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ABSTRACT

Knowledge-based Visual Question Answering (KBVQA) aims to answer image-
related questions by retrieving relevant facts from an external knowledge base,
making the accuracy of knowledge retrieval crucial. However, a dominant bottle-
neck in existing systems is that inaccurate facts are fed to the answer generator.
This issue stems from two key deficiencies: (i) an initial retrieval stage that re-
lies on global visual features, often overlooking fine-grained evidence, and (ii)
a reranking stage that lacks the ability to differentiate between confusing candi-
dates, making the correct answer a lower priority. To address this, we propose the
Adversarial Curriculum Learning (Adv-CL) framework, which tackles these two
challenges sequentially. First, we design a Query-guided Multi-grained Recall-
ing (QMR) strategy that leverages both global and query-guided local features to
improve the recall quality and provide a diverse set of challenging negatives for
reranker training. Subsequently, to enable exact distinction, we introduce an Ad-
versarial Reranker Training (ART) paradigm, which compels the reranker to dis-
cern fine-grained distinctions among highly similar candidates. It employs a min-
imax game where a modulator network acts as an adversary against the reranker,
dynamically creating a curriculum of hard negatives by up-weighting candidates
that most confuse the reranker. This forces the model to develop its discrimina-
tive capability. In addition, we further introduce a Guarded Answer Generation
(GAG) mechanism to mitigate the risk of retrieval failure exacerbating the system
hallucination. Extensive experiments on public knowledge-based VQA bench-
marks show that our method achieves state-of-the-art performance, validating the
effectiveness and synergistic effect of broad recall and exact distinction.

1 INTRODUCTION

Visual Question Answering (VQA) aims to answer questions based on visual context. In recent
years, multimodal large language models have made significant strides in this area Sun et al. (2024);
Han et al.; Tschannen et al. (2025); Xiao et al. (2024). However, when confronted with knowledge-
intensive queries involving domain-specific facts or rare entities, visual context alone is often in-
sufficient. To address this, knowledge-based visual question answering (KBVQA) emerged Marino
et al. (2021), which incorporates external knowledge bases to supplement visual information. This
introduces a new, critical challenge: how to accurately retrieve relevant facts from a vast knowledge
base to generate precise answers.

Although existing KBVQA systems, often built upon the Retrieval-Augmented Generation (RAG)
framework, have achieved encouraging performance, their primary bottleneck is the provision of
inaccurate facts to the answer generator. This issue stems from two key, sequential deficiencies in
the retrieval pipeline: an initial recall stage that overlooks fine-grained evidence and a reranking
stage that lacks discriminative power.

First, the initial retrieval quality is often suboptimal. Existing methods (Yan & Xie, 2024; Qi et al.,
2024; Cocchi et al., 2025) typically encode images into a single global embedding. While capturing
general context, this approach struggles to focus on the fine-grained local regions or objects essential
for answering the query. For instance, determining a laptop’s brand might depend on a minute logo,
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a query-guided detail easily lost in a global representation. This reliance on coarse features results
in a low recall ceiling, where crucial evidence is often omitted from the initial candidate pool, and
also provides a noisy set of candidates for the subsequent stage.

Second, even when the correct fact is successfully recalled, the reranker often fails to distinguish
it from a set of semantically similar but incorrect candidates. This is due to a lack of fine-grained
discriminative power. Many approaches employ contrastive learning Khosla et al. (2020); Tian et al.
(2020); Chuang et al. (2020) for reranker training. However, they often rely on static or non-adaptive
negative sampling strategies. As the reranker’s discriminative ability improves during training, it
requires more challenging examples. The lack of dynamic, hard negatives leads to the learning
signal being dominated by simple negatives, ultimately weakening the model’s ability to make exact
distinctions. Furthermore, a critical flaw in existing systems is the assumption that the generator
must answer using the retrieved knowledge, which can lead to high-confidence hallucinations when
the knowledge is erroneous.

Based on this analysis, we propose the Adversarial Curriculum Learning (Adv-CL) framework, a
synergistic approach that tackles these two challenges sequentially. It comprises three core com-
ponents: Query-guided Multi-grained Recalling (QMR), Adversarial Reranker Training (ART), and
Guarded Answer Generation (GAG). Specifically, QMR leverages both global and query-guided lo-
cal features to raise the recall ceiling. By identifying and emphasizing fine-grained, query-relevant
regions, it provides a more comprehensive and diverse set of candidates for reranking. ART com-
pels the reranker to discern fine-grained distinctions among highly similar candidates. It employs a
minimax game where a modulator network acts as an adversary, dynamically creating a curriculum
of hard negatives by up-weighting candidates that most confuse the reranker. This forces the model
to develop precise discriminative abilities. GAG mitigates the risk of hallucination. It introduces
two simple yet effective safeguards, i.e., the prompt-based inspection and the retrieval discriminator,
enabling the system to abstain from answering when retrieved knowledge is unreliable.

Extensive experiments on public KBVQA benchmarks demonstrate that our proposed Adv-CL
framework achieves state-of-the-art performance, validating its effectiveness. In summary, our con-
tributions are as follows: (i) We systematically identify and analyze a critical bottleneck in RAG-
based KBVQA systems: inaccurate knowledge provision caused by suboptimal recall and an in-
ability to distinguish between fine-grained candidates during reranking. (ii) We propose QMR to
raise the recall ceiling and ART, which creates a dynamic curriculum of hard negatives to enhance
the reranker’s discriminative power. (iii) We introduce GAG, a mechanism that allows the model to
refuse to answer when faced with unreliable retrieved knowledge, thus reducing hallucination.

2 RELATED WORK

2.1 KNOWLEDGE-BASED VQA

Unlike traditional VQA tasks, KBVQA requires the integration of external knowledge beyond the
image content to answer questions. Recent datasets such as E-VQA Mensink et al. (2023b) and
InfoSeek Chen et al. have further pushed the field by emphasizing fine-grained attribution of factual
knowledge, introducing new challenges in multimodal reasoning.

Current approaches to KBVQA can be broadly categorized into three paradigms: (i) Jointly Op-
timized RAG Frameworks. This paradigm focuses on creating tight feedback loops between the
retrieval and generation modules. For example, Hao et al. (2024) introduce a selector–answerer
architecture where the generator provides pseudo-labels to iteratively refine knowledge selection.
Similarly, Long et al. (2025) propose a reinforcement-based mechanism that uses feedback from
the answer generator to directly optimize retrieval relevance. (ii) End-to-End Fine-tuned MLLMs.
This approach integrates retrieval capabilities directly into the Multimodal Large Language Model
(MLLM) via end-to-end training. Methods like Cocchi et al. (2025) and Zhang et al. (2024b) in-
corporate self-reflective tokens, enabling models to autonomously assess the necessity of retrieval
and the relevance of retrieved information. Others, such as Qi et al. (2024), focus on enhancing
the MLLM’s resilience to irrelevant information by introducing adversarial noise during training.
(iii) Modular Training with Frozen LLMs. This paradigm keeps the pre-trained LLM frozen and
concentrates on training lightweight modules for retrieval and reranking. For instance, Wang et al.
(2024) and Weng et al. (2024) train a lightweight module to distill key information from knowledge
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into soft prompts. Other works focus specifically on the retrieval and reranking components. Yan &
Xie (2024) trains a Q-Former reranker on hard negatives to improve precision, Chen et al. (2025) de-
velops a multi-modal encoder for initial retrieval followed by a reranking step, and Liu et al. (2025)
fine-tunes an MLLM with LoRA to act as a powerful yet efficient retriever and reranker.

While the joint optimization and end-to-end MLLM paradigms facilitate rich information flow and
strong instruction alignment, they often incur substantial computational costs and face challenges
in scalability. In contrast, the modular paradigm offers greater efficiency and flexibility, allowing
for easier integration of upgraded components Liu et al. (2025); Chen et al. (2025). Following this
promising direction, our work focuses on designing a retrieval-reranking pipeline that can empower
any off-the-shelf frozen LLM, addressing the core challenge of precise evidence identification.

2.2 HARD NEGATIVE MINING

The efficacy of contrastive learning is heavily dependent on the quality of negative samples. The
strategies have evolved from simple in-batch negatives, which treat other positive samples within
a mini-batch as negatives Yih et al. (2011); Henderson et al. (2017), to more sophisticated hard
negative mining. This latter strategy involves deliberately selecting samples that are semantically
close to the positive query but are incorrect, thereby compelling the model to learn fine-grained
distinctions Robinson et al. (2020); Xia et al. (2021); Bucher et al. (2016). Recent efforts have sought
to refine this process. For instance, Moreira et al. (2024) proposed a method to mitigate the risk of
false negatives (incorrectly labeling a true positive as negative), while Zhang et al. (2025) adopted a
two-stage strategy that bootstraps with random negatives before refining with hard ones. To manage
computational overhead, methods like Yan & Xie (2024) resort to random sub-sampling from a
larger pool of retrieved hard candidates. However, a common limitation across these approaches
is their static nature. They typically rely on a pre-defined strategy or a fixed pool of candidates,
failing to adapt as the model’s discriminative power evolves during training. Our approach directly
addresses this gap by dynamically adapting the difficulty of negatives to the model’s current state,
ensuring a persistent and effective learning signal throughout the training process.

2.3 CURRICULUM LEARNING

Inspired by human cognition, Curriculum Learning (CL) is a training strategy that improves model
performance and convergence stability by presenting training examples in a meaningful order, typ-
ically from easy to difficult Bengio et al. (2009); Soviany et al. (2022); Wang et al. (2021). This
paradigm has evolved significantly over time. Early approaches often relied on manually de-
signed heuristics for difficulty, such as sentence length or concept frequency Platanios et al. (2019);
Spitkovsky et al. (2010). More recent work has shifted towards automated methods for curriculum
generation, using techniques like self-paced learning Kumar et al. (2010); Meng et al. (2017), trans-
fer from teacher models Zhang et al. (2018); Zhou et al. (2020), and reinforcement learning Graves
et al. (2017); Kumar et al. (2019). Our adversarial reranker training instantiates the curriculum learn-
ing paradigm, leveraging a min-max game mechanism to dynamically schedule training from easy
to difficult cases for stable convergence and robust performance.

3 OBSERVATION

To elucidate the necessity of our proposed method, we conduct three diagnostic experiments to ana-
lyze the bottlenecks in typical KBVQA systems. The results reveal a coherent chain of deficiencies:
a severe gap between retrieval quality and generation potential, the rapid decay of training signals in
contrastive reranker training, and the vulnerability of static RAG systems to factual contamination
from erroneous retrieval.

O1. The Retrieval-Generation Capability Gap. A key diagnostic for any RAG-based system is
to isolate the primary performance bottleneck: the retriever or the generator. To quantify this, we
evaluate several powerful generators (Mistral-7B, Llama3-8B, Qwen2.5-7B) on the E-VQA dataset
under two conditions: (i) using perfect ”oracle” ground-truth knowledge, and (ii) using knowl-
edge retrieved by a powerful model. The results are stark. Under oracle conditions, the generators
achieved near-perfect accuracies (91.2%, 90.4%, 89.4%), approaching the human consistency up-
per bound. However, when fed with retrieved knowledge, their accuracy plummeted to an average
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(a) (b) (c)

Figure 1: (a) The evolution of the similarity between negative samples and the query throughout
training iterations. (b) Distribution of query-negative similarity scores. (c) The case of factual
contamination in generation.

of 41.5%, a staggering drop of nearly 50 percentage points. This massive, consistent performance
gap across all generators unequivocally identifies retrieval quality, not generation capacity, as the
primary bottleneck in current KBVQA systems. This finding highlights the critical need to improve
the precision of retrieved evidence.

O2. Contrastive Learning Signal Decay. Next, we investigate the training dynamics of the rerank-
ing stage by analyzing the InfoNCE Oord et al. (2018) loss contribution and query-negative similar-
ity for 2,000 samples. We observe that conventional negative sampling strategies are suboptimal. As
shown in Fig. 1(a), training a reranker with a static hard negative pool leads to a monotonic decline
in loss, but this is a false indicator of progress. After approximately 2,500 steps, the average neg-
ative sample weights collapse, indicating the model has effectively identified these static negatives
and its training has hit a premature plateau. Alternatively, relying on random top-k sampling is also
inefficient. As seen in Fig. 1(b), roughly 40% of the top-ranked negatives in early training stages
exhibit significant semantic deviation from the query, rendering them too easy to provide a useful
learning signal. These findings confirm that a dynamic, adaptive strategy is required to continuously
challenge the reranker.

O3. Factual Contamination in Static RAG Systems. Finally, we identify a critical vulnerabil-
ity in static RAG systems, a phenomenon we term Factual Contamination. We compare a power-
ful MLLM’s (Qwen2.5-VL) performance on E-VQA validation set under three settings: (i) with
ground-truth knowledge, (ii) with incorrectly retrieved knowledge, and (iii) with no retrieval aug-
mentation. The VQA scores were 84%, 18%, and 25%, respectively. The striking insight is that
providing incorrect knowledge is significantly more detrimental than providing no knowledge at all.
Plausible but irrelevant facts contaminate the model’s reasoning process, inducing severe hallucina-
tions where key attributes are swapped, producing answers that seem compelling but are factually
wrong (see Fig. 1(c)). This underscores the need for a safeguard mechanism that empowers genera-
tor to recognize unreliable knowledge and refuse to answer, rather than propagating retrieval errors.

4 METHODOLOGY

The overall architecture of our proposed method, Adv-CL, is illustrated in Fig. 2. This section starts
with the problem definition of KBVQA, followed by the details of the Query-guided Multi-grained
Recalling (QMR) module in Sec. 4.1, the Adversarial Re-ranker Training (ART) strategy in Sec. 4.2,
and finally the Guarded Answer Generation (GAG) in Sec. 4.3.

Preliminaries. For the KBVQA task, given an input image I and a natural language question Q
about the image, the system is expected to generate a textual response y. A knowledge base K is
utilized during retrieval and generation, consisting of candidate multimodal KB entries.

4.1 QUERY-GUIDED MULTI-GRAINED RECALLING

Query-guided Feature Aggregation. To achieve comprehensive multi-grained retrieval, our ap-
proach extends beyond the global image features common in prior work by further incorporating piv-
otal local features. To this end, we design a query-guided feature aggregation module that selectively
emphasizes and prioritizes relevant image patches. Specifically, we employ a pre-trained Vision-
Language Model (VLM) with fine-grained image-text alignment capabilities Xiao et al. (2024),
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Figure 2: Overview of the Adv-CL framework. It involves three components: QMR retrieves
candidate knowledge using multi-grained image features, ART conducts dynamic adversarial cur-
riculum learning, filtering out the most conducive section for the response before feeding it into the
proposed GAG to produce reliable answers.

referred to as q-Selector, to compute the relevance scores between image patches and the user ques-
tion. Given a user query q consisting of an input image I and a question Q, we first encode the input
image using the same image encoder as the knowledge base, typically EVA-CLIP Sun et al. (2024),
to obtain the CLS token Zc and image patches Zp embeddings. For Zp, we use the q-Selector
to calculate the normalized relevance score Sp between each patch and the question. The image
patches are then weighted according to their relevance scores to derive the fine-grained feature Zq .
The calculation process is shown in Eq. 1.

Zc, Zp = EVA-CLIP(I), Zc ∈ R1×D, Zp ∈ RL×D,

Sp = q-Selector(I,Q), Zq = Sp ⊙Zp, Sp ∈ RL×1,
(1)

where L is the sequence length, D is the feature dimension, and ⊙ denotes the element-wise product.

Multi-grained Retrieval and Merging. Leveraging these global and salient local features, we
perform multi-recall over the knowledge base K. Specifically, we establish two separate pathways
for retrieval: one uses the global image feature (i.e., the CLS token Zc ), and the other utilizes the
query-guided fine-grained feature Zq . Both pathways leverage FAISS library Douze et al. (2024) for
efficient similarity search, which employs a non-parametric function to compute the cosine similarity
between the embedding of the image and all search indexes in the knowledge base K. Since the two
retrieval processes are data-independent and share identical computational complexities, they can
be fully parallelized. We denote the top-K KB entries corresponding to the images retrieved by the
global features as Ac, and those retrieved by the fine-grained features as Aq . The final retrieved
candidate pool is merged by A = Ac ∪Aq .

In practice, we observe a high overlap rate between Ac and Aq , which is expected because both the
global and local features are derived from the same input and thus have similar feature distributions.
However, the final recall results indicate that Aq still serves as an effective supplement to Ac,
as shown in Tab. C. The multi-grained retrieval and merging process facilitates the retrieval of
samples at varying granularity and perspectives for the subsequent reranking stage. By retrieving
and merging samples at multiple granularities and from diverse perspectives, our approach achieves
better retrieval quality and ensures a more informative input for the subsequent reranking stage.

4.2 ADVERSARIAL RERANKER TRAINING

To better distinguish the candidate samples provided by QMR and mitigate the decaying gradient
signals from negative samples during training, as discussed in Sec. 3, we propose an adversarial
reranker training strategy based on the contrastive objective.

Contrastive Reranking. A standard reranker can be formulated as a model Rθ that scores the
relevance of the candidates given the user query q, generally a vision-language model. For a training
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procedure consisting of the positive section k+ and a set of negative sections Cneg , the loss is
calculated as:

Lq = −log
exp(s+/τ)

exp(s+/τ) +
∑

k−∈Cneg
exp(s−/τ)

, (2)

where s+ = sim(Rθ(q),Rθ(k+)) and s− = sim(Rθ(q),Rθ(k−)) are the relevance scores, com-
puted as the cosine similarity between their respective representations, and τ is a temperature hy-
perparameter. The negative samples are generally selected from in-batch samples within the same
training batch Yih et al. (2011); Henderson et al. (2017), or offline-constructed, which are obtained
based on the similarity between query anchors and candidate features Robinson et al. (2020); Xia
et al. (2021); Bucher et al. (2016). Nevertheless, such negatives are sub-optimal for reranker train-
ing. As the reranker progresses, the model suffers from the rapid separation between negative sample
representations and the positive ones, resulting in inefficient training and even stagnation.

Adversarial Curriculum for Hard Negative Mining. To overcome this limitation, we customize
an adversarial training curriculum for the reranker by dynamically mining hard negative samples.
During the adversarial training process of the reranker, the difficulty of negative samples is pro-
gressively increased, thereby ensuring a sustained and challenging learning signal. We frame the
training process as a minimax game between two models: (i) the reranker (Rθ), which aims to learn
discriminative representations by minimizing the contrastive loss. (ii) the modulator (Mϕ), which
aims to dynamically allocate “importance scores” to negative samples within a limited budget to
maximize the contrastive loss. The overall objective is a minimax game formulated as:

min
θ

max
ϕ

Ladv(θ, ϕ) = E[−log
exp(sθ+/τ)

exp(sθ+/τ) +
∑

k−∈Cneg
p(ϕ) · exp(sθ−/τ)

+ λ · H(p(ϕ))], (3)

where p(ϕ) represents the importance scores assigned to each negative sample according to the user
query, H(·) is an entropy regularization for the importance scores, and λ is a balancing coefficient.
We restrict the total budget of p(ϕ) to the number of negative samples in each step. This means
that the modulator must give greater importance to the more difficult negative samples and less
importance to the easier ones. The entropy regularization term is aimed at promoting a diverse,
non-degenerate weight distribution from the modulator, which prevents a collapse into the trivial
strategy of exclusively selecting the hardest negative. The proposed minimax objective is solved by
alternating updates to the reranker Rθ and the modulator Mϕ.

To facilitate understanding, we provide a detailed description of the implementation process. Firstly,
we employ the reranker to extract the representation of the query and positive/negative sam-
ples. Next, we use the modulator to calculate an importance score for each negative sample:
p(ϕ) = Mϕ(sg(Rθ(q)), sg(Rθ(k−))), where sg(·) denotes the stop-gradient operator. The modu-
lator Mϕ comprises a stack of standard transformer blocks, each containing a self-attention mod-
ule, a cross-attention module, and a feed-forward network (FFN). To optimize the modulator and
reranker alternately, we list their individual loss functions, as shown in Eq. 4 and Eq. 5.

LMϕ
= log

exp(sg(sθ+)/τ)

exp(sg(sθ+)/τ) +
∑

k−∈Cneg
p(ϕ) · exp(sg(sθ−)/τ)

+ λ ·
∑

p(ϕ) · log(p(ϕ)), (4)

LRθ
= −log

exp(sθ+/τ)

exp(sθ+/τ) +
∑

k−∈Cneg
sg(p(ϕ)) · exp(sθ−/τ)

. (5)

4.3 GUARDED ANSWER GENERATION

Although the proposed methodology improves retrieval and reranking, the inherent uncertainty in
cross-modal retrieval can still lead to the selection of irrelevant or incorrect knowledge for the an-
swer generator. To mitigate this risk, we propose two straightforward yet effective guarded mecha-
nisms that allow the system to refrain from answering when retrieved knowledge is unreliable: (i)
Prompt-based inspection mechanism: We instruct the MLLM to explicitly assess the reliability
of the retrieved knowledge before answering. Specifically, we incorporate the designed prompt into
the system prompt for robust generation, and the details can be found in Appendix A.2.2. While this
zero-shot strategy yields consistent gains with no additional parameters, its effectiveness is bounded
by the inherent capability of the generator. (ii) Dedicated retrieval discriminator: A small binary
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Table 1: Performance comparison on E-VQA and InfoSeek datasets. Our Adv-CL framework
outperforms all state-of-the-art KBVQA baselines across three different LLM generators, demon-
strating its superior robustness and effectiveness.

Method GEN RET E-VQA InfoSeek

Single-Hop Unseen-Q Unseen-E ALL

BLIP-2 Li et al. (2023) Flan-T5XL N. 12.6 12.7 12.3 12.5
InstructBLIP Dai et al. (2023) Flan-T5XL N. 11.9 8.9 7.4 8.1
LLaVA-v1.5 Liu et al. (2024) Vicuna-7B N. 16.3 9.6 9.4 9.5
Qwen-2.5-VL Bai et al. (2025) Qwen-2.5-7B N. 25.1 – – 12.3
DPRV+T Karpukhin et al. (2020) BERT Y. 29.1 – – 12.4
RORA-VLM Qi et al. (2024) Vicuna-7B Y. – 27.3 25.1 26.2
Wiki-LLaVA Caffagni et al. (2024) Vicuna-7B Y. 21.8 27.8 28.9 28.4
EchoSight Yan & Xie (2024) Mistral-7B Y. 41.8 – – 31.3
ReflectiVA Cocchi et al. (2025) LLaMA-3-8B Y. 35.5 28.6 28.1 28.3
mR2AG Zhang et al. (2024a) Vicuna-7B Y. 55.9 30.2 27.5 28.8

Mistral-7B Y. 46.0 33.9 34.2 34.0
Ours LLaMa-3-8B Y. 46.5 34.1 33.8 33.9

Qwen-2.5-7B Y. 45.9 33.9 34.0 34.0

classifier, inserted before the decoding layer of the generator, predicts relevance from the last hidden
states of the prefilling stage. Fully supervised training of this component enables superior perfor-
mance, demonstrating particular effectiveness for large-scale models with limited parameters. More
details can be found in Appendix A.2.2. By equipping the system with the ability to refuse rather
than hallucinate, we take a critical step toward a trustworthy KBVQA system.

5 EXPERIMENTS

5.1 DATASETS AND METRICS

Datasets. Following recent methods Yan & Xie (2024); Cocchi et al. (2024); Caffagni et al. (2024);
Qi et al. (2024), we evaluate our approach on two commonly used datasets, E-VQA Mensink et al.
(2023a) and InfoSeek Chen et al. (2023), whose details are presented in Appendix A.1.1.

Metrics. We conduct a comprehensive evaluation of our proposed method from three critical per-
spectives: for retrieval and reranking, we utilize the standard Recall@K metric to assess whether
the ground-truth knowledge is present among the top-K retrieved and reranked results and we eval-
uate our result on URL and section level, denoted as U and S, as detailed in Appendix A.1.2. For
visual question answering, we report the VQA score, following conventional practice in the field.
This score measures the holistic effectiveness of our system by calculating the accuracy of the gen-
erated answers against human-annotated ground-truth answers. For answer reliability, we define
three metrics beyond standard accuracy (see Appendix A.1.3 for details): Abstention Precision (AP)
measures the appropriateness of refusal when retrieval fails, Abstention Recall (AR) quantifies the
detection rate of retrieval failures, and Valid Answer Rate (VAR) assesses answer accuracy condi-
tioned on successful retrieval.

5.2 MAIN RESULTS

Visual Question Answering. The results of our method and other competitive baselines for the
E-VQA and InfoSeek are shown in Tab. 1. And we have the following conclusions: (i) By adopting
a retrieval-augmented generation framework and leveraging rich multimodal information from the
knowledge base, the system achieves a substantial performance improvement. (ii) The retrieval-
reranking architecture demonstrates superior effectiveness. Under the same retrieval encoder(EVA-
CLIP-8B Sun et al. (2024)) and modality settings, the two-stage retrieval-reranking framework
EchoSight Yan & Xie (2024) significantly outperforms other methods. This can be attributed to
its decoupled objectives: the retrieval stage aims to obtain the candidate samples, while the rerank-
ing stage focuses on a precise selection. (iii) Our method achieves notable improvements in VQA
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score on both the E-VQA and InfoSeek datasets, surpassing the previous model by 3.2% and 3.0%,
respectively, without LLM fine-tuning. This performance gain stems from our proposed QMR and
ART module, which effectively translates broad recall gains into enhanced final VQA accuracy.

Table 2: The result of the reranker re-
call against other methods.

Method Metric R@1 R@5

SeBe-VQA-Text S 20.0 37.5
EchoSight S 29.0 44.0
Ours S 32.3 44.6

Knowledge Retrieval and Rerank. We report the
reranked recall of external knowledge in Tab. 2. Eval-
uated at the section level (see Appendix A.1.2 for ra-
tionale), Top-1 recall (R@1) on the E-VQA dataset in-
creases from 29.0% to 32.3%, achieving an 11.4% gain.
This improvement reflects more accurate top-rank posi-
tioning of relevant candidates, demonstrating the ability
to filter superficially similar but semantically inconsistent
samples through adversarial hard negative mining.

5.3 ANALYSIS

5.3.1 ANALYSIS OF QMR

(a) Original I (b) q-Selector scores

Figure 3: Visualization of the query-
guided scores on the query image. Red
color represents higher correlation.

We analyze the effectiveness of query-guided multi-
grained recalling by visualizing the relevance scores
assigned by the q-Selector to image patches relative
to the query question. As shown in Fig. 3, the origi-
nal image is (a), and for the question “When was the
building built in the given picture?”, the q-Selector
consistently attends to patches containing the build-
ing structure as (b), which is the most relevant region
for answering the query. By emphasizing these corre-
sponding patches and suppressing irrelevant areas, the
method produces fine-grained representations that im-
prove alignment between retrieved candidates and the
query intent, thereby mitigating the impact of extraneous noise within the image on retrieval results.

5.3.2 ANALYSIS OF ART

In addition, we analyze the training process of the proposed adversarial reranker to understand its
effectiveness. The loss curve (Fig. 4, left) shows an initial slight increase in contrastive loss, as
the modulator upweights harder negatives and downweights easier ones. As training advances, the
reranker gains dominance and the loss resumes a gradual decline. The interplay between the mod-
ulator and reranker is clearly illustrated in the right diagrams of Fig. 4. Following the application
of ART, the scores of negative samples exhibit a more pronounced oscillatory decline, indicating
improved discrimination of challenging samples. Furthermore, we visualize the heatmap of impor-
tance scores predicted by the modulator and the entropy of scores, as depicted in Fig. 5. Initially, the
randomly initialized modulator yields a uniform score distribution with high entropy and no high-
lights. It then sharpens the distribution to raise the contrastive loss, resulting in visible highlights
and a sharp entropy drop, reflecting active exploration. As the reranker strengthens, the modulator is
increasingly challenged; guided by gradients, it elevates entropy again, leading to smoother scores
and fewer highlights. The adversarial process converges when entropy is maximized—that is, scores
follow a uniform distribution—marking the victory of the reranker.

5.4 ABLATION STUDY

5.4.1 ABLATION RESULTS ON QMR AND GAG.

We conducted ablation experiments on QMR and ART, with results and analysis presented in Ap-
pendix A.2.1 and A.2.2. Our findings confirm the importance of both components: QMR produces
diverse, multi-perspective retrieval results, laying a solid foundation for reranking, while GAG im-
proves the robustness of the KBVQA system through its retrieval discrimination mechanism.

5.4.2 ABLATION ON ART

8
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apply ART

Figure 4: Training loss curves and the impact of ART on the sample similarity score.

Figure 5: The heatmap of importance scores predicted by the modulator and the corresponding
entropy curve. At the beginning of training, the modulator is randomly initialized with high entropy
and a uniform heatmap. Then, entropy decreases, and the heatmap shows many highlights. With
further training, entropy gradually increases, highlights decrease, and the system converges.

Table 3: Ablation on ART.

Method R@1 VQA Score

w/o ART 29.3 41.8
w/ ART 32.2 42.8

We also conduct an ablation study to validate the effectiveness of
ART, as shown in Tab. 3. The reranker trained with ART achieves
higher reranking recall within the same training recipe, which in
turn enables the system to obtain higher accuracy. To further illus-
trate the effectiveness of ART, we plot the similarity scores between
training samples and query features throughout the training process
under the settings with and without ART, as shown in Fig. 4. ART is activated at the position marked
by the dotted line in the right figure. As the reranker trains, the similarity scores for negative sam-
ples gradually decrease, while the scores for positive samples slowly increase, which demonstrates
the growing discriminative ability of the reranker. When ART is applied, the similarity scores of
negative samples are weighted by the modulator. To ensure equivalent comparison, we calculate the
log-average of the exponential similarity scores weighted by the modulator’s predicted weights. We
highlight the key differences between the two figures with dashed-line boxes. The application of
ART results in higher average similarity scores for negative samples, indicating that the modulator
assigns more weight to more challenging negative samples. Consequently, the reranker is trained to
distinguish more difficult negative samples, thereby improving training efficiency.

6 CONCLUSION

In this paper, we address the dual bottlenecks within the retrieval–reranking module of the KBVQA
system, which result in erroneous facts being passed to the generator. To tackle these challenges,
we propose a novel framework, Adversarial Curriculum Learning (Adv-CL). Adv-CL first employs
QMR to improve the quality of recalled candidates by integrating global features with query-guided
local features. Then, ART employs a novel min-max game that creates a dynamic curriculum of
hard negatives to hone the reranker’s discriminative ability. A final GAG module provides a crucial
safeguard against retrieval errors. Comprehensive experiments on multiple public KBVQA bench-
marks demonstrate that our Adv-CL framework achieves state-of-the-art performance, validating its
effectiveness and generalizability.
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A APPENDIX

This appendix contains the following parts:

• Detailed Statistics of the Datasets (Appendix A.1.1). We provide detailed statistics of the
publicly available experimental datasets.

• Details of Metrics for Retrieval and Reranking (Appendix A.1.2). We detail the eval-
uation metrics (URL matching and section matching) and justify their respective use in
assessing retrieval and reranking performance.

• Details of Metrics for Generation (Appendix A.1.3). We describe the three metrics used
to evaluate the guarded generator’s ability to correctly answer or decline based on retrieval
success.

• Implementation Details (Appendix A.1.4). We specify the experimental setup, including
the base models, optimizer, learning rate, batch size, and training steps.

• Additional Ablation Studies (Appendix A.2.1 and A.2.2). We present additional ablation
studies on the QMR and GAG components.

• The Use of LLMs. (Appendix A.3). We discuss the utilization of Large Language Models
in our work.

• Ethics and Reproducibility Statement.(Appendix A.4). This section contains our state-
ments regarding research ethics and the statement of reproducibility.

A.1 EXPERIMENT SETTINGS

A.1.1 DATASETS

The detailed statistics of our used dataset are shown in Tab. A.1.1.

Encyclopedic-VQA Mensink et al. (2023a) is a large-scale VQA dataset featuring visual questions
about the fine-grained categories from iNaturalist 2021 Van Horn et al. (2021) and instances from
Google Landmarks Dataset v2 Weyand et al. (2020). It contains 221K unique question-answer
pairs, each of which is matched with up to 5 images, resulting in a total of 1M VQA samples.
Moreover, the dataset is accompanied by a knowledge base derived from Wikipedia, consisting of
visual images and text documents from Wikipedia. The questions are of four types: templated,
single-hop questions, automatically generated single-hop questions, multi-answer questions, and
two-hop questions. Our experiments on E-VQA only take into account templated and automated
single-hop questions to evaluate the effectiveness of the model.

Table A: The details of experimental datasets, which are composed of E-VQA and InfoSeek.

Dataset Question Type Number of IQA pairs

Train Val Test

E-VQA Templated 66,535 1,827 1,000
Automatic 737,114 8,025 2,750

Multi Answer 112,736 1,844 1,000

Total 916,385 11,696 4,750

InfoSeek Total 902,509 – 71,335

InfoSeek is a VQA dataset tailored for information-seeking questions that require knowledge be-
yond common sense, including 1.3M visual information-seeking questions, covering more than 11K
visual entities from OVEN Chen et al.. The evaluation set is divided into two subsets: Unseen En-
tity and Unseen Question. The Infoseek dataset consists of a training set and three evaluation sets:
InfoSeekwikidata, InfoSeekV alidation, and InfoSeekHuman. The training set, together with the first
two evaluation sets, transforms knowledge triples in Wikidata into natural language questions, re-
sulting in 1.3M examples. InfoSeekHuman contains 8.9K samples annotated by humans to simulate
real information-seeking intentions. We use the filtered 100K knowledge base from E-VQA as in
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Table B: Results of URL recall. Our method achieves performance comparable to Echosight, and
both outperform the other competitors.

Dataset Method Metric R@K

K=1 K=5 K=20 K=40

E-VQA

Wiki-LLaVA U 3.3 9.9 17.5 –
ReflectiVA U 15.6 36.1 49.8 –
EchoSight U 36.5 47.9 50.2 56.1

Ours U 36.7 48.3 51.1 58.4

InfoSeek

Wiki-LLaVA U 36.9 66.1 78.4 –
RoRA-VLM U 29.6 41.4 46.6 –
EchoSight U 53.2 74.0 77.9 81.9

Ours U 54.2 74.6 79.6 82.8

the previous work Yan & Xie (2024). Since the InfoSeek dataset does not have a golden evidence
section label, we conducted zero-shot experiments on the InfoSeek dataset to evaluate the model’s
performance.

A.1.2 DETAILS OF METRIC FOR RETRIEVAL AND RERANKING

For evaluating the retriever, we employ URL matching recall as the metric, reflecting the retriever’s
ability to retrieve true articles.

However, for reranking, we adopt a section-level matching metric to evaluate whether the ground-
truth section appears among the top-K retrieved sections, as opposed to URL-level matching. Since
a single Wikipedia URL may contain multiple sections, URL matching tends to overestimate rerank-
ing performance: any section from the correct URL is considered a hit, even if it is not the actual
evidence section. Such coarse-grained evaluation does not align with the finer granularity required
in the reranking stage.

Tab. B presents the URL matching results, showing that our method performs comparably to Yan &
Xie (2024). However, as shown in Tab. 2, our method achieves significantly higher recall@1 under
section matching. This suggests that high URL recall does not guarantee superior section-level
retrieval accuracy.

Therefore, we argue that section matching more accurately reflects the reranking model’s ability
to prioritize the true evidence section, justifying its use as the primary evaluation metric in our
reranking experiments.

A.1.3 DETAILS OF METRICS FOR GENERATION

Beyond standard accuracy, we assess reliability by analyzing retrieval-generation interactions across
four cases: True Positive (TP): Retrieval succeeds, answer is correct. True Negative (TN): Retrieval
succeeds, answer is incorrect. False Positive (FP): Retrieval fails, system correctly abstains. False
Negative (FN): Retrieval fails, system hallucinates an answer. Based on these, we define: Absten-
tion Precision (AP): Proportion of correct abstentions among all abstentions, measuring appropriate
refusal upon retrieval failure while answering correctly upon success. Abstention Recall (AR): Pro-
portion of retrieval failures correctly detected, evaluating system sensitivity to retrieval breakdowns.
Valid Answer Rate (VAR): Answer accuracy when retrieval is successful, reflecting performance
under reliable knowledge provision.

AP =
FP

FP + TNrefuse
, AR =

FP

FP + FN
, V AR =

TP

TP + TN
, (A)

where TNrefuse indicates that the retrieval is successful but the system refuses to answer, which is
a subset of TN.
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A.1.4 IMPLEMENTATION DETAILS

Retrieval and Reranking. For retrieval, we use the visual encoder of EVA-CLIP-8B Sun et al.
(2024) to extract image features and build a knowledge base with the FAISS Douze et al. (2024)
library for efficient image retrieval. For query-guided multi-grained retrieval, we employ the well-
trained FLAIR Xiao et al. (2024) as the q-Selector. For reranking, following Yan & Xie (2024), we
use BLIP-2 Li et al. (2023) as the reranker to extract features of multimodal queries and knowledge
sections, and initialize a lightweight modulator with two standard Transformer blocks, which in-
cludes multi-head self-attention and cross-attention modules and an FFN module. We offline extract
initial hard negatives using the proposed QMR strategy and randomly select 32 negative samples
in each training step for adversarial learning. For the reranker, we use the OneCycleLR learning
rate scheduler and AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of 1e-4 and
a batch size of 32. For the modulator, we use the AdamW optimizer with a constant learning rate
of 5e-5 to ensure stable training. We first train the reranker for 50K steps to build its discriminative
ability. Then, we activate the modulator for adversarial training, with a total of 150K steps.

Answer Generation. We employ both large language models (Llama3-8B Liu et al. (2024) and
Qwen2.5-7B Qwen et al. (2025)) and multimodal large models (Qwen2.5-VL-7B Bai et al. (2025))
as generators, repectively.

A.2 ADDITION ABLATION STUDY

A.2.1 ABLATION RESULTS ON QMR.

Table C: Ablation of QMR.

Method R@20 R@40

Random 30.7 35.7
PVS 36.9 43.5
Ours 51.8 56.8

w/o QMR 50.1 56.2
w/o Global 48.0 52.1

To validate the necessity of the query guidance in local patch se-
lection, we replace the q-Selector with (i) random sampling and
(ii) pure visual saliency detection without query conditions (PVS),
evaluating performance on Recall@20 and Recall@40, with results
shown in Tab. C. Results consistently show that both blind se-
lection strategies degrade performance by introducing an influx of
semantically irrelevant areas. Random sampling suffers severely
from background noise, in contrast, saliency detection is misled by
the poor alignment between visual saliency and query-specific rel-
evance. An ablation study validates the necessity of query guidance local features for multi-grained
visual recalling: using only global features yields a Recall@40 of 56.2, while local features alone
degrade performance to 52.1. The integration of both within QMR demonstrates a clear synergistic
effect, achieving the highest recall and establishing a solid foundation for subsequent reranking.

A.2.2 ABLATION ON GAG

Table D: Ablation results on GAG. PI. represents
the prompt-based inspection and RD. represents
the retrieval discriminator.

Method Qwen2.5-VL-3B Qwen2.5-VL-7B
AP AR VAR AP AR VAR

w/o GAR 0 0 0.80 0 0 0.85
w/ PI. 0.87 0.69 0.64 0.96 0.74 0.79
w/ RD. 0.94 0.72 0.76 0.95 0.74 0.78

Finally, we conduct an ablation study on the pro-
posed GAG, as shown in Tab. D. We employ the
3B/7B models of Qwen2.5-VL as the generator.
When no retrieval discrimination mechanism is
applied, the AP and AR metrics are zero, indi-
cating that the generator will not refuse to an-
swer regardless of whether the retrieval is suc-
cessful. When the prompt-based inspection is
applied, the system’s AP and AR are 0.87/0.96
and 0.69/0.74, respectively, indicating that the
generator refuses to answer those queries with failed retrieval. However, the VAR decreases slightly,
suggesting that the generator misjudges some queries with successful retrieval and also refuses to
answer them. When we apply the retrieval discriminator, we first utilize the reranker to filter 10K
query-knowledge pairs from the E-VQA training set, assigning each data point a binary label based
on whether the knowledge is paired with the query. For Qwen2.5-VL-3B, the retrieval discriminator
achieves better performance than prompt-based inspection, but there is no advantage for Qwen2.5-
VL-7B. This validates our opinion in Sec. 4.3 that the prompt-based inspection depends on the
generator’s capability. However, the retrieval discriminator incurs additional training costs, and
its result depends on the quality of training data. In practice, we suggest prioritizing the cheaper
prompt-based inspection to implement GAG.
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A.3 THE USE OF LLMS

In the preparation of this manuscript, we utilized a Large Language Model (LLM). The tool was
employed solely for grammar checking and polishing the language expression. All scientific content,
analysis, and conclusions remain entirely our own. The authors take full responsibility for the entire
content of the paper.

A.4 ETHICS AND REPRODUCIBILITY STATEMENT

This work complies with the ICLR Code of Ethics. We are not aware of significant ethical concerns
arising from this research, which utilizes publicly available datasets and base models. Detailed
experimental settings can be found in Appendix A.1.1 and A.1.4. Our experiments are conducted
entirely on open-weight models. To ensure reproducibility, we will provide the full source code and
model.
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