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ABSTRACT

Large language models (LLMs) face a fundamental trade-off between computa-
tional efficiency (e.g., number of parameters) and output quality, especially when
deployed on computationally limited devices such as phones or laptops. One way
to address this challenge is by following the example of humans and have mod-
els ask for help when they believe they are incapable of solving a problem on
their own; we can overcome this trade-off by allowing smaller models to respond
to queries when they believe they can provide good responses, and deferring to
larger models when they do not believe they can. To this end, in this paper, we in-
vestigate whether models can predict—prior to responding—how an LLM judge
would score their output. We evaluate three approaches: zero-shot prediction,
prediction using an in-context report card, and supervised fine-tuning. Our results
show that larger models (particularly reasoning models) demonstrate good zero-
shot prediction abilities, while smaller models require in-context report cards or
fine-tuning for reliable predictions. While the effectiveness varies across datasets,
both approaches can substantially improve smaller models’ prediction accuracy,
with fine-tuning achieving mean improvements up to 52% across datasets. These
findings suggest that models can learn to predict their own performance limita-
tions, paving the way for more efficient and self-aware AI systems.

1 INTRODUCTION

The rise of large language models (LLMs) has been the defining narrative of the recent AI boom.
The increasing investment in AI brought about by this has led to increasingly large resources be-
ing pooled into training LLMs. The compounding effect of this has resulted in mainstream LLMs
needing upward of a terabyte of GPU memory to run. Such models are both incredibly costly to use
(see, e.g., McKinsey & Company (2024)) and necessitate that consumer devices rely on API calls to
access them—which users do, making more than 2.5 billion requests to ChatGPT a day (The Verge,
2024). To address these limitations of large models, there has been growing interest in developing
intentionally small models (e.g., Chiang et al. (2023); Meta AI (2024); Project Apertus (2025)).

Small models, such as the recent MobileLLM (Liu et al., 2024c), demonstrate comparable perfor-
mance to much bigger models on many datasets. However, they tend to demonstrate a much larger
drop in their performance on other tasks compared with their bigger siblings (Pecher et al., 2024).
This is particularly concerning as this performance drop is not uniform, leading to famously erratic
responses such as models incorrectly responding to ”how many Rs are there in strawberry?”(Reddit,
2024). As such, it would be ideal to predict the quality of a response before the model actually
responds, allowing us to reduce the likelihood of an erratic response without needing to restrict
ourselves to larger models.

To evaluate the output of a model without constraining the kinds of outputs that can be given, one
needs to employ something like an LLM-based (or agentic) judge (Zheng et al., 2023; Zhuge et al.,
2024). However, this is costly as generating output tokens is dramatically more expensive than
processing input tokens (Liu et al., 2024b; Li et al., 2024b). This cost is both an increase in the
literal cost and a delay to the user (as most responses are served to the user in a streaming manner).
Additionally, as our results show, LLM judges exhibit a subpar evaluation of responses when doing
so in isolation (compare Figures 8 to 12 with Figures 16 to 20 in Appendix E).
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Queries

LLM Judge

. . .

Dataset 1

LLM 1 LLM 2 LLM N

...

Dataset 2

LLM 1 LLM 2 LLM N

...

LLM 1 LLM 2 LLM N. . .

Figure 1: Report cards are generated by having
a judge compare the responses of several LLMs
over a number of datasets. This joint evaluation
increases the diversity of responses by the judge
(see Appendix E).

LLM

Query

Dataset 1 Dataset 2 Dataset K

...

Report Card

If  I answer this, 

how would a judge 

score me?

Good

Answer the query

Bad

Give it to a 

bigger model

Figure 2: With a report card, a model is able
to estimate its own capability to respond to a
query, without falling prey to the characteristic
overconfidence of LLMs. This can be used to
inexpensively route queries.

This work investigates the ability for models to predict their own performance pre-hoc as evalu-
ated by an LLM judge. We experiment with three approaches: tabula rasa (zero-shot), in-context
learning, and fine-tuning to enable models to predict how an LLM-based judge (Zheng et al., 2023;
Zhuge et al., 2024) would score their responses to queries. LLM judges offer several advantages over
traditional evaluation metrics: they provide reliable evaluations that correlate strongly with human
evaluations (Zheng et al., 2023; Wang et al., 2024d; Liu et al., 2023; Fu et al., 2023; Zhuge et al.,
2024), support flexible evaluation criteria, and can be easily adapted to new alignment problems by
modifying their prompts (Zhuge et al., 2024).

We evaluate our approaches across models of varying sizes: MobileLLM 0.9B, Llama 3.1 8B,
Llama 3.2 1B and 3B, Llama 3.3 70B, GPT OSS 20B and 120B, DeepSeek Distilled Qwen 14B and
32B, DeepSeek Distilled 70B, and Llama 4 Scout. Our findings reveal that while large models—
particularly reasoning models—show a good ability to predict judge scores, smaller models typically
suffer from miscalibration, being either overconfident or underconfident in their self-assessments.
This miscalibration reflects a well-documented tendency of LLMs toward overconfidence (Huang
et al., 2025a; Ren et al., 2023).

To address these calibration issues, we propose two distinct approaches. Our first approach provides
models with a report card—a detailed performance summary based on the model’s historical perfor-
mance across multiple datasets. This method requires no additional training and can be applied to
any model, including closed-weight systems. We generate these report cards by evaluating models
alongside other systems across diverse datasets (see Figure 1) and using the modal judge ratings to
construct textual performance descriptions.

Our second approach fine-tunes models specifically for performance prediction. While this requires
additional training, it offers greater inference efficiency by eliminating the need to process report
card tokens. We construct training data using the hindsight trick (Andrychowicz et al., 2017), re-
labeling examples with judge scores, then apply supervised fine-tuning (Ouyang et al., 2022) to
several model variants including MobileLLM 0.9B, Llama 3.1 8B, and Llama 3.2 1B and 3B.

Both approaches successfully improve smaller models’ ability to predict their own performance,
with effectiveness varying significantly across datasets. Interestingly, models demonstrate stronger
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self-awareness on more challenging queries, suggesting that difficulty may serve as a useful signal
for performance prediction. These findings open promising directions for developing more reliable
and self-aware small language models.

Our primary contributions can thus be summarized as that (1) we propose predicting how well LLMs
are able to estimate pre-hoc how their response to a query would be scored by an LLM judge (thereby
allowing flexible evaluations) and show that large LLMs demonstrate a fair ability to do so tabula
rasa; (2) we propose using a report card system that summarizes the mode of the performance of a
model in a number of datasets and demonstrate that it can dramatically improve the accuracy of many
small models in the aforementioned prediction task; and (3) we propose bypassing the inference
cost of the report card system by fine-tuning models using the hindsight trick, demonstrating that
this leads to strong prediction performance in many small models.

2 PRELIMINARIES

2.1 LARGE LANGUAGE MODELS (LLMS)

LLMs are a class of (typically autoregressive) extremely large pretrained sequential models (in the
billions of parameters), predominantly based on the transformer architecture (Vaswani et al., 2017)
(see also the earlier Unnormalized Linear Transformer (Schmidhuber, 1992; Schlag et al., 2021)).
They are trained on large text corpora, learning a probability distribution over a sequence of tokens
which can be later used for text completion (i.e., text generation). As such, these models excel at
understanding, generating, and processing human language. Mathematically, an LLM generates a
sequence of tokens y1, . . . , yL for a given input prompt x by modeling the conditional probability

P (y1, . . . , yL|x; θ) =
L∏

t=1

P (yt|y<t, x; θ) (1)

where y<t denotes previously generated tokens and θ represents the model’s learned parameters. The
transformer architecture (the backbone of most LLMs) models a sequence of input embeddings X =
(x1, . . . , xn) using stacked layers of self-attention and feed-forward blocks. Each self-attention
block computes new representations Z as

Z = softmax

(
QK⊤
√
dk

)
V, (2)

where Q = XWQ, K = XWK , V = XWV are learned linear projections of the input, and dk is the
key dimension. Positional encodings are added to X to retain order information. This architecture is
exceptionally parallelizable and has an extraordinary ability for modeling long-range dependencies.
Research has demonstrated that LLMs, particularly when augmented with an external read-write
memory, are Turing complete, capable of simulating any algorithm (Schuurmans, 2023). The be-
havior of an LLM is heavily guided by prompts, with carefully crafted, context-rich instructions
being essential for achieving high-quality and task-aligned outputs (Anonymous, 2024). Although
their pre-training imbues them with broad knowledge, to further align their output to human prefer-
ences and intents, LLMs are frequently fine-tuned (Gao et al., 2024; Muldrew et al., 2024; Sharma
et al., 2024a). This alignment helps to make models more helpful, harmless, and honest.

2.2 AGENTIC SYSTEMS, ALIAS AGENTIC AI

Building upon the capabilities of individual LLMs, agentic systems (sometimes called Agentic AI)
are modular AI architectures that orchestrate one or more LLM invocations through arbitrary control
flow, often integrating external tool calls (Schick et al., 2023; Zhuge et al., 2023). These systems
differ from standalone LLMs by their ability to engage in multi-step reasoning, planning, and acting
to solve complex tasks autonomously or semi-autonomously (Zhuge et al., 2023; 2024). This multi-
step approach enables decomposition of complex problems into manageable subtasks and allows for
iterative refinement based on intermediate results-capabilities that single-pass LLM inference cannot
achieve (Zhuge et al., 2024). The internal workflow of an agentic system can be conceptualized as
a directed graph G = (V,E), where each node v ∈ V represents an LLM call, tool execution, or
decision point, and the edges (u, v) ∈ E denote dependencies between actions (Zhuge et al., 2024).
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Shorthand Full Name # Parameters Reference
M09B MobileLLM 0.9B 0.9 Billion Liu et al. (2024c)
L318B Llama 3.1 8B Instruct 8.03 Billion Dubey et al. (2024)
L321B Llama 3.2 1B Instruct 1.24 Billion Meta AI (2024)
L323B Llama 3.2 3B Instruct 3.21 Billion Meta AI (2024)
L3370B Llama 3.3 70B Instruct 70.6 Billion Meta AI (2024)
L416E Llama 4 Scout 17B 16E Instruct 109 Billion Meta AI (2025)
DSQ14B DeepSeek R1 Distilled Qwen 14B 14.8 Billion DeepSeek AI (2025)
DSQ32B DeepSeek R1 Distilled Qwen 32B 32.8 Billion DeepSeek AI (2025)
DSL70B DeepSeek R1 Distilled Llama 70B 70.6 Billion DeepSeek AI (2025)
GPT20B GPT OSS 20B 21.5 Billion OpenAI (2025)
GPT120B GPT OSS 120B 120 Billion OpenAI (2025)

Table 1: Models considered for our experiments. The parameter count is taken from HuggingFace
Safetensor values to ensure equal treatment between models.

Tool use represents a fundamental form of agentic AI, enabling systems to dynamically interact
with environments and access specialized capabilities such as code interpreters and search engines
(Schick et al., 2023; Qin et al., 2023). This approach extends LLM capabilities beyond their training
limitations through external resource integration.

A prominent application of agentic systems is automated evaluation through LLM-as-a-Judge frame-
works, which utilize LLMs to assess text generation quality and model behavior (Li et al., 2024a).
These frameworks can be extended into Agent-as-a-Judge systems that leverage full agentic capabil-
ities to provide richer evaluation feedback, including assessment of tool use and multi-step reasoning
processes (Zhuge et al., 2024).

3 EXPERIMENTAL SETUP

We experiment with five (5) datasets that are commonly used in the literature: MedQA, which con-
tains queries asking to diagnose a medical condition (Jin et al., 2021); LongFact, which contains
queries asking factual trivia (Wei et al., 2024); AIME 2024, which contains competition-level maths
problems (Mathematical Association of America, 2024); SciCode, which contains requests for pro-
ducing code for scientific purposes (Tian et al., 2024); and MMLU-Pro, which contains general
undergraduate-level examination questions (Wang et al., 2024e). Altogether, these datasets cover a
broad range of application cases for LLMs.

0 7 14 22
Count

M09B
L321B
L323B
L318B

DSQ14B
GPT20B
DSQ32B
L3370B
DSL70B

L416E
GPT120B

Model

LLM Judge Scoreboard (dataset=HuggingFaceH4/aime_2024)

Legend
Great Ok Bad

Figure 3: The distribution of the LLM judge
scores for each of the models on the AIME 2024
dataset. Note that the poor performance of some
reasoning models here was due to us limiting
reasoning models to producing no more than
24576 tokens.

In total, we experimented with the eleven (11)
models shown in Table 1. We use Llama 3.3 70B
as our judge, instructing it to evaluate all the re-
sponses of the models to the query (we also pro-
vided any relevant answers included in the dataset
to the judge) according to a predefined rubric.
The rubric is shown in Prompt 11 alongside all
the other prompts used in Appendix C. To ground
evaluations more, we had the judge evaluate si-
multaneously the responses of all the models for
one query simultaneously. We performed an ab-
lation experiment that confirms the independent
evaluations led to less diversity between the mod-
els in Appendix E. In addition to providing a
grade for each response of either “great,” “ok,”
or “bad,” the judge was instructed to provide a ra-
tionale for why it gave each response the grade
it gave them. We selected Llama 3.3 70B as our
ad-hoc observations found that it was able to ef-
fectively follow the instructions given and gener-
ally gave good rationales for its grading. In cases
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Figure 4: The distribution of the LLM judge
scores for each of the models on the MedQA
dataset. Note the wide spread of performance
here across the different models.
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Figure 5: The distribution of the LLM judge
scores for each of the models on the Long-
Fact dataset. Much of this information is in-
distribution, so most LLMs can do well here.
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Figure 6: The distribution of the LLM judge
scores for each of the models on the MMLU-Pro
dataset. We provide a per-category breakdown
in Figure 14 in Subsection 4.1.
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Figure 7: The distribution of the LLM judge
scores for each of the models on the SciCode
dataset. This dataset involves coding so most
models struggle here.

where the response given by the judge could not be parsed, one request was made to correct it. Cases
where the corrected response could not be parsed were minimal.

The distribution of scores given by the LLM judge for each of the models on each of the datasets
is shown in Figures 3 to 7. These results roughly conform to expectations, with most models doing
(1) well with basic factual information, (2) poorly with mathematic questions, (3) larger and reason-
ing models doing better than smaller and non-reasoning models, and (4) newer models doing better
for their size than older models.

4 ZERO-SHOT AND IN CONTEXT PREDICTION

LLMs have demonstrated strong generalization abilities across a broad range of tasks (Brown et al.,
2020; Wei et al., 2022), making it reasonable to think that a model might be able to predict their per-
formance pre-hoc. We experiment with the model’s given in Table 1 ability to directly predict how
an LLM judge would score their response without any context apart from the query (see Prompt 3
in Appendix C for the exact query given to the model here). The context for all the models was
limited to one round of interactions, i.e., one query. The prediction performance of the models in
the zero-shot case is shown alongside our other results in Figures 8 to 12. We provide a summary of
these results in Table 2 in Appendix B.

The key observation to take from the zero-shot results in Figures 8 to 12 is that (1) the prediction
performance of the models varied wildly based on the dataset used, (2) reasoning models exhibited
an often better ability to estimate their own performance, and (3) smaller models typically performed
at or worse than a random guess accuracy.
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Figure 8: The zero-shot and contextual predic-
tion accuracy of all the models on the MedQA
dataset (a green arrow indicates improvement
over zero-shot). Note how dramatic the im-
provement offered to even big non-reasoning
models is (i.e., L3370B here).
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Figure 9: The zero-shot and contextual predic-
tion accuracy of all the models on the LongFact
dataset (a green arrow indicates improvement
over zero-shot). Note that, even on a dataset
where all the models typically do well, their pre-
diction quality is better in the contextual/fine-
tuning setting.
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Figure 10: The zero-shot and contextual predic-
tion accuracy of all the models on the AIME
2024 dataset (a green arrow indicates improve-
ment over zero-shot). Note the dramatic im-
provement for smallest models here.
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Figure 11: The zero-shot and contextual predic-
tion accuracy of all the models on the MMLU-
Pro dataset (a green arrow indicates improve-
ment over zero-shot). We provide a per-
category breakdown of the zero-shot results in
Figure 15 in Section 4.1.
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Figure 12: The zero-shot and contextual predic-
tion accuracy of all the models on the SciCode
dataset (a green arrow indicates improvement
over zero-shot). This is the only dataset where
the contextual/fine-tuning approach frequently
didn’t help. We hypothesize that the judge was
not sophisticated enough to evaluate models on
this dataset (see, e.g., Zhuge et al. (2024)).

Dataset M09B L321B L323B L318B
MedQA -.09 +.46 +.10 +.09
LongFact +.19 +.19 +.41 +.04
AIME 2024 +.23 +.66 +.35 +.03
MMLU-Pro -.07 +.64 +.37 +.13
SciCode -.33 +.65 -.02 +.08
Mean -.02 +.52 +.24 +.07

Figure 13: Summary of the improvement in the
prediction accuracy for the fine-tuned models as
compared with the zero-shot setting. For a sum-
mary of the contextual setting results, see Ta-
ble 2 in Appendix B.
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Based on the large variation observed in model and prediction performance by dataset, it seems
reasonable that a promising approach would be to determine the kind of query and predict based
on that. To that end, we produce a “report card” for each model based on their performance on the
datasets (see Figures 3 to 7). This report card simply provides the mode of the scores for that model
on that dataset. These mode scores are given in Appendix D with the report card structure shown in
Prompt 5 in Appendix C (we provide an ablation on the report card structure in Prompt 6).

The results of the report card-based, or contextual prediction performance are given alongside the
previous results in Figures 8 to 12. The effect of the report card is particularly good on the smaller
and non-reasoning models. This suggests that the inclusion of the report card was effective with the
small models on allowing them to categorize the query and match it to their skill sets, validating the
hypothesis that even a model can predict its own performance with the right information.

4.1 MMLU-PRO CATEGORY RESULTS

One concern with the LLM judge, is that the performance of it might be highly stochastic. To test
this, we split the queries in the MMLU-Pro dataset up by category and observed the performance
score distribution of the models and their predictions as a function of the category. Figure 14 shows
the probability that the judge gives a score of ”great” or ”ok” for each model on the MMLU-Pro
dataset as a function of the category. The conclusion that can be drawn from Figure 14 is that the
distribution of scores given by the judge is much less affected by the category than by the model,
implying a comparatively low degree of variance in the judging.

Figure 15 shows the probability that the model correctly predicts its score zero-shot. Again, the
variance is more visible across models than categories, suggesting that the categorization ability of
the models has not been deeply affected by the variance of the judge (note that we would expect
roughly equal performance on a dataset given the homogeneity of the datasets in the kind of queries
they ask and the broad generalization of the models in certain kinds of queries).
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Figure 14: The probability of a model receiving
a grade of either ”great” or ”ok” as a function of
the query’s category on the MMLU-Pro dataset.

Bi
ol

og
y

Bu
sin

es
s

Ch
em

ist
ry

Co
m

pu
te

r S
cie

nc
e

Ec
on

om
ics

En
gi

ne
er

in
g

He
al

th
Hi

st
or

y
La

w
M

at
h

Ot
he

r
Ph

ilo
so

ph
y

Ph
ys

ics
Ps

yc
ho

lo
gy

GPT120B
L416E

L3370B
DSL70B
DSQ32B
GPT20B
DSQ14B

L318B
L323B
L321B
M09B

MMLU Pro Prediction Scoreboard

0.0

0.5

1.0

Figure 15: The probability of a model correctly
predicting its score zero-shot as a function of the
query’s category on the MMLU-Pro dataset.

5 FINE-TUNING APPROACH

The biggest drawback of using report cards to allow a model to estimate its performance on a query
is that it necessitates a model processing the large number of tokens needed for a comprehensive
report card. We conducted an ablation where we use shorter report cards (see Prompt 6), however a
notable decline in prediction performance occurred. To get the best of both worlds, in this section
we experimented with fine-tuning versions of the small models to perform these predictions without
a report card.
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To accomplish the above, we produced a dataset of zero-shot prompts and the respective zero-shot
model evaluations collected in Section 4. We then applied the hindsight trick (see, e.g., Andrychow-
icz et al. (2017)) to relabel the zero-shot predictions as though they were accurate. We then applied
supervised fine-tuning (Ouyang et al., 2022) using this data this to MobileLLM 0.9B, Llama 3.1 8B,
and Llama 3.2 1B and 3B. We refer to these fine-tuned models as MP09B, LP318, LP321B, and
LP323B, respectively. Note that none of these models are reasoning models and so the respective
output for the prediction should be one token. The hyperparameters used in this are available in our
released source code (see Section 1).

The results of this fine-tuning approach are presented alongside our other results in Figures 8 to 12,
with an arrow annotation indicating if either the contextual or fine-tuning approach improved the
prediction performance. We provide a summary of these results in Figure 13. The prediction qual-
ity of the fine-tuned models is clearly at or above the performance of even the report card-based
predictions. However, as with the report cards, the prediction quality is heavily dependent on the
dataset and is much stronger in the smaller models (where the distribution of judge evaluations is
more concentrated).

Altogether, this suggests that a fine-tuning–based approach is able to enable a model to predict its
own performance at or above the endowment given by a report card.

6 RELATED WORK

LLM and Agentic Judges. The advent of Large Language Models (LLMs) has catalyzed their
adoption as automated evaluators, particularly through the LLM-as-a-Judge paradigm (Zheng et al.,
2023; Liu et al., 2023; Fu et al., 2023). This approach leverages powerful foundation models to
assess text quality, dialogue performance, and agent behavior, offering a scalable and cost-effective
alternative to human evaluation. Studies demonstrate that single-LLM judges can achieve high
correlation (Spearman coefficients of 0.7–0.9) with aggregated human preferences across diverse
tasks (Zheng et al., 2024; Li et al., 2024d).

However, this paradigm faces big limitations. Single-judge systems are prone to systematic biases,
including preferences for specific output lengths, styles, or verbosity (Dubois et al., 2024). They also
exhibit vulnerabilities to adversarial attacks and may fail to detect nuanced factual inaccuracies or
complex reasoning errors (Raina et al., 2024; Son et al., 2024). Recent work has further highlighted
position bias (Wang et al., 2024b) and limited reasoning depth in complex evaluation scenarios.

To address these challenges, the research community has progressed to Agent-as-a-Judge and multi-
agent evaluation frameworks. These systems employ multiple LLM agents that collaborate, debate,
or assume specialized roles (e.g., Grader, Critic, Defender) to produce more robust and reliable as-
sessments (Zhuge et al., 2024; Kumar et al., 2025; Chen et al., 2025). Notable implementations in-
clude COURTEVAL (Kumar et al., 2025), which simulates judicial deliberation; MAJ-EVAL (Chen
et al., 2025), featuring a multi-agent jury; AGENTSCOURT (He et al., 2024) for competitive agent
environments; and FINCON (Yu et al., 2024) for financial reasoning evaluation. Recent advance-
ments also explore debate-based evaluation (Chan et al., 2024) and iterative refinement processes
(Liang et al., 2024) to enhance judgment quality.

Nevertheless, multi-agent judges introduce new complexities, such as potential collusion when
agents share similar model backbones, emergent group biases, and increased computational costs
(Chan et al., 2024; Liang et al., 2024). The search for optimal agent architectures and interaction
protocols remains an active area of research (Qin et al., 2024; Ye et al., 2024).

Our work diverges from these directions by not aiming to improve the judging mechanism itself.
Instead, we focus on preemptively predicting the scores that an LLM or agentic judge would assign
to a model’s response before its generation. This approach enables more efficient system design,
rapid prototyping, and optimal resource allocation by shifting the focus from being the evaluator to
anticipating the evaluation outcome.

Predicting Model Performance. Another line of research explores models’ abilities to self-assess
or predict aspects of their own performance, particularly regarding confidence estimation and hallu-
cination mitigation. CONFQA, for example, introduces a fine-tuning strategy that explicitly trains
LLMs to express uncertainty when lacking confidence in factual statements, significantly reducing
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hallucination rates through dampening prompts and factual calibration (Huang et al., 2025a). Simi-
larly, Ren et al. (2023) proposed using self-evaluation scores for selective generation, where LLMs
decide when to abstain from generating, enhancing accuracy by reformulating open-ended tasks into
token-level predictions.

DEEPCONF contributes to efficient reasoning by filtering low-confidence reasoning traces and en-
abling early termination based on local confidence signals, thereby optimizing computational over-
head (Smith et al., 2024). Complementary work by Li et al. (2024c) explores confidence mechanisms
for improving judge prediction quality, while Jiang et al. (2024) introduces self-checking techniques
for factual consistency verification.

Recent studies also examine the relationship between prediction mechanisms and training efficiency.
Sharma et al. (2024b) demonstrate that gains from complex Learning from AI Feedback (LAIF)
pipelines may be overestimated, finding that Supervised Fine-Tuning (SFT) with a strong teacher
model can be surprisingly effective. This implicitly supports the value of understanding evaluation
outcomes to guide efficient training strategies. Similarly, Lin et al. (2024) explore direct perfor-
mance prediction for language models across tasks, and Wang et al. (2024a) investigate early-exit
strategies based on confidence estimation.

Our approach in diverges significantly from these internal confidence mechanisms. Rather than
focusing on self-assessment or selective generation, we aim to predict the scores assigned by external
LLM or agentic judges to a model’s response before generation occurs. This involves learning
to anticipate evaluator judgments directly, encompassing both zero-shot and contextual predictions
based on historical performance data. This pre-hoc prediction enables resource optimization without
requiring real-time introspection or response generation.

For completeness, we discuss supplementary related work in Appendix A.

7 CONCLUSION

In this work, we examined the ability of language models of varying sizes to predict the quality
of their own responses as judged by an external agentic (LLM-based) evaluator. Our results show
that while larger models tend to be better calibrated in their self-assessments, smaller models often
exhibit overconfidence or underconfidence. To address this, we proposed two approaches: pro-
viding models with report cards summarizing their historical performance, and fine-tuning models
specifically for performance prediction. Both methods improved models’ ability to estimate their
own response quality, with the degree of improvement depending on model size and task difficulty
Altogether, we believe that this work represents a step forward in increasing the usability of small
language models.

8 LIMITATIONS & FUTURE WORK

Our evaluation is limited to a single judge model (Llama 3.3 70B) and single-turn interactions, which
may not generalize to diverse evaluation frameworks or multi-turn conversations. Additionally, we
use a relatively generic evaluation rubric with our judge. One of the key advantages of such judges
is that they can integrate arbitrary alignment requirements into their evaluations. Future work will
look at taking advantage of this as well as exploit more advanced judge models and architectures,
and evaluate multi-turn interactions.

Another key limitation of this work is that, the report card approach requires processing a number
of tokens to generate a prediction. While models often are faster at processing input tokens then
generating output tokens, this still introduces an additional computational overhead. Likewise, the
fine-tuning approach necessitates either maintaining a second set of weights on-device or sacrific-
ing some amount of model performance. Future work will look at integrating the predictions more
directly into the models so the same prompt can be used for the prediction and response genera-
tion (removing the need to maintain two sets of weights). In addition, future work will also look
at exploring alternative training strategies, such as reinforcement learning from judge feedback or
leveraging human-in-the-loop corrections to further improve calibration and reliability.

9
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A SUPPLEMENTARY RELATED WORKS

Beyond the core areas of LLM evaluation and performance prediction discussed in the main text,
several adjacent research directions provide important context for our work.

Prompt Engineering and Optimization. Substantial research focuses on optimizing LLM in-
teractions through sophisticated prompt engineering techniques. Such prompt engineering strate-
gies date back to the work on Learning to Think (Schmidhuber, 2015) (later refined (Schmidhuber,
2018)), wherein one network learns how to query and extract information from another network.
Evolutionary algorithms offer a gradient-free approach for prompt optimization in black-box sce-
narios by evolving effective instructions and demonstrations (Wang et al., 2024c; Fernando et al.,
2023). Recent work has explored automated prompt optimization frameworks (Zhou et al., 2024),
meta-learning approaches for prompt adaptation across tasks (Chen et al., 2024), and reinforcement
learning-based methods that optimize prompts through reward maximization (Zhang et al., 2024a).
Additionally, template-based approaches (Jin et al., 2024) and few-shot prompt selection strategies
(Lu et al., 2024) have shown significant improvements in task performance across diverse domains.

Benchmarks for LLM and Agent Evaluation. The rapid advancement of LLMs and agentic
systems has necessitated continuous development of comprehensive benchmarks. These span from
basic code generation (HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)) to complex
software engineering tasks (SWE-Bench (Jimenez et al., 2023), DevBench (Liu et al., 2024a)). For
machine learning workflows specifically, benchmarks like DevAI (Zhuge et al., 2024), ML-Dev-
Bench (Padigela et al., 2025), and ML-BENCH evaluate end-to-end capabilities including environ-
ment setup and API integration, posing distinct challenges for current models (Huang et al., 2025b).
Recent multi-agent evaluation frameworks (Wu et al., 2024) further extend these capabilities to col-
laborative settings.

Retrieval-Augmented Generation (RAG) Systems. RAG systems are extensively developed to
enhance LLMs’ factual accuracy and contextual understanding, incorporating advanced strategies
for chunking, metadata enrichment, and confidence-based retrieval triggering (Lewis et al., 2020;
Huang et al., 2025a). Recent advancements include adaptive retrieval mechanisms (Ma et al., 2024)
and multi-hop reasoning frameworks (Zhang et al., 2024b) that improve information integration.
Confidence calibration techniques in RAG systems (Jiang & Gupta, 2024) share conceptual similar-
ities with the prediction approaches discussed in our main contribution.

Model Efficiency and Optimization. Parallel research focuses on optimizing LLM inference
through techniques such as speculative decoding (Leviathan et al., 2023), quantization methods
(Frantar & Alistarh, 2023), and early-exit strategies (Wang et al., 2024a). While these approaches
target computational efficiency during generation, our work addresses efficiency at the evaluation
level by predicting scores without requiring full response generation.
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B SUMMARY TABLE FOR CONTEXTUAL RESULTS

Table 2 summarizes the improvement in prediction accuracy for the contextual setting as compared
with the zero-shot setting. For a summary of the fine-tuned model results, see Figure 13.

Model MedQA LongFact AIME 2024 MMLU-Pro SciCode Mean
M09B -0.10 +0.27 -0.15 -0.11 -0.43 -0.10
L321B +0.28 +0.12 +0.91 +0.55 +0.90 +0.55
L323B -0.01 -0.12 +0.35 +0.24 -0.12 +0.07
L318B +0.22 -0.05 -0.22 -0.00 +0.03 -0.00
DSQ14B +0.14 +0.07 -0.17 +0.07 -0.02 +0.02
GPT20B +0.00 -0.13 +0.16 -0.01 -0.08 -0.01
DSQ32B +0.03 +0.09 +0.75 +0.02 -0.13 +0.15
L3370B +0.59 +0.67 -0.03 +0.24 +0.38 +0.37
DSL70B +0.14 +0.21 +0.53 +0.10 -0.22 +0.15
L416E +0.06 +0.08 +0.01 +0.13 +0.28 +0.11
GPT120B +0.04 +0.18 +0.05 -0.05 +0.18 +0.08

Table 2: Summary of the improvement in the prediction accuracy for the contextual setting as com-
pared with the zero-shot setting.
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C PROMPTS AND PROMPT TEMPLATES

Prompts 1 to 12 shows the prompts used for different parts of the system. The contents enclosed in
curly brackets are substituted by the relevant content while the experiment is running.

You are a helpful AI assistant that answers user queries. You are given a user query
and you must answer the query in a helpful and concise manner (1-3 sentences).
Responses that are too long are considered to be very bad responses and will be
additionally truncated for the user. You must not ask any follow up questions and
should assume this is the only question that will be asked. You must not ask for
clarification, more information, more context, or more details.

Prompt 1: The system prompt used by the models when asked to respond to a query or estimate how
the LLM judge will score their response.

You are an expert AI evaluator who grades the quality of responses to user queries.
Your job is to carefully analyze AI responses and grade each one. You will assign
each response one of these grades:
- great: Excellent response that is accurate, helpful, concise, and directly
addresses the query
- ok: Adequate response with minor issues in accuracy, helpfulness, or clarity
- bad: Poor response with significant issues in accuracy, helpfulness, or clarity,
or severely inadequate response with major errors or completely fails to address the
query

Follow the output format specified in the instructions exactly.

Prompt 2: The system prompt used by the LLM judge.

You are given a user query. Predict how well you would answer this query by
estimating what score a judge would give to an answer you would provide. Do this
without attempting to actually answer the query.

**IMPORTANT INSTRUCTIONS**
You must output EXACTLY ONE WORD and NOTHING ELSE. Do NOT attempt to actually answer
the query; ONLY output a score prediction.

**USER QUERY**
The user gave this query: {query}

**RESPONSE FORMAT**
Your entire response must be ONLY ONE of these three words:
- great
- ok
- bad

Do NOT include any other text, explanation, or answer to the query itself. Do NOT
add quotes, punctuation, or any additional characters to your response.

Prompt 3: The prompt used to ask a model to predict the LLM judge’s score for its future response
zero-shot.
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You are given a user query and feedback from your previous performance on similar
queries. Use this feedback to predict how well you would answer this query by
estimating what score a judge would give to an answer you would provide. Do this
without attempting to actually answer the query.

**IMPORTANT INSTRUCTIONS**
You must output EXACTLY ONE WORD and NOTHING ELSE. Do NOT attempt to actually answer
the query; ONLY output a score prediction.

**PREVIOUS PERFORMANCE FEEDBACK**
Here is feedback from your performance on previous queries and datasets:
{model_feedback}

**USER QUERY**
The user gave this query: {query}

**ANALYSIS GUIDANCE**
Consider the following when making your prediction:
- Look for similar query types or domains in your feedback
- Identify patterns in your strengths and weaknesses from the feedback
- Consider how the current query relates to areas where you performed well or poorly
- Use the most relevant feedback to inform your prediction

**RESPONSE FORMAT**
Your entire response must be ONLY ONE of these three words:
- great
- ok
- bad

Do NOT include any other text, explanation, or answer to the query itself. Do NOT
add quotes, punctuation, or any additional characters to your response.

Prompt 4: The prompt used to ask a model to predict the LLM judge’s score for its future response
based on a report card for the model.
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You were tested on the AIME 2024 dataset, which features high-level competition
mathematics problems from the American Invitational Mathematics Examination that
require sophisticated mathematical problem-solving skills and multi-step reasoning
to arrive at precise numerical answers. On this dataset, most of your responses were
judged to be "{HuggingFaceH4/aime_2024}". This means that your ability to solve
competition-level mathematics problems that require sophisticated problem-solving
skills and multi-step reasoning is "{HuggingFaceH4/aime_2024}".

You were tested on the LongFact dataset, which presents concept-based queries that
demand comprehensive, factual responses on topics like 20th-century events, US
foreign policy, accounting principles, and architecture, testing your ability to
provide detailed, accurate information across broad knowledge domains. On this
dataset, most of your responses were judged to be "{claserken/longfact}". This means
that your ability to regurgitate factual trivia is "{claserken/longfact}".

You were tested on the MedQA dataset, which focuses specifically on medical
question-answering with free-form multiple-choice questions derived from
professional medical board exams, testing clinical knowledge and diagnostic
reasoning. On this dataset, most of your responses were judged to be
"{bigbio/med_qa}". This means that your ability to diagnose medical conditions is
"{bigbio/med_qa}".

You were tested on the MMLU-Pro dataset, which contains challenging
undergraduate-level multiple-choice questions across diverse academic disciplines
including mathematics, science, history, and humanities, designed to test advanced
reasoning and knowledge beyond standard benchmarks. On this dataset, most of your
responses were judged to be "{TIGER-Lab/MMLU-Pro}". This means that your ability to
answer general undergraduate-level examination questions is "{TIGER-Lab/MMLU-Pro}".
You were further scored on different academic subjects within the MMLU-Pro dataset,
with the following results:
- Philosophy: {TIGER-Lab/MMLU-Pro/philosophy}
- Mathematics: {TIGER-Lab/MMLU-Pro/math}
- Economics: {TIGER-Lab/MMLU-Pro/economics}
- Engineering: {TIGER-Lab/MMLU-Pro/engineering}
- Physics: {TIGER-Lab/MMLU-Pro/physics}
- Biology: {TIGER-Lab/MMLU-Pro/biology}
- Business: {TIGER-Lab/MMLU-Pro/business}
- History: {TIGER-Lab/MMLU-Pro/history}
- Law: {TIGER-Lab/MMLU-Pro/law}
- Health: {TIGER-Lab/MMLU-Pro/health}
- Chemistry: {TIGER-Lab/MMLU-Pro/chemistry}
- Computer Science: {TIGER-Lab/MMLU-Pro/computer_science}
- Other subjects: {TIGER-Lab/MMLU-Pro/other}
These reflect how your ability to answer undergraduate-level examination questions
is affected by the subject.

You were tested on the SciCode dataset, which evaluates scientific computing and
programming capabilities through complex problem-solving tasks that require
understanding of scientific concepts, mathematical reasoning, and code
implementation across various scientific domains. On this dataset, most of your
responses were judged to be "{SciCode1/SciCode}". This means that your ability to
write source code for scientific work is "{SciCode1/SciCode}".

Prompt 5: The sub-prompt used to encode the report card for a model.
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Your ability to solve competition-level mathematics problems that required
sophisticated problem-solving skills and multi-step reasoning is
"{HuggingFaceH4/aime_2024}". Your ability to regurgitate factual trivia is
"{claserken/longfact}". Your ability to diagnose medical conditions is
"{bigbio/med_qa}". Your ability to answer general undergraduate-level examination
questions is "{TIGER-Lab/MMLU-Pro}". Your ability to write source code for
scientific work is "{SciCode1/SciCode}".

Prompt 6: A short variant of the sub-prompt in Prompt 5 used to encode the report card for a model.
See Appendix G for the ablation results using this prompt.

You are given a user query and feedback about an arbitrary model's previous
performance on similar queries. Use this feedback to predict how well that model
would answer this query by estimating what score a judge would give to an answer the
model would provide. Do this without attempting to actually answer the query.

**IMPORTANT INSTRUCTIONS**
You must output EXACTLY ONE WORD and NOTHING ELSE. Do NOT attempt to actually answer
the query; ONLY output a score prediction.

**MODEL PERFORMANCE FEEDBACK**
Here is feedback from the model's performance on previous queries and datasets:
{model_feedback}

**USER QUERY**
The user gave this query: {query}

**ANALYSIS GUIDANCE**
Consider the following when making your prediction:
- Look for similar query types or domains in the model's feedback
- Identify patterns in the model's strengths and weaknesses from the feedback
- Consider how the current query relates to areas where the model performed well or
poorly
- Use the most relevant feedback to inform your prediction about the model's likely
performance

**RESPONSE FORMAT**
Your entire response must be ONLY ONE of these three words:
- great
- ok
- bad

Do NOT include any other text, explanation, or answer to the query itself. Do NOT
add quotes, punctuation, or any additional characters to your response.

Prompt 7: The prompt used to ask a model to predict the LLM judge’s score for an arbitrary model’s
future response based on a report card for the model.

Your prediction must be exactly one of these three values: 'great', 'ok', or 'bad'.
Please provide only one of these values.

Prompt 8: The prompt used to request a model to correct its prediction if the parser was unable to
read it.
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I'll provide you with a user query and {num_responses} AI responses to that query.
Please evaluate each response and grade each of them as either great, ok, or bad.

**RESPONDER INSTRUCTIONS**
The AI responders were given these specific instructions to follow when responding
to the user query:
{responder_system_prompt}

**EVALUATION RUBRIC**
Here is the rubric you will use to evaluate the AI responses:
{rubric}

You must strictly adhere to the rubric above when evaluating. Base your grades
entirely on the criteria specified in the rubric.

**USER QUERY**
The user gave this query: {query}

**HINTS**
The dataset says the following about how to answer the query:
{hints}

**AI RESPONSE**
The AIs responded with these responses:
{responses}

**RESPONSE FORMAT**
You should write an explanation of your evaluation for each model according to each
of the criteria in the rubric. If instruction following is in the rubric, then you
should look at each of the instructions given and say whether or not they were
followed. If the rubric asks about factual knowledge, then you should look at each
given fact and say whether or not they were correct. You should then explain what
final grade the rubric would assign to the output and why. When you're done giving
your justifications, output the token </rationale> and then the final grades for
each model---and only the final grades for the models---according to the following
JSON format:
{json_format}

Use only these grades in your evaluation: great, ok, bad. Output valid JSON for the
final grades only (don't forget the curly braces). Don't forget to output the
</rationale> token before the final grades.

Prompt 9: The prompt used when asking the LLM judge to simultaneously grade the responses of
all the models to a single query.
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I'll provide you with a user query and an AI response to that query. Please evaluate
the response and grade it as either great, ok, or bad.

**RESPONDER INSTRUCTIONS**
The AI responder was given these specific instructions to follow when responding to
the user query:
{responder_system_prompt}

**EVALUATION RUBRIC**
Here is the rubric you will use to evaluate the AI response:
{rubric}

You must strictly adhere to the rubric above when evaluating. Base your grade
entirely on the criteria specified in the rubric.

**USER QUERY**
The user gave this query: {query}

**HINTS**
The dataset says the following about how to answer the query:
{hints}

**AI RESPONSE**
The AI responded with this response: {response}

**RESPONSE FORMAT**
You should write an explanation of your evaluation for the model according to each
of the criteria in the rubric. If instruction following is in the rubric, then you
should look at each of the instructions given and say whether or not they were
followed. If the rubric asks about factual knowledge, then you should look at each
given fact and say whether or not they were correct. You should then explain what
final grade the rubric would assign to the output and why. When you're done giving
your justifications, output the token </rationale> and then the final grade for the
model---and only the final grade for the model---according to the following JSON
format:
{json_format}

Use only these grades in your evaluation: great, ok, bad. Output valid JSON for the
final grade only (don't forget the curly braces). Don't forget to output the
</rationale> token before the final grade.

Prompt 10: A variant of the prompt in Prompt 9 used when asking the LLM judge to grade the
responses of a single model to a single query. See Appendix E for the ablation results using this
prompt.
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| Criteria | Great | Ok | Bad |
|----------|-------|----|----|
| **Accuracy** | Information is completely correct with no factual errors |
Information is mostly correct with minor inaccuracies that don't affect the main
point | Information contains significant factual errors or misleading statements |
| **Relevance** | Directly addresses the query with focused, on-topic content |
Addresses the query but includes some tangential or less relevant information |
Fails to address the main query or provides largely irrelevant content |
| **Completeness** | Fully answers all aspects of the question with appropriate
depth | Answers most aspects of the question but may miss minor details | Provides
incomplete answer, missing key information or major aspects |
| **Clarity** | Clear, well-structured, easy to understand with logical flow, and
ends gracefully | Generally clear but may have minor issues with structure or
explanation | Confusing, poorly structured, difficult to understand, or ends
abruptly |
| **Instruction Following** | Perfectly follows all given instructions and
constraints | Follows most instructions with minor deviations that don't impact
quality | Fails to follow key instructions or ignores important constraints |
| **Formatting** | Answer is perfectly formatted as requested with no extraneous
content | Answer is mostly formatted as requested but contains no extraneous content
| Answer is incorrectly formatted or contains any extraneous content not requested |

**Grading Guidelines:**
- **Great**: Meets ALL criteria at the "Great" level
- **Ok**: Meets most criteria at "Great" or "Ok" level, with no "Bad" ratings
- **Bad**: Has one or more criteria rated as "Bad" OR fails to meet minimum
standards across multiple criteria

Prompt 11: The rubric used by the LLM judge to grade responses.

Your output is invalid. You gave the following answer:
{previous_response}

The instructions given to you were:
{instructions}

Prompt 12: The prompt used to request the LLM judge to correct its evaluation if the parser was
unable to read it.
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D MODE SCORES

Table 3 shows the mode scores for each of the models on each of the datasets. Likewise, Table 4
shows the mode scores for each of the models on each of the categories in the MMLU-Pro dataset.
As would be expected from looking at Figures 3 to 7, a good variation is observed between the
different models and datasets, implying that the results presented here generalize well.

Model AIME 2024 LongFact MedQA SciCode MMLU-Pro
M09B bad bad bad bad bad
L321B bad ok bad bad bad
L323B bad great great bad bad
L318B bad ok great bad great
GPT20B bad great great great great
DSQ14B great great ok great great
DSQ32B bad great great ok great
GPT120B bad great great great great
DSL70B bad great great ok great
L3370B great great great ok great
L416E great great great great great

Table 3: The mode scores for each model on each of the datasets.

Model Biology Business Chemistry Computer Science Economics Engineering
M09B bad bad bad bad bad bad
L321B bad bad bad bad bad bad
L323B great bad bad bad bad bad
L318B great bad bad bad great bad
GPT20B great great great great great bad
DSQ14B great great great great great great
DSQ32B great great bad great great bad
GPT120B great great great great great great
DSL70B great great great great great great
L3370B great great great great great ok
L416E great great great great great great

Graph Health History Law Math Other Philosophy Physics Psychology
M09B bad bad bad bad bad bad bad bad
L321B bad bad bad bad bad bad bad bad
L323B great great bad bad great bad bad great
L318B great great great bad great great bad great
GPT20B great great bad great great great great great
DSQ14B great great ok great great great great great
DSQ32B great great great great great great great great
GPT120B great great great great great great great great
DSL70B great great great great great great great great
L3370B great great great great great great great great
L416E great great great great great great great great

Table 4: The mode scores for each model on each of the categories in MMLU-Pro.
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E INDEPENDENT EVALUATION RESULTS

LLMs are known to be overconfident (Huang et al., 2025a; Ren et al., 2023). Thus, a relative
assessment of model outputs is likely to have a higher variation than an independent assessment. To
verify this, we conducted an ablation in which the model outputs are assessed separately. The results
of this are shown in Figures 16 to 20. Intuitively, the combination of this and a mixture of small and
large models renders a relative assessment more meaningful here.
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Figure 16: Distribution of LLM judge scores on MedQA dataset under independent evaluation.
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Figure 17: Distribution of LLM judge scores on LongFact dataset under independent evaluation.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 7 14 22
Count

M09B
L321B
L323B
L318B

DSQ14B
GPT20B
DSQ32B
L3370B
DSL70B

L416E
GPT120B

Model

LLM Judge Scoreboard (dataset=HuggingFaceH4/aime_2024)

Legend
Great Ok Bad

Figure 18: Distribution of LLM judge scores on AIME 2024 dataset under independent evaluation.
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Figure 19: Distribution of LLM judge scores on MMLU-Pro dataset under independent evaluation.
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Figure 20: Distribution of LLM judge scores on SciCode dataset under independent evaluation.
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F PREDICTION DISTRIBUTIONS

Figures 21 to 25 show the zero-shot and contextual prediction distributions for each of the models
on each of the datasets. As expected, the distributions tend to have lower variance than the actual
score distribution (as queries are being categorized coarsely).
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Figure 21: Zero-Shot and Contextual Prediction Distributions on MedQA
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Figure 22: Zero-Shot and Contextual Prediction Distributions on LongFact
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Figure 23: Zero-Shot and Contextual Prediction Distributions on AIME 2024
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Figure 24: Zero-Shot and Contextual Prediction Distributions on SciCode
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Figure 25: Zero-Shot and Contextual Prediction Distributions on MMLU-Pro
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G SHORT FEEDBACK TEMPLATE RESULTS

The feedback template shown in Prompt 5 and used in our primary experiments is exceedingly
long. To determine whether this is important or not, we repeated our zero-shot experiments with the
shorter feedback template shown in Prompt 6. The results are shown in Figures 24, 26 to 28 and 30.
The principal takeaway from this ablation is that the longer and more comprehensive template led
to a much stronger performance than the short template.
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Figure 26: Contextual prediction accuracy of models on MedQA dataset when using the short feed-
back template given in Prompt 6.
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Figure 27: Contextual prediction accuracy of models on LongFact dataset when using the short
feedback template given in Prompt 6.
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Figure 28: Contextual prediction accuracy of models on AIME 2024 dataset when using the short
feedback template given in Prompt 6.
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Figure 29: Contextual prediction accuracy of models on MMLU-Pro dataset when using the short
feedback template given in Prompt 6.
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Figure 30: Contextual prediction accuracy of models on SciCode dataset when using the short feed-
back template given in Prompt 6.
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H PREDICTION ACCURACY WITHOUT FINE-TUNED MODELS

As the evaluation is contextual, the results shown in Sections 4 and 5 occur in the context of the
fine-tuned models. Figures 31 to 35 show both the zero-shot and contextual prediction accuracy of
the models when the fine-tuned models are excluded from the experiment. Evidently, the effect of
the fine-tuned models being added to the mix are relatively minimal here.
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Figure 31: The zero-shot and contextual prediction accuracy of the models on the MedQA dataset.
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Figure 32: The zero-shot and contextual prediction accuracy of the models on the LongFact dataset.
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Figure 33: The zero-shot and contextual prediction accuracy of the models on the AIME 2024
dataset.
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Figure 34: The zero-shot and contextual prediction accuracy of the models on the SciCode dataset.
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Figure 35: The zero-shot and contextual prediction accuracy of the models on the MMLU-Pro
dataset.
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I USE OF LARGE LANGUAGE MODELS IN WRITING

LLMs were used throughout the writing of the paper as general-purpose assist tools. In particular,
they were used to draft, refine, and polish sections of the paper as well as to discover and compare
some relevant works. Only some appendix sections can be said to be exempt of the above, with the
contribution of the LLMs in writing being less pronounced around precise factual areas of the text
(i.e., where the exact choice of words was critical for correctness).
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