

000 001 002 003 004 005 006 007 FROM BROAD RECALL TO EXACT DISTINCTION: 008 ADVERSARIAL CURRICULUM LEARNING FOR 009 KNOWLEDGE-BASED VQA 010 011 012

013 **Anonymous authors**
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Knowledge-based Visual Question Answering (KBVQA) aims to answer image-related questions by retrieving relevant facts from an external knowledge base, making the accuracy of knowledge retrieval crucial. However, a dominant bottleneck in existing systems is that inaccurate facts are fed to the answer generator. This issue stems from two key deficiencies: (i) an initial retrieval stage that relies on global visual features, often overlooking fine-grained evidence, and (ii) a reranking stage that lacks the ability to differentiate between confusing candidates, making the correct answer a lower priority. To address this, we propose the **Adversarial Curriculum Learning (Adv-CL)** framework, which tackles these two challenges sequentially. First, we design a Query-guided Multi-grained Recalling (QMR) strategy that leverages both global and query-guided local features to improve the recall quality and provide a diverse set of challenging negatives for reranker training. Subsequently, to enable exact distinction, we introduce an Adversarial Reranker Training (ART) paradigm, which compels the reranker to discern fine-grained distinctions among highly similar candidates. It employs a minimax game where a modulator network acts as an adversary against the reranker, dynamically creating a curriculum of hard negatives by up-weighting candidates that most confuse the reranker. This forces the model to develop its discriminative capability. In addition, we further introduce a Guarded Answer Generation (GAG) mechanism to mitigate the risk of retrieval failure exacerbating the system hallucination. Extensive experiments on public knowledge-based VQA benchmarks show that our method achieves state-of-the-art performance, validating the effectiveness and synergistic effect of broad recall and exact distinction.

1 INTRODUCTION

Visual Question Answering (VQA) aims to answer questions based on visual context. In recent years, multimodal large language models have made significant strides in this area Sun et al. (2024); Han et al.; Tschannen et al. (2025); Xiao et al. (2024). However, when confronted with knowledge-intensive queries involving domain-specific facts or rare entities, visual context alone is often insufficient. To address this, knowledge-based visual question answering (KBVQA) emerged Marino et al. (2021), which incorporates external knowledge bases to supplement visual information. This introduces a new, critical challenge: how to accurately retrieve relevant facts from a vast knowledge base to generate precise answers.

Although existing KBVQA systems, often built upon the Retrieval-Augmented Generation (RAG) framework, have achieved encouraging performance, their primary bottleneck is the provision of inaccurate facts to the answer generator. This issue stems from two key, sequential deficiencies in the retrieval pipeline: an initial recall stage that overlooks fine-grained evidence and a reranking stage that lacks discriminative power.

First, the initial retrieval quality is often suboptimal. Existing methods (Yan & Xie, 2024; Qi et al., 2024; Cocchi et al., 2025) typically encode images into a single global embedding. While capturing general context, this approach struggles to focus on the fine-grained local regions or objects essential for answering the query. For instance, determining a laptop’s brand might depend on a minute logo,

054 a query-guided detail easily lost in a global representation. This reliance on coarse features results
 055 in a low recall ceiling, where crucial evidence is often omitted from the initial candidate pool, and
 056 also provides a noisy set of candidates for the subsequent stage.

057 Second, even when the correct fact is successfully recalled, the reranker often fails to distinguish
 058 it from a set of semantically similar but incorrect candidates. This is due to a lack of fine-grained
 059 discriminative power. Many approaches employ contrastive learning Khosla et al. (2020); Tian et al.
 060 (2020); Chuang et al. (2020) for reranker training. However, they often rely on static or non-adaptive
 061 negative sampling strategies. As the reranker’s discriminative ability improves during training, it
 062 requires more challenging examples. The lack of dynamic, hard negatives leads to the learning
 063 signal being dominated by simple negatives, ultimately weakening the model’s ability to make exact
 064 distinctions. Furthermore, a critical flaw in existing systems is the assumption that the generator
 065 must answer using the retrieved knowledge, which can lead to high-confidence hallucinations when
 066 the knowledge is erroneous.

067 Based on this analysis, we propose the Adversarial Curriculum Learning (**Adv-CL**) framework, a
 068 synergistic approach that tackles these two challenges sequentially. It comprises three core com-
 069 ponents: Query-guided Multi-grained Recalling (QMR), Adversarial Reranker Training (ART), and
 070 Guarded Answer Generation (GAG). Specifically, QMR leverages both global and query-guided lo-
 071 cal features to raise the recall ceiling. By identifying and emphasizing fine-grained, query-relevant
 072 regions, it provides a more comprehensive and diverse set of candidates for reranking. ART com-
 073 pels the reranker to discern fine-grained distinctions among highly similar candidates. It employs a
 074 minimax game where a modulator network acts as an adversary, dynamically creating a curriculum
 075 of hard negatives by up-weighting candidates that most confuse the reranker. This forces the model
 076 to develop precise discriminative abilities. GAG mitigates the risk of hallucination. It introduces
 077 two simple yet effective safeguards, *i.e.*, the prompt-based inspection and the retrieval discriminator,
 078 enabling the system to abstain from answering when retrieved knowledge is unreliable.

079 Extensive experiments on public KBVQA benchmarks demonstrate that our proposed Adv-CL
 080 framework achieves state-of-the-art performance, validating its effectiveness. In summary, our con-
 081 tributions are as follows: (i) We systematically identify and analyze a critical bottleneck in RAG-
 082 based KBVQA systems: inaccurate knowledge provision caused by suboptimal recall and an in-
 083 ability to distinguish between fine-grained candidates during reranking. (ii) We propose QMR to
 084 raise the recall ceiling and ART, which creates a dynamic curriculum of hard negatives to enhance
 085 the reranker’s discriminative power. (iii) We introduce GAG, a mechanism that allows the model to
 086 refuse to answer when faced with unreliable retrieved knowledge, thus reducing hallucination.

087 2 RELATED WORK

090 2.1 KNOWLEDGE-BASED VQA

091 Unlike traditional VQA tasks, KBVQA requires the integration of external knowledge beyond the
 092 image content to answer questions. Recent datasets such as E-VQA Mensink et al. (2023b) and
 093 InfoSeek Chen et al. have further pushed the field by emphasizing fine-grained attribution of factual
 094 knowledge, introducing new challenges in multimodal reasoning.

095 Current approaches to KBVQA can be broadly categorized into three paradigms: (i) Jointly Op-
 096 timized RAG Frameworks. This paradigm focuses on creating tight feedback loops between the
 097 retrieval and generation modules. For example, Hao et al. (2024) introduce a selector–answerer
 098 architecture where the generator provides pseudo-labels to iteratively refine knowledge selection.
 099 Similarly, Long et al. (2025) propose a reinforcement-based mechanism that uses feedback from
 100 the answer generator to directly optimize retrieval relevance. (ii) End-to-End Fine-tuned MLLMs.
 101 This approach integrates retrieval capabilities directly into the Multimodal Large Language Model
 102 (MLLM) via end-to-end training. Methods like Cocchi et al. (2025) and Zhang et al. (2024) in-
 103 incorporate self-reflective tokens, enabling models to autonomously assess the necessity of retrieval
 104 and the relevance of retrieved information. Others, such as Qi et al. (2024), focus on enhancing
 105 the MLLM’s resilience to irrelevant information by introducing adversarial noise during training.
 106 (iii) Modular Training with Frozen LLMs. This paradigm keeps the pre-trained LLM frozen and
 107 concentrates on training lightweight modules for retrieval and reranking. For instance, Wang et al.
 (2024) and Weng et al. (2024) train a lightweight module to distill key information from knowledge

108 into soft prompts. Other works focus specifically on the retrieval and reranking components. Yan &
 109 Xie (2024) trains a Q-Former reranker on hard negatives to improve precision, Chen et al. (2025) de-
 110 velops a multi-modal encoder for initial retrieval followed by a reranking step, and Liu et al. (2025)
 111 fine-tunes an MLLM with LoRA to act as a powerful yet efficient retriever and reranker.

112 While the joint optimization and end-to-end MLLM paradigms facilitate rich information flow and
 113 strong instruction alignment, they often incur substantial computational costs and face challenges
 114 in scalability. In contrast, the modular paradigm offers greater efficiency and flexibility, allowing
 115 for easier integration of upgraded components Liu et al. (2025); Chen et al. (2025). Following this
 116 promising direction, our work focuses on designing a retrieval-reranking pipeline that can empower
 117 any off-the-shelf frozen LLM, addressing the core challenge of precise evidence identification.

118

119 2.2 HARD NEGATIVE MINING

120

121 The efficacy of contrastive learning is heavily dependent on the quality of negative samples. The
 122 strategies have evolved from simple in-batch negatives, which treat other positive samples within
 123 a mini-batch as negatives Yih et al. (2011); Henderson et al. (2017), to more sophisticated hard
 124 negative mining. This latter strategy involves deliberately selecting samples that are semantically
 125 close to the positive query but are incorrect, thereby compelling the model to learn fine-grained
 126 distinctions Robinson et al. (2020); Xia et al. (2021); Bucher et al. (2016). Recent efforts have sought
 127 to refine this process. For instance, Moreira et al. (2024) proposed a method to mitigate the risk of
 128 false negatives (incorrectly labeling a true positive as negative), while Zhang et al. (2025) adopted a
 129 two-stage strategy that bootstraps with random negatives before refining with hard ones. To manage
 130 computational overhead, methods like Yan & Xie (2024) resort to random sub-sampling from a
 131 larger pool of retrieved hard candidates. However, a common limitation across these approaches
 132 is their static nature. They typically rely on a pre-defined strategy or a fixed pool of candidates,
 133 failing to adapt as the model’s discriminative power evolves during training. Our approach directly
 134 addresses this gap by dynamically adapting the difficulty of negatives to the model’s current state,
 135 ensuring a persistent and effective learning signal throughout the training process.

136

137 2.3 CURRICULUM LEARNING

138

139 Inspired by human cognition, Curriculum Learning (CL) is a training strategy that improves model
 140 performance and convergence stability by presenting training examples in a meaningful order, typ-
 141 ically from easy to difficult Bengio et al. (2009); Soviany et al. (2022); Wang et al. (2021). This
 142 paradigm has evolved significantly over time. Early approaches often relied on manually de-
 143 signed heuristics for difficulty, such as sentence length or concept frequency Platanios et al. (2019);
 144 Spitkovsky et al. (2010). More recent work has shifted towards automated methods for curriculum
 145 generation, using techniques like self-paced learning Kumar et al. (2010); Meng et al. (2017), trans-
 146 fer from teacher models Zhang et al. (2018); Zhou et al. (2020), and reinforcement learning Graves
 147 et al. (2017); Kumar et al. (2019). Our adversarial reranker training instantiates the curriculum learn-
 148 ing paradigm, leveraging a min-max game mechanism to dynamically schedule training from easy
 149 to difficult cases for stable convergence and robust performance.

150

151 3 OBSERVATION

152

153 To elucidate the necessity of our proposed method, we conduct three diagnostic experiments to ana-
 154 lyze the bottlenecks in typical KBVQA systems. The results reveal a coherent chain of deficiencies:
 155 a severe gap between retrieval quality and generation potential, the rapid decay of training signals in
 156 contrastive reranker training, and the vulnerability of static RAG systems to factual contamination
 157 from erroneous retrieval.

158

159 O1. The Retrieval-Generation Capability Gap. A key diagnostic for any RAG-based system is
 160 to isolate the primary performance bottleneck: the retriever or the generator. To quantify this, we
 161 evaluate several powerful generators (Mistral-7B, Llama3-8B, Qwen2.5-7B) on the E-VQA dataset
 162 under two conditions: (i) using perfect “oracle” ground-truth knowledge, and (ii) using knowl-
 163 edge retrieved by a powerful model. The results are stark. Under oracle conditions, the generators
 164 achieved near-perfect accuracies (91.2%, 90.4%, 89.4%), approaching the human consistency up-
 165 per bound. However, when fed with retrieved knowledge, their accuracy plummeted to an average

Figure 1: (a) The evolution of the similarity between negative samples and the query throughout training iterations. (b) Distribution of query-negative similarity scores. (c) The case of factual contamination in generation.

of 41.5%, a staggering drop of nearly 50 percentage points. This massive, consistent performance gap across all generators unequivocally identifies retrieval quality, not generation capacity, as the primary bottleneck in current KBVQA systems. This finding highlights the critical need to improve the precision of retrieved evidence.

O2. Contrastive Learning Signal Decay. Next, we investigate the training dynamics of the reranking stage by analyzing the InfoNCE Oord et al. (2018) loss contribution and query-negative similarity for 2,000 samples. We observe that conventional negative sampling strategies are suboptimal. As shown in Fig. 1(a), training a reranker with a static hard negative pool leads to a monotonic decline in loss, but this is a false indicator of progress. After approximately 2,500 steps, the average negative sample weights collapse, indicating the model has effectively identified these static negatives and its training has hit a premature plateau. Alternatively, relying on random top-k sampling is also inefficient. As seen in Fig. 1(b), roughly 40% of the top-ranked negatives in early training stages exhibit significant semantic deviation from the query, rendering them too easy to provide a useful learning signal. These findings confirm that a dynamic, adaptive strategy is required to continuously challenge the reranker.

O3. Factual Contamination in Static RAG Systems. Finally, we identify a critical vulnerability in static RAG systems, a phenomenon we term Factual Contamination. We compare a powerful MLLM’s (Qwen2.5-VL) performance on E-VQA validation set under three settings: (i) with ground-truth knowledge, (ii) with incorrectly retrieved knowledge, and (iii) with no retrieval augmentation. The VQA scores were 84%, 18%, and 25%, respectively. The striking insight is that providing incorrect knowledge is significantly more detrimental than providing no knowledge at all. Plausible but irrelevant facts contaminate the model’s reasoning process, inducing severe hallucinations where key attributes are swapped, producing answers that seem compelling but are factually wrong (see Fig. 1(c)). This underscores the need for a safeguard mechanism that empowers generator to recognize unreliable knowledge and refuse to answer, rather than propagating retrieval errors.

4 METHODOLOGY

The overall architecture of our proposed method, Adv-CL, is illustrated in Fig. 2. This section starts with the problem definition of KBVQA, followed by the details of the Query-guided Multi-grained Recalling (QMR) module in Sec. 4.1, the Adversarial Re-ranker Training (ART) strategy in Sec. 4.2, and finally the Guarded Answer Generation (GAG) in Sec. 4.3.

Preliminaries. For the KBVQA task, given an input image I and a natural language question Q about the image, the system is expected to generate a textual response y . A knowledge base K is utilized during retrieval and generation, consisting of candidate multimodal KB entries.

4.1 QUERY-GUIDED MULTI-GRAINED RECALLING

Query-guided Feature Aggregation. To achieve comprehensive multi-grained retrieval, our approach extends beyond the global image features common in prior work by further incorporating pivotal local features. To this end, we design a query-guided feature aggregation module that selectively emphasizes and prioritizes relevant image patches. Specifically, we employ a pre-trained Vision-Language Model (VLM) with fine-grained image-text alignment capabilities Xiao et al. (2024),

Figure 2: **Overview of the Adv-CL framework.** It involves three components: QMR retrieves candidate knowledge using multi-grained image features, ART conducts dynamic adversarial curriculum learning, filtering out the most conducive section for the response before feeding it into the proposed GAG to produce reliable answers.

referred to as *q-Selector*, to compute the relevance scores between image patches and the user question. Given a user query q consisting of an input image I and a question Q , we first encode the input image using the same image encoder as the knowledge base, typically EVA-CLIP Sun et al. (2024), to obtain the CLS token Z_c and image patches Z_p embeddings. For Z_p , we use the *q-Selector* to calculate the normalized relevance score S_p between each patch and the question. The image patches are then weighted according to their relevance scores to derive the fine-grained feature Z_q . The calculation process is shown in Eq. 1.

$$\begin{aligned} Z_c, Z_p &= \text{EVA-CLIP}(I), Z_c \in \mathbb{R}^{1 \times D}, Z_p \in \mathbb{R}^{L \times D}, \\ S_p &= q\text{-Selector}(I, Q), Z_q = S_p \odot Z_p, S_p \in \mathbb{R}^{L \times 1}, \end{aligned} \quad (1)$$

where L is the sequence length, D is the feature dimension, and \odot denotes the element-wise product.

Multi-grained Retrieval and Merging. Leveraging these global and salient local features, we perform multi-recall over the knowledge base K . Specifically, we establish two separate pathways for retrieval: one uses the global image feature (i.e., the CLS token Z_c), and the other utilizes the query-guided fine-grained feature Z_q . Both pathways leverage FAISS library Douze et al. (2024) for efficient similarity search, which employs a non-parametric function to compute the cosine similarity between the embedding of the image and all search indexes in the knowledge base K . Since the two retrieval processes are data-independent and share identical computational complexities, they can be fully parallelized. We denote the top-K KB entries corresponding to the images retrieved by the global features as \mathbf{A}_c , and those retrieved by the fine-grained features as \mathbf{A}_q . The final retrieved candidate pool is merged by $\mathbf{A} = \mathbf{A}_c \cup \mathbf{A}_q$.

In practice, we observe a high overlap rate between \mathbf{A}_c and \mathbf{A}_q , which is expected because both the global and local features are derived from the same input and thus have similar feature distributions. However, the final recall results indicate that \mathbf{A}_q still serves as an effective supplement to \mathbf{A}_c , as shown in Tab. D. The multi-grained retrieval and merging process facilitates the retrieval of samples at varying granularity and perspectives for the subsequent reranking stage. By retrieving and merging samples at multiple granularities and from diverse perspectives, our approach achieves better retrieval quality and ensures a more informative input for the subsequent reranking stage.

4.2 ADVERSARIAL RERANKER TRAINING

To better distinguish the candidate samples provided by QMR and mitigate the decaying gradient signals from negative samples during training, as discussed in Sec. 3, we propose an adversarial reranker training strategy based on the contrastive objective.

Contrastive Reranking. A standard reranker can be formulated as a model \mathcal{R}_θ that scores the relevance of the candidates given the user query q , generally a vision-language model. For a training

procedure consisting of the positive section k_+ and a set of negative sections \mathbf{C}_{neg} , the loss is calculated as:

$$\mathcal{L}_q = -\log \frac{\exp(s_+/\tau)}{\exp(s_+/\tau) + \sum_{k_- \in \mathbf{C}_{neg}} \exp(s_-/\tau)}, \quad (2)$$

where $s_+ = sim(\mathcal{R}_\theta(q), \mathcal{R}_\theta(k_+))$ and $s_- = sim(\mathcal{R}_\theta(q), \mathcal{R}_\theta(k_-))$ are the relevance scores, computed as the cosine similarity between their respective representations, and τ is a temperature hyperparameter. The negative samples are generally selected from in-batch samples within the same training batch Yih et al. (2011); Henderson et al. (2017), or offline-constructed, which are obtained based on the similarity between query anchors and candidate features Robinson et al. (2020); Xia et al. (2021); Bucher et al. (2016). Nevertheless, such negatives are sub-optimal for reranker training. As the reranker progresses, the model suffers from the rapid separation between negative sample representations and the positive ones, resulting in inefficient training and even stagnation.

Adversarial Curriculum for Hard Negative Mining. To overcome this limitation, we customize an adversarial training curriculum for the reranker by dynamically mining hard negative samples. During the adversarial training process of the reranker, the difficulty of negative samples is progressively increased, thereby ensuring a sustained and challenging learning signal. We frame the training process as a minimax game between two models: (i) the reranker (\mathcal{R}_θ), which aims to learn discriminative representations by minimizing the contrastive loss. (ii) the modulator (\mathcal{M}_ϕ), which aims to dynamically allocate “importance scores” to negative samples within a limited budget to maximize the contrastive loss. The overall objective is a minimax game formulated as:

$$\min_{\theta} \max_{\phi} \mathcal{L}_{adv}(\theta, \phi) = \mathbb{E}[-\log \frac{\exp(s_+^\theta/\tau)}{\exp(s_+^\theta/\tau) + \sum_{k_- \in \mathbf{C}_{neg}} \mathbf{p}(\phi) \cdot \exp(s_-^\theta/\tau)} + \lambda \cdot \mathcal{H}(\mathbf{p}(\phi))], \quad (3)$$

where $\mathbf{p}(\phi)$ represents the importance scores assigned to each negative sample according to the user query, $\mathcal{H}(\cdot)$ is an entropy regularization for the importance scores, and λ is a balancing coefficient. We restrict the total budget of $\mathbf{p}(\phi)$ to the number of negative samples in each step. This means that the modulator must give greater importance to the more difficult negative samples and less importance to the easier ones. The entropy regularization term is aimed at promoting a diverse, non-degenerate weight distribution from the modulator, which prevents a collapse into the trivial strategy of exclusively selecting the hardest negative. The proposed minimax objective is solved by alternating updates to the reranker \mathcal{R}_θ and the modulator \mathcal{M}_ϕ .

To facilitate understanding, we provide a detailed description of the implementation process. Firstly, we employ the reranker to extract the representation of the query and positive/negative samples. Next, we use the modulator to calculate an importance score for each negative sample: $\mathbf{p}(\phi) = \mathcal{M}_\phi(\text{sg}(\mathcal{R}_\theta(q)), \text{sg}(\mathcal{R}_\theta(k_-)))$, where $\text{sg}(\cdot)$ denotes the stop-gradient operator. The modulator \mathcal{M}_ϕ comprises a stack of standard transformer blocks, each containing a self-attention module, a cross-attention module, and a feed-forward network (FFN). To optimize the modulator and reranker alternately, we list their individual loss functions, as shown in Eq. 4 and Eq. 5.

$$\mathcal{L}_{\mathcal{M}_\phi} = \log \frac{\exp(\text{sg}(s_+^\theta)/\tau)}{\exp(\text{sg}(s_+^\theta)/\tau) + \sum_{k_- \in \mathbf{C}_{neg}} \mathbf{p}(\phi) \cdot \exp(\text{sg}(s_-^\theta)/\tau)} + \lambda \cdot \sum \mathbf{p}(\phi) \cdot \log(\mathbf{p}(\phi)), \quad (4)$$

$$\mathcal{L}_{\mathcal{R}_\theta} = -\log \frac{\exp(s_+^\theta/\tau)}{\exp(s_+^\theta/\tau) + \sum_{k_- \in \mathbf{C}_{neg}} \text{sg}(\mathbf{p}(\phi)) \cdot \exp(s_-^\theta/\tau)}. \quad (5)$$

4.3 GUARDED ANSWER GENERATION

Although the proposed methodology improves retrieval and reranking, the inherent uncertainty in cross-modal retrieval can still lead to the selection of irrelevant or incorrect knowledge for the answer generator. To mitigate this risk, we propose two straightforward yet effective guarded mechanisms that allow the system to refrain from answering when retrieved knowledge is unreliable: (i) **Prompt-based inspection mechanism**: We instruct the MLLM to explicitly assess the reliability of the retrieved knowledge before answering. Specifically, we incorporate the designed prompt into the system prompt for robust generation, and the details can be found in Appendix A.2.3. While this zero-shot strategy yields consistent gains with no additional parameters, its effectiveness is bounded by the inherent capability of the generator. (ii) **Dedicated retrieval discriminator**: A small binary

324 **Table 1: Performance comparison on E-VQA and InfoSeek datasets.** Our Adv-CL framework
 325 outperforms all state-of-the-art KBVQA baselines across three different LLM generators, demon-
 326 strating its superior robustness and effectiveness.

328 Method	329 GEN	330 RET	331 E-VQA		332 InfoSeek		
			333 Single-Hop	334 Unseen-Q	335 Unseen-E	336 ALL	
337 BLIP-2 Li et al. (2023)	338 Flan-T5 _{XL}	339 N.	340 12.6	341 12.7	342 12.3	343 12.5	
344 InstructBLIP Dai et al. (2023)	345 Flan-T5 _{XL}	346 N.	347 11.9	348 8.9	349 7.4	350 8.1	
351 LLaVA-v1.5 Liu et al. (2024)	352 Vicuna-7B	353 N.	354 16.3	355 9.6	356 9.4	357 9.5	
358 Qwen-2.5-VL Bai et al. (2025)	359 Qwen-2.5-7B	360 N.	361 25.1	362 –	363 –	364 12.3	
365 DPR _{V4T} Karpukhin et al. (2020)	366 BERT	367 Y.	368 29.1	369 –	370 –	371 12.4	
373 RORA-VLM Qi et al. (2024)	374 Vicuna-7B	375 Y.	376 –	377 27.3	378 25.1	379 26.2	
382 Wiki-LLaVA Caffagni et al. (2024)	383 Vicuna-7B	384 Y.	385 21.8	386 27.8	387 28.9	388 28.4	
391 EchoSight Yan & Xie (2024)	392 Mistral-7B	393 Y.	394 41.8	395 –	396 –	397 31.3	
399 ReflectiVA Cocchi et al. (2025)	400 LLaMA-3-8B	401 Y.	402 35.5	403 28.6	404 28.1	405 28.3	
408 Ours			409 Mistral-7B	410 Y.	411 46.0	412 33.9	413 34.2
416			417 LLaMa-3-8B	418 Y.	419 46.5	420 34.1	421 33.8
424			425 Qwen-2.5-7B	426 Y.	427 45.9	428 33.9	429 34.0
433							

342 classifier, inserted before the decoding layer of the generator, predicts relevance from the last hidden
 343 states of the prefilling stage. Fully supervised training of this component enables superior perfor-
 344 mance, demonstrating particular effectiveness for large-scale models with limited parameters. More
 345 details can be found in Appendix A.2.3. By equipping the system with the ability to refuse rather
 346 than hallucinate, we take a critical step toward a trustworthy KBVQA system.

349 5 EXPERIMENTS

351 5.1 DATASETS AND METRICS

353 **Datasets.** Following recent methods Yan & Xie (2024); Cocchi et al. (2024); Caffagni et al. (2024);
 354 Qi et al. (2024), we evaluate our approach on two commonly used datasets, E-VQA Mensink et al.
 355 (2023a) and InfoSeek Chen et al. (2023), whose details are presented in Appendix A.1.1.

356 **Metrics.** We conduct a comprehensive evaluation of our proposed method from three critical per-
 357 spectives: for **retrieval and reranking**, we utilize the standard Recall@K metric to assess whether
 358 the ground-truth knowledge is present among the top-K retrieved and reranked results and we eval-
 359 uate our result on URL and section level, denoted as U and S, as detailed in Appendix A.1.2. For
 360 **visual question answering**, we report the VQA score, following conventional practice in the field.
 361 This score measures the holistic effectiveness of our system by calculating the accuracy of the gen-
 362 erated answers against human-annotated ground-truth answers. For **answer reliability**, we define
 363 three metrics beyond standard accuracy (see Appendix A.1.3 for details): Abstention Precision (AP)
 364 measures the appropriateness of refusal when retrieval fails, Abstention Recall (AR) quantifies the
 365 detection rate of retrieval failures, and Valid Answer Rate (VAR) assesses answer accuracy condi-
 366 tioned on successful retrieval.

367 5.2 MAIN RESULTS

369 **Visual Question Answering.** The results of our method and other competitive baselines for the
 370 E-VQA and InfoSeek are shown in Tab. 1. And we have the following conclusions: (i) By adopting
 371 a retrieval-augmented generation framework and leveraging rich multimodal information from the
 372 knowledge base, the system achieves a substantial performance improvement. (ii) The retrieval-
 373 reranking architecture demonstrates superior effectiveness. Under the same retrieval encoder(EVA-
 374 CLIP-8B Sun et al. (2024)) and modality settings, the two-stage retrieval-reranking framework
 375 EchoSight Yan & Xie (2024) significantly outperforms other methods. This can be attributed to
 376 its decoupled objectives: the retrieval stage aims to obtain the candidate samples, while the rerank-
 377 ing stage focuses on a precise selection. (iii) Our method achieves notable improvements in VQA
 378 score on both the E-VQA and InfoSeek datasets, surpassing the previous model by 3.2% and 3.0%,

378 respectively, without LLM fine-tuning. This performance gain stems from our proposed QMR and
 379 ART module, which effectively translates broad recall gains into enhanced final VQA accuracy.
 380

381 **Knowledge Retrieval and Rerank.** We report the
 382 reranked recall of external knowledge in Tab. 2. Eval-
 383 uated at the section level (see Appendix A.1.2 for ra-
 384 tionale), Top-1 recall (R@1) on the E-VQA dataset in-
 385 creases from 29.0% to 32.3%, achieving an 11.4% gain.
 386 This improvement reflects more accurate top-rank pos-
 387 itioning of relevant candidates, demonstrating the ability
 388 to filter superficially similar but semantically inconsis-
 389 tent samples through adversarial hard negative mining.
 390

390 5.3 ANALYSIS

392 5.3.1 ANALYSIS OF QMR

394 We analyze the effectiveness of query-guided multi-
 395 grained recalling by visualizing the relevance scores
 396 assigned by the *q-Selector* to image patches relative
 397 to the query question. As shown in Fig. 3, the origi-
 398 nal image is (a), and for the question “When was the
 399 building built in the given picture?”, the *q-Selector*
 400 consistently attends to patches containing the build-
 401 ing structure as (b), which is the most relevant region
 402 for answering the query. By emphasizing these corre-
 403 sponding patches and suppressing irrelevant areas, the
 404 method produces fine-grained representations that im-
 405 prove alignment between retrieved candidates and the
 406 query intent, thereby mitigating the impact of extraneous
 407 noise within the image on retrieval results.
 408

5.3.2 ANALYSIS OF ART

409 In addition, we analyze the training process of the proposed adversarial reranker to understand its
 410 effectiveness. The loss curve (Fig. 4, left) shows an initial slight increase in contrastive loss, as
 411 the modulator upweights harder negatives and downweights easier ones. As training advances, the
 412 reranker gains dominance and the loss resumes a gradual decline. The interplay between the modu-
 413 lator and reranker is clearly illustrated in the right diagrams of Fig. 4. Following the application
 414 of ART, the scores of negative samples exhibit a more pronounced oscillatory decline, indicating
 415 improved discrimination of challenging samples. Furthermore, we visualize the heatmap of impor-
 416 tance scores predicted by the modulator and the entropy of scores, as depicted in Fig. 5. Initially, the
 417 randomly initialized modulator yields a uniform score distribution with high entropy and no high-
 418 lights. It then sharpens the distribution to raise the contrastive loss, resulting in visible highlights
 419 and a sharp entropy drop, reflecting active exploration. As the reranker strengthens, the modulator is
 420 increasingly challenged; guided by gradients, it elevates entropy again, leading to smoother scores
 421 and fewer highlights. The adversarial process converges when entropy is maximized—that is, scores
 422 follow a uniform distribution—marking the victory of the reranker.
 423

5.4 ABLATION STUDY

5.4.1 ABLATION RESULTS ON QMR AND GAG.

426 We conducted ablation experiments on QMR and ART, with results and analysis presented in Ap-
 427 pendix A.2.2 and A.2.3. Our findings confirm the importance of both components: QMR produces
 428 diverse, multi-perspective retrieval results, laying a solid foundation for reranking, while GAG im-
 429 proves the robustness of the KBVQA system through its retrieval discrimination mechanism.
 430

5.4.2 ABLATION ON ART

Table 2: The result of the reranker re-call against other methods.

Method	Metric	R@1	R@5
SeBe-VQA-Text	S	20.0	37.5
EchoSight	S	29.0	44.0
Ours	S	32.3	44.6

Figure 3: Visualization of the query-guided scores on the query image. Red color represents higher correlation.
 (a) Original I (b) q -Selector scores

455
456
457
458

Figure 5: The heatmap of importance scores predicted by the modulator and the corresponding entropy curve. At the beginning of training, the modulator is randomly initialized with high entropy and a uniform heatmap. Then, entropy decreases, and the heatmap shows many highlights. With further training, entropy gradually increases, highlights decrease, and the system converges.

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

We also conduct an ablation study to validate the effectiveness of ART, as shown in Tab. 3. The reranker trained with ART achieves higher reranking recall within the same training recipe, which in turn enables the system to obtain higher accuracy. To further illustrate the effectiveness of ART, we plot the similarity scores between training samples and query features throughout the training process under the settings with and without ART, as shown in Fig. 4. ART is activated at the position marked by the dotted line in the right figure. As the reranker trains, the similarity scores for negative samples gradually decrease, while the scores for positive samples slowly increase, which demonstrates the growing discriminative ability of the reranker. When ART is applied, the similarity scores of negative samples are weighted by the modulator. To ensure equivalent comparison, we calculate the log-average of the exponential similarity scores weighted by the modulator’s predicted weights. We highlight the key differences between the two figures with dashed-line boxes. The application of ART results in higher average similarity scores for negative samples, indicating that the modulator assigns more weight to more challenging negative samples. Consequently, the reranker is trained to distinguish more difficult negative samples, thereby improving training efficiency.

6 CONCLUSION

476
477
478
479
480
481
482
483
484
485

In this paper, we address the dual bottlenecks within the retrieval–reranking module of the KBVQA system, which result in erroneous facts being passed to the generator. To tackle these challenges, we propose a novel framework, Adversarial Curriculum Learning (Adv-CL). Adv-CL first employs QMR to improve the quality of recalled candidates by integrating global features with query-guided local features. Then, ART employs a novel min-max game that creates a dynamic curriculum of hard negatives to hone the reranker’s discriminative ability. A final GAG module provides a crucial safeguard against retrieval errors. Comprehensive experiments on multiple public KBVQA benchmarks demonstrate that our Adv-CL framework achieves state-of-the-art performance, validating its effectiveness and generalizability.

Table 3: Ablation on ART.

Method	R@1	VQA Score
w/o ART	29.3	41.8
w/ ART	32.2	42.8

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
490 2025.

491 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
492 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

493 Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Hard negative mining for metric learn-
494 ing based zero-shot classification. In *European Conference on Computer Vision*, pp. 524–531.
495 Springer, 2016.

496 Davide Caffagni, Federico Cocchi, Nicholas Moratelli, Sara Sarto, Marcella Cornia, Lorenzo
497 Baraldi, and Rita Cucchiara. Wiki-llava: Hierarchical retrieval-augmented generation for mul-
498 timodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
499 Recognition*, pp. 1818–1826, 2024.

500 Boqi Chen, Anuj Khare, Gaurav Kumar, Arjun Akula, and Pradyumna Narayana. Seeing beyond:
501 Enhancing visual question answering with multi-modal retrieval. In *Proceedings of the 31st In-
502 ternational Conference on Computational Linguistics: Industry Track*, pp. 410–421, 2025.

503 Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-Wei
504 Chang. Can pre-trained vision and language models answer visual information-seeking questions?
505 In *The 2023 Conference on Empirical Methods in Natural Language Processing*.

506 Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-Wei
507 Chang. Can pre-trained vision and language models answer visual information-seeking questions?
508 *arXiv preprint arXiv:2302.11713*, 2023.

509 Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
510 biased contrastive learning. *Advances in neural information processing systems*, 33:8765–8775,
511 2020.

512 Federico Cocchi, Nicholas Moratelli, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Aug-
513 menting multimodal llms with self-reflective tokens for knowledge-based visual question answer-
514 ing. *arXiv preprint arXiv:2411.16863*, 2024.

515 Federico Cocchi, Nicholas Moratelli, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Aug-
516 menting multimodal llms with self-reflective tokens for knowledge-based visual question answer-
517 ing. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 9199–9209,
518 2025.

519 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
520 Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
521 models with instruction tuning, 2023. URL <https://arxiv.org/abs/2305.06500>.

522 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-
523 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. *arXiv
524 preprint arXiv:2401.08281*, 2024.

525 Feng Gao, Qing Ping, Govind Thattai, Aishwarya Reganti, Ying Nian Wu, and Prem Natara-
526 jan. Transform-retrieve-generate: Natural language-centric outside-knowledge visual question
527 answering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
528 tion*, pp. 5067–5077, 2022.

529 Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
530 curriculum learning for neural networks. In *international conference on machine learning*, pp.
531 1311–1320. Pmlr, 2017.

532 Liangke Gui, Borui Wang, Qiuyuan Huang, Alexander G Hauptmann, Yonatan Bisk, and Jianfeng
533 Gao. Kat: A knowledge augmented transformer for vision-and-language. In *Proceedings of the
534 2022 conference of the North American chapter of the association for computational linguistics:
535 human language technologies*, pp. 956–968, 2022.

540 Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao,
 541 Peng Gao, and Xiangyu Yue. Onellm: One framework to align all modalities with language
 542 supplementary material.

543 Dongze Hao, Qunbo Wang, Longteng Guo, Jie Jiang, and Jing Liu. Self-bootstrapped
 544 visual-language model for knowledge selection and question answering. *arXiv preprint*
 545 *arXiv:2404.13947*, 2024.

546 Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
 547 Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response suggestion
 548 for smart reply. *arXiv preprint arXiv:1705.00652*, 2017.

549 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 550 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*
 551 (1), pp. 6769–6781, 2020.

552 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 553 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural*
 554 *information processing systems*, 33:18661–18673, 2020.

555 Gaurav Kumar, George Foster, Colin Cherry, and Maxim Krikun. Reinforcement learning based
 556 curriculum optimization for neural machine translation. *arXiv preprint arXiv:1903.00041*, 2019.

557 M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
 558 *Advances in neural information processing systems*, 23, 2010.

559 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 560 pre-training with frozen image encoders and large language models. In *International conference*
 561 *on machine learning*, pp. 19730–19742. PMLR, 2023.

562 Weizhe Lin and Bill Byrne. Retrieval augmented visual question answering with outside knowledge.
 563 *arXiv preprint arXiv:2210.03809*, 2022.

564 Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. Fine-grained late-
 565 interaction multi-modal retrieval for retrieval augmented visual question answering. *Advances in*
 566 *Neural Information Processing Systems*, 36:22820–22840, 2023.

567 Weizhe Lin, Jingbiao Mei, Jinghong Chen, and Bill Byrne. Preflmr: Scaling up fine-grained late-
 568 interaction multi-modal retrievers. *arXiv preprint arXiv:2402.08327*, 2024.

569 Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu, Chenguang Zhu, and Lu Yuan. Revive:
 570 Regional visual representation matters in knowledge-based visual question answering. *Advances*
 571 *in neural information processing systems*, 35:10560–10571, 2022.

572 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 573 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 574 nition*, pp. 26296–26306, 2024.

575 Yikun Liu, Yajie Zhang, Jiayin Cai, Xiaolong Jiang, Yao Hu, Jiangchao Yao, Yanfeng Wang, and
 576 Weidi Xie. Lamra: Large multimodal model as your advanced retrieval assistant. In *Proceedings*
 577 *of the Computer Vision and Pattern Recognition Conference*, pp. 4015–4025, 2025.

578 Xinwei Long, Zhiyuan Ma, Ermo Hua, Kaiyan Zhang, Biqing Qi, and Bowen Zhou. Retrieval-
 579 augmented visual question answering via built-in autoregressive search engines. In *Proceedings*
 580 *of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 24723–24731, 2025.

581 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 582 *arXiv:1711.05101*, 2017.

583 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
 584 question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvpr*
 585 *conference on computer vision and pattern recognition*, pp. 3195–3204, 2019.

594 Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta, and Marcus Rohrbach. Krisp: Integrat-
 595 ing implicit and symbolic knowledge for open-domain knowledge-based vqa. In *Proceedings of*
 596 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14111–14121, 2021.
 597

598 Deyu Meng, Qian Zhao, and Lu Jiang. A theoretical understanding of self-paced learning. *Informa-
 599 tion Sciences*, 414:319–328, 2017.

600 Thomas Mensink, Jasper Uijlings, Lluis Castrejon, Arushi Goel, Felipe Cadar, Howard Zhou, Fei
 601 Sha, André Araujo, and Vittorio Ferrari. Encyclopedic vqa: Visual questions about detailed
 602 properties of fine-grained categories. In *Proceedings of the IEEE/CVF International Conference
 603 on Computer Vision*, pp. 3113–3124, 2023a.
 604

605 Thomas Mensink, Jasper Uijlings, Lluis Castrejon, Arushi Goel, Felipe Cadar, Howard Zhou, Fei
 606 Sha, André Araujo, and Vittorio Ferrari. Encyclopedic vqa: Visual questions about detailed
 607 properties of fine-grained categories. In *Proceedings of the IEEE/CVF International Conference
 608 on Computer Vision*, pp. 3113–3124, 2023b.

609 Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer, and
 610 Even Oldridge. Nv-retriever: Improving text embedding models with effective hard-negative
 611 mining. *arXiv preprint arXiv:2407.15831*, 2024.
 612

613 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 614 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

615 Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom M
 616 Mitchell. Competence-based curriculum learning for neural machine translation. *arXiv preprint
 617 arXiv:1903.09848*, 2019.
 618

619 Jingyuan Qi, Zhiyang Xu, Rulin Shao, Yang Chen, Jin Di, Yu Cheng, Qifan Wang, and Lifu
 620 Huang. Rora-vlm: Robust retrieval-augmented vision language models. *arXiv preprint
 621 arXiv:2410.08876*, 2024.

622 Chen Qu, Hamed Zamani, Liu Yang, W Bruce Croft, and Erik Learned-Miller. Passage retrieval
 623 for outside-knowledge visual question answering. In *Proceedings of the 44th International ACM
 624 SIGIR Conference on Research and Development in Information Retrieval*, pp. 1753–1757, 2021.
 625

626 Qwen, ;, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 627 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 628 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 629 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 630 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 631 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 632 URL <https://arxiv.org/abs/2412.15115>.

633 Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
 634 hard negative samples. *arXiv preprint arXiv:2010.04592*, 2020.
 635

636 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 637 A-okvqa: A benchmark for visual question answering using world knowledge. In *European
 638 conference on computer vision*, pp. 146–162. Springer, 2022.

639 Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
 640 *International Journal of Computer Vision*, 130(6):1526–1565, 2022.
 641

642 Valentin I Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. From baby steps to leapfrog: How “less is
 643 more” in unsupervised dependency parsing. In *Human Language Technologies: The 2010 Annual
 644 Conference of the North American Chapter of the Association for Computational Linguistics*, pp.
 645 751–759, 2010.

646 Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, and Xinlong Wang.
 647 Eva-clip-18b: Scaling clip to 18 billion parameters. *arXiv preprint arXiv:2402.04252*, 2024.

648 Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
 649 makes for good views for contrastive learning? *Advances in neural information processing sys-*
 650 *tems*, 33:6827–6839, 2020.

651 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 652 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 653 Multilingual vision-language encoders with improved semantic understanding, localization, and
 654 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

655 Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, and Oisin Mac Aodha.
 656 Benchmarking representation learning for natural world image collections. In *Proceedings of the*
 657 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 12884–12893, 2021.

658 Qunbo Wang, Ruyi Ji, Tianhao Peng, Wenjun Wu, Zechao Li, and Jing Liu. Soft knowledge prompt:
 659 Help external knowledge become a better teacher to instruct llm in knowledge-based vqa. In *Pro-*
 660 *ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 661 *1: Long Papers)*, pp. 6132–6143, 2024.

662 Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. *IEEE transactions on*
 663 *pattern analysis and machine intelligence*, 44(9):4555–4576, 2021.

664 Weixi Weng, Jieming Zhu, Xiaojun Meng, Hao Zhang, Rui Zhang, and Chun Yuan. Learning
 665 to compress contexts for efficient knowledge-based visual question answering. *arXiv preprint*
 666 *arXiv:2409.07331*, 2024.

667 Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2-a large-
 668 scale benchmark for instance-level recognition and retrieval. In *Proceedings of the IEEE/CVF*
 669 *conference on computer vision and pattern recognition*, pp. 2575–2584, 2020.

670 Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z Li. Progcl: Rethinking hard negative mining
 671 in graph contrastive learning. *arXiv preprint arXiv:2110.02027*, 2021.

672 Rui Xiao, Sanghwan Kim, Mariana-Iuliana Georgescu, Zeynep Akata, and Stephan Alaniz.
 673 Flair: Vlm with fine-grained language-informed image representations. *arXiv preprint*
 674 *arXiv:2412.03561*, 2024.

675 Yibin Yan and Weidi Xie. Echosight: Advancing visual-language models with wiki knowledge.
 676 *arXiv preprint arXiv:2407.12735*, 2024.

677 Wen-tau Yih, Kristina Toutanova, John C Platt, and Christopher Meek. Learning discriminative pro-
 678 jections for text similarity measures. In *Proceedings of the fifteenth conference on computational*
 679 *natural language learning*, pp. 247–256, 2011.

680 Tao Zhang, Ziqi Zhang, Zongyang Ma, Yuxin Chen, Zhongang Qi, Chunfeng Yuan, Bing Li, Junfu
 681 Pu, Yuxuan Zhao, Zehua Xie, et al. mr’2 ag: Multimodal retrieval-reflection-augmented genera-
 682 tion for knowledge-based vqa. *arXiv preprint arXiv:2411.15041*, 2024.

683 Xin Zhang, Yanzhao Zhang, Wen Xie, Mingxin Li, Ziqi Dai, Dingkun Long, Pengjun Xie, Meishan
 684 Zhang, Wenjie Li, and Min Zhang. Bridging modalities: Improving universal multimodal re-
 685 trieval by multimodal large language models. In *Proceedings of the Computer Vision and Pattern*
 686 *Recognition Conference*, pp. 9274–9285, 2025.

687 Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Marianna J Mar-
 688 tindale, Paul McNamee, Kevin Duh, and Marine Carpuat. An empirical exploration of curriculum
 689 learning for neural machine translation. *arXiv preprint arXiv:1811.00739*, 2018.

690 Yikai Zhou, Baosong Yang, Derek F Wong, Yu Wan, and Lidia S Chao. Uncertainty-aware curricu-
 691 lum learning for neural machine translation. In *Proceedings of the 58th Annual Meeting of the*
 692 *association for computational linguistics*, pp. 6934–6944, 2020.

693

694

695

696

697

698

699

700

701

A APPENDIX

This appendix contains the following parts:

- **Detailed Statistics of the Datasets** (Appendix A.1.1). We provide detailed statistics of the publicly available experimental datasets.
- **Details of Metrics for Retrieval and Reranking** (Appendix A.1.2). We detail the evaluation metrics (URL matching and section matching) and justify their respective use in assessing retrieval and reranking performance.
- **Details of Metrics for Generation** (Appendix A.1.3). We describe the three metrics used to evaluate the guarded generator’s ability to correctly answer or decline based on retrieval success.
- **Implementation Details** (Appendix A.1.4). We specify the experimental setup, including the base models, optimizer, learning rate, batch size, and training steps.
- **Details of GAG** (Appendix A.1.5). We provide the detail of GAG, including the prompt.
- **Additional Ablation Studies** (Appendix A.2.1, A.2.2, A.2.3 and A.2.4). We provide the global ablation study and cost analysis as well as additional ablation studies on the QMR and GAG components. Moreover, we investigate the sensitivity to the balancing coefficient λ .
- **Supplement to related work.** We provide a systematic review of other promising advances in KBVQA, including the approaches about OK-VQA and A-OKVQA.
- **Case Study: Tracing One Question Through QMR → ART → GAG** To demonstrate how QMR, ART, and GAG operate in concert, we trace the full pipeline on a single sample.
- **The Use of LLMs.** (Appendix A.5). We discuss the utilization of Large Language Models in our work.
- **Ethics and Reproducibility Statement.** (Appendix A.6). This section contains our statements regarding research ethics and the statement of reproducibility.

A.1 EXPERIMENT SETTINGS

A.1.1 DATASETS

The detailed statistics of our used dataset are shown in Tab. A.1.1.

Encyclopedic-VQA Mensink et al. (2023a) is a large-scale VQA dataset featuring visual questions about the fine-grained categories from iNaturalist 2021 Van Horn et al. (2021) and instances from Google Landmarks Dataset v2 Weyand et al. (2020). It contains 221K unique question-answer pairs, each of which is matched with up to 5 images, resulting in a total of 1M VQA samples. Moreover, the dataset is accompanied by a knowledge base derived from Wikipedia, consisting of visual images and text documents from Wikipedia. The questions are of four types: templated, single-hop questions, automatically generated single-hop questions, multi-answer questions, and two-hop questions. Our experiments on E-VQA only take into account templated and automated single-hop questions to evaluate the effectiveness of the model.

Table A: The details of experimental datasets, which are composed of E-VQA and InfoSeek.

Dataset	Question Type	Number of IQA pairs		
		Train	Val	Test
E-VQA	Templated	66,535	1,827	1,000
	Automatic	737,114	8,025	2,750
	Multi Answer	112,736	1,844	1,000
	Total	916,385	11,696	4,750
InfoSeek	Total	902,509	–	71,335

756 Table B: **Results of URL recall.** Our method achieves performance comparable to Echosight, and
 757 both outperform the other competitors.
 758

759	760	Dataset	Method	Metric	R@K			
					K=1	K=5	K=20	K=40
762	763	E-VQA	Wiki-LLaVA	U	3.3	9.9	17.5	–
			ReflectiVA	U	15.6	36.1	49.8	–
			EchoSight	U	36.5	47.9	50.2	56.1
			Ours	U	36.7	48.3	51.1	58.4
766	767	InfoSeek	Wiki-LLaVA	U	36.9	66.1	78.4	–
			RoRA-VLM	U	29.6	41.4	46.6	–
			EchoSight	U	53.2	74.0	77.9	81.9
			Ours	U	54.2	74.6	79.6	82.8

771 **InfoSeek** is a VQA dataset tailored for information-seeking questions that require knowledge be-
 772 yond common sense, including 1.3M visual information-seeking questions, covering more than 11K
 773 visual entities from OVEN Chen et al.. The evaluation set is divided into two subsets: Unseen Ent-
 774 ity and Unseen Question. The Infoseek dataset consists of a training set and three evaluation sets:
 775 InfoSeek_{wikidata}, InfoSeek_{Validation}, and InfoSeek_{Human}. The training set, together with the first
 776 two evaluation sets, transforms knowledge triples in Wikidata into natural language questions, re-
 777 sulting in 1.3M examples. InfoSeek_{Human} contains 8.9K samples annotated by humans to simulate
 778 real information-seeking intentions. We use the filtered 100K knowledge base from E-VQA as in
 779 the previous work Yan & Xie (2024). Since the InfoSeek dataset does not have a golden evidence
 780 section label, we conducted zero-shot experiments on the InfoSeek dataset to evaluate the model’s
 781 performance. Following prior work for a consistent comparison, we use the validation split of In-
 782 foSeek as our test set.

783 A.1.2 DETAILS OF METRIC FOR RETRIEVAL AND RERANKING

785 For evaluating the retriever, we employ URL matching recall as the metric, reflecting the retriever’s
 786 ability to retrieve true articles.

788 However, for reranking, we adopt a section-level matching metric to evaluate whether the ground-
 789 truth section appears among the top-K retrieved sections, as opposed to URL-level matching. Since
 790 a single Wikipedia URL may contain multiple sections, URL matching tends to overestimate rerank-
 791 ing performance: any section from the correct URL is considered a hit, even if it is not the actual
 792 evidence section. Such coarse-grained evaluation does not align with the finer granularity required
 793 in the reranking stage.

794 Tab. B presents the URL matching results, showing that our method performs comparably to Yan &
 795 Xie (2024). However, as shown in Tab. 2, our method achieves significantly higher recall@1 under
 796 section matching. This suggests that high URL recall does not guarantee superior section-level
 797 retrieval accuracy.

798 Therefore, we argue that section matching more accurately reflects the reranking model’s ability
 799 to prioritize the true evidence section, justifying its use as the primary evaluation metric in our
 800 reranking experiments.

801 A.1.3 DETAILS OF METRICS FOR GENERATION

803 Beyond standard accuracy, we assess reliability by analyzing retrieval-generation interactions across
 804 four cases: True Positive (TP): Retrieval succeeds, answer is correct. True Negative (TN): Retrieval
 805 succeeds, answer is incorrect. False Positive (FP): Retrieval fails, system correctly abstains. False
 806 Negative (FN): Retrieval fails, system hallucinates an answer. Based on these, we define: Abst-
 807 ention Precision (AP): Proportion of correct abstentions among all abstentions, measuring appropriate
 808 refusal upon retrieval failure while answering correctly upon success. Abstention Recall (AR): Pro-
 809 portion of retrieval failures correctly detected, evaluating system sensitivity to retrieval breakdowns.
 Valid Answer Rate (VAR): Answer accuracy when retrieval is successful, reflecting performance

810 under reliable knowledge provision.
 811

$$812 AP = \frac{FP}{FP + TN_{refuse}}, \quad AR = \frac{FP}{FP + FN}, \quad VAR = \frac{TP}{TP + TN}, \quad (A)$$

813 where TN_{refuse} indicates that the retrieval is successful but the system refuses to answer, which is
 814 a subset of TN .
 815

816 817 A.1.4 IMPLEMENTATION DETAILS

818 **Retrieval and Reranking.** For retrieval, we use the visual encoder of EVA-CLIP-8B Sun et al.
 819 (2024) to extract image features and build a knowledge base with the FAISS Douze et al. (2024)
 820 library for efficient image retrieval. For query-guided multi-grained retrieval, we employ the well-
 821 trained FLAIR Xiao et al. (2024) as the *q-Selector*. For reranking, following Yan & Xie (2024), we
 822 use BLIP-2 Li et al. (2023) as the reranker to extract features of multimodal queries and knowledge
 823 sections, and initialize a lightweight modulator with two standard Transformer blocks, which in-
 824 cludes multi-head self-attention and cross-attention modules and an FFN module. We offline extract
 825 initial hard negatives using the proposed QMR strategy and randomly select 32 negative samples
 826 in each training step for adversarial learning. For the reranker, we use the OneCycleLR learning
 827 rate scheduler and AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of 1e-4 and
 828 a batch size of 32. For the modulator, we use the AdamW optimizer with a constant learning rate
 829 of 5e-5 to ensure stable training. We first train the reranker for 50K steps to build its discriminative
 830 ability. Then, we activate the modulator for adversarial training, with a total of 150K steps.
 831

832 **Answer Generation.** We employ both large language models (Llama3-8B Liu et al. (2024) and
 833 Qwen2.5-7B Qwen et al. (2025)) and multimodal large models (Qwen2.5-VL-7B Bai et al. (2025))
 834 as generators, repectively.

835 836 A.1.5 DETAILS OF GAG

837 We provide GAG with two optional strategies: a prompt-based inspection mechanism and a dedi-
 838 cated retrieval discriminator. For the prompt-based inspection, the prompt is as follows:
 839

840 841 Prompt for Inspection Mechanism

842 <Query>\n<Context>

843 Please first determine whether the provided context can answer the question posed for the image, and
 844 output it in the format of <think>Yes</think> or <think>No</think>.

845 If it is <think>Yes</think>, it means that the correct answer to the question can be obtained based on
 846 the provided context, and the answer to the question is output in the format of <answer></answer>. If it is
 847 <think>No</think>, it means that the correct answer to the question cannot be obtained based on the provided context, and no other output is required.

848 For the retrieval discriminator, we sampled 20K training instances from the E-VQA dataset. Each
 849 instance consists of a <Query><Context>pair and a binary label of Yes or No. If the <Query> and
 850 <Context> form a matched positive pair according to the dataset annotations, the corresponding
 851 label is Yes; otherwise, it is No. To improve training efficiency, we selected negative samples
 852 for each <Query> exclusively from the hard set filtered by the retrieval module. Additionally, we
 853 balanced the ratio of samples corresponding to the two labels in the training data to prevent model
 854 bias. The definitions and computational details of AP/AR/VAR are provided in Appendix A.1.3;
 855 these metrics evaluate the joint performance of the retrieval and answering components in a RAG
 856 system. The final VQA accuracy is shown in the Tab. A.2.3. Note that our reported accuracy includes
 857 cases where the model correctly identifies retrieval failures.

858 859 A.2 ADDITION ABLATION STUDY

860 861 A.2.1 GLOBAL ABLATION AND EFFICIENCY ANALYSIS

862 863 Table C presents a comprehensive analysis of the computational overhead introduced by QMR, ART,
 864 and GAG in terms of GFLOPs, Training Speed (TSpeed), and Inference Latency.

Components			Efficiency & Performance Metrics			
QMR	ART	GAG	GFLOPs	Train Speed (it/s)	Latency (ms)	VQA Score
-	-	-	14,334	2.12	2,793	41.8
✓	-	-	14,360	2.12	3,744	42.3
✓	✓	-	14,360	1.90	3,744	46.0
✓	✓	✓	15,070	1.90	3,744	45.9
-	✓	✓	15,044	1.90	2,793	42.5
✓	-	✓	15,070	2.12	3,744	42.1

Table C: Cost Analysis and Global Ablation Study. We report the computational complexity (GFLOPs), Training Speed (iterations per second), Inference Latency (milliseconds), and the final VQA performance. Note that ART only affects training speed, while QMR primarily impacts inference latency.

QMR: The primary latency overhead in QMR arises from the computation of query-weighted features. However, this is mitigated by our system’s parallel execution design. Unlike mainstream cross-modal methods that require a computationally expensive second encoding step, QMR leverages efficient image-to-image retrieval (powered by Faiss). Consequently, while QMR incurs a slight inference cost compared to pure image retrieval, its latency remains comparable to standard Image+Text paradigms. Crucially, this enables multi-granularity retrieval, providing high-quality negatives that substantially improve ART’s contrastive training.

ART: Although ART introduces a regulator module, the associated training overhead is marginal. As shown in Table C, TSpeed decreases only slightly (from 2.12 to 1.90 it/s). This efficiency stems from the regulator’s lightweight architecture (only two Transformer blocks) and the short input sequence length (limited to the batch size). More importantly, ART is exclusively a training-time optimization; it imposes zero additional cost during inference, presenting a highly favorable trade-off for the permanent performance gains it secures.

GAG: This module is designed as an optional branch during the RAG inference phase. It provides a conditional mechanism for users to handle refusal responses. Therefore, GAG imposes no mandatory latency penalty on the standard inference process.

A.2.2 ABLATION RESULTS ON QMR.

To validate the necessity of the query guidance in local patch selection, we replace the *q-Selector* with (i) random sampling and (ii) pure visual saliency detection without query conditions (PVS), evaluating performance on Recall@20 and Recall@40, with results shown in Tab. D. Results consistently show that both blind selection strategies degrade performance by introducing an influx of semantically irrelevant areas. Random sampling suffers severely from background noise, in contrast, saliency detection is misled by the poor alignment between visual saliency and query-specific relevance. An ablation study validates the necessity of query guidance local features for multi-grained visual recalling: using only global features yields a Recall@40 of 56.2, while local features alone degrade performance to 52.1. The integration of both within QMR demonstrates a clear synergistic effect, achieving the highest recall and establishing a solid foundation for subsequent reranking.

A.2.3 ABLATION ON GAG

Finally, we conduct an ablation study on the proposed GAG, as shown in Tab. E. We employ the 3B/7B models of Qwen2.5-VL as the generator. When no retrieval discrimination mechanism is applied, the AP and AR metrics are zero, indicating that the generator will not refuse to answer regardless of whether the retrieval is successful. When the prompt-based inspection is applied, the system's AP and AR are 0.87/0.96 and 0.69/0.74, respectively, indicating that the generator refuses to answer those queries with failed retrieval.

Table D: Ablation of OMR.

Method	R@20	R@40
Random	30.7	35.7
PVS	36.9	43.5
Ours	51.8	56.8

918 However, the VAR decreases slightly,
 919 suggesting that the generator misjudges
 920 some queries with successful retrieval
 921 and also refuses to answer them. When
 922 we apply the retrieval discriminator, we
 923 first utilize the reranker to filter 10K
 924 query-knowledge pairs from the E-VQA
 925 training set, assigning each data point a
 926 binary label based on whether the knowl-
 927 edge is paired with the query. For
 928 Qwen2.5-VL-3B, the retrieval discriminator achieves better performance than prompt-based inspec-
 929 tion, but there is no advantage for Qwen2.5-VL-7B. This validates our opinion in Sec. 4.3 that the
 930 prompt-based inspection depends on the generator’s capability. However, the retrieval discriminator
 931 incurs additional training costs, and its result depends on the quality of training data. In practice, we
 932 suggest prioritizing the cheaper prompt-based inspection to implement GAG.

933 A.2.4 ABLATION ON BALANCING COEFFICIENT λ

935 We also perform an ablation experiment on the balancing coefficient λ in Eq. 3. Experimental
 936 results demonstrate that, within a reasonable range, the recall is insensitive to the choice of λ . This
 937 parameter weights the entropy-loss term: a larger λ encourages the predicted importance scores
 938 to approach a uniform distribution, whereas a smaller λ may drive the model to focus exclusively
 939 on the hardest instances, sacrificing sample diversity. We evaluated $\lambda \in \{0.005, 0.01, 0.1, 0.5\}$ and
 940 observed that the re-ranking recall varied by less than 2%. Across all settings, entropy loss exhibited
 941 a consistent trend.

943 A.3 SUPPLEMENT TO RELATED WORK

945 Due to space limit, we only discuss the related works of EVQA and InfoSeek datasets in Sec. 2.1,
 946 leaving limited room to discuss other promising advances in KBVQA. To fill this gap, we provide a
 947 systematic review of these emerging directions as follows.

949 Early OK-VQA Marino et al. (2019) and A-OKVQA Schwenk et al. (2022) highlighted the im-
 950 portance of knowledge in VQA, but focused almost exclusively on commonsense knowledge. For
 951 instance, KAT Gui et al. (2022) and REVIVE Lin et al. (2022) prompt an LLM to generate an-
 952 swer candidates, while RA-VQA Lin & Byrne (2022) and prior work Qu et al. (2021); Gao et al.
 953 (2022) condition generation on knowledge retrieved from an external KB to boost VQA per-
 954 formance. FLMR Lin et al. (2023) fuses token-level visual and textual features into multi-dimensional
 955 embeddings to capture finer query–document relevance, and its successor PreFLMR Lin et al. (2024)
 956 scales pre-training to over ten million image–text pairs, yielding a powerful multimodal retriever.
 957 Self-bootstrapped Hao et al. (2024) further proposes a co-training scheme in which a selector picks
 958 key knowledge documents for the answerer and the answerer returns pseudo-labels to refine the
 959 selector, bootstrapping both components without extra annotations.

960 A.4 CASE STUDY: TRACING ONE QUESTION THROUGH QMR \rightarrow ART \rightarrow GAG

962 To demonstrate how QMR, ART, and GAG operate in concert, we trace the full pipeline on the
 963 question “When was this building built?”, as demonstrated in Fig. A. (1) QMR. The global pathway
 964 retrieves six Wikipedia entries whose images share the overall museum style, ranking the correct
 965 article “Grassi Muzeum” at position 4. Meanwhile, the query-guided local pathway attends to the
 966 marginal inscription “Grassi Muzeum” visible on the façade, producing an additional three candi-
 967 dates. The merged pool contains the ground-truth section at position 2. (2) ART. The modulator
 968 assigns different importance scores to distinct negative samples, with more challenging negative
 969 samples receiving higher weights. (3) GAG. We emulate retrieval failure by forcing the incorrect
 970 “1950s” section into Top-1. Through our designed prompt-based inspection mechanism or dedi-
 971 cated retrieval discriminator, the generator recognises the irrelevance of the provided section. Con-
 972 sequently, the generator abstains with “I refuse to answer” instead of hallucinating the wrong year.

Table E: Ablation results on GAG. PI. represents the prompt-based inspection and RD. represents the retrieval discriminator.

Method	Qwen2.5-VL-3B				Qwen2.5-VL-7B			
	AP	AR	VAR	Acc	AP	AR	VAR	Acc
w/o GAG	0	0	0.80	0.43	0	0	0.85	0.46
w/ PI.	0.87	0.69	0.64	0.75	0.96	0.74	0.79	0.81
w/ RD.	0.94	0.72	0.76	0.79	0.95	0.74	0.78	0.81

Figure A: Complete workflow of Adv-CL on a single example

990 A.5 THE USE OF LLMS

992 In the preparation of this manuscript, we utilized a Large Language Model (LLM). The tool was
 993 employed solely for grammar checking and polishing the language expression. All scientific content,
 994 analysis, and conclusions remain entirely our own. The authors take full responsibility for the entire
 995 content of the paper.

996 A.6 ETHICS AND REPRODUCIBILITY STATEMENT

998 This work complies with the ICLR Code of Ethics. We are not aware of significant ethical concerns
 999 arising from this research, which utilizes publicly available datasets and base models. Detailed
 1000 experimental settings can be found in Appendix A.1.1 and A.1.4. Our experiments are conducted
 1001 entirely on open-weight models. To ensure reproducibility, we will provide the full source code and
 1002 model.