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ABSTRACT

Out-of-distribution (OOD) detection is essential for the safe deployment of AI.
Particularly, OOD detectors should generalize effectively across diverse scenar-
ios. To improve upon the generalizability of existing OOD detectors, we intro-
duce a highly versatile OOD detector, called Neural Collapse inspired OOD de-
tector (NC-OOD). We extend the prevalent observation that in-distribution (ID)
features tend to form clusters, whereas OOD features are far away. Particularly,
based on the recent observation, Neural Collapse, we further demonstrate that ID
features tend to cluster in proximity to weight vectors. From our extended obser-
vation, we propose to detect OOD based on feature proximity to weight vectors.
To further rule out OOD samples, we leverage the observation that OOD features
tend to reside closer to the origin than ID features. Extensive experiments show
that our approach enhances the generalizability of existing work and can consis-
tently achieve state-of-the-art OOD detection performance across a wide range of
OOD Benchmarks over different classification tasks, training losses, and model
architectures.

1 INTRODUCTION

Machine learning models deployed in practice will inevitably encounter samples that deviate from
the training distribution. As a classifier cannot make meaningful predictions on test samples that
belong to unseen classes during training, it is important to actively detect and handle Out-of-
Distribution (OOD) samples. Considering the diverse application scenarios, an effective OOD de-
tector should generalize across classification tasks of different input resolutions, number of classes,
classification accuracy, as well as classifiers under different training schemes and architectures.

Since Nguyen et al. (2015) reveals that neural networks tend to be over-confident on OOD samples,
an extensive body of research has been focused on developing effective OOD detection algorithms.
One line of work designs OOD scores over model output space (Liang et al., 2018; Liu et al., 2020;
Hendrycks et al., 2019; Sun et al., 2021; Sun & Li, 2022). Another line of work focuses on the
feature space, where OOD samples are observed to deviate from the clusters of ID samples (Tack
et al., 2020; Lee et al., 2018; Sun et al., 2022) and builds an auxiliary model for OOD detection.
Specifically, Lee et al. (2018) detects OOD based on the Mahalanobis distance (Mahalanobis, 2018)
between the feature and the mixture of Gaussian distribution learned from training features; Sun
et al. (2022) measures OOD-ness based on the k-th nearest neighbor distance to training features.
While previous efforts have significantly improved OOD detection performance, we observe in Ta-
ble 1 that existing work does not concurrently achieve state-of-the-art performance across different
classification tasks, as competitive approaches on ImageNet(Deng et al., 2009) OOD benchmarks
perform suboptimally on CIFAR-10(Krizhevsky et al., 2009) OOD benchmarks, and vice versa.

In this work, we aim to improve upon the generalizability and build a versatile OOD detector across
diverse scenarios. To this end, we start with the prevalent observation discovered in Tack et al.
(2020); Lee et al. (2018); Sun et al. (2022) that ID features tend to form clusters at the penultimate
layer, i.e., the layer before the linear classification head, whereas OOD features reside far away, as
shown in Figure 1 Left. To better understand the phenomenon, we ask:

Where do ID features tend to form clusters?

To answer this question, we draw insights from the recent finding Neural Collapse (Papyan et al.,
2020), which describes the limiting behavior of features at the penultimate layer and the linear
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Figure 1: Illustration of our framework inspired by Neural Collapse. Left: On the penultimate
layer, features of ID samples reside near the weight vectors of the linear classification head, visu-
alized with UMAP(McInnes et al., 2018). Middle: ID and OOD samples can be distinguished by
our pScore defined in Section 3, which measures feature proximity to weight vectors. Also, OOD
samples tend to reside closer to the origin than ID samples, illustrated with L1 norm. Right: Thresh-
olding on pScore selects infinite hypercones centered at weight vectors, shaded in blue. And the L1
norm in NCScore helps filter out OOD samples near the origin that fall within the hyper-cones. Note
that Left and Middle present experimental results on a CIFAR-10 ResNet-10 classifier with OOD set
SVHN. Right depicts the idea of our scheme in two dimensions on a three-class classifier.
classification head when the training epoch goes to infinity. We demonstrate that as a deterministic
effect of Neural Collapse, features of training samples will converge towards the weight vectors of
the linear classification head. Since ID test samples are drawn from the same distribution as training
samples, we hypothesize features of ID test samples to reside close to weight vectors as well. This
is demonstrated in Figure 1 Left, where ID features form clusters near weight vectors while OOD
features reside far away. Based on this, we propose to detect OOD based on feature proximity to
weight vectors and we define a proximity score as the norm of the projection of weight vectors onto
the sample feature. In comparison to prior work (Lee et al., 2018; Sun et al., 2022) which builds
an auxiliary model from training features, our alternative characterization of ID clustering is more
computationally efficient and brings in a performance gain.

Despite the effectiveness of our proximity score in detecting OOD samples, supported by Figure 1
Middle Upper, some OOD features can still fall within the highlighted hypercones centered at weight
vectors and cannot be distinguished from ID features under our proximity score, as illustrated in
Figure 1 Right. To further filter out such OOD samples, we adopt a complementary perspective and
utilize the observation that OOD features tend to reside closer to the origin (Tack et al., 2020; Sun
et al., 2022). Specifically, we add the L1 norm of the feature to the proximity score to filter out
OOD near the origin. Thresholding on the score, we have Neural Collapse inspired OOD detector
(NC− OOD): A lower score indicates a higher chance of OOD.

With extensive experiments, we show that our detector consistently achieves or improves state-of-
the-art performance across OOD benchmarks on different classification tasks (ImageNet, CIFAR-10
& CIFAR-100), across different training objectives (cross-entropy & contrastive loss), and across
different network architectures (ResNet & DenseNet). This improves the generalizability of existing
methods. We further conduct a comprehensive ablation study to understand the effectiveness of each
component in our OOD detector. We summarize our main contributions below:

• Understanding ID feature clustering through the lens of Neural Collapse: We delve
into the prevalent observation that ID features tend to form clusters whereas OOD features
reside far away. Based on Neural Collapse, we further demonstrate that features of training
samples will converge towards weight vectors of the last layer. Taking one step further,
we hypothesize and demonstrate that ID test samples tend to reside close to weight vectors
whereas OOD samples are far away.

• OOD detection methods: Based on our understanding, we propose to detect OOD samples
based on feature proximity to weight vectors. We further rule out OOD samples using the
observation that OOD features tend to be closer to the origin. Our proposed OOD detector
has remarkable computational efficiency and rapid inference speed.
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Table 1: Our proposed OOD detector achieves high AUROC across CIFAR-10 and ImageNet
OOD benchmark. AUROC score is reported for OOD detection across 6 different CIFAR-10 OOD
benchmarks and 4 ImageNet OOD benchmarks. The larger the value, the better. The best result is
highlighted in bold and the second best result is underlined.

• Experimental Analysis: Through extensive experiments, we show our proposed OOD
detector achieves or improves state-of-the-art OOD detection performance across a wide
range of OOD benchmarks. We also conduct a comprehensive ablation study to understand
the effectiveness of each component in our detector.

2 PROBLEM SETTING

We consider a data space X , a class set C, and a classifier f : X → C, which is trained on samples
i.i.d. drawn from joint distribution PXC . We denote the marginal distribution of PXC on X as Pin.
And we refer to samples drawn from Pin as In-Distribution (ID) samples. In the real world, the
classifier f may encounter x ∈ X which is not drawn from Pin. We refer to such samples as
Out-of-Distribution (OOD) samples.

Since a classifier cannot make meaningful predictions on OOD samples from classes unseen during
training, it is important to distinguish between In-Distribution (ID) samples and Out-of-Distribution
(OOD) samples for the reliable deployment of machine learning models. Moreover, considering the
diverse application scenarios, an ideal OOD detection scheme should generalize across classification
tasks of different input resolutions, number of classes, etc. In this work, we study the previous obser-
vation that ID features tend to form clusters. We draw insights from Neural Collapse to understand
the phenomenon and we propose an OOD detector based on our understanding.

3 OOD DETECTION THROUGH THE LENS OF NEURAL COLLAPSE

In this section, we propose an OOD detector drawing inspiration from Neural Collapse. Specifically,
we dive into the observation in Lee et al. (2018); Sun et al. (2022) showing that ID features tend to
form clusters and OOD features deviate from the ID clusters. To better understand the phenomenon,
we ask the question:

Where do ID features tend to form clusters?

Leveraging insights from Neural Collapse, we show that features of training examples will converge
towards weight vectors. We therefore expect features of ID samples, which are drawn from the
same distribution as in training samples, to reside close to weight vectors as well whereas OOD
samples reside far away, as shown in Figure 1 Right, We therefore propose to detect OOD based
on feature proximity to weight vectors. We further filter OOD with the additional observation that
OOD features tend to reside closer to the origin and we propose our Neural Collapse inspired OOD
detector. We illustrate and summarize our scheme in Figure 1.
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3.1 NEURAL COLLAPSE: CONVERGENCE OF FEATURES TOWARDS WEIGHT VECTORS

We now establish from Neural Collapse the relationship between penultimate layer features and the
weight vectors of the linear projection head.

Neural Collapse, first observed in Papyan et al. (2020), occurs on the penultimate layer across canon-
ical classification settings. To formally introduce the concept, we use hi,c to denote the penultimate
layer feature of the ith training sample with ground truth label c. And Neural Collapse is framed in
relation to

• the feature global mean, µG = Avei,chi,c, where Ave is the average operation;
• the feature class means, µc = Aveihi,c, ∀c ∈ C;

• the within-class covariance, ΣW = Avei,c(hi,c − µc)(hi,c − µc)
T ;

• the linear classification head, i.e. the last layer of the NN, argmaxc∈C w
T
c h + bc, where

wc and bc are parameters corresponding to class c.

Overall, Neural Collapse comprises four inter-related limiting behaviors in the Terminal Phase of
Training (TPT) where training error vanishes and the training loss is trained towards zero:

(NC1) Within-class variability collapse: ΣW → 0

(NC2) Convergence to simplex equiangular tight frame (ETF):
|∥µc − µG∥2 − ∥µc′ − µG∥2| → 0, ∀ c, c′

(µc − µG)
T (µc′ − µG)

∥µc − µG∥2∥µc′ − µG∥2
→ |C|

|C| − 1
δc,c′ −

1

|C| − 1

(NC3) Convergence to self-duality:
wc

∥wc∥2
− µc − µG

∥µc − µG∥2
→ 0

(NC4) Simplification to nearest class center: argmaxc∈C w
T
c h+ bc → argminc∈C ∥h− µc∥2

In the following, we derive from (NC1) and (NC3) and show that training ID features will converge
to weight vectors of the linear classification head up to scaling.
Theorem 1. (NC1) and (NC3) imply that for any i and c, we have

(hi,c − µG) → λwc (1)

in the Terminal Phase of Training, where λ =
∥µc − µG∥2

∥wc∥2
.

Proof. Considering that matrix (hi,c − µc)(hi,c − µc)
T is positive semi-definite for any i and c.

ΣW → 0 therefore implies (hi,c−µc)(hi,c−µc)
T → 0 and hi,c−µc → 0, ∀i, c. With algebraic

manipulations, we then have
hi,c − µG

∥µc − µG∥2
− µc − µG

∥µc − µG∥2
→ 0, ∀i, c (2)

Applying the triangle inequality, we have

| hi,c − µG

∥µc − µG∥2
− wc

∥wc∥2
| ≤ | hi,c − µG

∥µc − µG∥2
− µc − µG

∥µc − µG∥2
|+ | wc

∥wc∥2
− µc − µG

∥µc − µG∥2
|. (3)

Given both terms on RHS converge to 0 and shown by (NC3) and equation 2, the LHS also converges
to 0. Thus we complete the proof.

Theorem 1 sheds light on understanding the observation in Tack et al. (2020); Lee et al. (2018); Sun
et al. (2022) that ID features tend to form clusters and OOD features reside far away. As shown in
Theorem 1, training features will converge to weight vectors as the training epoch goes to infinity.
Since ID test samples are drawing from the same distribution as training samples, we expect that
ID test features will also cluster in close proximity to weight vectors. In Figure 1 Left, we use
UMAP(McInnes et al., 2018) to visualize ID features, OOD features, and weight vectors in the
penultimate space. In line with our understanding, the ID feature resides in proximity to weight
vectors, and OOD features are far away from weight vectors.
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3.2 OUT-OF-DISTRIBUTION DETECTION

We now leverage our understanding from Theorem 1 and propose an OOD detector.

As ID features tend to cluster near weight vectors, we propose to detect OOD based on feature
proximity to weight vectors. Specifically, we quantify the proximity between centered feature h −
µG and the weight vector wc corresponding to the predicted class c as:

pScore =
(h− µG) ·wc

∥h− µG∥2
(4)

Geometrically, our proximity score pScore measures the norm of the projection of wc onto the
centered feature h − µG. And the larger pScore is, the closer the feature is to the weight vector.
We illustrate in Figure 1 Middle Upper how pScore effectively distinguishes between ID and OOD
features. Furthermore, we study in Section 4.4 that the same observation also holds under common
similarity metrics, cosine similarity, and Euclidean distance. pScore outperforms both as an OOD
indicator, which we will further discuss in Section 4.4. Note that pScore of samples within the
same predicted class is proportional to the cosine similarity and pScore = cos(wc,h−µG)∥wc∥2.
When thresholding on pScore, we geometrically select infinite hyper-cones centered at the weight
vectors, as illustrated in Figure 1 Right.

Essentially, we provide an alternative approach for characterizing ID clustering in comparison to
existing literature (Lee et al., 2018; Sun et al., 2022) which builds auxiliary models over the training
features. From the weight vector perspective, our clustering score pScore eliminates the need for an
auxiliary model, and therefore eliminates the associated computational cost and storage overhead.
We further discuss the performance gain of our approach in Section 4.4.

Furthermore, some OOD features may fall within the hyper-cones in Figure 1 Right as they are
close to the weight vectors under our angular metric pScore. To filter out such OOD samples, we
adopt a complementary perspective and leverage the observation in literature (Tack et al., 2020; Sun
et al., 2022) that OOD features tend to reside closer to the origin than ID features. As illustrated in
Figure 1Middle Lower, OOD features tend to have smaller L1 norm than ID features. Geometrically,
the complementary perspective allows us to filter out OOD samples near the origin as visualized in
Figure 1 Right. Combining both perspectives, we design our OOD detection score as

NCScore = α∥h∥1 + pScore = α∥h∥1 +
(h− µG) ·wc

∥h− µG∥2
, (5)

where α controls the strength of L1 norm based filtering. We refer readers to Section 4.4 where we
conduct a comprehensive ablation study to understand the effectiveness of each component.

By applying a threshold on NCScore, we introduce Neural Collapse inspired OOD detector
(NC− OOD), which identifies samples below the threshold as OOD.

4 EXPERIMENTS

In this section, we demonstrate the versatility of NC− OOD across OOD Benchmarks on different
classification tasks (Sec 4.1 & Sec 4.3), different training objectives (Sec 4.3) and different network
architectures(Sec 4.3). This improves over existing methods which focus more on certain classifi-
cation tasks than others (Sec 4.1). We conduct a comprehensive ablation study to understand the
effectiveness of individual components in our detector (Sec 4.4). In the following, we use the area
under the receiver operating characteristic curve (AUROC) as our evaluation metric, which is widely
used in OOD detection literature. The higher the AUROC value, the better the performance. In ad-
dition to the AUROC score, we further report the FPR95 score, the positive rate at 95% true positive
rate, of our experiments in Appendix C. For hyperparameter tuning, we follow approaches in Sun
et al. (2021); Sun & Li (2022) and we select filter strength from α = {0.001, 0.01, 0.1, 1} based
on a validation set of Gaussian noise images, which is generated per pixel from N(0, 1). We refer
readers to Appendix A for detailed experimental setups.

4.1 VERSATILITY ACROSS DIVERSE SCENARIOS

In the following, we examine the performance of NC− OOD against baseline OOD detectors. Par-
ticularly, we are interested in evaluating the versatility of OOD detectors on canonical CIFAR-10
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and ImageNet OOD benchmarks. Note that the two classification tasks drastically differ in input
resolution, number of classes, and classification accuracy. Specifically, the CIFAR-10 classifier we
evaluated has a ResNet-18 backbone and achieves an accuracy of 94.21%. The ImageNet classifier
has a ResNet-50 backbone and achieves an accuracy of 76.65%. Both classifiers are trained with
cross-entropy in this section. Filter strength α is set to 0.01 for the CIFAR-10 benchmark and 0.001
for the ImageNet benchmark based on validation results on Gaussian noise images.

CIFAR-10 OOD Benchmark Datasets For the CIFAR-10 OOD benchmark, we consider the stan-
dard CIFAR-10 test set with 10,000 images as ID samples. For OOD samples, we evaluate on six
OOD benchmarks: SVHN, LSUN-crop, LSUN-resize (Yu et al., 2015), iSUN (Xu et al., 2015),
Places365 (Zhou et al., 2017), and Texture (Cimpoi et al., 2014). All images are of size 32× 32.

ImageNet OOD Benchmark Datasets We consider 50,000 ImageNet validation images in the stan-
dard split as ID samples. Following Huang & Li (2021); Sun et al. (2022), we use Places365 (Zhou
et al., 2017), iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), and Texture (Cimpoi
et al., 2014) with non-overlapping classes w.r.t. ImageNet as OOD samples. All images are of size
224× 224.

Baselines We compare our method with 10 baseline methods in Table 1. We observe that some
baselines are more focused on CIFAR-10 Benchmark whereas others are more focused on Imagenet
Benchmark. Based on the performance, we divide the baselines, besides the vanilla confidence-
based MSP (Hendrycks & Gimpel, 2016), into two categories. Specifically, we name baselines fo-
cusing more on CIFAR-10 OOD benchmarks as “CIFAR-10 Strong”. This includes ODIN (Liang
et al., 2018), Energy (Liu et al., 2020), Mahalanobis (Lee et al., 2018), and KNN(Sun et al., 2022).
And we refer to baselines particularly competitive on ImageNet OOD benchmarks as “ImageNet
Strong”, including GradNorm (Huang et al., 2021), React (Sun et al., 2021), and Dice (Sun &
Li, 2022). We also consider Dice+ React as a baseline, since the best result on ImageNet OOD
benchmarks is achieved by combining Dice and ReAct in Sun & Li (2022),

Note that out of the baselines, Mahalanobis and KNN utilize the clustering of ID features and belong
to the same school of thought as us. We further compare the performance of two baselines with our
standalone clustering score pScore through an ablation study in Section 4.4.

OOD detection performance In Table 1, we compare the AUROC score of our methods with base-
lines. We observe that CIFAR-10 Strong baselines achieve competitive performance on CIFAR-10
benchmarks while performing sub-optimally over ImageNet benchmarks. ImageNet Strong base-
lines, on the other hand, significantly outperform CIFAR-10 benchmarks on ImageNet OODs yet do
not achieve state-of-the-art performance on most CIFAR-10 OOD tasks.

On the contrary, our proposed method concurrently achieves competitive performance across both
benchmarks and on average improves AUROC scores. Overall, our experiments provide strong
evidence for the efficacy of our proposed detectors in identifying different types of OOD samples
across drastically different scenarios.

4.2 EFFECTIVENESS UNDER CONTRASTIVE LEARNING SCHEME

To examine the generalization of our proposed method beyond classifiers trained with cross-entropy
loss, we further experiment with a contrastive learning scheme. We consider four baseline methods
particularly competitive under contrastive loss: CSI Tack et al. (2020), SSD+ Sehwag et al. (2020),
and KNN+ Sun et al. (2022). In Table 21, we evaluate NC− OOD, CSI, SSD+, and KNN+ on a CIFAR-
10 classifier with ResNet18 backbone trained with supervised contrastive (supcon) loss Khosla et al.
(2020). The classifier achieves an accuracy of 94.64%. We set filter strength α = 1 based on the
validation result on Gaussian noise images.

From Table 2, we observe that under a contrastive training scheme, our proposed detectors on av-
erage improve over OOD detection performance of state-of-the-art. In addition, comparing Table 2
with Table 1, we observe that OOD detection performance significantly improves when the classifier
is trained with contrastive loss. This is in line with the observation in Sun et al. (2022) that features
learnt from contrastive loss are more compact than features learnt from classical cross-entropy loss.

1CSI result copied from Table 4 in Sun et al. (2022), which does not report performance on CIFAR10-C,
CIFAR100, and LUN-resize.
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Table 2: Our proposed OOD detectors achieve high AUROC (higher is better) on CIFAR-10 OOD
benchmarks when the classifier is trained with contrastive loss. The larger the value, the better. The
best result is highlighted in bold and the second best result is underlined.

Table 3: Our proposed OOD detectors achieve competitive performance on DenseNet-101 CIFAR-
10 classifier and DenseNet-101 CIFAR-100 classifier. We report the AUROC score averaged over
OOD test sets listed in Section 4.1. The larger the value, the better. The best result is highlighted in
bold and the second best result is underlined.

4.3 EFFECTIVENESS ON DENSENET

So far our evaluation shows that NC− OOD stays competitive on the ResNet backbone across OOD
Benchmarks over different classification tasks and classifiers under different training objectives. We
now extend our evaluation to DenseNet (Huang et al., 2017). Besides a CIFAR-10 classifier, we
consider in addition a CIFAR-100 classifier. The CIFAR-10 classifier achieves a classification ac-
curacy of 94.53%, whereas the CIFAR-100 classifier achieves an accuracy of 75.06%. We consider
the same OOD test sets for CIFAR-10 and CIFAR-100 as in Section 4.1 for CIFAR-10. For the
sake of space, we report the AUROC score averaged over test OOD data sets in Table 6 and report
the complete results in Appendix D. For both CIFAR-10 and CIFAR-100, the filtering strength α is
set to 0.01. The competitive performance shown in Table 6 further indicates the versatility of our
proposed detector across different network architectures and OOD benchmarks.

4.4 ABLATION STUDY

In this section, we conduct a comprehensive ablation study to understand the effectiveness of indi-
vidual components in our NCScore in Section 4.1. Further, we experiment with alternative metrics to
gain insight. Note that besides this section, our score function stays the same across OOD datasets,
classification tasks, architectures, and training loss throughout the paper.

4.4.1 EFFECTIVENESS OF INDIVIDUAL COMPONENTS

In Table 4, we present the performance of OOD detection using NCscore and its standalone com-
ponents pScore and L1 as scoring function on ImageNet OOD benchmarks. While each individual
component can distinguish between ID and OOD, we observe across OOD sets that the joint score
NCScore largely outperforms both individual components.

Particularly, when comparing Table 4 to Table 1, we observe that detection based on pScore alone,
which characterizes ID clustering from the perspective of weight vectors, consistently outperforms
existing feature layer methods, Mahalanobis(Lee et al., 2018) and KNN(Sun et al., 2022), across
all OOD sets. Similarly, we observe in Appendix E that, on CIFAR-10 Benchmark, pScore alone
achieves an average AUROC of 95.21, outperforming all baselines including Mahalanobis and KNN.
Recall that Mahalanobis detects OOD based on the Mahalanobis distance between the feature and
the mixture of Gaussian distribution learnt from training features; KNN measures OOD-ness based on
the k-th nearest neighbor distance to training features. In comparison to Mahalanobis, we eliminate
the bias in Gaussian assumption, which does not necessary hold as shown in Sun et al. (2022). And
in comparison to KNN, our method is more robust against outliers in training features. Overall, in
addition to the computation and storage benefit in comparison to existing feature layer methods as
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Table 4: Effectiveness of components in NCScore. AUROC scores are reported (higher is better)
on ImageNet OOD Benchmarks. NCScore outperforms its components pScore and L1 norm.

discussed in Section 3.2, our characterization further reduces the bias in assumption as well as the
noise in estimation, leading to improved performance.

Furthermore, comparing the performance NCScore with pScore, we observe that across all OOD
datasets in Table 4, filtering on L1 norm improves the performance. The observation validate that
L1 norm based filtering can effectively rule out OOD samples falls near weight vectors under metric
pScore following our intuition in Section 3. Experiments on CIFAR-10 Benchmarks in Appendix E
also demonstrate the effectiveness of filtering. However, the enhancement is less significant. Intu-
itively, the classification of CIFAR-10 is an easier task. Therefore, for a CIFAR-10 classifier, ID
features of different classes are better separated whereas ID features of the same class are more
compact. And the pScore will select much narrower hyper-cones in Figure 1, resulting in a low
chance of random OOD falling into the hyper-cones. This matches the observation that pScore
alone achieves an average AUROC score of 95.21 in Appendix E, which saturates the state-of-the-
art performance. Thus further filtering does not lead to significant improvement.

4.4.2 ALTERNATIVES METRICS

Alternative similarity metrics. We start by validating that under alternative similarity metrics, ID
features also reside closer to weight vectors. Further, we study how to most effectively characterize
feature proximity to weight vectors for OOD detection. Specifically, in addition to our proposed
pScore we consider two standard similarity metrics, cosine similarity and Euclidean distance. For
cosine similarity, we evaluate

cosScore =
(h− µG) ·wc

∥h− µG∥2∥wc∥2
. (6)

As for Euclidean distance, we first estimate the scaling factor in Theorem 1 by λ̃c =
∥µc − µG∥2

∥wc∥2
.

Based on the estimation, we measure the distance between the centered feature h − µG and the
scaled weight vector corresponding to the predicted class c as

distScore = −∥(h− µG)− λ̃cwc∥2. (7)
Same as pScore, the larger cosScore or distScore is, the closer the feature is to the weight vector.

We evaluate in Table 5 OOD detection performance using standalone pScore, cosScore, and
distScore as scoring function respectively. The experiments are evaluated with AUROC under
the same ImageNet setup as in Section 4.1. We observe in Table 5, that across OOD datasets, all
three scores achieve an AUROC score > 50, indicating that ID features reside closer to weight
vectors compared to OOD under either metric. The same observation also holds on the CIFAR-10
Benchmark, as presented in Appendix E.

Furthermore, we observe that pScore outperforms both cosScore and distScore. And we ob-
serve in Appendix E the same pattern on CIFAR-10 Benchmarks. Comparing the performance of
pScore and cosScore, the superior performance of pScore implies that ID features corresponding
to the classes with larger wc are less compact. This is inline with the decision rule of the classifier
that classes with larger wc have larger decision regions. As for comparison against Euclidean dis-
tance based distScore, pScore eliminates the need to estimate the scaling factor, which can be
error-prone before convergence, potentially leading to performance degradation.

Alternative filtering norms. In addition, we ablate on L1, L2, and Linf to determine the p-
norm for filtering in our score function NCScore. In Table 6 we compare the performance when
filtering pScore with different norms. Experiments are on ImageNet Benchmarks under the same
setup as Section 4.1. And the selected filtering strength α is 0.001 for all choices of norm. We
observe in Table 6, that across OOD datasets, filtering with L1 norm achieves the best OOD detection
performance.The same observation also holds on the CIFAR-10 Benchmark in Appendix E.
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Table 5: Ablation on similarity scores. AUROC score is reported (higher is better). ID features
are closer to weight vectors than OOD features (AUROC > 50) under all metrics. Our proposed
pScore can better separate ID an OOD features than distScore and cosScore.

Table 6: Ablation on filtering norm. AUROC score is reported (higher is better). Filtering with L1
norm outperform alternative choice of norm.

5 RELATED WORK

OOD Detection An extensive body of research work has been focused on developing OOD detec-
tion algorithms. One line of work is post-hoc and builds upon pre-trained models. For example,
Liang et al. (2018); Hendrycks et al. (2019); Liu et al. (2020); Sun et al. (2021); Sun & Li (2022) de-
sign OOD score over the output space of a classifier. Meanwhile, Lee et al. (2018); Sun et al. (2022)
measure OOD-ness from the perspective of ID clustering in feature space. Specifically, Lee et al.
(2018) models the feature distribution as multivariate Gaussian and measures OOD based on Ma-
halanobis distance, whereas Sun et al. (2022) builds upon nearest-neighbor distance. Our work also
builds upon the observation that ID features tend to cluster and provides further understanding from
the perspective of Neural Collapse. While existing work is more focused are certain classification
tasks than others, our proposed OOD detector is tested to be highly versatile.

Another line of work explores the regularization of OOD detection in training. For example, De-
Vries & Taylor (2018); Hsu et al. (2020) propose OOD-specific architecture whereas Wei et al.
(2022); Huang & Li (2021) design OOD-specific training loss. In particular, Tack et al. (2020)
brings attention to representation learning for OOD detection and proposes an OOD-specific con-
trastive learning scheme. Our work is not restricted to specific training schemes or architecture.
Meanwhile, we explore in experiments the benefit of contrastive learning schemes.

Neural Collapse Neural Collapse was first observed in Papyan et al. (2020). During Neural Col-
lapse, the penultimate layer features collapse to class means, the class means and the classifier
collapses to a simplex equiangular tight framework, and the classifier simplifies to adopt the nearest
class-mean decision rule. Further work provides theoretical justification for the emergence of Neural
Collapse(Zhu et al., 2021; Zhou et al., 2022; Han et al., 2021; Mixon et al., 2020). In addition, Zhu
et al. (2021) derives an efficient training algorithm drawing inspiration from Neural Collapse. To
the best of our knowledge, we are the first to leverage insights from Neural Collapse to distinguish
between ID and OOD samples and henceforth to develop a practical OOD detection algorithm.

6 CONCLUSION

This work takes inspiration from Neural Collapse to propose a novel OOD detector. Specifically,
we study the phenomenon that ID features tend to form clusters whereas OOD features reside far
away. We demonstrate from Neural Collapse that ID features tend to reside near weight vectors. We
combine our understanding with the observation that OOD features tend to reside closer to the origin
to propose an OOD detector. Experiments show that our method can achieve state-of-the-art OOD
detection performance across diverse setups, improving upon the generalizability of existing work.
We hope our work can inspire future work to explore the duality between features and weight vectors
for OOD detection and other research problems such as calibration and adversarial robustness.
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7 REPRODUCIBILITY STATEMENT

For our algorithm, we provide code in the supplementary material. For the theoretical result, we
include the complete proof and assumption in Section 3. For datasets, we use common datasets and
data processing steps can be found in our code.
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A IMPLEMENTATION DETAILS

A.1 CIFAR-10

ResNet-18 w/ Cross Entropy Loss For experiments on CIFAR-10 Benchmark presented in
Fig. 1Left, Middle and Table 1, we evaluate on a CIFAR-10 classifier of ResNet-18 backbone trained
with cross-entropy loss. The classifier is trained for 100 epochs, with the initial learning rate 0.1 de-
caying to 0.01, 0.001, and 0.0001 at epochs 50, 75, and 90 respectively.

ResNet-18 w/ Contrastive Loss For Table 2, we experiment with a CIFAR-10 classifier of the
ResNet-18 backbone trained with supcon loss. Following Khosla et al. (2020), the model is trained
for 500 epochs with batch size 1034. The temperature is set to 0.1. The cosine learning rate starts at
0.5 Loshchilov & Hutter (2016)is used.

DenseNet-101 w/ Cross Entropy Loss

For experiments on CIFAR-10 Benchmark presented in Table 3, we evaluate a CIFAR-10 classifier
of DenseNet-101 backbone. The classifier is trained following the setup in Huang et al. (2017) with
depth L = 100 and growth rate k = 12.

A.2 CIFAR-100

DenseNet-101 w/ Cross Entropy Loss

For experiments on the CIFAR-100 Benchmark presented in Table 3, we evaluate a CIFAR-100
classifier of the DenseNet-101 backbone. The classifier is trained following the setup in Huang et al.
(2017) with depth L = 100 and growth rate k = 12.

A.3 IMAGENET

ResNet-50 w/ Cross-Entropy Loss For evaluation on ImageNet Benchmark in Ta-
ble 1, we use the default ResNet-50 model trained with cross-entropy loss provided
by Pytorch. Training recipe can be found at https://pytorch.org/blog/
how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

B BASELINE METHODS

We provide an overview of our baseline methods in this session. We follow our notation in Section 3.
In the following, a lower detection score indicates OOD-ness.

MSP Hendrycks & Gimpel (2016) proposes to detect OOD based on the maximum softmax proba-
bility. Given the penultimate feature h for a given test sample x, the detection score of MSP can be
represented as:

exp (wT
c h+ bc)∑

c′∈C exp (w
T
c′h+ bc′)

, (8)

where c is the predicted class for x.

ODIN Liang et al. (2018) proposes to amplify ID the OOD separation on top of MSP through
temperature scaling and adversarial perturbation. Given a sample x, ODIN constructs a noisy sample
x′ from x. Denote the penultimate feature of the noisy sample x′ as h′, ODIN assigns OOD score
following:

exp ((wT
c h

′ + bc)/T )∑
c′∈C exp ((w

′T
c h′ + bc′)/T )

, (9)

where c is the predicted class for the perturbed sample and T is the temperature. In our implemen-
tation, we set the noise magnitude as 0.0014 and the temperature as 1000.
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Energy Liu et al. (2020) designs an energy-based score function over the logit output. Given a
test sample x as well as its penultimate layer feature h, the energy based detection score can be
represented as:

− log
∑
c′∈C

exp (wT
c′h+ bc′). (10)

ReAct Sun et al. (2021) builds upon the energy score proposed in Liu et al. (2020) and regularizes
the score by truncating the penultimate layer estimation. We set the truncation threshold at 90
percentile in our experiments.

Dice Sun & Li (2022) also builds upon the energy score proposed in Liu et al. (2020). Leveraging
the observation that units and weights are used sparsely in ID inference, Sun & Li (2022) proposes to
select and compute the energy score over a selected subset of weights based on their importance. We
set a threshold at 90 percentile for CIFAR experiments and 70 percentile for ImageNet experiments
following Sun & Li (2022).

Mahalanobis On the feature space, Lee et al. (2018) models the ID feature distribution as multi-
variate Gaussian and designs a Mahalanobis distance-based score:

max
c

−(ex − µ̂c)
T Σ̂−1(ex − µ̂c), (11)

where ex is the feature embedding of x in a specific layer, µ̂c is the feature mean for class c estimated
on the training set, and Σ̂ is the covariance matrix estimated over all classes on the training set.

On top of the basic score, Lee et al. (2018) also proposes two techniques to enhance the OOD detec-
tion performance. The first is to inject noise to samples. The second is to learn a logistic regressor
to combine scores across layers. We tune the noise magnitude and learn the logistic regressor on an
adversarial constructed OOD dataset. The selected noise magnitude is 0.005 in both our ResNet and
DenseNet experiments.

CSI Tack et al. (2020) proposes an OOD specific contrastive learning algorithm. In addition, Tack
et al. (2020) defines detection functions on top of the learned representation, combining two as-
pects: (1) the cosine similarity between the test sample embedding to the nearest training sample
embedding and (2) the norm of the test sample embedding.

SSD Similar to Lee et al. (2018), Sehwag et al. (2020) design a Mahalanobis-based score under
a representation learning scheme. In specific, Sehwag et al. (2020) proposes a cluster-conditioned
score:

max
m

−(ex/|ex| − µ̂m)T Σ̂−1
m (ex/|ex| − µ̂m), (12)

where ex/|ex| is the normalized feature embedding of x and m corresponds to the cluster con-
structed from the training statistics.

KNN Chen et al. (2020) proposes to detect OOD based on the k-th nearest neighbor distance between
the normalized embedding of the test sample zx/|zx| and the normalized training embeddings on
the penultimate space. Chen et al. (2020) also observes that contrastive learning helps in improving
OOD detection effectiveness.

GradNorm Huang et al. (2021) extracts information from the gradient space to detect OOD samples.
Specifically, Huang et al. (2021) defines the OOD score function as the L1 norm of the gradient of
the weight matrix with respect to the KL divergence between the softmax prediction for x and the
uniform distribution.

∥∂DKL(u∥softmaxf(x))

∂W
∥1. (13)

C PERFORMANCE UNDER FPR95

In addition to the AUROC score reported in the main paper, we also compare the performance of our
NC− OOD with baselines under FPR95, the false positive rate of OOD samples when the tur positive
rate of ID samples is at 95%. Specifically, we report Table 7 corresponding to experiments in Table 1
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Table 7: Our proposed OOD detector achieve low FPR95 score across CIFAR-10 and ImageNet
OOD benchmark. The smaller the value, the better. The experiments are under the same setup as
Table 1 in Section 4.1

Table 8: Our proposed OOD detectors achieve low FPR95 (higher is better) on CIFAR-10 OOD
benchmarks when the classifier is trained with contrastive loss. The smaller the value, the better.
The experiments are under the same setup as Table 2 in Section 4.2.

as well as Table 8 corresponding to Table 2. The results in FPR95 further validate the effectiveness
of our NC− OOD across diverse scenarios.

D COMPLETE RESULTS ON DENSENET

In addition to Table 3, we reports the performance of our NC− OOD and baselines under AUROC
and FPR95 across all OOD datasets in TableD and TableD.

E ABLATION STUDY ON CIFAR-10 BENCHMARKS

In Table 11, Table 12, and Table 6, we report our ablation study over CIFAR-10 OOD Benchmarks.
Note that in Table 6, the filtering strength α is set to 0.01, 0.001, 0.001 for L1 norm, L2 norm, and
Linf norm respectively.
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Table 11: Ablation on similarity scores over CIFAR-10 OOD Benchmarks. AUROC score is re-
ported (higher is better). ID features are closer to weight vectors than OOD features (AUROC > 50)
under all metrics. Our proposed pScore can better separate ID an OOD features than distScore
and cosScore.

Table 12: Ablation on additional filtering over CIFAR-10 OOD Benchmarks. AUROC score is
reported (higher is better). NCScore outperforms both its individual component pScore and L1
norm.

Table 13: Ablation on filtering norm over CIFAR-10 OOD Benchmarks. AUROC score is reported
(higher is better). Filtering with L1 norm outperform alternative choice of norm.
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