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ABSTRACT

Video Class-Incremental Learning (VCIL) seeks to develop models that continu-
ously learn new action categories over time without forgetting previously acquired
knowledge. Unlike traditional Class-Incremental Learning (CIL), VCIL intro-
duces the added complexity of spatiotemporal structures, making it particularly
challenging to mitigate catastrophic forgetting while effectively capturing both
frame-shared semantics and temporal dynamics. Existing approaches either rely
on exemplar rehearsal, raising concerns over memory and privacy, or adapt static
image-based methods that neglect temporal modeling. To address these limitations,
we propose Spatiotemporal Preservation and Routing (StPR) mechanism, a unified
and exemplar-free VCIL framework that explicitly disentangles and preserves
spatiotemporal information. We begin by introducing Frame-Shared Semantics
Distillation (FSSD), which identifies semantically stable and meaningful channels
by jointly considering channel-wise sensitivity and classification contribution. By
selectively regularizing these important semantic channels, FSSD preserves prior
knowledge while allowing for adaptation. Building on this preserved semantic
space, we further design a Temporal Decomposition-based Mixture-of-Experts
(TD-MoE), which dynamically routes task-specific experts according to tempo-
ral dynamics, thereby enabling inference without task IDs or stored exemplars.
Through the synergy of FSSD and TD-MoE, StPR progressively leverages spatial
semantics and temporal dynamics, culminating in a unified, exemplar-free VCIL
framework. Extensive experiments on UCF101, HMDB51, SSv2 and Kinetics400
show that our method outperforms existing baselines while offering improved
interpretability and efficiency in VCIL. Code is available in the suppl. materials.

1 INTRODUCTION

Class-Incremental Learning (CIL) [Li & Hoiem| (2017); |Belouadah et al.| (2021)); \De Lange et al.
(2021)); Masana et al.| (2022); Zhang et al.| (2024) develops models that learn from a sequence of
tasks without forgetting previous knowledge, recognizing an ever-growing set of classes without
past task data or identifiers. A key challenge is catastrophic forgetting |McCloskey & Cohen| (1989);
Ratcliff] (1990), where new knowledge overwrites old. While well studied for images, extending CIL
to videos: Video Class-Incremental Learning (VCIL) Park et al.|(2021);|Villa et al.| (2022), remains
underexplored. VCIL differs from CIL by requiring continual learning of new categories while
modeling frame-shared semantics and temporal dependencies, unlike CIL’s focus on static images.
This spatiotemporal complexity is critical for understanding actions, motion, and scene dynamics
in real-world applications like surveillance, driver monitoring, and robotics. Further, memory and
privacy constraints often prohibit storing past data, demanding continual learning without rehearsal.

The central challenge of VCIL lies in mitigating catastrophic forgetting while effectively leveraging
Jrame-shared semantics and temporal dynamics to incrementally learn new categories. Existing
methods can be broadly categorized into two types, as illustrated in Figure [I(a): 1) Exemplar-
based methods [Rebutfi et al.|(2017); Hou et al.| (2019)); Douillard et al.| (2020); |Park et al.| (2021));
Pei et al.| (2022); |Villa et al.|(2022)); |Alssum et al.| (2023)); Liang et al.| (2024); |Chen et al.| (2025)
store a portion of previous data (video clips, frames, or features) and apply rehearsal to reduce
forgetting. However, storing exemplars incurs memory and privacy costs and typically emphasizes
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Figure 1: (a) Prior methods rely on exemplar rehearsal or naively stack video and CIL modules. (b)
Our StPR framework explicitly decouples and reuses spatiotemporal semantics to mitigate forgetting.

frame-level learning without explicitly modeling temporal dynamics. 2) CIL-based methods|Li &
Hoiem| (2017); Dhar et al.|(2019);|Cheng et al.| (2024)) adapt algorithms developed for static images,
using techniques like regularization or subspace projection. While avoiding exemplar storage, they
often overlook spatiotemporal properties by flattening or underutilizing temporal features. In contrast,
our method StPR (Figure[Ib)) explicitly decouples video features into Frame shared semantics and
temporal dynamics, and reuses these decomposed components to enhance the model’s ability to adapt
continually, thereby reducing forgetting without storing extensive exemplars.

Specifically, we propose a unified, exemplar-free VCIL framework that fully exploits the spatiotempo-
ral nature of videos. Our method integrates both spatial semantic consistency and temporal variation
to mitigate forgetting and improve adaptation across tasks. Separately, we introduce: 1) Frame-
Shared Semantics Distillation (FSSD). To preserve frame-shared semantics and alleviate forgetting,
we quantify the semantic importance of each channel using a combination of semantic sensitivity
and classification contribution. This ensures that semantically meaningful and stable channels are
preserved, achieving a better trade-off between stability and plasticity. 2) Temporal-Decomposition-
based Mixture-of-Experts (TD-MoE). To exploit temporal dynamics for continual adaptation, we
decouple task-specific temporal cues for each expert. At inference, expert routing depends solely
on the temporal dynamics of the input, without requiring task identities or stored exemplars. This
enables dynamic assignment of weights to experts according to the temporal dynamics of the input,
facilitating incremental learning of new categories.

Our framework uniquely bridges the gap between video-specific spatiotemporal representation
and class-incremental adaptation. By disentangling and leveraging both spatial semantic channel
consistency and temporal dynamics, it offers an effective and explainable solution for continual video
understanding. Our main contributions are: 1) We propose a Frame-Shared Semantics Distillation
method (FSSD) that preserves frame-shared, semantically aligned spatial channels through semantic
importance-aware regularization, optimizing the stability-plasticity trade-off in continual learningl; 2)
We design a Temporal Decomposition based Mixture-of-Experts strategy (TD-MoE) that decomposes
spatiotemporal features and uses temporal dynamics for expert combination, enabling task-id-free
and dynamic adaptation; 3) We present a unified, exemplar-free VCIL framework that achieves
state-of-the-art results on UCF101, HMDBS51, SSv2 and Kinetics400, demonstrating the effectiveness
of integrating spatial semantics and temporal dynamics in VCIL.

2 RELATED WORK

2.1 CLASS-INCREMENTAL LEARNING

Class-Incremental Learning (CIL) aims to enable models to continually learn new classes without
forgetting previously learned ones. Existing approaches typically fall into three categories: (1)
regularization-based methods Kirkpatrick et al.|(2017)); Zenke et al.|(2017)); Xiang et al|(2022); Zhou
et al.[(2023)), which constrain parameter updates to preserve prior knowledge, often via knowledge
distillation L1 & Hoiem!|(2017);|Hou et al.|(2019); (2) exemplar-based methods Bang et al.|(2021);
Chaudhry et al.| (2018); [Rebuffi et al.|(2017), which store or generate past data to reduce forgetting;
and (3) structure-based methods Serra et al.| (2018)); Mallya & Lazebnik| (2018)); Mallya et al.| (2018));
Liang & Li(2024);|Yu et al.| (2024)), which expand model capacity or isolate task-specific components.
Recently, CIL combined with pre-trained vision transformers (ViTs) Ermis et al.| (2022); Smith
et al.| (2023); Wang et al. (2022bfc) has achieved impressive results by leveraging transferable
representations and modularity. Some methods fully fine-tune pre-trained backbones [Boschini et al.
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(2022); |Zhang et al.|(2023), but this is computationally expensive. To address efficiency, parameter-
efficient fine-tuning (PEFT) methods have been introduced. Prompt pool-based approaches |[Wang
et al.| (2022c); Smith et al.| (2023); Wang et al.| (2024)); |[Zhang et al.| (2023) maintain task-specific
prompts, while adapter-based methods|Zhou et al.|(2024a)); [Tan et al.|(2024); Gao et al.|(2024); [Liang
& Li|(2024)); Zhou et al.| (2024b) adapt ViTs to new classes with minimal updates. While effective,
most CIL strategies were originally developed for static image domains and do not generalize well to
video-based scenarios, where temporal dynamics play a critical role.

2.2 VIDEO CLASS-INCREMENTAL LEARNING

Action recognition has been widely explored with 2D CNNs using temporal aggregation |Lin et al.
(2019); (Wang et al. (2016) and 3D CNNs for joint spatiotemporal modeling |Carreira & Zisser{
man| (2017); Tran et al.| (2015)). More recent work focuses on improving temporal sensitivity and
efficiency [Feichtenhofer (2020); [Fan et al.| (2020). However, these models are trained in static
setups and do not address continual adaptation or forgetting. To address these challenges, Video
Class-Incremental Learning (VCIL) extends conventional Class-Incremental Learning (CIL) to spa-
tiotemporal data, introducing additional challenges such as managing temporal variations across
tasks. Several recent methods, including TCD |Park et al.|(2021), FrameMaker |Pe1 et al.[(2022), and
HCE |[Liang et al.| (2024), address this setting by storing videos or compressed exemplars. However,
these strategies raise concerns related to memory efficiency and data privacy. While SMILE Alssum
et al.|(2023) effectively extracts image features from individual frames, it does not explicitly capture
temporal information, which may limit its ability to leverage the distinctive decision cues present
in video data. Exemplar-free methods such as STSP |Cheng et al.| (2024) mitigate forgetting via
orthogonal subspace projections, but they mainly adapt image-domain strategies to video tasks. In
contrast, our approach decouples and models the spatiotemporal structure of videos, proposing a
unified VCIL framework that preserves spatial consistency via Frame-Shared Semantics Distillation
(FSSD) for knowledge retention without exemplars, while leveraging temporal dynamics for expert
routing through Temporal Decomposition-based Mixture-of-Experts (TD-MoE).

3 METHOD

Problem Definition: In the Video Class-Incremental Learning (VCIL) setting, a model is trained

b
across B stages with sequentially arriving datasets {D', ..., DP}. Each dataset D* = {(V}?, /%) }ljD:ll
corresponds to the b-th task, where ij is the j-th video and 3/ is its class label. Here, videos primarily
represent human action recognition scenarios, where the spatiotemporal dynamics capture motion
patterns, subject interactions, and scene context. |D®| represents the number of samples in the b-th
task. Let J* be the label space of the b-th dataset. For all b # b/, the label spaces are disjoint:
YWY = @. The objective of VCIL is to incrementally train a model over B tasks while
maintaining high performance across all accumulated classes {J*, V2, ..., VB}.

Overall framework. We propose a unified, exemplar-free framework for Video Class-Incremental
Learning (VCIL) built upon the CLIP model |[Radford et al.| (2021)). Our goal is to mitigate catas-
trophic forgetting while effectively leveraging frame-shared semantics and temporal dynamics to
incrementally learn new categories. The frozen visual encoder JF(-) extracts spatial features, while
adapters A" are updated for each task b. A spatiotemporal encoder G(-) models temporal dynamics.
Our framework introduces two key components: 1) Frame-Shared Semantics Distillation (FSSD)
identifies semantically stable channels across frames by combining Semantic Sensitivity and Classifi-
cation Score, applying selective regularization to preserve critical spatial semantics while maintaining
plasticity. 2) Temporal Decomposition based Mixture-of-Experts (TD-MoE). To exploit temporal
dynamics for continual adaptation, we decouple shared static components and temporal dynamics.
During inference, temporal dynamics are used to assign dynamic weights to expert temporal encoders,
enabling task-id-free adaptation without requiring task identifiers or stored exemplars.

3.1 SPATIAL AND SPATIOTEMPORAL ENCODER

Spatial Encoder. The shared adapter module [Chen et al.[(2022) A® = {A?}Y | is utilized with a
frozen CLIP-ViT model with IV layers of transformer module, serving as the spatial extractor. An
adapter is an encoder-decoder architecture embedded into the residual of each transformer layer,
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Figure 2: Overview of our proposed framework. (I) During training, the (a) Frame-Shared Seman-
tics Distillation (FSSD) module retains past knowledge via frame-shared semantics importance-aware
regularization. (II) At inference, the (b) Temporal Decomposition-based Mixture-of-Experts (TD-
MOoE) dynamically routes input videos to expert branches by leveraging the disentangled temporal
component of the spatiotemporal representation, enabling adaptive predictions.

facilitating transfer learning and enhancing downstream task performance. Typically, it consists
of a down-sampling MLP W 4,,,,, € R?¥9 a ReLU activation ¢(-), and an up-sampling MLP
W, € Rénxd wwhere d is the input and output dimension, and d}, is the hidden dimension. For

adapter, if input is v; € R?, which is the i-th frame-level feature after the Multi-Head Self-Attention
and residual connection in CLIP ViT, the output of adapter is:

Vi = d(ViWaouwn)Wyp. (1
The spatial feature of i-th frame V$ = F(V;;.A%), V¢ € R+, where V; is the i-th frame of the
video, d,; is the dimension of the aligned video-text features.

Spatiotemporal Encoder. To obtain the spatiotemporal representation, we feed both the frame-level
spatial features and a learnable [CLS] token into a multi-head self-attention based spatiotemporal
encoder G(+). Specifically, the input to G consists of the frame features V¥, ..., V‘j\,f and a [CLS]
token V3, € R%t, where Ny represents the number of sampled frames. The temporal encoder
outputs the spatiotemporal feature V¢, corresponding to the transformed [CLS] token:

v =g(] clsvvlﬂ"';vf\ff])[o] ERdmv @

where [0] selects the output associated with the [CLS] token after attention-based aggregation.
More details for Spatial and Spatiotemporal Encoder are provided in appendix [B.2]and [B.3]

3.2 FRAME-SHARED SEMANTICS DISTILLATION

In VCIL, shared adapter modules inevitably drift in feature space when adapting to new tasks, leading
to forgetting. Directly applying classic uniform-weighted distillation from CIL to video tasks ignores
the differences in semantic importance and temporal stability across video features. This leads to
a suboptimal balance between stability and plasticity. To address this, we propose Frame-Shared
Semantics Distillation (FSSD), which identifies stable cross-frame channels capturing core semantics
and regularizes them to preserve prior knowledge while allowing adaptation

Frame-Shared Semantics Distillation (FSSD). To mitigate semantic drift across tasks, we introduce
a distillation loss weighted by the frame-shared semantics importance:

[Col N. dos

Lrssp = |Db Aoy ZZZIb lej |va 1,c,i,j ‘/2701,]”25 (3

where |Cp| is the number of classes in the b-th task, and NV, is the number of samples per c]ass. Iy_1,c,j
denotes the frame-shared importance of the j-th channel for class ¢ from task (b—1). V7, ., . and

4
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Vi ; are the j-th channel outputs of the i-th sample in class ¢, extracted from the spatial encoders
of task (b—1) and b, respectively, calculated on current data, with the previous model frozen.
Frame-Shared Semantics. To quantify the importance of frame-shared semantics, we assess each
channel based on two criteria: 1). Semantic Sensitivity. It measures the responsiveness to activation
changes, thereby reflecting its reliability in representing consistent semantic information. and 2)
Classification Score. It reflects the channel’s contribution to the final classification.

For semantic sensitivity, we employ Fisher Information to estimate how sensitively a channel’s

S . - N .

activation influences the output. As spatial features V° = Ni >, Vi aggregate frame-wise

variations, the Central Limit Theorem suggests each channel’s distribution approximates a Gaussian
(Belong to the same category). Thus, we assume the j-th channel activation for class ¢ follows (For
simplicity, we omit the subscripts for task and sample.):

‘7;] NN(:u’C,jao—g ')7 (4)

where p. ; and o2 - ; denote the mean and variance across frames. The Fisher Information Z (.. ;)
(Detailed derivations are provided in the appendlx[lzf[) with respect to (i ; is computed as:

_ 2
V2. — e 1 1

T(pe i) =E Y Y :71}3 V . - g2 = 5

(tte,5) Uf,j ot T [( = Hej) ] Uél’j Oc,j g,j ®)

For classification score, we compute the cosine similarity between the spatial video feature V3 € R9v¢
and its corresponding text feature T, € R% ¢, Specifically, for the j-th channel, the classification

. Ve Te
score is defined as 7y, ; = W’ where T, ; denotes the j-th dimension feature of T.. We then
take the expectation of . ; across frames to obtain a stable channel-level contribution estimate:
Vcs,j T, Vcs,j T,y Tc,j * He,j
Eleil =B |t | B | o | & ; (©)
| Vel 1Tl Ivell A

where ||[V2|| & ) is treated as a constant after normalization. Combining semantic sensitivity and
classification score, the semantic importance for the j-th channel of the c-th class is defined as:

Tc" c,]
I — ted M»J' @)

c,J 2
Oc,j

FSSD accumulates frame-shared semantic importance as distillation weights, retaining key channels
for old tasks while allowing less important ones to adapt, thus balancing stability and plasticity.

3.3 TEMPORAL DECOMPOSITION BASED MIXTURE-OF-EXPERTS

Given the high forgetting tendency of deep transformers in VCIL, we allocate a dedicated spatiotem-
poral encoder for each task. As task IDs are unavailable during inference, we allocate a spatiotemporal
encoder per task and design a routing mechanism that dynamically weights experts based on temporal
patterns, ensuring relevant experts contribute more to the final representation.

Task-Specific Expert. For each task, we train a dedicated expert based on the spatiotemporal encoder.
The spatiotemporal features V! € R% captured by each expert are computed as in Eq.

Temporal Decomposition-based Router. To design this routing mechanism based on temporal
dynamics, we consider two aspects: 1) Temporal residuals. These reflect the subtle temporal
differences within redundant frames. 2) Inter-frame information. This captures abstract temporal
concepts between frames, based on the knowledge learned by each expert.

For temporal residuals, we observe that redundant frames, where backgrounds and subjects remain
consistent, cause minimal variation between adjacent frames Kim & Choi| (2024); Liu et al.|(2021).
This leads to short-term temporal stationarity, which we further validate on the UCF101 and HMDBS1
datasets Fig.[3] Thus, each frame feature is decomposed as Vi = v + €;, with v as shared static
components and €; as temporal residuals. The spatial representation is then the mean across frames:

_ 1
Vi=v+eE e=—) e 8)
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Figure 3: For each video, we uniformly sample 8 frames to compute the p-value defining p > 0.05 as
strictly stationary and p > 0.02 as weakly stationary in the short term.

For the inter-frame information, since the spatiotemporal feature V¢ is computed by the atten-
tion module, it can be approximated as V! ~ Zf\[:fl a; - V7, where q; is attention score. After

I =N I .
normalization, we can obtain Y ;" a; = 1. Substituting Eq. E we obtain:

Ny
VSt:V+Zai-ei. 9)
=1

Since v is difficult to estimate, and to decouple the temporal residual €; and inter-frame information
a;, we naturally address this by using the difference between V¢ and V?, effectively isolating the
temporal dynamics, which can be represented as:

Ny

vitem — Z (ai _ NLf) €. (10)

=1

This formulation reveals that V€™ quantifies the deviation between the model’s attention-weighted
temporal dynamics and the uniform temporal mean, effectively disentangling temporal variations
from static semantics. This enables routing to exploit temporal cues while avoiding background
interference, thereby mitigating forgetting and enhancing continual learning.

Inference. During inference, we first compute the decoupled temporal representation V™ ¢
R% for each input video. For all categories in the current task, we calculate the mean temporal
representation and store it in the anchor pool as Vi¢™ € R4t where c represents the c-th class. For
each expert k, we compute a similarity-based score as the router:
r, = max cos (Vi viem 11

k ceCh ( k ) c ) ) ( )
where C, represents the set of classes assigned to expert k. Then, we combine the adapter-tuned
spatial features V* with the expert outputs weighted by 7 as the final video representation:

V=Vt r- Vil (12)
E
The final video representation is matched with text embedding via cosine similarity for classification.

3.4 Loss FUNCTION AND OPTIMIZATION

Our loss function includes: 1) contrastive loss between video features and text descriptions for
classification; 2) contrast loss between video features under adapter fine-tuning and text features for
spatial optimization; and 3) FSSD loss to mitigate forgetting in shared adapter modules.

Contrastive Loss Formulation. We use symmetric contrastive loss for video-to-text and text-to-video
alignment. Given a batch of NV samples, let V; and T'; denote the video and text features, respectively.
The similarity between video ¢ and text j is computed as the cosine similarity .S; ; = cos(V;, T;),
forming a similarity matrix S € RV XY, Let M € {0, 1}?V*¥ be the label mask, where M, ; = 1 if
y; = y; and M; ; = 0 otherwise. Then, the Video-to-text contrastive loss can be caculated by:

N
1 & > =1 M, - exp(Si;)
£v2[ = _N Z log N
i=1 > j—1exp(Sij) +¢

(13)
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Table 1: Average Accuracy (Acc) of the UCF101 and HMDBS51 under the TCD benchmark.

UCF101 HMDBS51

10 x 5s 5 x 10s 2 x25s 5 xHs 1 x 25s
CVPR’17 | 65.34 64.51 58.73 40.09 33.77

TPAMI'18 | 42.14 25.59 11.68 26.82 16.49
CVPR’19 | 43.39 26.07 12.08 26.97 16.50

CVPR’19 | 74.09 70.50 64.00 46.53 37.15

ECCV’20 | 74.37 73.75 71.87 48.78 46.62

ICCV’21 77.16 7535 74.01 50.36 46.66

NeurIPS’22 | 78.64 7814 77.49 51.12 47.37
CVPR’22 | 81.24 80.09 78.58 49.98 45.87

NeurIPS’22 | 80.60 80.27 80.43 53.11 53.89
CVPR’23 | 84.75 85.54 85.67 60.14 60.54

ECCV’24 | 81.15 82.84 79.25 56.99 49.19

AAAI’24 | 80.01 78.81 77.62 52.01 48.94

— 94.67 92.13 88.52 68.12 67.01

Method Exemplar  Venue

iCaRL|Rebuffi et al.[(2017)
LwFMCI|L1 & Hoiem|(2017)
LwM Dhar et al.|(2019)
UCIR Hou et al.|(2019)
PODNet|Douillard et al.|(2020)
TCD|Park et al.|(2021)
FrameMaker [Pei et al.|(2022)
L2P|Wang et al.|(2022c)
S-iPrompts|Wang et al.|(2022a)
ST-PromptiPei et al.|(2023)
STSP|Cheng et al.|(2024)
HCE |Liang et al.|(2024)
StPR (Ours)

3N 3% X X NN NN X xS

Table 2: Average Accuracy (Acc) of the SSv2 under the TCD benchmark, with best results in bold.

Method Exemplar  Venue 10 x 9s 5 x 18s

1CaRL Rebulffi et al.|{(2017) v CVPR’17 20.41 16.62
UCIR Hou et al.|(2019) v CVPR’19 24.32 19.31
PODNet Douillard et al.[(2020) v ECCV’20 27.63 20.14
TCD |Park et al.[(2021) v ICCV’21 29.32 24.69
FrameMaker |Pei et al.|(2022) v NeurIPS’22 31.41 26.57
L2P|Wang et al.|(2022c) X CVPR’22 26.02 21.33
S-iPrompts Wang et al.|(2022a) X NeurIPS’22 33.69 30.84
ST-PromptiPei et al.|(2023) X CVPR’23 39.98 35.44
HCE |Liang et al.|(2024) v AAAT24 36.88 32.82
StPR (Ours) X - 40.79 37.30

where ¢ is a small constant added to avoid division by zero. The Text-to-Video loss Ly, is similarly
defined by swapping video and text in the equation. Symmetric total contrastive loss is :

1
S (Lvac+ Loy). (14)

£C0nl = 2

For L ., the embeddings are the spatiotemporal video feature V** and corresponding text features.

For L2, we use the CLIP adapter feature V* and corresponding text features.

Total Loss. The overall training loss is:
L= L&+ L + w - Lessp, (15)

where w is a hyperparameter. This design aligns both spatial and spatiotemporal semantics with text
supervision, while the FSSD term preserves critical frame-shared semantics to mitigate forgetting.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Dataset. We evaluate our method on four benchmark datasets: UCF101 |Soomro et al. (2012)),
HMDBS5 1IKuehne et al.| (201 1)), Something-Something V2 (SSv2)Goyal et al.|(2017)) and Kinetics400
Carreira & Zisserman| (2017)). All experiments are conducted in an exemplar-free setting. For
fair comparison, we use the TCD benchmark |Park et al.|(2021) on UCF101, HMDBS51, and SSv2,
pretraining the model on 51, 26, and 84 base classes, respectively, with the remaining classes split
into tasks. For Kinetics-400, we follow the vCLIMB benchmark Villa et al.| (2022)) with 10- or 20-task
splits, each containing the same number of classes.

Evaluation Metrics. We adopt three widely-used metrics to evaluate performance in VCIL: 1).
Final Accuracy (Acc)|Villa et al.|(2022), which measures the overall classification accuracy on all
learned classes after the final task is completed; 2). Average Accuracy (Acc)|Park et al.| (2021)), which
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Table 3: Results of the Kinetics-400 under the vCLIMB benchmark at 10 and 20 task settings.

Kinetics400-10s Kinetics400-20s
AcctT BWFJ] Acct BWF|
vCLIMB+BiC|Villa et al.[(2022) v CVPR’22 27.90 51.96 23.06 58.97
vCLIMB+iCaRL|Villa et al.|[(2022) v CVPR’22 32.04 38.74 26.73 42.25
SMILE+BIC |Alssum et al.|(2023) v CVPR’23 52.24 6.25 48.22 0.31
SMILE+iCaRL |Alssum et al.|(2023) v CVPR’23 46.58 7.34 45.77 4.57
v
v
X

Method Exemplars Venue

CSTA (Vivit) |Chen et al.|[(2025) TCSVT’25 54.98 5.06 51.01 6.91
CSTA (Times)|Chen et al.|(2025) TCSVT’25 56.09 4.97 52.20 6.89
Ours — 57.83 14.01 53.95 15.09

Table 4: Ablation Study on UCF101 and HMDBS51, with best results in bold.

UCF101(5 x 10s) HMDB51(5 x 5s) UCF101(10 x 5s) ~ HMDB51(25 x 1s)
Acct Acct BWF| Acct Acct BWF| Acct Acct BWF| Acct Acct BWF

Idx A FSSD TD-MoE

1 - - - 70.65 74.67 7.01 4330 43.62 6.18 70.14 7272 533 4371 4748 8.74
2 v/ - 7755 81.84 576 5323 5567 773 77.63 82.06 4.86 54.63 60.83 9.0l
3 - - 4 79.33 89.36 1238 56.12 61.14 11.75 8594 9347 740 6254 68.88 10.20
4 v - v 83.07 91.28 10.52 57.47 63.37 2130 88.03 94.14 839 6471 73.02 21.72
s v 4 85.79 92.13 5.63 63.04 68.12 11.04 88.85 94.67 6.31 69.61 75.07 7.02

measures the mean classification accuracy over all incremental stages after the final task is completed;
3). Backward Forgetting (BWF)|Villa et al.| (2022), which quantifies the average drop in performance
on previously learned tasks, reflecting how well the model retains past knowledge.

Implementation Details. All experiments are conducted on a single NVIDIA RTX 3090 GPU.
We adopt the CLIP ViT-B/16 model Radford et al.|(2021) as the backbone, with all its parameters
frozen during training. The spatial and spatiotemporal encoders are the only trainable components
in our framework. For optimization, we employ Stochastic Gradient Descent (SGD) with an initial
learning rate of 0.01 and a batch size of 40. Each task is trained for 60 epochs in the first incremental
session and 30 epochs in each subsequent session. The weighting hyperparameter w in Eq. |15]is
set to 1 x 10%. The multi-head self-attention module within the spatiotemporal encoder consists of
three transformer layers, each employing two attention heads. Video clips are sampled using the TSN
strategy Wang et al.| (2018]), selecting 8 frames per video uniformly across the temporal dimension.

4.2 MAIN RESULTS

Table. [I] 2] and 3| report results on UCF101, HMDB51, SSv2 and Kinetics400, covering different
action complexities and temporal dynamics. Based on their strategies to mitigate forgetting, existing
methods are categorized into two groups: 1) Exemplar-based methods (iCaRL, UCIR, PODNet,
TCD, FrameMaker, HCE, vCLIMB, SMILE, CSTA). They store video clips, frames, or compressed
features and apply rehearsal to reduce forgetting. However, these methods face scalability and privacy
challenges due to their reliance on stored exemplars. 2) CIL-based methods (LWFMC, LwM, L2P,
S-iPrompts, ST-Promptf, STSP). This group adapts techniques from image-based class-incremental
learning, such as unified distillation and subspace projection, without storing exemplars. While
avoiding exemplar storage, their performance tends to be lower, especially as task difficulty increases
and lacking explainable spatiotemporal disentanglement. In contrast, Our method (StPR) without
storing exemplars, surpasses all baselines across datasets and settings. On the TCD benchmark,
our method outperforms the state-of-the-art approach (ST-Promptf) as well as all exemplar-based
methods on UCF101, HMDBS51, and SSv2. On the vCLIMB benchmark, exemplar-based methods
can alleviate forgetting by replaying stored samples, which makes forgetting lower. Nevertheless,
our method achieves higher final accuracy, surpassing the current state-of-the-art (CSTA) and all
exemplar-based counterparts.

4.3 ABLATION STUDY

We perform ablation studies to evaluate the contribution of each component: the adapter tuning
(AY), Frame-Shared Semantics Distillation (FSSD), and Temporal Decomposition-based Mixture-of-
Experts (TD-MoE). Results are summarized in Table[d] The baseline (pretrained CLIP) model exhibits
limited performance on downstream tasks, as it lacks adaptation to new task-specific categories.
Introducing FSSD alone moderately improves performance by preserving spatial semantics and
reducing semantic drift, while TD-MoE independently enhances adaptation by leveraging temporal
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dynamics. However, using either module alone yields suboptimal performance. Combining adapter
tuning with TD-MoE provides further improvements but still lacks sufficient stability in preserving
spatial semantics. The full model (StPR), integrating both FSSD and TD-MOoE, achieves the most
stable performance across tasks, demonstrating the complementary strengths of spatial semantic
preservation and temporal dynamic modeling.

4.4 FURTHER ANALYSIS

Analysis of temporal-decomposition routing strategies. Table [5| compares our TD-MoE with
several alternative Mixture-of-Experts (MoE) Jacobs et al.| (1991) routing strategies. Simple averaging
(Avg-MOoE) and static weight assignments—including CLIP-MoE, which uses frozen CLIP visual
features for routing, and Adapter-MoE, which uses adapter-tuned CLIP features—provide moderate
improvements but fail to dynamically leverage task-specific temporal cues, often resulting in higher
forgetting. In contrast, TD-MoE enables adaptive expert weighting based on temporal dynamics,
consistently improving both accuracy and stability across tasks. This highlights the importance of
modeling temporal variability explicitly, rather than relying on static or feature-agnostic routing.

Table 5: MoE Method Results on UCF101 and HMDBS51, with best results in bold.

UCF101(5 x 10s)

HMDB51(5 x 5s)

UCF101(10 x 5s)

Method HMDB51(25 X 1s)
Acc 1 BWF | Acc T BWF | Acc 1 BWF | Acc 1 BWF |
Avg-MoE 81.14 9.95 59.46 8.49 84.04 9.60 62.69 9.14
CLIP-MoE 83.59 7.85 58.82 10.01 85.80 7.27 65.43 8.08
Adapter-MoE 83.26 6.07 61.99 7.75 84.31 7.82 65.57 7.68
TD-MoE(Ours)  85.79 5.63 63.04 11.04 88.52 6.39 69.61 7.02

Table 6: Distillation Method Results on UCF101 and HMDBS51, with best results in bold.

Method

UCF101(5 x 10s)

HMDB51(5 x 5s)

UCF101(10 x 58)

HMDB51(25 x 1s)

Acc T BWF | Acc 1 BWF | Acc 1 BWF | Acc T BWF |
w/o Distillation ~ 83.07 10.52 57.47 21.30 88.03 8.39 64.71 21.72
Distillation 84.27 7.45 61.74 13.33 88.12 7.95 67.54 13.38
FSSD(Ours) 85.79 5.63 63.04 11.04 88.52 6.39 69.61 7.02

Effectiveness of FSSD over Uniform Distillation. Table [ compares our FSSD method with the
no-distillation baseline (w/o Distillation) and standard uniform distillation (Distillation) across four
VCIL settings. While uniform distillation improves accuracy and reduces backward forgetting (BWF)
over the naive baseline, FSSD consistently outperforms both, achieving the highest accuracy and
lowest BWF in all settings. These results highlight the benefit of selectively preserving frame-shared
semantics, validating the importance-aware design of FSSD for continual video learning. For more
experiments (such as hyperparameter analysis and visualization), see the appendix [C]

5 CONCLUSION

In this work, we propose StPR, a unified and exemplar-free framework for Video Class-Incremental
Learning (VCIL) to tackle the spatiotemporal challenges in continual video learning. By disentangling
spatial semantics and temporal dynamics, StPR effectively balances stability and plasticity without
relying on stored exemplars. Our method combines Frame-Shared Semantics Distillation (FSSD),
which selectively preserves meaningful and stable semantic channels, protecting model’s plasticity.
Temporal-Decomposition-based Mixture-of-Experts (TD-MoE), adaptively routes inputs based on
temporal cues, reducing forgetting in deep networks. Extensive experiments on UCF101, HMDBS51,
and SSV2 validate the effectiveness and efficiency of our approach, establishing new state-of-the-art
results for continual video recognition. In future work, we plan to explore more realistic application
scenarios, such as open-world settings, and investigate the deployment of our method on resource-
constrained edge devices. See Appendix [D]for reproducibility statement and Appendix [E| for our
statement on LLM usage.
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A APPENDIX: ALGORITHM

Algorithm 1: Frame-Shared Semantics Distillation (FSSD)

Input: Current task data Dy; frozen model from task b—1; text features {T.}
Output: FSSD loss Lgssp

for each class ¢ € Yy, do
Compute mean spatial features:

c N
S.= NL, S Viis // Current model
_ N .
Vii.= Nif Yih Vilieis // Previous model
for each channel j =1 to d do
Estimate yic,j, 07 ; from Vi_; // Across frames
Compute semantic sensitivity:
I(ttey) = % ; // Fisher Information
Compute classification contribution:
Elv,,;] « % ; // Cosine-aligned score
Compute importance score:
Iy 1c;= % ; // Weighted relevance

c,J

C?)mpute weighted distillation loss:

C N, dyt [/ 1/
Lrssp = g o0 S0 S ot Vit eig = VideislI3
return Lrgsp

A.1 ALGORITHM OF TD-MOE

Algorithm 2: Temporal Decomposition based Mixture-of-Experts Inference

Input: Video frames {x) }.\/,;

Task-specific experts {Gx } <

Temporal anchors {Vi™1C | for current task
Output: Final representation V

Compute spatial mean: V* = Nif vazfl x) ; // Mean of frame features
for each expert k = 1 to K do
Concatenate CLS token and frame features

Vil = Grllxdiss xts - xn, DI0]: // Spatiotemporal feature
Compute temporal representation:
viem = Vit — Vs, // Temporal decomposition
Compute routing score:
Tk = max.cy, cos(Viem Viem) // Similarity to temporal anchors
Compute final representation:
V=Vs+ Zle re - VS, // Residual fusion
return V

Frame-Shared Semantics Distillation (FSSD).  Algorithm [[|mitigates forgetting by selectively
preserving spatial feature channels that are semantically important and temporally stable across
frames. Importance is computed per channel using two criteria: (1) Semantic sensitivity, quantified
by Fisher Information, and (2) Classification contribution, measured by cosine similarity with text
features. These weights are used in a weighted distillation loss between the frozen previous model

and the current task model, enabling exemplar-free knowledge retention while allowing plasticity.

Temporal Decomposition-based Mixture-of-Experts (TD-MoE). Algorithm [2| routes video
inputs to task-specific experts based on temporal relevance. Each expert encodes spatiotemporal
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features from video frames, from which temporal dynamics are isolated via residual decomposition.
Temporal features are then compared to precomputed class anchors to compute routing scores. Final
representations are generated by combining the expert outputs with the spatial feature via residual
fusion. This enables dynamic, task ID-agnostic inference driven by temporal structure.

B APPENDIX: THEORETICAL SUPPLEMENT

B.1 FRAME-SHARED SEMANTICS

Semantic Sensitivity. The Fisher Information with respect to the mean parameter 11; is defined as:

a B 2
(&LCJ logp(Vc,j;uc,j)> ] ; (16)

where p(f/j 3 He,j) is the probability density function of the Gaussian:

Zj(pre,5) = By

¥ 7s 1 (‘7cs _.uc,')2
p(Vji be,j) = T P <]20_2J : (17
T0cj “
Taking the derivative of the log-likelihood with respect to p;:
(7S (708 _IJ’C,‘)2
log p(V i e j) = =5 log(2mag ;) — 2=, (18)
0 s Vcs i = He,j
e log p(Ve i e j) =~ (19)
© c,J
Then, the Fisher Information becomes:
_ 2
Vi = bej 1 tos e 1, 1
Z(pey) =E (;2 = BV —pei)] = 005 =— (0
c.j J J c.j
Thus, we obtain:
1
I(pe,) = ——- 21
(fhe,j) Ug,j (2D

Classification Contribution. As we use cosine distance as classification basis, the c-th classification
decision score v, ; of the j-th channel is modeled as:

|/ s ) /S . . )
Vc,j ‘TC,J Vc,j Tcu

Ye, i = 75 X = (22)
Tovel- T el
Therefore, the score function s can be approximately written as:
_ T, ; T, ;
i = Vioa, = 8] TG 23
s = 2V = 29
For the expected score E[y. ;], it can be calculated as:
Vs T T i+ fhei
Efe,j] < E 2l Teg ) >oay e b (24)
%] ; X
Then, the joint measure of informativeness is:
Tc, i Hec,j
Loy o<y e - e ) = =5 - =5 (25)

c.j

This expression provides a theoretically principled and interpretable metric for frame-shared seman-
tics. It reflects the intuition that an informative channel should (i) be strongly activated on average
(ftc,; large), and (ii) exhibit consistent activation patterns across samples (aa j small). Therefore, we
define the importance of channel j as:

Tt s
I;=—od e (26)

c,J
This formulation also aligns with the the signal-to-noise ratio theory (SNR), providing a unified
theoretical justification.
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B.2 SPATIAL ENCODER

We adopt a frozen CLIP-ViT model enhanced with shared adapters as the spatial encoder to extract
frame-level features. Let a video V' = {V;};V:fl consist of Ny uniformly sampled frames, where each
frame V; is processed independently. The spatial encoder F(V;; A®) contains L transformer layers,

each equipped with an adapter A} inserted after the multi-head self-attention (MHSA) residual. The

. . N
output of the encoder is a set of spatial features {v$},”’.

Transformer Block with Adapter. For the /-th transformer layer, the feature update of input token

v{? € R?is computed as:
v, =v!9 4 MHSA(v!") 27)
v = d(v]T Waown) Wep (28)
v =vi+ v (29)
v = v £ FEN(V)) (30)
\7,5“1) = vz(»eH)Wproj (The last layer, projection to align text space) 3D

where ¢(-) is a ReLU activation, W gown € Ré4xdn and W, € Rénxd are the adapter projection
weights, Wi € R?¥dvt s the projection weight that aligns the video and text feature spaces.

Multi-Head Self-Attention (MHSA). Given token sequence Z € R™ ¥4 multi-head self-attention is
computed as:

MHSA(Z) = Concat(hy, ..., hy)W?, (32)
where each head hy, is computed as:
Q. K, )
h;, = Softmax < Vi, (33)
Vdp,
with projections:
Q,=ZW?, K,=2ZWE, Vv,=2wW/, (34)

and projection matrices W, WX W} € R and WO ¢ R?*4,
Feedforward Network (FFN). The FFN is a two-layer MLP with GELU activation:
FFN(v) = GELU(VW{)Wag, (35)
where W; € R%*44 and W, € R4dxd,
Output. After passing through L layers, the final spatial feature of the ¢-th frame is:
Vi =F(Vy A e R™ i=1,... Nj. (36)
These frame-level features {V; }fifl are then aggregated by the spatiotemporal encoder to form the

global video representation.

B.3 SPATIOTEMPORAL ENCODER

Let a video clip be uniformly sampled into N, frames. Each frame is processed by a spatial
encoder to yield frame features V3. A learnable [CLS] token VJ is prepended to the sequence,
forming the input:

V® = [Vig Vi VR, | (37)

clsy

This sequence is passed through a Transformer-based spatiotemporal encoder. Each layer comprises
Multi-Head Self-Attention (MHSA), residual connections, and feedforward networks (FFNs). For a
single attention head, the attention weights are computed as:

(gi.k;)

exp( m)
Ne+1 (qi,k]»/) ’
Zj’le exp( Vs )

Aij = (38)
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where q; = WOV?, k; = WKV and v; = WY V? are the query, key, and value projections.
The output of attention for token 7 is:

Ny+1
yi= Z Aijvj. (39
=1

We define the final spatiotemporal video representation as the output at the [CLS] token:

Nf—‘rl
VI =ya= Y Adsivi- (40)
j=1

This architecture enables spatiotemporal modeling by allowing: (i) long-range temporal interactions
across frames via MHSA,; (ii) spatial semantics retention from CLIP features; and (iii) adaptive fusion
of information through the [CLS] token. Multiple attention heads further enhance expressiveness by
learning diverse patterns. Consequently, V! serves as a content-adaptive spatiotemporal descriptor
capturing both motion and appearance.

C APPENDIX: ADDITIONAL EXPERIMENTS
C.1 ANALYSIS OF HYPER-PARAMETER.

Table 7: Analysis of hyperparameter w on HMDBS51 and UCF101 datasets. Best results are in bold.

Dataset Metric | 1x 10° 1x10° 25x10* 5x10° 1x10°
AccT | 3951  63.04 2.10 6229  63.05
-
HMDB(G x5)  gwr| | 1690  11.04 11.14 1232 1277
AccT | 85.10  85.79 §4.54 gi88 8416
UCFI0I(5 x10s)  pwg | | 7.93 5.63 6.95 5.67 6.83

Table. [7)analyzes the sensitivity of the hyper-parameter w, which controls the strength of FSSD
regularization. Across a wide range of values, our framework maintains stable performance, indicating
robustness to hyper-parameter variations. Moderate w values achieve the best trade-off between
knowledge retention and adaptability, avoiding under-regularization or excessive constraint on model
plasticity.

C.2 COMPLEXITY ANALYSIS: FLOPS AND PARAMETERS

We compute the theoretical floating point operations (FLOPs) for each module: the CLIP ViT-B/16
backbone, the inserted adapters, and the spatiotemporal encoder module.

Table 8: FLOPs and parameter counts for each module per 8-frame video.

Module Input Shape Parameters FLOPs (GFLOPs)
CLIP (ViT-B/16) (frozen) (8, 3,224,224) 86M 269.81
Adapter (8,197,768) 1.17M (1.36%) 3.73 (1.38%)
Spatiotemporal Encoder (9,512) 9.45M (10.99%) 0.0854 (0.03%)

Table [§] provides a detailed breakdown of computational complexity and parameter count for
each component in our framework, evaluated on 8-frame video inputs. The backbone CLIP (ViT-
B/16) dominates the overall cost with 86M parameters and 269.81 GFLOPs. The inserted adapter
modules, despite being integrated into every transformer layer, introduce only 1.17M additional
parameters (1.36%) and 1.38% more FLOPs, demonstrating their lightweight nature. Furthermore,
our spatiotemporal encoder—used to capture dynamic information—adds merely 0.085 GFLOPs
(0.03%, per-expert) and 9.45M parameters (10.99%), confirming its computational efficiency. These
results validate that our method enhances temporal modeling with minimal overhead, making it
well-suited for continual learning in resource-constrained settings.
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C.3 COMPARISON OF MOE ROUTING STRATEGIES (TASK BY TASK)

~- Avg-MoE —#— CLIP-MoE —— Adapter-MoE —4— TD-MoE

UCF101 (5 x 10s) UCF101 (10 x 5s) 100 HMDB51 (5 x 5s)
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Figure 4: MoE Methods Performance per Task on UCF101 and HMDBS51

Figure ] presents the relative accuracy change (%) of different Mixture-of-Experts (MoE) routing
strategies on three benchmarks: UCF101 with two task configurations (5x10s and 10x5s), and
HMDB5S51 (5x5s). The horizontal axis represents the incremental task ID, while the vertical axis
shows the accuracy change relative to the Avg-MoE baseline.

We observe that TD-MoE consistently outperforms all baselines across datasets and task gran-
ularities. Its performance advantage becomes more pronounced as the number of tasks increases,
reaching up to 6-8% improvement on later tasks. In contrast, Adapter-MoE and CLIP-MoE exhibit
only marginal gains, which tend to saturate early, suggesting limited ability to model task-specific dy-
namics. These findings confirm that temporal decomposition is effective for guiding expert selection
in a task ID-agnostic manner, and helps mitigate forgetting by capturing relevant spatiotemporal cues.

Randomly select one label per task - Set 1 Randomly select one label per task - Set 2 Randomly select one label per task - Set 3

Salsaspin 028 033 047 PlayingTabla . 10

RopeClimbing . Skiing

Drumming b I SkateBoarding

PlayingPiano X . JavelinThrow

037 020 0.11 PlayingViolin . . Jumpingjack

034 018 0.14 FloorGymnastics

Figure 5: Heatmap of task selection by temporal decomposition-based router on the UCF101.

As shown in[5] temporal decomposition-based router is effective at task boundary decisions.

As shown in Figure[7] it maintains highest accuracy over time and effectively mitigates forgetting,
demonstrating the complementary strengths of spatial semantic preservation and temporal dynamic
modeling

C.4 [EFFECTIVENESS OF FRAME-SHARED SEMANTICS DISTILLATION (TASK BY TASK)
- w/o Distillation —A— Distillation —e— FSSD
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Figure 6: Distillation Methods Performance per Task on UCF101 and HMDBS51

Figure [f] compares the impact of different distillation strategies, including w/o Distillation, uni-
fied Distillation, and our proposed Frame-Shared Semantics Distillation (FSSD), on UCF101 and
HMDBS51. The vertical axis reports the relative improvement over the non-distillation baseline.
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The results demonstrate that FSSD delivers the most consistent and significant improvements,
particularly on HMDBS51. While unified distillation offers slight improvements, it lacks consistency
across tasks. This suggests that uniform constraints fail to address the heterogeneous semantic
importance of feature channels. Moreover, the increasing gap between FSSD and other methods
over time confirms that adaptive regularization based on frame-shared semantic importance is
critical for preserving relevant knowledge across tasks in VCIL.

C.5 TASK-BY-TASK ABLATION STUDY VISUALIZATION

I Baseline 3 FSSD 3 TD-MoE 3 StPR

100 UCF101(5 x 10s) UCF101(10 x 5s) HMDB51(5 x 5s)

Accuracy (%)

1 2 3 4 5 6 7 8 9 10 11

Task ID Task ID Task ID

Figure 7: Task-wise ablation analysis across incremental tasks on UCF101 and HMDBS51.

As shown in Figure|/| we progressively add our modules (FSSD and TD-MOE) on the UCF101
and HMDBS51 datasets. Significant improvements are observed at each incremental stage, with more
pronounced gains as the number of tasks increases, especially in the long-term scenario (10 tasks).

This further validates the effectiveness of our proposed method and the superior performance of our
model.

D APPENDIX: REPRODUCIBILITY STATEMENT

We detail the model and training setup in Sec[3] with datasets, preprocessing, and evaluation

protocols in Secf] All hyperparameters and compute details are reported in Appx[C] Code is included
in the supplementary materials.

E APPENDIX: LLM USAGE STATEMENT

In accordance with the ICLR 2026 policy on large language models (LLMs), we clarify that LLMs
were employed solely to assist in polishing the language and improving readability of the manuscript.
The conception of the research problem, development of the methodology, algorithmic design, code

implementation, experimental setup, and result analysis were entirely carried out by the authors
without reliance on LLMs.
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