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Abstract—Self-supervised learning (SSL) through masked au-
toencoders (MAEs) has recently attracted great attention for
remote sensing (RS) foundation model (FM) development, en-
abling improved representation learning across diverse sensors
and downstream tasks. However, existing RS FMs often either
suffer from substantial computational complexity during both
training and inference or exhibit limited representational capac-
ity. These issues restrict their practical applicability in RS. To
address this limitation, we propose an adaptation for enhancing
the efficiency of RS FMs by integrating the Soft mixture-of-
experts (MoE) mechanism into the FM. The integration of Soft
MokEs into the FM allows modality-specific expert specialization
alongside shared cross-sensor representation learning. To demon-
strate the effectiveness of our adaptation, we apply it on the
Cross-Sensor Masked Autoencoder (CSMAE) model, resulting in
the Cross-Sensor Mixture-of-Experts (CSMoE) model. In addi-
tion, we introduce a thematic-climatic descriptor-driven sampling
strategy for the construction of a representative and diverse
training set to train our CSMoE model. Extensive experiments
on scene classification, semantic segmentation, and content-based
image retrieval (CBIR) demonstrate that our adaptation yields
a reduction in computational requirements while maintaining or
improving representational performance. Compared to state-of-
the-art RS FMs, CSMoE achieves a superior trade-off between
representational capacity, accuracy, and computational efficiency.
On average, CSMoE achieves more than twice the computational
efficiency of existing RS FMs, while maintaining competitive
performance across all experiments. These results highlight the
effectiveness of the proposed adaptation for creating scalable and
computationally efficient RS FMs. The associated code for the
model and the training set creation, as well as the pretrained
model weights, will be available at https://git.tu-berlin.de/rsim/
csmoe.

Index Terms—Foundation models, self-supervised learning,
mixture of experts, data subsampling, cross-modal retrieval, scene
classification, semantic segmentation.

I. INTRODUCTION

ITH the advances in self-supervised learning (SSL) and

the increasing availability of large-scale earth observa-

tion (EO) data, the development of foundation models (FMs)
has attracted great attention in the remote sensing (RS) com-
munity for representation learning problems [1], [2], [3], [4],
[5], [6], [71, [8], [9]. FMs aim to learn general-purpose, task-
agnostic representations that can process data from diverse
sensors and solve downstream tasks with minimal fine-tuning.
Unlike conventional deep learning (DL) models in RS, that are
often tailored to specific tasks and data modalities, RS FMs
aim for broader generalization. This is achieved by relying
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on SSL-based learning objectives such as reconstruction-based
(e.g., masked image modeling (MIM) [10]) or contrastive
(e.g., MOCO [11] and DINOV2 [12]) learning for large-scale
pretraining using a large amount of unlabeled data. Recently,
the design and development of FMs has mainly evolved along
three primary axes: i) scaling up model size and training
data to increase representational capacity [1], [2], [13]; ii)
introducing architectural innovations to accurately represent
the complex content of RS images. [4], [5], [6]; and iii)
integrating multiple EO modalities to enhance multi-modal
and cross-sensor characteristics [7], [8].

There are several FMs developed in RS, focusing on scaling
model and dataset sizes to improve generalization of learned
representations. As an example, Prithvi [1] scales to more than
600 million parameters and is trained on global time-series
data from Sentinel-2 (S2) and Landsat-8/9 satellites, enabling
improved performance on tasks such as disaster response
and ecosystem monitoring. Satlas [2] introduces a multi-
task dataset with over 300 million annotations. SSL4EO [3]
complements these efforts with a global, seasonally diverse
pretraining dataset, while Major TOM [13] contributes an
extensible framework based on a geographical indexing sys-
tem, and introduces a multi-modal dataset (called Major TOM
Core) with up to 23 TB per image modality. Beyond scale,
architectural innovations have emerged to better model the
complex content of RS images. As an example, RingMo [4]
introduces a generative masking strategy for masked au-
toencoders (MAESs) tailored to extracting fine-grained fea-
tures from RS images. As another example, SatMAE [5]
incorporates temporal and spectral encodings, while Scale-
MAE [6] leverages resolution-aware positional embeddings
for improved cross-scale performance. Progress has also been
made in developing modality-agnostic FMs. For example,
DOFA [7] employs a wavelength-conditioned dynamic patch
embedding layer to accommodate different channel configura-
tions, thereby supporting the change of the image modality
at the time of inference without retraining. TerraMind [8],
on the other hand, enables cross-modal generation through a
dual-scale architecture and modality-conditioned decoding. All
these developments reflect a growing trend toward scalable,
general, and multi-modal FMs in RS. For a comprehensive
overview of FMs in RS, we refer the reader to [14], [15],
[16].

However, this progress comes at a significant computational
cost. While FMs benefit from a high representational capacity,
reflected in a large number of parameters that enable them to
model complex functions, this capacity is often accompanied
by substantial computational complexity, commonly measured


https://orcid.org/0000-0002-5831-1237
https://orcid.org/0000-0003-3453-2729
https://orcid.org/0000-0003-2175-7072
https://git.tu-berlin.de/rsim/csmoe
https://git.tu-berlin.de/rsim/csmoe
https://arxiv.org/abs/2509.14104v1

SUBMITTED TO ARXIV

TABLE I: Comparison of RS FMs regarding their model sizes
as number of parameters (#P), computational complexity in
FLOPs, resulting CoC ratio, and number of pixels in the
pretraining dataset (PT DS). The FLOP-calculation is based
on a forward pass of a single S2-image (at 224 x224 pixels
with the subset of bands supported by the respective model)
for feature extraction. For our CSMoE model a patch size of
16 was used. Evaluation based on reference implementations
in TerraTorch [23]. M = Million, B = Billion, T = Trillion.

multi- CoC PT DS

Model modal #P 1 FLOPs | Ratio T # pixels +
Prithvi V2-300 [1] X 304M  59.85B 5.08 210.7B
Prithvi V2-600 [1] X  631M 162.18B 3.89 210.7B
Satlas [2] X! 88M 17.12B 5.14 14.6T
DOFA [7] 4 111M 17.47B 6.35 20.6B
TerraMind [8] v 8M  17.84B 4.88 451.6B
CSMAE [9] 4 8™ 5.64B 1543 3.9B
CSMOoE (ours) v 27IM 10.11B  26.81 14.5B

in floating-point operations (FLOPs), needed for inference of
an image. The importance of computational efficiency has
already been recognized in various RS tasks, such as scene
classification [17], [18], [19], semantic segmentation [19],
[20], and visual question answering (VQA) [21], [22]. By
contrast, such efficiency-oriented approaches remain largely
unexplored in the context of FMs. Table I shows the compu-
tational complexity and representational capacity of different
FMs as well as their ability to process multiple data modalities
and the size of their pretraining datasets. To illustrate the trade-
off between computational complexity and representational
capacity, in the table we also report the ratio of parameters
(in millions) to FLOPs (in billions), which we refer to as the
capacity-to-compute (C2C) ratio:
# Params (in millions)

= . 1
©2C = 5 Ops (in billions) M

Higher ratios indicate more efficient FMs in terms of rep-
resentational capacity per unit of computation. By analyzing
the table, one can see that some FMs focus on maximizing
representational capacity (e.g., Prithvi2-600 with over 630
million parameters). However, their computational complexity
during inference exceeds 160 billion FLOPs per image, result-
ing in a low CsC ratio. Others, such as Satlas, operate at a
lower computational budget but offer limited representational
capacity with only 88 million parameters. Models like DOFA
and TerraMind introduce valuable multi-modal learning capa-
bilities, yet their per-sample inference cost remains high (ap-
proximately 17.5 billion FLOPs), indicating that improvements
in generalization often come with significant computational
resource demands.

Although inference efficiency is essential for model deploy-
ment, pretraining efficiency is equally critical given the scale
of recent RS FMs. Reducing the dataset size by eliminating
redundant samples is therefore essential to improve training
efficiency and scalability [24]. Training on datasets comprising

IDifferent versions of the model exist for individual modalities, but no
unified model for multiple modalities.

hundreds of billions of pixels introduces substantial engineer-
ing and computational challenges [25]. Efficient storage, load-
ing, and throughput must be ensured to prevent data pipeline
bottlenecks, which often require specialized infrastructure. In
addition to these computational challenges, training datasets
can contain redundant samples, such as images from the same
land-use/land-cover (LULC) class under the same climate zone
(e.g., extensive deserts or forests) [1], [3], [26], [27]. When
included in the training data, these additional samples may
not contribute significant new information [28]. Therefore,
when the considered models are computationally intensive,
a high amount of redundancies may increase the training
costs without improving the capability of the learned repre-
sentations, resulting in minor improvements relative to the
increasing computational demands. Recent studies have begun
to address similar challenges in general machine learning
through automatic data selection and curation strategies (e.g.,
graph-based [29] and clustering-based [24] approaches). In
the context of large-scale RS FMs, however, such strategies
remain underexplored and are not yet widely established. In
practice, the prevailing paradigm still assumes that increasing
the size of the pretraining dataset uniformly translates into
better performance, often without explicitly accounting for
redundancy. The above-mentioned issues result in: i) the com-
putational inefficiency of current RS FMs during pretraining
and inference; and ii) the absence of efficient and widely
established data selection strategies to mitigate redundancies
in pretraining data for RS FMs.

To address these issues and achieve efficiency in training
and inference, we propose an approach that aims to inject
a mixture-of-experts (MoE) into a RS FM. Although prior
studies have explored the use of MoEs in RS model devel-
opment [30], [31], [32], [33], these works primarily employ
MoEs as a means to scale model capacity, rather than to ex-
plicitly target computational efficiency. In contrast, our focus is
on leveraging MoEs to enhance efficiency, for which we adopt
the Soft MoE [34], a variant designed to combine high rep-
resentational capacity with reduced computational cost. When
Soft MoEs are applied in transformers [35], [36], each input
token is softly routed to multiple expert branches, and their
outputs are combined using the learned routing weights. The
mechanism is particularly well-suited for efficient RS FMs, as
it combines a lightweight routing mechanism with soft token
mixing, thereby increasing representational capacity while
reducing computational complexity. We inject the Soft MoE
into the Cross-Sensor Masked Autoencoder (CSMAE) [9] FM
to create our FM that we call Cross-Sensor Mixture-of-Experts
(CSMoE). In addition, we introduce an efficient thematic-
climatic descriptor-driven sampling strategy that selects a rep-
resentative training set from a large-scale image archive, while
retaining the full geographic and thematic-climatic diversity
of the original archive. To this end, our proposed thematic-
climatic descriptor-driven sampling strategy consists of two
stages: The first stage aims at preserving thematic-climatic
diversity while reducing the sample size. This is achieved
by assigning each sample a combination of climatic and
thematic descriptors (e.g., a climate zone and a set of LULC
classes). Then, a fixed number of samples is drawn from
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each combination of thematic-climatic descriptors to build an
initial subsampled dataset. In the second stage, the aim is to
enhance the spatial diversity of the subset. This is achieved
by applying a genetic algorithm [37] that maximizes the
geodesic distance within the selected samples. Through these
two stages, the strategy reduces redundancy by discarding
semantically similar samples (e.g., multiple samples from the
same combination of climate and thematic product descriptors)
while maintaining the geographic and thematic-climatic diver-
sity of the original archive. This helps reduce the training time
and environmental impact of FM training in RS. We train our
CSMoE model using a subset of MajorTOM Core [13], where
we select a training set using our thematic-climatic descriptor-
driven sampling strategy. Through extensive experiments, we
demonstrate that our CSMoE model archives performance
compared to state-of-the-art FMs, while significantly reducing
inference cost. These results underscore CSMoE’s efficiency
and strong generalization capability across diverse remote
sensing tasks.

The main contributions of this work are summarized as
follows:

o We propose the first computationally efficient FM in RS,
CSMOE, that injects a Soft MoE into CSMAE. As shown
in Table I, this integration enhances the model’s repre-
sentational capacity while significantly reducing compu-
tational complexity during both training and inference
compared to models of similar size.

o We introduce a new thematic-climatic descriptor-driven
sampling strategy for sampling from large-scale, un-
labeled RS archives. The strategy selects the optimal
training set based on the user-defined sample count.

o We conduct extensive experiments on a suite of single-
and multi-label scene classification and semantic seg-
mentation (pixelwise classification) benchmarks, as well
as both uni-modal and cross-modal content-based image
retrieval (CBIR) tasks in RS and compare our CSMoE
model with state-of-the-art FMs in RS. We demonstrate
that CSMoE has a comparable or superior downstream
performance while requiring fewer computational re-
sources than competing models.

The remainder of this paper is organized as follows: In
Section II, we introduce the proposed CSMoE model and our
efficient thematic-climatic descriptor-driven sampling strat-
egy. Section III describes the experimental setup, including
the construction of the pretraining dataset via the proposed
sampling strategy, as well as the downstream datasets and
implementation details. Section IV presents a comprehensive
evaluation of the CSMoE model on scene classification, se-
mantic segmentation, and image retrieval tasks, along with a
sensitivity analysis. Finally, Section V concludes the paper.

II. PROPOSED EFFICIENT REMOTE SENSING
FOUNDATION MODEL WITH SOFT MIXTURE-OF-EXPERTS

Let X and )Y denote two co-registered multi-modal re-
mote sensing image archives associated with different image
modalities (i.e., acquired by different sensors). The archives
X = {z;}¥, and ¥ = {y,}}¥, each include N images,

where x; and y; are the ¢th RS images in the respective
archives and (x;,y;) is the ith multi-modal image pair that
includes two images acquired by different sensors on the same
geographical area. We assume that an unlabeled training set
T = {(z:,y;)}, is available for representation learning.
Although our approach can be extended to multiple modalities
by applying the proposed processing steps in a pairwise
combination, we focus on the dual-modality case to simplify
the mathematical treatment in this paper.

The computational complexity of current RS FMs during
both training and inference poses significant challenges for
operational deployment. To address this limitation, we propose
to integrate the MoE mechanism into existing MAE-based
FM architectures to achieve improved computational efficiency
while maintaining or increasing representational capacity. For
representation learning from the training set 7, MIM (i.e.,
SSL through MAESs) has recently emerged as one of the most
successful approaches in RS. Among various MAE variants,
the CSMAE model [9] has shown promising results in both
unimodal and cross-modal representation learning. However,
like all existing multi-modal MAE-based FMs, CSMAE suf-
fers from a high computational complexity during training
and inference with limited representational capacity. As a first
time in RS, we explore the effectiveness of integrating the
Soft MoE mechanism into MAEs to create computationally
efficient FMs. To this end, we select CSMAE as our base
model due to its proven cross-modal capabilities and apply our
MOoE injection adaptation to create CSMoE. In the following
subsections, we first provide background information on the
CSMAE model, and then present our adaptation that injects
the Soft MoE into CSMAE and our efficient thematic-climatic
descriptor-driven sampling strategy.

A. Basics on Cross-Sensor Masked Autoencoder

Given an image * € X or y € ), MAEs operate by
dividing the image into P non-overlapping image patches of
size px p, forming a token set P = {p,, }5_;. A random subset
M cC {1,...,P} is masked, while the remaining tokens

U = {1,...,P}\ M are passed to a transformer encoder
e to produce latent representations Z;; as follows:
Zy = e({pntneu) 2

These representations, along with a learned mask token z,,,
are used by a decoder d to get the reconstructed tokens {p,, }
as follows:

The learning objective is computed over the masked positions
on the reconstructed tokens:

LUMR = ReCL({i)n}TLGMa {pn}nGM)a (4)

where RecL is a reconstruction loss (e.g., mean average error
Or mean square error).

The CSMAE model [9] extends this formulation by in-
troducing two adaptations of MAEs to enable cross-modal
representation learning: i) extending the encoder into a multi-
sensor encoder and a cross-sensor encoder; and ii) extending



SUBMITTED TO ARXIV

the learning objective with latent similarity preservation and
cross-modal reconstruction. To accomplish this, first two in-
dependent masks M? and MY and their inverse U and UY
are created. These are used on the input images, as described
above, to get a set of tokens for each image modality. Then,
the multi-sensor encoder, which uses one sensor-specific vision
transformer (ViT) encoder per modality, is applied to the
unmasked patches. Here, each sensor-specific encoder (e7;
or e?\} g) has its own set of parameters, enabling the accurate
modeling of sensor-specific image characteristics. Then the
cross-sensor encoder ecg (a ViT encoder that uses shared
weights among all modalities) is applied on the output of
the multi-sensor encoder. It aligns the latent representations
of the different modalities into a shared embedding space by
processing the output of the multi-sensor encoder as follows:

2y = ecs(ens({Py Yneux)), (5)
ZY = ecs(eXs({Py bneu))- (6)

To enable cross-modal alignment, the CSMAE model is
trained using two cross-modal learning objectives: i) cross-
modal reconstruction; and ii) latent similarity preservation. For
cross-modal reconstruction, two sensor-specific decoders dax
and d¥ are employed. Each decoder takes as input the features
of one modality (ng or Zy ) as well as a modality-specific
mask token (z: or zY) to reconstruct the masked patches of
the other modahty as follows:

(b} =d(2,2Y), (7
{py} =d(2y, zfi)- (8)

The cross-modal reconstruction loss Lcymr is then calculated
using the same reconstruction loss as the single-modal recon-
struction:

Lemr = ReCL({IA):T)L)}nEMXv {pr)j}neMX)
+ ReCL({pf}nEMJ’a {pf}ne/\/ly)- ©)

Note that here, for the loss calculation of one modality, the
mask of the other modality is used, as this mask is also used
to calculate the latent features.

For preservation of latent similarity, the mutual information
loss Ly [38], which is based on contrastive learning with
normalized temperature-scaled cross-entropy [39], is used.
For a batch of |B| image pairs, let c¥ ,czy be projected
representations (e.g., projected [CLS] tokens) that should be
aligned in the latent space. Then, using a similarity function
sim(-,-) (e.g., cosine similarity), a temperature parameter 7
and the indicator function 1, Ly can be defined as:

; — o exp (Slm( C; ,C; )/T)
£ Y) = o (quB]l[q#] exp (sim(e, e )/T)>
(10)

(1)

Ly (B) = > (E(xX,Y) + 1, X)) .

2|B| i€B

Additionally, the same learning objective Lymr as in single-
modal MAEs is applied on both modalities individually.

B. The proposed CSMoE Model

To simultaneously address the computational complexity
limitations of masked autoencoder—based models while pre-
serving cross-modal representation learning, we introduce
a general adaptation for efficient multi-modal processing.
Although the proposed adaptation can be applied to any
transformer-based FM, in this paper we apply the adaptation
to CSMAE, resulting in the Cross-Sensor Mixture-of-Experts
(CSMoE) model, the first compute-efficient multi-modal FM
for RS. The proposed CSMoE model extends CSMAE by
integrating Soft MoE mechanisms into the encoder compo-
nents, enabling selective expert activation while maintaining
both intra-modal and inter-modal characteristics. To achieve
this, we adapt CSMAE by: i) integrating expert routing; ii)
adapting the encoder architecture; and iii) including regular-
izing training objectives. Fig. 1 shows an illustration of the
CSMoE model, while our adaptations are explained in detail
in the following.

The proposed CSMoE model leverages Soft MoE to reduce
computational complexity while maintaining model capacity
through selective expert activation. Unlike sparse MoEs [40]
that route individual tokens to top-k out of R experts, Soft
MoE employs a two-stage routing mechanism based on S
intermediate representations called slots {sy}5_,. As shown
in Fig. 2, each slot summarizes a subset of input features
through weighted aggregation, where slot—feature similarities
are converted into dispatch weights .y ,, and combine weights
aY,n:

§19,n
y p, = softmax,, -

) , Gy, = softmaxy(g,,), (12)

where 7 is a temperature parameter, softmax,, and softmaxy
are softmax operations along the token and slot dimensions,
respectively and {3y, }1_, are slot embeddings (learned pro-
jections of the input features {z,}2_,) for expert ¥J. Each slot
sy 1s formed as a weighted average of the input features as:

P
Sy = E Ay n * Zn-
n=1

The slots are then processed by one assigned expert each
and the final outputs are reconstructed through weighted
aggregation. This approach reduces expert calls from k- P to S,
enabling efficient processing while preserving representational
capacity.

The CSMoE model incorporates Soft MoE into both en-
coder components of CSMAE. The multi-sensor encoder em-
ploys modality-specific MoE layers, where separate expert
networks with different parameters are utilized for differ-
ent image modalities, allowing accurate modeling of sensor-
specific characteristics. Additionally, the cross-sensor encoder
employs shared MoE layers, where the same expert networks
process features from all modalities to facilitate inter-modal
pattern learning. Based on this, we define the CSMoE model
as follows:

1) Modality-Specific Encoding: Each image modality is
processed through its dedicated encoder consisting of Lﬁs Soft
MokE transformer encoder layers. For example, for modality X,

13)
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Fig. 1: An illustration of the CSMoE model for two image modalities. Each modality has one modality-specific encoder
consisting of L% ¢ Transformer-MoE layers and one modality-specific decoder consisting of L%, Transformer layers.
Additionally, all modalities share a cross-sensor encoder consisting of LZ g Transformer-MoE layers. Different colors indicate

the processing pathways for each RS image modality.

P
83 = E QA3n * Zn

n=1

T

Slots

E,

Fig. 2: Qualitative example of the dispatch process. Slots
(s1, ... 8g) are formed as a weighted combination of the input
features (21, ... z49 for P = 49 patches) and assigned to
experts (E1, ... Eg). The dispatch weights a ,, for slot 3 are
shown in red, features without annotation have a zero-weight.
Note, that in the model this process happens in the embedding
space but for visualization it is shown in the image space.

the unmasked tokens 7?5,‘ are processed using it’s modality-
specific encoder e3¢ as:

Zs = ens(Pi), (14)
where each encoder layer applies self-attention followed by
Soft MoE processing. For modality ), the processing is
identical using its respective modality-specific encoder e}\} g

These modality-specific encoders enable expert specialization
for different semantic patterns within each image modality.

2) Cross-Sensor Encoding: The outputs from both
modality-specific encoders are processed through a shared

cross-sensor encoder ecg consisting of L& Soft MoE trans-

former encoder layers:

X
ZCS -
Yy
ZCS

ecs(Zs)

ecs(Zys)-

5)
(16)

The shared Soft MoE transformer encoder layers learn to route
cross-modal patterns to appropriate experts, facilitating inter-
modal relationship modeling while maintaining computational
efficiency.

3) Modality-Specific Decoding: For reconstruction, sepa-
rate decoders d’,g consisting of L standard transformer
layers are employed. The decoders process cross-sensor rep-
resentations to reconstruct both unimodal and cross-modal
targets:

Poy”’ = Linearj j (&}, 5(ZLs, 22.)), (17)
where j,j’ € {X,¥} and j + j' denotes the reconstruction
of the image modality j using features of the image modality
j'. The decoders do not include MoE components as they are
removed after pretraining.

4) Training Objective Extensions: To regularize expert
routing and ensure stable training, we extend the CSMAE
training objectives with two additional loss functions. The slot
repulsion loss Lgep encourages reduced correlation between
slot embeddings:

s S

D> (Ba,50)),

Y=19'=1

1

Lrep = — =5

- (18)

while the entropy loss Lgnt promotes balanced expert usage:

s P

Z Z aY,n log (aﬂ,n + 5) )

Y=1n=1

1

3p 19)

EENT = -

where ¢ is a small term for numerical stability.
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The overall training objective combines the CSMAE losses
with regularization terms:

Liotat = Lumr + Lomr + Lvin + A - Lrep + 7 - Lent,  (20)

where A and ~ are scaling parameters controlling the regu-
larization influence. In this way, the characterization of cross-
modal RS image representations is achieved by learning to
reconstruct both intra-modal and inter-modal image content
while maintaining computational efficiency through selective
expert activation and promoting stable expert usage through
regularized routing.

C. A Thematic-Climatic Descriptor-Driven Sampling Strategy

The efficiency of FM-training in RS depends not only on
model design choices, but also on training data selection. The
use of global datasets often introduces substantial redundancy,
where vast amounts of data contribute little additional in-
formation. For instance, when training on global coverage,
more than 70% of the images may depict oceans, which are
irrelevant for most land-focused applications. Even within land
areas, extended homogeneous regions, such as the Amazon
rainforest, the Siberian taiga, or the Sahara desert, dominate
the dataset but provide limited additional information.

To address this issue, we propose a thematic-climatic
descriptor-driven sampling strategy that samples a reduced
but representative training set from a large-scale RS data
archive. This strategy efficiently samples a training set with
a wide range of geographic and thematic-climatic variability.
The strategy consists of two stages: i) auxiliary descriptor
generation, where each image is associated with climatic
and thematic descriptors derived from global climate zone
and thematic product datasets; and ii) entropy-maximizing
stratified sampling, where a genetic algorithm selects spatially
dispersed and thematically-climatically balanced samples.

1) Auxiliary Descriptor Generation: Let D = {p;}¥,
denote the set of bounding boxes (the set of coordinates that
define the spatial extend) of the images within a large-scale
RS data archive T that consists of NV images or co-registered
image tuples, where ¢; contains the longitude and latitude
coordinates of the bounding box of the ith image of 7. We
assume that the images are unlabeled, i.e., no thematic (e.g.,
LULC) or climatic information is directly available. In the first
stage, each image is associated with a thematic and a climatic
descriptor derived from global raster layers. Specifically, each
bounding box ¢; is linked to: i) a climate zone raster Mcjimate
(e.g., Koppen—Geiger [41]), which provides coarse climatic
information; and ii) a thematic land-cover product Mrp (e.g.,
ESA WorldCover [42]), which captures land-use properties at
finer scale. This combination allows us to incorporate both
climate and local land-cover information, two complementary
dimensions of variability, into the sampling process.

In detail, each bounding box ¢, is associated with a climate
stratum u; and a thematic stratum v;, depending on the overlay
with the reference rasters. The resulting set of tuples is there-
fore represented as D' = {(p;,ui, v;)}Y, | N' < N, where
only images covered by both rasters are retained. We refer to
these thematic-climatic strata as descriptors since they are not

manually labeled but derived from external data sources. These
descriptors are used for the subsequent stratified sampling
stage by embedding thematic and climatic variability directly
into the sampling process. The algorithm of the descriptor
generation stage is given in Algorithm 1.

Algorithm 1 Assign Thematic and Climatic Descriptors to
Coordinates

Require: Set of coordinates D = {¢;}¥

Require: Climate map Mjimye With bounds ME
Require: Thematic product map Mrp with bounds M5,
Ensure: Descriptors for each coordinate: climate stratum wu;

and thematic product stratum v;

1: Initialize empty annotated coordinates D’ = {}
2: for each coordinate ¢; € D do

3 if o, ¢ ME .. or o; ¢ ME then

4: Continue to next coordinate

5 end if

6 U < Melimate [‘Pz]

7 v; < Mrp[ep;]

8: Add (p;,u;,v;) to D
9: end for
10: return Set of pseudo-annotated tuples D’

2) Entropy-Maximizing Stratified Sampling: Given the set
of tuples D’ containing locations and descriptors, the entropy-
maximizing stratified sampling aims to construct a reduced
training set D* that preserves the spatial and thematic-climatic
variability of 7 while minimizing redundancies among the
selected samples. To this end, we stratify D’ by joined thematic
and climatic descriptors and then sample within each joined
stratum using an entropy-driven sampling process. Specifi-
cally, for each pair (u,v) of climatic and thematic strata, we
define:

Supw = {(pi,ui,v) €D | u; =u, v;=v}. (21

While some joined strata are small and can be fully retained
(i.e., the size of the joined stratum is smaller than a user-
defined target sample count per stratum [N;), others are ex-
tensive and can be sampled from to reduce redundancy. In
contrast to random sampling, we use the spatial dispersion
(distance) of selected samples within each joined stratum as
a criterion for sampling. To this end, we employ a genetic
algorithm that iteratively optimizes a subset of samples within
Su,»- Each candidate solution {S,, ., | b} is a set of samples,
where b is a binary mask indicating which samples of the
joined stratum are selected for the candidate solution. The
fitness of the candidate solution is measured by an entropy-
based score that uses the pairwise Haversine distances. This
encourages the selection of samples that are representative
and spatially diverse. Standard evolutionary operators are used
to optimize candidate solutions. Additionally, to maintain the
target sample counts per joined stratum N, we use an adaptive
constraint mechanism: if a candidate solution exceeds 110%
of the target sample count, it is randomly pruned; if it falls
below 90% it is randomly augmented.

After convergence, or if a given compute budget is reached,
the candidate solution with the highest fitness is selected. The
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process is repeated independently across all joined strata, and
the union of candidate solutions with the highest respective fit-
ness defines the training set D*. This strategy ensures that the
resulting training set is spatially well-dispersed, thematically
and climatically balanced, and substantially less redundant
than the original archive. The algorithm of the optimization
stage is given in Algorithm 2.

Algorithm 2 Entropy-Based Subsampling via Genetic Opti-
mization

Require: Set of location-descriptor tuples D’

Require: Number of samples per joined stratum N, number
of iterations 7', population size IV, climate zones C\,
thematic product classes C,

Require: Mutation rate r,,, crossover rate 7.

Ensure: Optimized stratified sample subset D* with high
spatial entropy

1: Initialize empty sample subset D* = {}

2: for all climatic strata u € C,, do

3 for all thematic strata v € C,, do

4: Extract subset S, , C D’ where u; = u, v; = v

5: Ng < |Su’v

6

7

8

9

if ng < N, then

Add all elements of S, , to D*
else

Define objective function

f4(b) < Entropy({Su. | b})

10: Run genetic algorithm
b* <+ GA(fg,ng, T, Np, Ng, 7', Tc)
11: Si oy & {Suw | 0}
12: D*«D*US,,
13: end if
14: end for
15: end for

16: return D*

III. DATASETS AND EXPERIMENTAL SETUP
A. Efficient Sampling of Large-Scale Pretraining Data

We pretrain on a dataset that we construct based on Major
TOM Core (MTom) [13]. We select MTC as our large-scale
RS data archive since it is publicly available, contains globally
distributed samples, and has already been adopted in recent
studies, indicating its potential as an emerging benchmark for
global-scale representation learning. This makes it a suitable
and reproducible foundation for our sampling strategy. To
construct our pretraining dataset, which we refer to as Minor
TOM Core (MTom,,), we use our proposed thematic-climatic
descriptor-driven sampling strategy on MTom. Additionally, to
evaluate the effect of using the entropy-maximizing stratified
sampling, we create a second dataset, denoted as Minor
TOM Core (random) (MTom,.), which is created using the
same thematic-climatic stratified sampling but without apply-
ing the genetic algorithm to increase the spatial diversity.
Both datasets include only tiles with matching Sentinel-1
(S1) synthetic aperture radar (SAR) and S2 multispectral
image pairs. For auxiliary descriptor generation, we utilize

TABLE II: Statistics on the full MTom dataset, a stratified
subset MTom,. and our entropy-based stratified subset MTom,,.

Statistic MTom MTom, MTom,
Number of tiles 1302691 18785 18 846
Tiles per climate zone 43423 626 628
Tiles per LULC class 118426 1707 1713
Tiles per combination

(Ns > 90) 7434 0 16395 9804 1000 2
Average Distance 6737km 8192km 8648km
Min. distance 10km 32km 36km

Distance within Sy 4 2748km 1811km 5106km

the Koppen-Geiger climate classification map [41] for climate
zone information and ESA WorldCover [42] as the thematic
product. We associate each tile in MTom with a Koppen-
Geiger class and ESA WorldCover class. For computational
reasons, we only use the center location of each tile for this.
Based on the association, we use our entropy-maximizing
stratified sampling for MTom,, and a random selection for
MTom,.. Both sets contain Ny ~ 100 samples per joined
stratum. For the sampling of MTom,,, the genetic algorithm is
run for T" = 2500 iterations with population size N, = 10,
crossover rate r. = 0.5, and mutation rate r,,, = % where
ng is the total number of samples in the joined stratum.

Table II shows that both datasets have similar class balance
and distance between tiles, but MTom,, contains a significantly
greater spatial diversity within each class. Fig. 3 visualizes
the distribution of samples with respect to their location.
As one can see from the figure, large homogeneous regions
(e.g., the Amazon forest, the Sahara desert, or Siberia) and
small islands exhibit significantly improved spatial diversity
when entropy-maximizing stratified sampling is applied to the
dataset. Following [43], we split each tile of MTom, into
patches of size 120 x 120 pixels, discarding those that are too
small (due to non-integer multiples of tile-patch size relations)
or contain invalid pixels (see Fig. 4). This yields a total of
1 055080 valid training patches, of which we randomly select
5% to track for validation loss during the training.

B. Description of Downstream Tasks

We evaluate our pretrained CSMoE model on four scene
classification and two semantic segmentation tasks from the
geobench benchmark collection [44] as well as on unimodal
and cross-modal CBIR on the BigEarthNet-v2 benchmark
dataset [43]. The datasets for scene classification are the
following:

o m-bigearthnet is a multi-label LULC classification
dataset covering ten European countries. It contains
22000 S2 images, each labeled with one or more of the
43 CLC2018 [45] classes.

o m-brick-kiln is a binary scene classification dataset for
brick kiln detection in Bangladesh. It contains 17061 S2
images that are labeled with brick-kiln or no-brick-kiln.

e m-so2sat is a multi-class climate zone classification
dataset. It contains 21964 S1 and S2 images from 42
globally distributed cities and is associated with one of
17 local climate zones.
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Fig. 3: Tile density per 1° x 1° square (a) in random sampling (MTom,); and (b) using our entropy-maximizing stratified
sampling (MTom,,). Red circles mark regions that have a significantly lower spatial diversity of samples in MTom, compared
to MTom,,, e.g., the Amazon forest, the Sahara desert, or Siberia.

(b)

Fig. 4: Result of splitting and filtering a MTom,, tile into
patches: (a) True color representation of the Sentinel-2 tile;
(b) False colour composites of the Sentinel-1 tile in decibel-
scale with red channel as VV, green channel as VV+VH, and
blue channel as VH. Patches marked with a red x are dropped
due to invalid pixels or incompatible size.

o« m-eurosat is a multi-class LULC classification dataset
covering Europe. It contains 4000 S2 images, each la-
beled with one of 13 classes.

For semantic segmentation, we use the following datasets:

o m-cashew-plant is a cashew plantation segmentation
dataset from 1800 S2 images obtained over Benin. Each
pixel is labeled with one of seven classes.

o m-SA-crop-type is a crop-type segmentation dataset
from S2 images. It contains 5000 images from Bran-
denburg, Germany, and Cape Town, South Africa. Each
pixel is associated with one of ten crop type labels.

For CBIR, we conducted experiments on the BigEarthNet-v2
benchmark dataset [43]. We use the following sets of image
pairs:

o BENvV2-14k comprises of 13 683 BigEarthNet-v2 image
pairs acquired over Serbia during the summer months.
Each S1-S2 pair is labeled with one or more classes from
the 19-class nomenclature introduced in [46].

o BENv2-243k comprises of 243 130 BigEarthNet-v2 im-
age pairs acquired over the ten European countries during

the summer and autumn months. Each S1-S2 pair is
labeled with one or more classes from the same 19-class
nomenclature.

We separately stacked: i) the VV and VH bands of Sl
images (if applicable); and ii) the S2 bands associated with
10m and 20m spatial resolution, while nearest-neighbor inter-
polation was applied to the 20m bands. For the datasets in
the geobench benchmark collection, we follow the proposed
train/validation/test-split from [44]. For the CBIR experiments,
the validation split as proposed in [43] of the respective set of
images was used to select query images, while images were
retrieved from the test split. We evaluate two scenarios for
CBIR: i) unimodal CBIR, where query images and retrieved
images belong to the same image modality; and ii) cross-
modal CBIR, where query images are selected from one image
modality and retrieved from the other image modality.

C. Experimental Setup

We trained our CSMoE model in four variants with different
patch sizes p € {32,28,16,14}. If not noted differently, the
CSMoE model was trained for 150 epochs on MTom,, with
a mini-batch size of 256 —512, depending on the memory re-
quirements of the model, and an image size of 224 x 224 pixels.
All model variants use four modality-specific encoder layers
(L% ¢ = 4), two cross-sensor encoder layers (LEg = 2), four
modality-specific decoder layers (LAD/[ g = 4), and eight experts
per layer (S = 8). The embedding dimension was set to 768
for the encoder and 256 for the decoder. During pretraining, we
follow [9] and set both the masking ratio and the temperature
of the Ly to 0.5. The AdamW optimizer with learning rate
10~* and a cosine annealing learning rate schedule with linear
warm-up was utilized. All the experiments were conducted on
NVIDIA 4xA100 or 4xH200 GPUs.

We carried out three different kinds of experiments to:
i) perform a sensitivity analysis with respect to different
variants of the CSMoE model; ii) compare the CSMoE model
variants with other FMs in terms of their scene classification
and semantic segmentation performance relative to their com-
putational complexity; and iii) compare the CSMoE model
variants with the baseline CSMAE [9] model in terms of
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TABLE III: The hyperparameters selected for evaluation on the
geobench benchmark collection for the comparison of different
FMs.

Task Dataset CBIR meg Metric
K LR

m-bigearthnet - 1 x 1072 mAP,

Classification  M-Prick-kiln - 3x1073  AA
m-so2sat - 1x1072  AA

m-eurosat - 5 x 102 AA

Seementation m-cashew-plant - 3x 1074 IoU
g m-SA-crop-type - 1x 1072 TIoU
BENv2-14k 10 - F1

CBIR BENv2243k 10 ; Fi

their uni-modal and cross-modal CBIR performance. For the
sensitivity analysis, we vary the: 1) patch size p; 2) strategies
of constructing the classification token; and 3) the number of
pretraining epochs. For the comparison with other RS FMs, we
compare the CSMoE variants with: Prithvi V2 [1] in the 300
million and 600 million parameter versions; Satlas [2] in the
swin-base configuration; DOFA [7] in the base configuration;
TerraMind [8] in the base configuration; and CSMAE [9] in
the SECD configuration. For all models except for CSMAE,
we use the implementations and checkpoints provided in
TerraTorch [23]. For CSMAE, we use the implementation
provided in [9] and train one model on BigEarthNet-V2 [43]
and one on MTom,,. We use the model trained on BigEarthNet-
V2 for the scene classification and semantic segmentation
following [9], and the model trained on MTom,, for unimodal
and cross-modal CBIR to avoid evaluating based on training
data bias.

For the scene classification and semantic segmentation
tasks, we consider probing as our downstream scenario, where
we freeze the backbone of the FM and only train a linear
layer and a UPerNet [47] decoder for scene classification
and semantic segmentation, respectively, for 50 epochs. We
performed a hyperparameter search and fixed the hyperparam-
eters as shown in Table III. We report the results in terms of
their micro-mean average precision (mAP,) for multi-label
scene classification, average accuracy (AA) for multi-class
scene classification, mean intersection-over-union (IoU) for
semantic segmentation, and F;-score for uni- and cross-modal
retrieval. All scores are reported in %. For each CBIR task,
the task is denoted as <Q>—<R>, where <Q> denotes the
image modality of the query images and <R> denotes the
image modality of the retrieved images.

IV. EXPERIMENTAL RESULTS
A. Sensitivity Analysis

In this subsection, we investigate the impact of three key
design factors of the proposed CSMoE model, which influ-
ence its computation cost and the effectiveness of using its
capacity (which can be seen by measuring the performance
on downstream tasks): 1) patch size p; 2) classification token
construction strategy; and 3) training duration. In addition, we
evaluate these design choices to quantify their trade-offs in
terms of computational efficiency.

1) Patch Size: To analyze the effect of patch size p on the
performance and computational cost of the CSMoE model, we
train four CSMoE variants with four different patch sizes p €
{14, 16, 28, 32}. Table IV shows the downstream performance
on the scene classification and semantic segmentation datasets
as well as the computational requirements in terms of number
of parameters, FLOPs and C,C ratio for different patch sizes
p-

From the table, one can see that CSMoE variants trained
with smaller patch sizes (p € {14,16}) outperform those
using larger patch sizes (p € {28,32}) across all classification
and segmentation tasks, with particularly large gains on the
segmentation datasets m-cashew-plant and m-SA-crop-type.
For example, CSMoE with patch size p = 14 achieves 59.4%
IoU and 39.8% IoU, compared to 46.0% and 35.8% for
CSMOoE with patch size p = 32, on the m-cashew-plant and
m-SA-crop-type datasets, respectively. A possible explanation
is that smaller patches retain finer spatial structures in the
embeddings, which may be particularly beneficial for tasks re-
quiring precise delineation of heterogeneous land-cover types.
However, this improvement comes with a substantial increase
in FLOPs, from 2.92B to 13.40B, and a corresponding drop
in the C,C ratio from 94.86 to 20.22. We observe that patch
sizes of 14 or 16 offer the best trade-off between performance
and compute, while larger patch sizes, though more efficient,
lead to under-utilization of the model’s capacity.

2) Classification Token Construction Strategy: To assess
how different strategies for constructing the classification to-
ken affect the downstream performance, we use the pretrained
CSMoE model with patch size p = 16 and train a linear
classifier, where we vary the strategy for extracting the input
token to the classifier. As shown in Table V, directly using the
[CLS] token yields the best overall performance across all
classification tasks, with 62.6% mAP, on m-bigearthnet and
84.9% AA on m-eurosat, outperforming alternatives such as
averaging all tokens (60.1% mAP,, 82.3% AA) or averaging
all tokens excluding the [CLS] token (60.2% mAP,, 82.3%
AA). It is worth noting that reusing the normalization applied
during contrastive pretraining, with or without the projection
head, leads to significantly degraded results. For example,
using the normalized (denoted as “norm. [CLS]”) or the
normalized and projected [CLS] token (denoted as “norm.
& proj. [CLS]”) on m-so2sat yields only 21.9% AA, which
is less than half of the un-normalized [CLS] token (denoted
as “only [CLS]”), suggesting a misalignment between the
pretraining and probing objectives. We would also like to note
that the strategy for constructing the classification token does
not affect the results on segmentation, as the classification
token is not used as a feature for segmentation. We conclude
that while simple averaging strategies offer reasonable perfor-
mance, using the raw [CLS] token remains the most effective
and robust choice for classification probing. However, it is
critical for achieving good classification performance that the
[CLS] token is used without normalization, although it was
trained during pretraining with normalization.

3) Training Length: To assess the influence of training du-
ration on downstream performance and convergence stability
and identify an optimal trade-off between final loss and down-
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TABLE IV: Comparison of different patch sizes p using linear probing. Performance is reported as mAP,, (%) for m-bigearthnet,
AA (%) for m-brick-kiln, m-so2sat, and m-eurosat, and IoU (%) for m-cashew-plant and m-SA-crop-type.

Classification

Segmentation CoC

Model p # Params T FLOPs | o
m-bigearthnet m-brick-kiln m-so2sat m-eurosat  m-cashew-plant m-SA-crop-type Ratio

32 62.6 93.2 44.1 84.9 46.0 35.8 277T™M 2.92B 94.86

CSMoE 28 65.1 93.8 46.3 84.9 48.3 36.7 275M 3.67B 7493

16 66.5 94.3 48.0 86.2 55.7 38.6 271M  10.11B  26.81

14 66.0 94.4 49.6 88.3 59.4 39.8 271IM  13.40B  20.22

TABLE V: Comparison of different strategies of constructing
the classification token using linear probing on CSMoE (p =
32). Performance is reported as mAP,, (%) for m-bigearthnet
and AA (%) for m-brick-kiln, m-so2sat, and m-eurosat.

Classification Token

Construction Strategy m-bigearthnet m-brick-kiln m-so2sat m-eurosat

avg. w/o. [CLS] 60.2 89.4 40.1 82.3
avg. all tokens 60.1 88.9 40.2 82.3
only [CLS] 62.6 93.2 44.1 84.9
norm. [CLS] 40.8 82.4 21.9 69.8
norm. & proj. [CLS] 40.8 82.4 21.9 69.8
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Fig. 5: Normalized average performance (%) and validation
loss obtained by CSMoE with patch size p = 16 when
pretrained for different numbers of epochs on MTom,, and
evaluated via linear and segmentation probing.

stream performance consistency, we evaluate CSMoE with
patch size p = 16 trained on MTom,, for up to 800 epochs,
where we save one weight checkpoint every 50 epochs. For
each checkpoint, we calculate the normalized performance per
dataset as the ratio of the current score to the best score
achieved across all epochs for that dataset. This normalization
allows for averaging across heterogeneous task metrics (e.g.,
AA, mAP,, and IoU). All checkpoints are evaluated under
the same linear probing protocol on the geobench benchmark
collection. Fig. 5 shows the normalized downstream perfor-
mance as well as the validation loss over the number of epochs
trained. As one can see from the figure, the resulting average
normalized performance increases from 97.5% at epoch 50 to
a peak of 99.0% at epoch 100, while the standard deviation
across datasets simultaneously decreases, indicating improved
stability. After epoch 150 (98.8% =+ 0.71%), performance
plateaus, while inter-dataset variance gradually increases, with
the standard deviation exceeding 3% from epoch 300 onward.

The validation loss, however, decreases for the full duration of
the training, albeit at a diminishing rate (5.71 at epoch 50, 5.21
at epoch 799). We adopt 150 epochs as the default pretrain-
ing duration, as it yields near-optimal average performance
with low inter-dataset variance, representing the best trade-off
between training efficiency and generalization stability.

B. Comparison with other Foundation Models

In this subsection, we analyze the effectiveness of the
proposed CSMoE model for scene classification by comparing
it with state-of-the-art FMs across four scene classification
datasets in the geobench benchmark collection. Fig. 6 shows
the corresponding scene classification results in terms of
mAP,, for m-bigearthnet and AA for the remaining datasets
with respect to the required number of FLOPs. One can see
that the CSMoE model variants consistently achieve high
classification performance across all datasets while requiring
significantly fewer FLOPs compared to most existing ap-
proaches. As an example, on the m-bigearthnet dataset, all
CSMoE model variants reach an mAP,, scores comparable
to Prithvi V2-600 while requiring an order of magnitude
fewer FLOPs (see Fig. 6a). On m-eurosat (Fig. 6¢) and m-
brick-kiln (Fig. 6b), the CSMoE model variants yield an AA
close to or even surpassing FMs such as the CSMAE and
Satlas models, while maintaining a much lower computational
budget. In particular, on the m-brick-kiln, all of our model
variants achieve an AA comparable to much larger models
such as Prithvi V2-300 and TerraMind, despite operating with
considerably fewer FLOPs. On the more challenging m-so2sat
dataset (Fig. 6d), even the most lightweight CSMoE model
variant that uses a patch size of p = 32 outperforms the
baseline CSMAE model, whereas the CSMoE model variants
with smaller patch sizes narrow the gap to the best-performing
FMs while maintaining high computational efficiency. We
would like to note that the FLOPs reported in the figures
are shown in logarithmic scale to better visualize the trade-
off between computational complexity and performance across
models. As a result, differences in FLOPs may appear visually
less pronounced. In general, our model variants with a smaller
patch size (p € {16,14}) tend to achieve better performance
across datasets, except on the m-bigearthnet dataset, where the
variant using a patch size of p = 16 yields a slightly higher
mAP,, than the variant using a patch size of p = 14.

We observe similar trends in semantic segmentation, as
shown in Fig. 7, which presents results on m-cashew-plant
(Fig. 7a) and m-SA-crop-type (Fig. 7b). All of our CSMoE
model variants demonstrate strong performance while operat-
ing at significantly reduced computational cost. For instance,
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Fig. 8: Qualitative comparison on three samples from segmentation probing on the m-cashew-plant dataset: (a) input image
(RGB); (b) reference maps; and (c) — (1) obtained segmentation maps from: (¢) DOFA; (d) Prithvi V2-300; (e) Prithvi V2-600;
(f) Satlas; (g) TerraMind; (h) CSMAE; and (i-1) CSMoE (ours) with patch sizes p = 32, 28, 16 and 14, respectively. Our

results are highlighted with a green border.

on m-cashew-plant, the CSMoE model variant with patch size
p = 14 achieves an IoU of 59.4%, outperforming TerraMind
(58.8%) and Prithvi V2-300 (58.5%) and closely approaching
the performance of Prithvi V2-600 (61.9%), while requiring
substantially fewer FLOPs (13.4G vs. 17.8G, 59.9G, and
162.2G, respectively). On the m-SA-crop-type dataset, the
CSMoE model variant with patch size p = 14 similarly
outperforms or closely matches the performance of mid-
sized FMs like CSMAE, Satlas, and DOFA. In line with our

results on scene classification, the CSMoE model variants
using smaller patch sizes generally yield stronger results,
with the variant that uses a patch size of p € {14,16}
consistently outperforming their counterparts with larger patch
sizes. These trends are further illustrated in Fig. 8, which
compares model outputs across three scenes from the m-
cashew-plant dataset. From top to bottom, each example shows
the true color representation of the input image (a), the ground
truth mask (b), predictions from other FMs (c-h), followed by
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TABLE VI: F;-scores (%) obtained by CSMAE and of CSMoE with different patch sizes p on uni-modal and cross-modal
CBIR when the image sets of BENv2-14k and BENv2-243k are considered.

Training Set

Model patch size p BENv2-14k BENv2-243k # Params 1 FLOPs | Efti(; +
Uni-Modal CBIR  Cross-Modal CBIR  Uni-Modal CBIR  Cross-Modal CBIR
SI—sS1 $2582  SI—S2 S$2S1 SIS 5282  SI1—S52 S2-81
CSMAE [9] 16 6661 7229 3086  42.63 6359 7078  33.04  37.83 87M  564B 1543
32 6284 69.13 3748  45.86 6006 6736 3226  32.63 27TM 292B 94.86
CSMoE (oursy 23 63.82 7141 4057 3865 6155 6948 3293 2702 275M  367B 7493
16 6595 7173 3614  49.49 63.16 7025 2459 3216  27IM  10.11B 268l
14 6671 7237 4301 4543 64.14 7089 3230 3104  27IM  1340B 2022

our CSMoE model variants with patch sizes p = 32, p = 28,
p = 16 and p = 14 (i-1). The results reveal that especially our
model variants with smaller patch sizes (k, 1) produce cleaner
and more coherent segmentation maps, often recovering fine
structures and class boundaries more accurately than the less
efficient baseline FMs.

For CBIR, we evaluate the CSMAE and the proposed
CSMoE model on the BENv2-14k and BENv2-243k sets of
images from BigEarthNet-v2. Table VI shows the correspond-
ing Fj-scores, the required number of model parameters and
the FLOPs when the two training sets are considered for
unimodal and cross-modal CBIR. By assessing the table, one
can see that in the unimodal CBIR scenario all of our CSMoE
model variants achieve CBIR performance comparable to or
surpassing that of CSMAE in both sets of images. For instance,
on BENv2-14k, the CSMoE model variant using a patch size
of p = 14 yields an F;-score of 66.71% on the S/—S1 task and
72.37% on the S2—S2 task, slightly outperforming CSMAE
(66.61% and 72.29%, respectively). On the BENv2-243k set
of images, the same CSMoE model variant again yields the
highest F;-score of the evaluated model in the S/—S/ and
S$2—S82 tasks with 64.14% and 70.89% compared to 63.59%
and 70.89% for the CSMAE model. In the more challenging
cross-modal CBIR scenario, we observe a general drop in
performance across all models. Here, on BENv2-243k, the
CSMAE model achieves the best results with 33.04% F; on
the S7—S2 task and 37.83% on $S2—S1, followed closely by
our CSMoE model with 32.93% when the variant with patch
size p = 28 on the S/—S2 task is considered, and 32.63%
for the variant that is using a patch size of p = 32 on the
S§2—S1 task. It is worth noting that these two CSMoE model
variants operate with 35% and 48% fewer FLOPs compared
to CSMAE while achieving only slightly lower F;-scores.
Additionally, on BENv2-14k, the CSMoE model variants with
smaller patch sizes (p = 14 and p 16) again achieve
the highest F; scores with 43.01 % and 49.49% on SI—S2
and S2—S1, respectively, significantly outperforming CSMAE
(30.86% on S1—S2 and 42.63% on S2—S1). Furthermore, we
would like to note that CSMAE was explicitly optimized for
CBIR, whereas CSMoE was trained more generally. Overall,
CSMOoE achieves comparable or superior performance in most
settings, demonstrating strong adaptability across unimodal
and cross-modal retrieval tasks.

Overall, for both sets of images, we find that smaller

patch sizes lead to stronger CBIR performance, in agreement
with observations from the scene classification and semantic
segmentation tasks. However, this trend is less evident than for
scene classification and semantic segmentation, and smaller
patch sizes are generally more beneficial in the unimodal
case, while differences diminish in cross-modal settings. We
theorize that this is likely due to the increased complexity
and domain gap, which benefits more from overall strong
encoders than from specific patch sizes. In particular, the
performance of our most efficient model variant in terms of
FLOPs, CSMoE with patch size p = 32, remains competitive
despite its reduced computational budget, underscoring the
efficiency of the proposed model. In summary, these results
confirm the success of the proposed CSMoE model in CBIR
tasks under restricted computational constraints.

V. CONCLUSION

In this paper, for the first time in RS, we have investigated
the effectiveness of injecting Soft MoEs into FMs to decrease
their computational requirements while retaining their rep-
resentational capacity. To this end, we introduce a general
adaptation for efficient multi-modal processing, which injects
a Soft MoE into CSMAE to address computational complexity
limitations while preserving cross-modal representation learn-
ing capabilities to create our CSMoE model. Based on our
adaptation that includes integration of expert routing, encoder
architecture modifications, and regularization of training ob-
jectives, we have created the first compute-efficient multi-
modal FM in RS, which we call CSMoE. Additionally, we in-
troduced a novel thematic-climatic descriptor-driven sampling
strategy that leverages climate zones and thematic products
to ensure thematic-climatic diversity while promoting spatial
diversity through genetic optimization. We trained our FM
using a training set that we created using our thematic-climatic
descriptor-driven sampling strategy. To evaluate our CSMoE
model, we carried out extensive experiments on scene classifi-
cation, semantic segmentation, and image retrieval tasks, while
comparing the CSMoE model with other state-of-the-art FMs.
Experimental results demonstrate the effectiveness of CSMoE,
achieving performance comparable or superior to existing
FMs while requiring significantly fewer FLOPs. The success
of CSMOoE relies on our two contributions: i) an effective
integration of Soft MoE mechanisms into both modality-
specific and cross-sensor encoders; and ii) an efficient data
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sampling strategy that preserves thematic-climatic diversity
while reducing computational overhead.

In our experiments, we also investigated the effects of patch
size, strategies for constructing the classification token, and the
number of pretraining epochs on the required computational
resources and the resulting downstream performance of our
CSMOoE model. From this sensitivity analysis, we have derived
guidelines to select the appropriate CSMoE model variant
under different computational requirements in RS as follows:

o If computational resources are severely constraint, the
CSMoE model variant with patch size p = 32 can be
selected due to its exceptional CoC ratio of 94.86 while
maintaining competitive performance.

o For the best trade-off between efficiency and perfor-
mance, the CSMoE model variant with patch size p = 16
can be selected for its high performance, especially in
segmentation tasks.

o For the highest downstream performance, the CSMoE
model variant that is using a patch size of p = 14
can be selected, achieving the highest performance of
the CSMoE model variants while maintaining a lower
computational complexity than the existing FMs.

We would like to note that, in this paper, we realized
our Soft MoE adaptation in the context of one specific RS
FM, namely CSMAE. However, the proposed adaptation can
be applied to most existing FMs in RS to improve both
their representational capacity and computational complexity.
Additionally, they are not limited to models using masked
image modeling as the learning objective, but can also be
used for models using contrastive learning or any other self-
supervised learning objective. As future works, we plan to:
i) extend our model to be able to process other modalities
such as video and text; and ii) increase the efficiency of the
proposed model by including task-specific expert pruning or
expert creation at runtime.
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