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ABSTRACT

Neural networks are widely used to detect general patterns in noisy data, however
they are also known to not be particularly robust, i.e. moving a small distance
in the input space can change the network’s output significantly. Recently, many
methods for improving network robustness have been proposed and this growing
body of research has given rise to numerous explicit or implicit notions of ro-
bustness. Connections between these notions are often subtle, and a systematic
comparison of these different definitions is missing in the literature.
In this paper we attempt to address this gap by performing an in-depth comparison
of the different definitions of robustness by analysing their relationships, assump-
tions, interpretability and verifiability. By viewing robustness as a stand-alone
mathematical property, we are able to show that, having a choice of several def-
initions of robustness, one can combine them in a modular way when defining
training modes, evaluation metrics, and attacks on neural networks. We also per-
form experiments to compare the applicability and efficacy of different training
methods for ensuring the network obeys these different definitions.

1 INTRODUCTION

Safety and security are critical for some complex AI systems involving neural networks, yet they
are difficult to ensure. The most famous instance of this problem is guaranteeing robustness against
adversarial attacks (Szegedy et al., 2014; Goodfellow et al., 2015). Intuitively, an image is ε-ball
robust if, when you move no more than ε away from it in the input space, the output does not
change much, or alternatively, the classification decision that the network gives does not change.
Adversarial robustness is a property that even very accurate neural networks fail to satisfy.

The proposed solution is to (re)train the network with robustness specifically in mind. Such training
can be seen as a way to impose a formal specification, and so may contribute to explainability as
well as verification. This work considers four of the most prominent families of techniques:

1. Data augmentation (Shorten & Khoshgoftaar, 2019)

2. Adversarial training (Goodfellow et al., 2015; Madry et al., 2018)

3. Lipschitz robustness training (Anil et al., 2019; Pauli et al., 2021)

4. Training with logical constraints (Xu et al., 2018; Fischer et al., 2019)

The last technique, training with logical constraints, is a more general approach that can train for
not just robustness, but a wide range of constraints expressed in some logical language.

Although the first three families of methods all seek to represent the same high-level knowledge in
the neural network, each technique seeks to optimise for subtly different definitions of robustness.
We formally identify these as standard (SR), classification (CR), Lipschitz (LR) and strong classifi-
cation (SCR) robustness. Given these differences, some natural questions to ask are: What are the
relationships between them? What assumptions do they make about the training dataset? Are some
more effective than others? Are some more interpretable by users than others?

Contributions. In this work, we attempt to answer these questions. We take classification problems
as an example domain, interpreting a neural network f : Rn → Rm as a procedure that separates
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the n-dimensional data into m classes. This enables the following findings: We observe that from
the security perspective, different definitions of robustness ultimately determine the nature of attack,
thus giving rise to SR, CR, LR, SCR attacks. Thus, one can train for example with SCR constraint
but attack with SR constraint. This raises questions about relative strengths of these different training
methods and attacks. Some constraint-driven training methods are special cases of others. For
example, adversarial training known in the literature can be seen as a form of training with SR
constraint, with certain amount of parameter tuning.

We can order some robustness constraints based on their strength, for example, we show that LR
implies SR, and SCR implies CR. In this case, training with a stronger constraint (e.g. LR) will
protect better against both kinds of attacks (in this case, both SR and LR attacks). Some pairs
of constraints cannot be ordered by strength (e.g. SR and SCR, LR and SCR), and in this case,
optimising training for a given constraint defends better only against attacks with this same target
constraint. Moreover, we show that training with logical constraints defends against adversarial
attacks better than data augmentation for any choice of robustness definition as a training constraint.
Finally, we show that there are additional common criteria that can be used to qualitatively compare
different modes of constraint-driven training, e.g. interpretability, global or local nature. E.g. CR is
the most interpretable, but not globally desirable, LR is least interpretable, but globally desirable.

To our knowledge, this is the first systematic study of robustness training from the point of view
of the impact of precise formalisation of robustness on training, evaluation and attack. Note that
some of the previous work reported on unstable performance of constraint-driven training when
defending against attacks (Ayers et al., 2020), which we do not observe in our experiments. Some
papers (Fischer et al., 2019) listed and even implemented some kinds of robustness constraints that
we study here, but gave no indication of their relative performance. We are not aware of any prior
analysis of SR, LR, CR, SCR abstractly as logical constraints.

The paper is organised as follows. Section 2 explains how different robustness constraints arise from
different machine learning approaches to constraint-driven training. Section 3 abstractly analysises
these robustness definitions, establishing their relative strength, interpretability and applicability.
Section 4 shows how these robustness constraints determine different evaluation metrics and attacks,
and provides a comprehensive empirical evaluation of the robustness constraints deployed as training
constraints and as attacks. Section 5 concludes the paper and outlines future work.

2 EXISTING TRAINING TECHNIQUES

Data augmentation is one of the simplest methods of improving the robustness of a neural network
via training (Shorten & Khoshgoftaar, 2019). It is applicable to any transformation of the input (e.g.
addition of noise, translation, rotation, scaling) that leaves the output label unchanged. To make the
network robust against such a transformation, one augments the dataset with instances sampled via
the transformation. Although it may seem that this simple solution has nothing to do with formal
logic, it imposes significant choices from the point of view of the constraint specification:

c1. the choice of ε will reflect our assumptions about admissible range of perturbations;

c2. the choice of the distance function | · − · | that measures the ε-proximity will reflect our assump-
tions on desirable geometric properties of the perturbations;

c3. the choice of the sampling method (random sampling, adversarial attacks, generative algorithm,
prior knowledge of images etc.) will determine the constraint we optimise for.

But, perhaps even more significantly for us, this method determines the exact definition of robustness
that we optimise for when we train our neural network f : Rn → Rm. We call it classification
robustness and formally define as follows: given a training dataset input-output pair (x̂,y) and a
distance function | · − · |, for all inputs x within the ε-ball distance of x̂, ensure that class y has the
largest score in output f(x). In other words:

Definition 1 (Classification robustness)
CR(ε, x̂) , ∀x : |x− x̂| ≤ ε⇒ argmax f(x) = y

Used as a spec for training, this constraint does not account for possibility of having “uncertain”
images in the dataset, for which a small perturbation ideally should change the class. For datasets
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that contain a significant number of such images, it will lead to significant reduction in accuracy
of the trained neural networks; and, as we show later it may even have a detrimental effect on a
network’s robustness.

Adversarial training is the current state-of the-art method to robustify a neural network. Whereas
standard training tries to minimise loss between the predicted value, f(x̂), and the true value, y,
for each entry (x̂,y) in the training dataset, adversarial training minimises the loss with respect to
the worst-case perturbation of each sample in the training dataset. It therefore replaces the standard
training objective L(x̂,y) with:

max
∀x:|x−x̂|≤ε

L(x,y) (1)

Algorithmic solutions to the maximisation problem that find the worst-case perturbation has been
the subject of several papers. The earliest suggestion was the Fast Gradient Sign Method (FGSM)
algorithm introduced by Goodfellow et al. (2015):

FGSM(x̂) = proj(x̂+ ε · sign(∇xL(x,y)))

However, modern adversarial training methods usual rely on some variant of the Projected Gradient
Descent (PGD) algorithm (Gu & Rigazio, 2014) which iterates FGSM some number of times:

PGD0(x̂) = x̂; PGDt+1(x̂) = PGDt(FGSM(x̂))

It has been empirically observed that neural networks trained using this family of methods exhibit
greater robustness at the expense of an increased generalization error (Tsipras et al., 2018; Madry
et al., 2018; Zhang et al., 2019), which is frequently referred to as the accuracy-robustness tradeoff
for neural networks (although this effect has been observed to disappear as the size of the training
dataset grows (Raghunathan et al., 2019).

In logical terms what is this procedure trying to train for? Obviously it’s unreasonable to expect
that adversarial training will ever succeed in driving the loss of all perturbations down to zero.
Therefore let us assume that there’s some maximum distance, δ, that it is acceptable for the output
to be perturbed given the size of perturbations in the input. This leads us to the following definition,
where || · − · || is a suitable distance function over the output space:

Definition 2 (Standard robustness)

SR(ε, δ, x̂) , ∀x : |x− x̂| ≤ ε⇒ ||f(x)− y|| ≤ δ

In the case of adversarial training the distance between the outputs ||x− y|| is equal to L(x,y).
We note that, just as with data augmentation, choices c1 – c3 are still there to be made, although the
sampling methods are usually given by special-purpose FGSM/PGD heuristics based on computing
the loss function gradients.

Training for Lipschitz robustness. More recently, a third competing definition of robustness has
been proposed: Lipschitz robustness (Balan et al., 2018). Inspired by the well-established concept
of Lipschitz continuity, Lipschitz robustness asserts that the distance between the original output
and the perturbed output is at most a constant L times the change in the distance between the inputs.

Definition 3 (Lipschitz robustness)

LR(ε, L, x̂) , ∀x : |x− x̂| ≤ ε⇒ ||f(x)− y|| ≤ L|x− x̂|

As will be discussed in Section 3, this is a stronger requirement than standard robustness. Tech-
niques for training for Lipschitz robustness include formulating it as a semi-definite programming
optimisation problem (Pauli et al., 2021) or including a projection step that restricts the weight ma-
trices to those with suitable Lipschitz constants (Gouk et al., 2021).

Training with logical constraints. Logically, this discussion leads one to ask whether a more
general approach to constraint formulation may exist, and several attempts in the literature addressed
this research question (Xu et al., 2018; Fischer et al., 2019), by proposing methods that can translate
a first-order logical formula C into a constraint loss function LC . The loss function penalises the
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Table 1: A comparison of the different types of robustness studied in this paper.

Definition Standard
robustness

Lipschitz
robustness

Classification
robustness

Strong classification
robustness

Symbol SR(ε, δ) LR(ε, L) CR(ε) SCR(ε, η)

Problem domain General General Classification Classification
Interpretability Medium Low High Medium
Globally desirable 3 3 7 7

Has loss functions 3 3 7 3

Adversarial training 3 7 7 7

Data augmentation 7 7 3 7

Logical-constraint training 3 3 7 3

network when outputs do not satisfy a given Boolean constraint, and universal quantification is
handled by a choice of sampling method. Our standard loss function L is substituted with:

L∗(x̂,y) = αL(x̂,y) + βLC(x̂,y) (2)

where weights α and β control the balance between the standard loss and the constraint loss.

This method looks deceivingly as a generalisation on the previous approaches. However, even given
suitable choices for c1 – c3, classification robustness cannot be modelled via a constraint loss in the
DL2 framework, as argmax is not differentiable. Instead Fischer et al. (2019) define an alternative
constraint we will call strong classification robustness:

Definition 4 (Strong classification robustness)

SCR(ε, η, x̂) , ∀x : |x− x̂| ≤ ε⇒ f(x)c ≥ η

which looks only at the prediction of the true class and checks whether it is greater than some value η
(chosen to be 0.52 in their work).

In summary, we have hopefully demonstrated how non-trivial knowledge representation choices and
problems arise on the boundary between logical form of the desired constraints and their machine-
learning realisations as loss functions. In the next section, we analyse the advantages and disadvan-
tages of each definition in order to help people better make these choices in future.

3 COMPARISON OF DEFINITIONS

Table 1 shows a summary of the points discussed in this section. The first aspect we discuss is the
logical relationship between the various definitions, i.e. when the definitions agree and disagree.

Standard and Lipschitz robustness. The easiest relationship to quantify is the one between stan-
dard robustness and Lipschitz robustness. In particular, the latter is a strictly stronger constraint
than the former, in the sense that when a network satisfies LR(ε, L) then it also satisfies SR(ε, εL).
However, the converse does not hold, as standard robustness does not relate the distances between
the inputs and the outputs. Consequently, there are SR(ε, δ) robust models that are not LR(ε, L)
robust for any L, as for any fixed L one can always make the distance |x − x̂| arbitrarily small in
order to violate the Lipschitz inequality.

(Strong) classification robustness. The next relationship we discuss is that of classification ro-
bustness and strong classification robustness. As discussed earlier, the latter is designed to over-
approximate the former whilst providing a logical loss function with a meaningful gradient. We
work under the assumption that the last layer of the classification network is a softmax layer and
therefore the output forms a probability distribution. When η > 0.5 then, as would be hoped, any
network that satisfies SCR(ε, η) also satisfies CR(ε). For η ≤ 0.5 this relationship breaks down
as the true class may be assigned a probability greater than η but may still not be the class with the
highest probability. We therefore recommended that one only uses value of η > 0.5 when using
strong classification robustness (for example η = 0.52 in Fischer et al. (2019)).
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Given that LR is stronger than SR and SCR is stronger than CR, the obvious question is whether
there is a relationship between these two groups? In short, the answer to this question is no. In
particular, although the two sets of definitions agree whether a network is robust around images with
high-confidence, they disagree over whether a network is robust around images with low confidence.
We illustrate this with an example, comparing SR against CR. We note that similar analysis holds
for any pairing from the two groups.

(a) P (7) = 85% (b) P (7) = 51%

Figure 1: Hypothetical images from the MNIST dataset

Standard vs classification robustness. The
key insight is that standard robustness bounds
the drop in confidence that a neural network can
exhibit after a perturbation, whereas classifica-
tion robustness does not. Figure 1 shows two
hypothetical images from the MNIST dataset.
Our network predicts that Figure 1a has an 85%
chance of being a 7. Now consider adding a
small perturbation to the image and consider
two different scenarios. In the first scenario
the output of the network for class 7 decreases
from 85% to 83% and therefore the classifica-
tion stays in the same. In the second scenario the the output of the network for class 7 decreases
from 85% to 45%, and results in the classification changing from 7 to 9. When considering the two
definitions, a small change in the output leads to no change in the classification and a large change
in the output leads to a change in classification and so robustness and classification robustness both
agree with each other.

However now consider Figure 1b with relatively high uncertainty. In this case the network is (cor-
rectly) less sure about the image, only narrowly deciding that it’s a 7. Again consider adding a small
perturbation. In the first scenario the prediction of the network changes dramatically with the proba-
bility of it being a 7 increasing from 51% to 91% but leaves the classification unchanged as 7. In the
second scenario the output of the network only changes very slightly, decreasing from 51% to 49%
flipping the classification from 7 to 9. Now, the definitions of SR and CR disagree. In the first case,
adding a small amount of noise has erroneously massively increased the network’s confidence and
therefore the SR definition correctly identifies that this is a problem. In contrast CR has no problem
with this massive increase in confidence as the chosen output class remains unchanged. Given this,
it is clear that although standard and classification robustness agree on low-uncertainty examples,
classification robustness breaks down and gives what we argue are both false positives and false
negatives when considering examples with high-uncertainty.

Dataset assumptions. A related question that we have found to be rarely discussed in the literature
is what assumptions the different definitions are making about the distribution of the training data
with respect to the data manifold of the true distribution of inputs.

For SR and LR it is, at minimum, desirable for the network to be robust over the entire data man-
ifold. In the most domains the shape of the manifold is unknown and therefore it is necessary to
approximate it by taking the union of the balls around the inputs in the training dataset. We are not
particularly interested about whether the network is robust in regions of the input space that lie off
the data manifold, but there is no problem if the network is robust in these regions. Therefore these
definitions make no assumptions about the distribution of the training dataset.

This is in contrast to (S)CR. As discussed in the previous section, rather than requiring that there is
only a small change in the output, they require that there is no change to the classification. This is
only a desirable constraint when the region being considered does not contain a decision boundary.
Consequently when one is training for some form of classification robustness, one is implicitly
making the assumption that the training data points lie away from any decision boundaries within
the manifold. In practice, most datasets for classification problems assign a single label instead of an
entire probability distribution to each input point, and so this assumption is usually valid. However,
we feel it is important to note that classification robustness is not an appropriate definition to train
for if the dataset contains input points that may lie close to the decision boundaries and in such a
case may result in a logically inconsistent specification.
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Interpretability. One of the key selling points of training with logical constraints is that, by ensur-
ing that the network obeys understandable constraints, it improves the explainability of the neural
network. Each of the robustness constraints encode that “small changes to the input only result in
small changes to the output”, but the interpretability of each definition is also important.

All of the definitions share the relatively interpretable ε parameter, which measures how large a
perturbation from the input is acceptable. Despite the other drawbacks discussed so far, CR is
inherently the most interpretable as it has no second parameter. In contrast, SR and SCR require
extra parameters, δ and η respectively, which measure the allowable deviation in the output. Their
addition make these models less interpretable.

Finally we argue that, although LR is the most desirable constraint, it is also the least interpretable.
Its second parameter L measures the allowable change in the output as a proportion of the allowable
change in the input. It therefore requires one to not only have an interpretation of distance for both
the input and output spaces, but to be able to relate them. In most domains, this relationship simply
doesn’t exist. Consider the MNIST dataset, both the commonly used notion of pixel-wise distance
used in the input set, although crude, and the distance between the output distributions are both
interpretable. However, the relationship between them is not. For example, what does allowing the
distance between the output probability distributions being no more than twice the distance between
the images actually mean? This therefore highlights a common trade-off between complexity of the
constraint and its interpretability.

Another interpretability consideration that appears when training with logical constraints is the se-
mantics of the parameters α and β which allow the users to decide how to weight the accuracy of the
network vs the importance that it adheres to the constraint. Section 1 describes how the loss function
used in logical-constraint training is split into two parts: L∗(x̂,y) = αL(x̂,y)+βLC(x̂,y), where
the first part is designed to maximise the accuracy of the predictions and the second encodes the con-
straint. However, in practice the constraints (and therefore the derived loss functions) refer to the true
label y rather than the current output of the network f(x̂), e.g. ∀x : |x− x̂| ≤ ε⇒ |f(x)− y| ≤ δ.
This leads to scenarios where a network that is robust around x̂ but gives the wrong prediction, being
penalised by LC which on paper is designed to maximise robustness. Essentially LC is trying to
maximise both accuracy and constraint adherence concurrently. Instead, we argue that to preserve
the intended semantics of α and β it is important to instead compare against the current output of the
network e.g. ∀x : |x− x̂| ≤ ε⇒ |f(x)− f(x̂)| ≤ δ. Of course, this doesn’t work for SCR because
in order to derive the most popular class from the output f(x̂) you need argmax, the very function
SCR seeks to avoid using. This is another argument why (S)CR should be avoided if possible.

4 EXPERIMENTS

Evaluation metrics. Given a particular definition of robustness, a natural question is how to quantify
how close a given network is to satisfying it? We argue that there are three different measures that
one should be interested in:

1. Does the constraint hold? This is a binary measure and the answer is either true or false.

2. If the constraint doesn’t hold, how easy is it for an attacker to find a violation?

3. If the constraint doesn’t hold, how often does the average user encounter a violation?

Based off of these measures, we define three concrete metrics: constraint satisfaction, constraint
security, constraint accuracy1. Let X be the training dataset, B(x̂, ε) , {x ∈ Rn | |x − x̂| ≤ ε}
be the ε-ball around x̂ and P be the right hand side of the implication in each of the definitions
of robustness. Let Iφ be the standard indicator function which is 1 if constraint φ(x) holds and 0
otherwise. The constraint satisfaction metric measures the proportion of the training dataset for
which the constraint holds. Unfortunately, depending on the network architecture and the constraint
in question, the indicator function may not always be feasible to evaluate.

1Our naming scheme differs from Fischer et al. (2019) who use the term constraint accuracy (without ex-
plicitly defining it in the paper) to refer to what we term constraint security. In our opinion, the term constraint
accuracy is less appropriate here than the name constraint security given the use of an adversarial attack.
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Definition 5 (Constraint satisfaction)

CS(X ) = 1

|X |
∑
x̂∈X

I∀x∈B(x̂,ε):P (x)

In contrast, constraint security measures the proportion of inputs in the training dataset such that an
attack A is unable to find an adversarial example for constraint P . In our experiments we use the
PGD attack for A, although in general any strong attack can be used.

Definition 6 (Constraint security)

CR(X ) = 1

|X |
∑
x̂∈X

IP (A(x̂))

Finally constraint accuracy estimates the probability of a random user coming across a counter-
example to the constraint, usually referred as 1 - success rate in the robustness literature. Let S(x̂, n)
be a set of n elements randomly uniformly sampled from B(x̂, ε). Then constraint accuracy follows:

Definition 7 (Constraint accuracy)

CL(X ) = 1

|X |
∑
x̂∈X

 1

n

∑
x∈S(x̂,n)

IP (x)


Note that there is no relationship between constraint accuracy and constraint security: an attacker
may succeed in finding an adversarial example where random sampling fails and vice-versa. Also
note the role of sampling in this discussion and compare it to the discussion of the choice c3 in
Section 2. Firstly, sampling procedures affect both training and evaluation of networks. But at the
same time, their choice is orthogonal to choosing the verification constraint for which we optimise
or evaluate. For example, we measure constraint security with respect to the PGD attack, and this
determines the way we sample; but having made that choice still leaves us to decide which constraint,
SCR, SR, LR, or other we will be measuring as we sample.

Choosing an evaluation metric. It is important to note that for all three evaluation metrics, one
still has to make a choice for constraint P , namely SR, SCR or LR, as defined in Section 2. As
constraint security always uses PGD to find input perturbations, the choice of SR, SCR and LR
effectively amounts to us making a judgement of what an adversarial perturbation consists of: is it
a class change as defined by SCR, or is it a violation of the more nuanced metrics defined by SR
and LR? Therefore we will evaluate constraint security on the SR/SCR/LR constraints using a PGD
attack. This will be further analysed in the experiment E1 below.

For large search spaces in n dimensions, random sampling deployed in constraint accuracy fails
to find the trickier adversarial examples, and usually has deceivingly high performance: we found
100% and > 98% constraint accuracy for SR and SCR, respectively. We will therefore not discuss
these experiments in detail, but refer the reader to Appendix A.

Constraint satisfaction is different from constraint security and accuracy, in that it must evaluate
constraints over infinite domains rather than merely sampling from them. Verifiers such as Marabou
or ERAN are built with this purpose in mind. It is out of scope for this paper to conduct experiments
by this measure, and so we leave it for future work. Our preliminary experiments with Marabou
confirm the generally accepted assumption that it is very hard for training techniques to achieve a
high-score for constraint satisfaction.

Networks. We use the FASHION MNIST (or just FASHION) (Xiao et al., 2017) and the GT-
SRB (Stallkamp et al., 2011) datasets. For our baseline architecture, we use two fully connected
layers: the first layer uses the ReLU activation function, and the second uses the clamp function to
restrict each output to the range [−100, 100]. We use a clamp function to evaluate the constraints
instead of the traditional softmax function because the former is compatible with the constraint ver-
ification tools such as Marabou whereas the latter is not. The predicted classification is then taken
as the output with the maximum score. However, only during training, we pass the output from the
clamp function through a softmax layer before feeding it to the loss. For instance, fMNIST = F0 ◦F1,
where F1 : R784 → R100 and F0 : R100 → R10, α0 = ReLU and α1(x) = clamp(x,−100, 100).
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Figure 2: Experiments that show how the two networks trained with LR and SR constraints perform when
evaluated against different definitions of robustness underlying the attack.

Figure 3: Experiments that show how different choices of a constraint loss affect standard robustness of neural
networks, for PGD attacks with various ε values.

Loss functions. Since our experiments study classification problems, we will use the cross-entropy
loss function as our baseline loss function:

Lce(x,y) = −
m∑
i=1

yi log(f(x)i)

For the LC component of the loss function L∗, we use the constraint-to-loss function translation
of Fischer et al. (2019). In all experiments, we use the Adam optimiser (Kingma & Ba, 2015) with
the following learning parameters: η = 0.0001, 100 epochs, a batch size of 128.

Settings. We keep the architecture the same throughout the experiments, and only vary the training.
Thus our Baseline network is trained just with cross-entropy. Data Augmentation adds 2 additional
images in the 0.1-ε-ball around each image, and it samples either randomly from a uniform distribu-
tion (RU) or using an FGSM attack. Adversarial training refers the training procedure described in
Section 2, with FGSM sampling. In all other cases, we use a constraint loss function LC defined as
in Fischer et al. (2019), and we use the constraints SR, SCR, LR as defined in Section 2 with α = 1,
β = 0.2, ε = 0.1, δ = 10, η = 0.52, L = 10 and L∞ distance metrics. All networks trained with
L∗ use sampling by the PGD attack, for efficiency (as well as comparability).

Table 2: Standard test set accuracy (as % of the dataset
instances) for chosen trained networks.

Training Regime: FASHION GTSRB

Baseline 88.2 92.4
Data Augmentation (RU) 88.6 92.8
Data Augmentation (FGSM) 88.8 94.5
Adversarial Training 85.1 83.5
Constraint Loss (SR) 88.2 93.3
Constraint Loss (SCR) 88.1 91.9
Constraint Loss (LR) 86.6 93.1

Results. We start with noting the standard test
set accuracy of the resulting neural networks in
Table 2, making sure that our different train-
ing regimes do not deteriorate networks’ gen-
eral performance too drastically. The most no-
table accuracy drop occurs for adversarial train-
ing.

We now highlight groups of experiments that
confirm or extend our main theoretical conclu-
sions; the complete experiment description is
available in Appendix A.

Experiment set E1. Comparable constraints.
In Section 3, we established that LR as a con-
straint is stronger than SR, and both are not strictly comparable to SCR. This would suggest that, if
we train two neural networks, one with the SR, and the other with the LR constraint, then the latter
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Figure 4: Experiments that show how adversarial training, training with data augmentation, and training with
constraint loss affect standard robustness of neural networks, for PGD attacks with various ε values.

should always have higher constraint security against both SR and LR attacks than the former. This
is indeed confirmed by the experiment shown in Figure 2. We also discussed that depending on the
properties of the dataset, SR may not guarantee SCR, and Figure 2 shows exactly that case. It also
confirms that generally, stronger constraints are harder to obtain: whether a network is trained with
SR or LR constraints, it is less robust against LR attack than any other attack.

Experiment set E2. Incomparable constraints. The results in Figure 3 tell us that using the SCR
constraint for training does not help to increase defences against SR attacks. A similar picture, but
in reverse, can be seen when we optimise for SR but attack with SCR, see Appendix A.

Experiment set E3. Constraint training versus data augmentation and adversarial training.
Next, we confirm our assumptions about the relative inefficiency of using data augmentation com-
pared to adversarial training or training with constraints, see Figure 4. We show this only for SR
attack, but graphs for SL and SCR attacks show the same trends, see Appendix A. Surprisingly,
neural networks trained with data augmentation give worse results than even the baseline network.
It is encouraging to see that Constraint Loss (SR) is almost as good as adversarial training while the
latter also gives 11% drop in terms of the networks accuracy (Table 2).

Experiment set E4. Role of other parameters. As previously discussed, random uniform sampling
struggles to find adversarial inputs in large searching spaces. It is logical to expect that using random
uniform sampling when training will be less successful than training with sampling that uses FGSM
or PGD as heuristics. Indeed, Figure 4 shows this effect for data augmentation, but similar trends
are expected for any form of training.

Finally, one may ask whether the trends just described would be replicated for more complex archi-
tectures of neural networks. In particular, data augmentation is known to require larger networks.
By replicating the results of Figure 4 with a large 18 layer convolutional network of Fischer et al.
(2019) indeed confirms that larger networks handle data augmentation better, and data augmentation
improves robustness compared to the baseline. Nevertheless, data augmentation still lags behind all
other modes of constraint driven training, and thus this major trend remains stable across network
architectures, see Appendix A.

5 CONCLUSIONS AND RELATED WORK

We have presented a comprehensive study of constraint-driven training from the formal point of
view. Taking robustness as a representative constraint, we abstractly studied different forms of ro-
bustness; and showed how the existing literature on constraint-driven training can be understood
through this prism. Moreover, we proposed a method that separates out the logical study of con-
straints from their implementation as loss functions for training on the one hand, and their use as
evaluation methods and attacks on the other. We showed that this method allows us to make general
conclusions about relations of different modes of constraint-driven training that were not possible
before.

For translation of constraints into loss functions, we used the implementation from Fischer et al.
(2019); thus our results are compatible and comparable with that prior study. In particular we
have identified that the method of Fischer et al. (2019) is not a strict generalisation of the other
techniques and that significant trade-offs and decisions have to be made in order to represent some
of the robustness definitions.
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A APPENDIX

This appendix will present all the results that, due to space, were not possible to include in the
main text. We will show in detail how we systematically evaluated all the trends that we reported.
Figures 5, 8 are the same as Figures 4, 3, and Figures 13A, 14A correspond to Figure 2, we report
them again here for completeness.

A.1 DATA AUGMENTATION VS ADVERSARIAL TRAINING VS TRAINING WITH CONSTRAINT
LOSS

Figures 5, 6 and 7 show how the networks trained with the different methods are robust against
attacks. For SR and SCR attacks, Adversarial Training improves significantly the robustness of the
model while training with Constraint Loss (SR) also improves it, although not as much. Training
with both the Data Augmentation methods actually reduce robustness of the network. None of the
training techniques succeed in ensuring robustness against LR attacks, indicating that as discussed
in Section 3.1, LR is a strong property to hold. Nonetheless we report the graphs for completeness.

Figure 5: Experiments that show how adversarial training, training with data augmentation, and training with
constraint loss affect standard robustness of neural networks, for varying sizes of the PGD attack (measured by
ε values).

Figure 6: Experiments that show how adversarial training, training with data augmentation, and training with
constraint loss affect lipschitz robustness of neural networks, for varying sizes of the PGD attack (measured by
ε values).

A.2 TRAINING WITH DIFFERENT CONSTRAINT LOSSES

Figures 8, 9 and 10 show how the networks trained with the different constraint losses are robust
against attacks. For SR and SCR attacks, we can see a trend in the networks trained with the same
constraint that are generally more robust against the respective attacks. On the other hand, models
trained with LR are generally more robust and they have the best average improvement against all
attacks. None of the training techniques succeed in ensuring robustness against LR attacks, except
the network trained with LR on the FASHION dataset.

A.3 TRAINING A BIGGER NETWORK

Figure 11 show some of the training methods scale with the architecture. On the left we have the
small architecture used for all the experiments, while on the right we have a bigger architecture. The
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Figure 7: Experiments that show how adversarial training, training with data augmentation, and training with
constraint loss affect strong classification robustness of neural networks, for varying sizes of the PGD attack
(measured by ε values).

Figure 8: Experiments that show how different choices of a constraint loss affect standard robustness of neural
networks, for varying sizes of the PGD attack (measured by ε values).

relative behaviour between the training methods remain the same, except from the baseline network
that present a decrease in robustness and it exhibits similar behaviour to the models trained with
Data Augmentation.

A.4 NETWORKS’ BEHAVIOURS AGAINST DIFFERENT ATTACKS

Previous experiments show that the most robust models are the ones trained with Adversarial Train-
ing, LR and SR. Figures 12, 13 and 14 select the relevant data from previous experiments to provide
a comparison of how these models perform against the different attacks. All the networks strug-
gle the most against LR attacks, while they present significant robustness against SR attacks and a
slightly less but still important robustness against SCR attacks. Overall we can see that Adversarial
Training provides the best defence against SR and SCR attacks, immediately followed by training
with Constraint Loss LR. However, as already reported above, the only network that show some
robustness against LR attacks is the one trained with Constraint Loss LR.

13



Figure 9: Experiments that show how different choices of a constraint loss affect lipschitz robustness of neural
networks, for varying sizes of the PGD attack (measured by ε values).

Figure 10: Experiments that show how different choices of a constraint loss affect strong classification robust-
ness of neural networks, for varying sizes of the PGD attack (measured by ε values).

Figure 11: Experiments that show a comparison of how training with data augmentation, and training with
constraint loss affect strong classification robustness of neural networks, for varying sizes of the PGD attack
(measured by ε values) of our standard network with a bigger architecture.

Figure 12: Experiments that show how the networks trained with Adversarial Training perform when evalu-
ated against different definitions of robustness underlying the attack.
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Figure 13: Experiments that show how the networks trained with SR constraints perform when evaluated
against different definitions of robustness underlying the attack.

Figure 14: Experiments that show how the networks trained with LR constraints perform when evaluated
against different definitions of robustness underlying the attack.
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