
is positively correlated with the recommendation

lossLD𝑡
rec

at the same time step. Formally, there exists a constant𝐶 > 0

such that, for all 𝑡 and allW,

LD𝑡

PE
(W) ≥ 𝐶LD𝑡

rec
(W) . (17)

Under this assumption, the loss with PE can be lower bounded as

LD𝑡
rec
(W) + 𝛽 · LD𝑡

PE
(W) ≥ (1 +𝐶𝛽)Lrec (W) . (18)

Thus, fine-tuning with plasticity enhancement can be viewed as im-
plicitly optimizing (1 +𝐶𝛽) times the recommendation loss.

Assumption 5 (Proximal Fine-tuning). We adopt the proximal
fine-tuning assumption from [22, 30]. For each 𝑡 ≥ 1, letWft

𝑡 denote
the model parameters obtained by fine-tuning on D𝑡 . To ensure that
Wft

𝑡 does not completely forget knowledge fromWft

𝑡−1, we assume
all time periods share the same parameter space. Furthermore, there
is a fixed 0 < 𝛾 < 1, reflecting the influence of prior knowledge on
new training, such that, for each 𝑡 ≥ 1, the number of fine-tuning
epochs is chosen so thatWft

𝑡 minimizes

ℓ𝑡 (W) :=
(1 +𝐶𝛽)LD𝑡

rec
(W) + 𝛾 ℓ𝑡−1 (W)

1 +𝐶𝛽 + 𝛾 , (19)

where ℓ0 (W) := LD0

rec
(W) is the pre-training loss.

A.2 Proof of Theorem 3.1

Our proof of Theorem 3.1 relies on Lemma A.1 and Corollary A.2

from [30], which provide bounds on the generalization loss under

distribution shifts. We restate these results here for completeness;

see [30] for additional details.

Lemma A.1. Let 𝜶 ∈ R𝑡te≥0 satisfy
∑𝑡te−1
𝑡=0

𝛼𝑡 = 1, and fix any 𝜖 > 0.
Suppose there exist model parametersW𝜶 ,𝜖

𝑡te−1 such that

𝑡te−1∑︁
𝑡=0

𝛼𝑡 L𝑡
(
W𝜶 ,𝜖
𝑡te−1

)
≤ 𝜖 + inf

W

𝑡te−1∑︁
𝑡=0

𝛼𝑡 LD𝑡
rec
(W) .

Then, with probability at least 1 − 𝛿 ,

L𝑡te
(
W𝜶 ,𝜖
𝑡te−1

)
≤ L∗𝑡te + 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡 𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
.

Corollary A.2. Under the assumptions of Lemma A.1, define

L𝜶
𝑡te

:= inf

𝜖∈Q>0

L𝑡te
(
W𝜶 ,𝜖
𝑡te−1

)
.

Then, with probability at least 1 − 𝛿 ,

L𝜶
𝑡te
≤ L∗𝑡te + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡 𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
.

Proof of Theorem 3.1. We first define, for conciseness,

𝛾 =
𝛾

1 +𝐶𝛽 + 𝛾 . (20)

Then, by Assumption 5, the loss for fine-tuning with plasticity

enhancement at stage (𝑡te − 1) is
ℓ𝑡te−1 (W) = (1 − 𝛾)L

D𝑡
rec
(W)𝛾 ℓ𝑡te−2 (W)

= 𝛾 𝑡te−1 LD0

rec
(W) +

𝑡te−1∑︁
𝑡=1

(1 − 𝛾)𝛾 𝑡te−𝑡−1 LD𝑡
rec
(W) . (21)

Thus, the coefficients are given by

𝛼𝑡 :=

{
𝛾 𝑡te−1, for 𝑡 = 0,

(1 − 𝛾)𝛾 𝑡te−𝑡−1, for 𝑡 = 1, . . . , 𝑡te − 1.
(22)

Applying Corollary A.2, we obtain

L𝜶
𝑡te
(𝛽) ≤ L∗𝑡te + 2𝛾

𝑡te−1𝑑0,𝑡te + 2
𝑡te−1∑︁
𝑡=1

(1 − 𝛾)𝛾𝑡te−𝑡−1𝑑𝑡,𝑡te

+ 4
√√(𝛾2𝑡te−2

𝑚0

log𝑚0

+ (1 + 𝛾) (1 − 𝛾
2𝑡te−4)

(1 − 𝛾) 𝑚1

log𝑚1

)
log

2

𝛿
, where 𝛾 =

𝛾

1 +𝐶𝛽 + 𝛾 .

(23)

This implies that fine-tuning with plasticity enhancement (i.e., 𝛽 >

0, thus smaller 𝛾 ) more effectively mitigates the distribution shifts

{𝑑𝑡,𝑡te }
𝑡te−1
𝑡=0

than pure fine-tuning (i.e., 𝛽 = 0, thus bigger 𝛾 ). □
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