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ABSTRACT

In-context Learning (ICL) is an emerging few-shot learning paradigm based on
modern Language Models (LMs), yet its inner mechanism remains unclear. In this
paper, we investigate the mechanism through a novel perspective of information
removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode
queries into non-selective representations in hidden states containing information
for all possible tasks, leading to arbitrary outputs without focusing on the intended
task, resulting in near-zero accuracy. Meanwhile, we find that selectively remov-
ing specific information from hidden states by a low-rank filter effectively steers
LMs toward the intended task. Building on these findings, by measuring the hid-
den states on carefully designed metrics, we observe that few-shot ICL effectively
simulates such task-oriented information removal processes, selectively remov-
ing the redundant information from entangled non-selective representations, and
improving the output based on the demonstrations, which constitutes a key mech-
anism underlying ICL. Moreover, we identify essential attention heads inducing
the removal operation, termed Denoising Heads, which enables the ablation ex-
periments blocking the information removal operation from the inference, where
the ICL accuracy significantly degrades, especially when the correct label is ab-
sent from the few-shot demonstrations, confirming both the critical role of the
information removal mechanism and denoising heads.

1 INTRODUCTION

In-context Learning (ICL) is a promising application of modern Language Models (LMs), in which
a sequence of input-label pairs (demonstrations) concatenated with a query is fed to the LMs to
predict the query label. However, the inner mechanism of ICL remains unclear, despite some
progress (Zhou et al., 2024), including: linking ICL to specific input components (Min et al., 2022;
Yoo et al., 2022; Pan, 2023; Kossen et al., 2024), relating ICL-style inputs to pre-training data (Li
& Qiu, 2023; Gu et al., 2023; Han et al., 2023b; Li et al., 2024; Cho et al., 2025b), or analogy to
simpler algorithms (Zhang et al., 2023; Dai et al., 2023; Xie et al., 2021; Han et al., 2023a).

Among prior work, mechanistic interpretability studies (Elhage et al., 2021; Chan et al., 2022;
Reddy, 2024; Wang et al., 2023; Singh et al., 2024; Cho et al., 2025a; Yang et al., 2025; Minegishi
etal., 2025; Yin & Steinhardt, 2025; Bakalova et al., 2025) reduce ICL to functional LM components
(e.g., attention heads), capturing many phenomena and establishing causal roots to ICL accuracy.
Mainstream interpretations attribute ICL to Induction Heads (Elhage et al., 2021; Reddy, 2024; Cho
et al., 2025a; Yang et al., 2025) (introduced in §2), which copy the most relevant label token from
demonstrations to the outputs. However, such explanations fail in unseen label scenarios (Fig. 15),
i.e., the correct label is absent (Minegishi et al., 2025; Cho et al., 2025a) where ICL accuracy drops
but remains well above the zero-shot level (Table 6), implying additional supporting mechanisms.

Therefore, we propose a new perspective to interpret ICL, as shown in Fig. 1. Specifically, we argue
that ICL should not be viewed as “copying new information to the output (Cho et al., 2025a) or
learning new tasks (Li et al., 2024)”, but as removing task-irrelevant information from the query
to highlight the specified task. In detail, since the previous works demonstrate that various kinds
of information are encoded in various subspaces in LM’s hidden states (Saglam et al., 2025; Zhao
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Figure 1: (A) A zero-shot query is encoded into a non-selective semantic representation containing
all possible label information on various subspaces, making the output arbitrary among these labels.
(B) Demonstrations help LM filter the label information, saving only the task-related one on the
specific subspace (termed Task-Verbalization Subspace (TVS)), leading to the task-specific output.
(C) We explicitly find the TVS by injecting a low-rank filter into the residual stream of zero-shot
inputs, and train only the filter to drive the final outputs towards the ground-truth labels.

et al., 2025), we hypothesize that: LMs encode zero-shot queries with superposed information from
all possible subspaces that mix task-specific and task-irrelevant information, often causing zero-shot
outputs to yield plausible but arbitrary and unexpected answers (e.g., “Donald Trump, label:” —
“President” instead of “Male”, illustrated in Fig. 1 and demonstrated in Fig. 2). Meanwhile, task-
specific information is concentrated in one of these low-rank spaces (termed Task-Verbalization
Subspace (TVS)) in the hidden states, which leads LM to output in the expected pattern but covered
by the noisy information in the zero-shot scenario. To validate this, as shown in Fig. 1 (C), we inject
a low-rank filter into the last token’s residual stream of zero-shot inputs, and train the filter with the
ground-truth output to recover the TVS. Surprisingly, filters preserving only 0.7% of dimensions
boost accuracy from near-zero to a remarkable level, showing that removing the TVS-orthogonal
irrelevant information suppresses arbitrary outputs and enforces task-specific predictions.

Based on such findings, we generalize the task-oriented information removal from the injected zero-
shot settings to vanilla (i.e., un-injected) few-shot settings. As shown in Fig. 1 (B), we observe that
LMs, guided by few-shot demonstrations, implicitly drive the hidden states towards TVS calculated
independently in the previous low-rank filter injection experiments to produce task-specific outputs.
Moreover, we also confirm a consistent behavior in the aforementioned unseen label scenario. Fur-
thermore, we identify a set of attention heads (termed Denoising Head in this paper), which are
highly independent from the input labels and induction heads, conducting such task-oriented infor-
mation removal by re-encoding the queries’ information. Such head-localization enables ablation
experiments by zeroing these heads’ outputs, which results in substantial accuracy degradation, es-
pecially in unseen label scenarios, where the accuracy drops nearly to zero, strongly indicating the
task-oriented information removal as an essential mechanism for ICL.

In summary, the main contributions of this paper are: (1, §3) We propose a novel and systematic
evaluation framework to measure the task-oriented information removal dynamics in hidden states,
which is a versatile methodology for not only the ICL scenario. (2, §4.2, 4.3) Based on the proposed
evaluation framework, we propose a novel ICL mechanism from the task-oriented information re-
moval perspective, where demonstrations remove the task-irrelevant information from the query to
drive LM’s output on the specified task. (3, §4.4) We identify denoising heads responsible for task-
oriented information removal, enabling subsequent ablation to verify their effectiveness. We further
address induction heads’ limitation on unseen labels by showing that ablating denoising heads (also
the information removal) sharply reduces accuracy, and collapses to zero on unseen label scenarios.

2 BACKGROUND

In-context Learning (ICL) (Radford et al., 2019). In an ICL scenario, given k input-label pairs
{(z:,y:)}¥_, as the demonstration and a z, as the query, a concatenation [x1, Y1, . . ., Tk, Yk, Tq) i
fed into LMs for y, corresponding to x,. ICL enables LMs to perform diverse tasks without param-
eter updates, drawing significant research interest, particularly in mechanism analysis. However,
current studies, especially those focusing on attention components such as Induction Heads (Elhage
etal., 2021; Wang et al., 2023; Reddy, 2024; Singh et al., 2024; Cho et al., 2025a), cannot account for
all ICL phenomena, leaving them an incomplete explanation of ICL behaviors as described below.
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Induction Heads-based Mechanistic Interpretation for ICL. In- 0-shot Output Logits for "Donald Trump"
duction Head (Elhage et al., 2021) is a family of attention heads  ; Joutput "o
identified in LM, primarily responsible for prefix recognition and .
suffix replication. Specifically, for an input string shaped as
[A, B, A], induction heads add the information of B, which is the
suffix of the previous A, to the residual stream of the last A, so that
drive the output towards B. Such behavior aligns with the form of
ICL, where the x;s, especially the consistent structural final token
(i.e., “” in “label:”) (Cho et al., 2025a), serve as the As, and the
;s serve as the Bs. The induction heads retrieve the most similar 10 e
x;s with x4, and copy the corresponding y; to the output. However, Figure 2: Logits distribution
such a framework has a serious issue: it determines the final answer (selected) of zero-shot input
only by copying the tokens that have appeared in the context; thus, Donald Trump, label:”.

if the correct label token does not appear in the demonstrations (termed Unseen Label Scenario),
then the framework predicts ICL to fail. But this is not the case in reality, although the accuracy
in the unseen label scenario is significantly harmed, but basically not zero (refer to Appendix A.3),
which prompts for new investigations to supplement the induction head framework.
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3 METHOD: TRACING THE TASK-ORIENTED INFORMATION REMOVAL

In this section, we propose a systematic evaluation framework that traces the task-oriented infor-
mation removal. Following this framework, in §4, we undertake a comprehensive investigation of
task-oriented information removal in the ICL setting. While our discussion centers on the ICL sce-
nario as the prototype, we believe the framework extends naturally to a wider range of scenarios.

Preliminary: Task-Verbalization Subspace (TVS). As shown in Fig. | (A), an LM encodes a zero-
shot query z, into a non-selective semantic representation hfl € R? after [ transformer blocks, where
the output derived from such h, by the remaining layers is unlikely to be the desired answer to z,
as demonstrated in Fig. 2. In such a scenario, we hypothesize the existence of a low-rank subspace
in the representation space encoding the task-related information, equipped with a projection matrix
W € R4 that projects hfl to remove task-irrelevant information, thereby redirecting the final

output derived from héW towards the task-specific answer. As shown in §4.2, such W defines the
task and also the “verbalization mode” (i.e., how the output is expressed, such as “positive” vs. “+”
in sentiment analysis), for which we term W as Task-Verbalization Subspace (TVS).

Step 1: Finding the Explicit TVS in Zero-shot Hidden States. As shown in Fig. 1 (C), we
explicitly assume the existence of TVS parameterized as a low-rank filter We, Wee € Réxr . Rrxd,
and verify this assumption by an injection method: we inject We,c Wye. into the residual stream of
the inputs’ last token (where the output is expected) in a specific layer /, and interrupt this last token’s
access to previous tokens in the subsequent layers to block the context-related additional information
gain from the inputs afterward the filter to keep the attribution clear. Given some zero-shot prompts
and ground-truth responses, with all other parts of the LM frozen, we train the Wep. Wy On zero-
shot inputs towards corresponding ground-truth responses (refer to Appendix A.2 for details).

Step 2: Tracing the Implicit Task-oriented Information Removal towards TVS. We then assume
that LMs intrinsically drive the hidden states towards TVS in the uninjected inference with the help
of demonstrations. To validate this, we propose two carefully designed geometric metrics of the
few-shot hidden states, utilizing the trained W, Wiec in Step 1. In detail, given a N-amount set of

hidden states H'F = {hé’k N | from the last token of k-shot ICL inputs after [ transformer blocks:

* Eccentricity: To measure the magnitude of information removal, we calculate the eccentricity
as the covariance loaded ratio on the first principal direction of H'*, indicating the enrichment,
or anisotropy, of information on a single linear representation (Engels et al., 2025). A higher
eccentricity indicates a purer representation with less extraneous information.

¢ Covariance Flux on TVS: To measure the correctness of information removal, we calculate
the ratio of task-related information, we project all the hi’k € HYF onto the WapWiyee With

r = § trained on layer [ in Step 1, and calculate the covariance ratio of H RV e Woee against
HYF (details in Appendix A.3). A higher covariance flux suggests that a larger proportion of the
information in H* is task-related.
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In summary, as intuitively shown in Fig. 23, eccentricity quantifies the concentration of information
into a single feature, thereby indicating the magnitude of information removal; and covariance flux
evaluates whether the task-related information is preserved, i.e., the correctness of the information
removal. Appendix G relates these covariance metrics to entropy, a standard measure of information.

Step 3: Building the Causal Link between Information Removal and ICL Performance by De-
noising Heads. To test whether the detected information removal process indeed has a causal sig-
nificance, i.e., whether it actively influences accuracy, or merely constitutes a byproduct of accuracy
improvement from other mechanisms, we conduct a causality evaluation which actively suppresses
such mechanisms. Since the aforementioned two metrics are not directly controllable, we utilize the
attention heads as the handle for such causal evaluation. In detail, we quantify each head’s contribu-
tion to task-oriented information removal by ablating it and re-evaluating the metrics on the hidden
states produced by the ablated layer. Then, we label the heads that contribute substantially to these
metrics as “Denoising Heads (DH)”, then ablate all the detected DHs and evaluate the ICL perfor-
mance to verify the causal link. The design of the technical details relies in part on the conclusions
from Step 2, as described in §4.4.

4 TASK-ORIENTED INFORMATION REMOVAL IN IN-CONTEXT LEARNING

In this section, we conduct comprehensive experiments to apply the aforementioned evaluation
framework to trace the task-oriented information removal dynamics in the ICL scenario.

4.1 EXPERIMENT SETTINGS

Models. We mainly conduct experiments on 6 modern LMs detailed in Appendix A: Llama (v3.2-
1B, v3-8B, v3-13B Instruct) (Grattafiori et al., 2024); Qwen 2.5 (3B, 3B Instruct, 7B) (Team, 2024,
Yang et al., 2024). We default to reporting the results on Llama 3.2-1B (more results in Appendix I).

Datasets. We utilize 6 classification datasets: SST-2, SST-5 (Socher et al., 2013), MR (Pang & Lee,
2005), FP (Malo et al., 2014), AGNews (Zhang et al., 2015), Subjective (Wang & Manning, 2012);
and 3 non-classification datasets: country-capitals (icyrockcom, 2011), people-profession (Laoue-
nan et al., 2022), opus-100 (Zhang et al., 2020). Unless specified, we report the results on SST-2.

Others. To verify whether the LM spontaneously produces task-related outputs, we calculate the
accuracy by greedy decoding, where hard matching of the model output among all the vocabularies
is utilized for the accuracy, instead of the restricted decoding, where only the most likely output in
the pruned output candidates is selected. Refer to Appendix A.1 for the prompt templates.

4.2 STEP 1: FINDING THE EXPLICIT TVS IN ZERO-SHOT HIDDEN STATES

In this section, following Step 1 in §3, we show that explicitly removing information from the or-
thogonal complement of the injected TVS in the zero-shot hidden states guides the LM to recognize
the intended task rather than producing arbitrary outputs, suggesting zero-shot hidden states contain
task-related information with redundant information interfering with the output, and filtering out
such redundancy helps LMs focus on the target task.

Existence of Explicit TVS in Hidden States. We conduct the injection-and-train experiment men-
tioned in Step 1 of §3, with validation accuracy with various [ and r on SST-2 and Llama 3.2-1B
is shown in Fig. 3, where, globally, compared to zero-shot accuracy, filtering the hidden state while
explicitly assuming the existence of a TVS of max-rank' 2 can significantly improve the output
accuracy from the open-end decoding (mentioned in §4.1). Such results confirm our hypothesis: se-
lectively removing information from zero-shot hidden states steers outputs toward the task, inspiring
a possibility that ICL implicitly applies this procedure, as verified in §4.3.

Wene Waec is Information Removal. One suspicion is that W, Wg.. may not significantly remove
information, such as when the principal component direction of hfls is highly aligned with the eigen-
vector of Wene Weec. We rule out such doubt by: (1) Calculating the remaining covariance-load ratio

'Notice that even if the 7 is sufficient large, the effective rank of Wenc Wi can also be small, so the r is the
maximum possibile rank. (Original embedding dimension is 2048.)
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Figure 4: Test results of (left) open-end accuracy against demonstration numbers %, (middle) ec-
centricity of hidden states point cloud against demonstration numbers k on various layers, (right)
covariance flux through the catched We,. Wy, against demonstration numbers &k on various layers.

out of the top-r principal components of hfls, as a lower bound of information removal by Weuc Wec

with maximum rank r (explained in Appendix B, and numerically visualized in Appendix I), as
shown in the diamond size of Fig. 3, suggesting effective information removal by WepeWee. (2)
Calculating the cosine similarity of W,.’s eigenvectors and the principal components of the hidden
states, as an estimation of the positive gap between the actual information removal and the lower
limit, shown in Appendix B. In summary, W, W is an effective information removal while en-

hancing the zero-shot accuracy.

Waec Controls the Verbalization Mode. Notice that,
in the training of the Wi Weee, not only is the task-
related information (as shown in Fig. 1 (B)), but also
the verbalization mode, i.e., how the task-related infor-
mation is transferred into output tokens (e.g., into “pos-
itive/negative” or “4/—"") is defined in the trained pa-
rameters. This is also why we name We, Wy, as “task-
verbalization”. Moreover, we find that the verbalization
mode is mainly controlled by the Wg: In detail, we
first train the WepWye. filter on SST-2 using the stan-
dard verbalizations “positive” and “negative”, then freeze
either We,. or Wy, and fine-tune the remaining one to
transfer the outputs to symbolic verbalizations “A” and
“B”. The results, shown in Table 1, indicate that fine-
tuning only Wy successfully transfers the verbaliza-
tion into symbolic form, whereas We, fails. This sug-
gests that W, extracts task-specific but verbalization-
irrelevant semantics from hidden states (otherwise, freez-
ing it will not prevent successful verbalization transfer),
while Wy, maps them into the target verbalization by
aligning hidden states with the specified output unem-
bedding vectors (Yang et al., 2025), consistent with prior
findings (Tao et al., 2024).

0.8+

o
o

Accuracy
o
i

> v

f=}
N
3

/\ \\/ —\ 2(/)48

0 2 4 6 8 10 12 14 16
Injected Layer Number

Figure 3: Filter-injection evaluations
on various layers and ranks. Marker
size: the remaining covariance out of
the top-r principal components of the
point cloud of hl,. Refer to Appendix I
for numerical results. Encoding Mag-
nitude: the quality of the hidden states
in the current layer as a sentence encod-
ing of the query, emerging simultane-
ously with the test accuracy, calculated
follows Cho et al. (2025b).
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4.3 STEP 2: TRACING THE IMPLICIT TASK-ORIENTED INFORMATION REMOVAL

In §4.2, removing the TVS-orthogonal information produces
task-specific output, which serves as efficient adaptors for LM
to specific tasks, and motivates us to hypothesize the mecha-
nism of ICL with few-shot demonstrations similar to such task-
oriented information removal. In this section, following Step 2
in §3 to measure the two geometric metrics (i.e., Eccentricity

Table 1: Fine-tuning results with
parts of the filter frozen, on Llama
3.2-1B and SST-2.

Trained Part Both W,
0.88  0.00

Wdec
0.84

Accuracy

and Covariance Flux) of the few-shot hidden states from uninjected inference processing, thereby
verifying the hypothesis shown in Fig. 1 (B): LMs autonomously remove the redundant information
out of the TVS with the help of few-shot demonstrations to produce task-specified ICL outputs.
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Language Models Intrinsically Compress Hidden States towards TVS. We test both the metrics
on various k and [, with results as well as the output accuracy shown in Fig. 4 for Llama 3.2-
1B and SST-2 (refer to Appendix I for more cases). Globally, as the amount of demonstration
(k) increases, the task-oriented information removal primarily occurs in the middle-to-late layers,
causing an increasing eccentricity and covariance flux. In detail:

* Eccentricity: As shown in Fig. 4 (middle), with sufficient demonstration numbers (k), in the
later layers, the eccentricity increases against k, reaching a maximum of around 60%, showing
a highly anisotropic information compression with the help of demonstrations. Specifically,
on certain datasets such as SST-2, the eccentricity exhibits a distinctive nonmonotonic decrease-
and-increase pattern against k. This suggests that information removal initially compresses from
the first principal component of zero-shot hidden states, which is understandable since the input
distribution may be disaligned with the task, and confirms an important conclusion: task-oriented
information removal primarily compresses from the task-irrelevant directions (Yang et al., 2025;
Kirsanov et al., 2025) of the hidden state point cloud, as discussed in Appendix C.

* Covariance Flux: As shown in Fig. 4 (right), also in the later layers, the covariance flux in-
creases against k, suggesting that LMs correctly preserve the task-related information while
removing the task-irrelevant one with the help of demonstrations. Moreover, the covariance flux
of the later layers closely tracks the accuracy (Fig. 4 (left)), with both reaching their peak and
then saturating at the same point, which indicates that the alignment of hidden states toward TVS
constitutes a crucial mechanism shaping the inference output’.

Additionally, such findings concur with previous works, where the early layers contribute to task-
agnostic low-level semantic encodings (Jawahar et al., 2019; Chen et al., 2023; Wang et al., 2023;
Cho et al., 2025a; Yang et al., 2025), thus task-related behavior such as task-oriented information
removal, can not be significantly observed in the early layers by our metrics. Conversely, in later
layers, high-level features are being processed, causing the task-related operation to be obvious.

Effect of Instruction. In practice, instruction text describing the task (e.g., “Please predict the sen-
timent of this text:”) can be utilized instead of the few-shot demonstrations in the inputs. Therefore,
we examine whether such instructions produce the task-oriented information removal functionally
similar to the few-shot demonstrations by measuring both metrics on the instructed inputs (config-
urations detailed in Appendix A.1). As shown in Fig. 5, hidden states with 8-shot demonstrations
exhibit obvious morphological differences and stronger information removal over the 0-shot infer-
ence with or without instruction text. Also, hidden states with instruction, even if the label spaces
are indicated (e.g., “Please predict in Positive and Negative”), show information removal dynamics
almost consistent to the zero-shot inference (Kirsanov et al., 2025), despite the clearly higher accu-
racy (refer to Appendix A.3). Such observation suggests that the information removal is only evoked
by few-shot demonstrations, with a different mechanism from instruction.

Effect of Random Labels and Unseen Labels. Previous works demonstrated that the correctness
of labels presented in the demonstrations influences the inference dynamics and output accuracy
insignificantly (Min et al., 2022; Yoo et al., 2022; Pan, 2023; Cho et al., 2025a). Therefore, we
measure both the metrics with label tokens randomly sampled from all possible labels (detailed in
Appendix A.1), as well as the unseen label settings, with results shown in Fig. 6. Focus on the
eccentricity results, hidden states with randomized labels exhibit weaker information removal than

The two curves differ in form, which is natural since accuracy is a nonlinear metric (Schaeffer et al., 2023).
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Layer 9 on 8-shot SST-2 (relative to the clean run). A smaller value indicates a more severe drop
with ablation, i.e., this attention head contributes more significantly to the metric.

the plain 8-shot inference, suggesting that mismatched labels weaken the impact of demonstration,
leading to weaker task-oriented information removal, which echoes previous works (Cho et al.,
2025a) showing that mismatched labels neutralize the functionality of demonstrations. In contrast,
the demonstrations with unseen labels show a stricter removal, and we infer the reason as: demon-
strations with a smaller label space actually specify a narrower task, causing more information to be
identified as redundancy. More evidence is shown in Fig. 53, where such an effect is weakened on
multi-way tasks than on 2-way tasks, where the removal of each label has a large impact on the task
scope. Overall, task-oriented information removal appears across all label settings, differing only in
magnitude, regardless of the labels’ completeness or alignment to the demonstration. The above de-
grading configurations merely shift the information removal away from the optimal range, resulting
in reduced accuracy (we list the output accuracies in these configurations in Appendix A.3).

4.4 STEP 3: CAUSALITY TEST BY DENOISING HEADS

We have shown that selectively removing information from zero-
shot hidden states boosts accuracy in the injected settings, and few-
shot learning under un-injected settings implicitly simulates a sim-
ilar process. This section therefore investigates the causal role of
such an operation. As outlined in Step 3 of §3, we first identify
the model components responsible for this removal, thereby paving
the way for subsequent ablation analysis to examine the significant
accuracy influence, especially under the unseen label settings. The
experiments in this section default to using 8-shot inputs.
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on Layer 9 is shown in Fig. 7 (refer to Appendix I for other settings). Figure 8: Counting of DHs
Because eccentricity trends have a phase-transition pattern’, we use ~ and anti-DHs w.r.t. layers.
covariance flux to identify significantly contributing attention heads (i.e., Denoising Heads (DH)),
with some (e.g., #5, 7, 12, 15, 20, ...) showing clear contributions to both metrics and accuracy.
Setting4 +3.5% as the thresholds, we observe the distribution of the DHs, and also the anti-DHs
whose ablations increase the covariance flux remarkably, as shown in Fig. 8 (refer to Appendix I
for more settings). While the DHs can be observed in almost every layer, their numerical advantage
against the anti-DHs emerges only in the middle-to-late layers, where task-oriented information re-
moval becomes apparent as discussed in §4.3. This further suggests the transition from early-stage
task-agnostic encoding (Cho et al., 2025a) to later-stage task-related filtering: in the former, most

3 As noted in §4.3, a contributive operation may reduce eccentricity, but in later layers (e.g., Layer 10), once
redundancy is sufficiently removed and task-relevant information aligns with the first principal component, the
contributive information removal begins to increase the eccentricity.

“Note that the goal of this experiment is to identify a subset of prominent denoising heads for visualization
or causal analysis, rather than to exhaustively capture all potential candidates. Therefore, as discussed in
Appendix E, the threshold should be a relatively selective but not extreme value. Based on the visualization in
Fig. 20, we consider 3.5% or 5% (mentioned below) to be an ideal choice.
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heads conduct non-selective query encoding, leading to anti-DHs; in the latter, more DHs play a
selective and decisive role. Moreover, during this experiment, we find more interesting attention

heads as shown in Appendix F.

Denoising Heads are Independent of Induction Heads.
To demonstrate the independence of information removal
behavior and also DHs against the induction heads, we
observe the overlap of induction heads and the DHs. In
detail, we calculate the magnitude of induction for each
head as the sum of attention scores from all the label
tokens to the last token, and visualize it together with
the ablation effects on the covariance flux, as shown in
Fig. 9 (refer to Appendix I for other settings), where we
find that: although induction heads and task-oriented in-
formation removal emerge in similar layers, these atten-
tion heads rarely overlap, which clearly suggests that:
DHs, and their task-oriented information removal effect,
is an independent and novel operation evoked by the ICL-
prompted LMs.

Overlap of Denoising Heads among Tasks. To iden-
tify whether the evoking of the DHs is task-specific
or task-irrelevant, which suggests In-weight Learning
(IWL) (Chan et al., 2022; Reddy, 2024; Chan et al., 2025)
or in-context learning characteristics, we calculate the
overlap count of the DHs identified on all the task pairs
as |Da N Dp|, where the D4 or Dp is the DH set de-
tected on the task A or B by bottom-K covariance flux
relative change after ablation, as shown in Fig. 11 with
K = 1% . In the results, we observe several common
DHs across different dataset pairs, indicating that they
exhibit ICL properties by extracting and discriminating
at least two task information from the context and lever-
aging it for operation. In contrast, most DHs are dataset-
specific, reflecting the IWL property but still evoked by
ICL demonstrations: on mismatched datasets, these heads
are inactive, neither hindering nor facilitating information
removal (e.g., Layer 9 Head 20 as a DH for sentiment-
analysis in Appendix I), thus challenging current strict
separation of ICL and IWL. These findings suggest that
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Figure 9: Head-wise (scatter size) in-
duction magnitude and (color) covari-
ance flux relative change after ablation.

o Attention Scores (Layer 9, Head 15)

Token Index (Attention Query)
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Figure 10: Attention map of a common
DH (Layer 9, Head 15). White dotted
lines are the position of label tokens.

task-oriented information removal is a hybrid of ICL and IWL, supporting the previous works that

ICL capability arises from latent tasks acquired during pretraining (Li et al.,

2024) and is further

strengthened by demonstrations (Yang et al., 2025; Cho et al., 2025¢).

Attention Pattern of Denoising Heads: Local Re-encoding. To
find how the DHs conduct the task-oriented information removal op-
eration, we visualize the attention maps of a common DH (Layer
9 Head 15) of Llama 3.2-1B, as shown in Fig. 10 (refer to Ap-
Surprisingly,
although task-oriented information removal is a highly context-
dependent operation in the ICL-based common DH, the DH exhibits
a local attention pattern. Specifically, significant attention scores of
the last token are almost confined to the query tokens (ignoring the
attention sink (Gu et al., 2025)), thereby forming a local re-encoding
pattern. In such processing, as demonstrated in Appendix D, DH
appropriately identifies and enforces task-relevant information by
selective attention calculation, where the vector extracted from the

pendix A.4 for detail, Appendix I for more cases).

MR SST-5 SST-2

SST»Z SST—S MR FP AGNeWS Subj.
Figure 11: Overlap of DH
over all dataset pairs.

Sth AGNews FP

last-token hidden state by Wg Wi of the DH may serve as an indicator for locating this informa-
tion, since it serves an important part of the attention calculation, which is decisive for selecting the

key tokens that contain the task-related information.
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Figure 12: Filter-injection results on country-  Figure 13: Filter-injection results on the people-
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Task-oriented Information Removal as a Table 2: Ablated inference accuracy (%) of DHs,
Key Mechanism for ICL with Unseen La- averaged on all 6 datasets. Layer: the ratio of the
bel. Identifying the DHs responsible for the layer scanned for DH / total layers. w/o DH: ac-
task-oriented information removal enables ab- curacy with DHs ablated. w/o RH: accuracy with
lation experiments to evaluate the significance ablation of randomly sampled attention heads of
of the operation to ICL. Therefore, we remove equal amounts to DHs on each layer. P-value:
DHs from the inference, specifically, setting the the probability for “w/o RH” to sample a value
outputs of all heads with a covariance flux rel- less than “w/o DH” (i.e., the likelihood of DHs
ative change below —5% to zero vectors, and being randomly sampled). (Due to computational
report the resulting accuracy in Table 2 (refer constraints, we only evaluate Llama 3-13B on SST-2.)

to Appendix I for non-average results), where  yiodel  Demonstration gy BShot  Bshot L
when demonstrations are randomly sampled, or ~ Layer  Configuration w/oDH  w/o RH
at least one demonstration shares the same la- gge  RandomSample 7102 5504 672955  Tao~t
: 53T SeenLabel 7340 5652 69.02572 dxio-t
%el{l as .the.éluer}i (ieen Label), zlelzromég outthe 332 [Tl el 1454 106 1065.e  2e0
s significantly but not critically reduces ac- Soc  RandomSample 77.63 7205 7638095 Bx10-°
curacy compared to randomly selected heads, E%J  seenLabel 8047 7511 797013 3xw0-
. . . . = ) i . _
since the induction heads provide a strong sup- Unsemmllatig]  LED  7el  [ERgey  Zaw
: : : =g Random Sample  73.97 68.41 7431199 2x1076
portive mgchamsm in such cases. In the'unseen E8% e Label 7641 031 76360 1eg-s
label setting where induction heads fail, DHs <&  UnseenLabel ~ 2349 1159 268235, 3x10-°
become decisive: ablating them almost elimi- 4+, o Random Sample  77.24 7557 7728199  0.18
: : ‘den.  B=<  Seen Label 7886 7752 780505  0.25
n.?te.s aceuracy, s ven Wlthout exhaustively iden Z®8 =  Unseen Label 4870 37.51 463245  2x10?
tifying all DHs”. This shovys that DHs are the =g RandomSample 7686 7158 778357 B
primary source of accuracy in unseen-label sce-  £2<  Seen Label 7734 7216 812051, lxi0-®
S Unseen Label 29.59 10.35 3213489 4x10-°

narios, effectively acting as the main comple-
ment to induction heads (Cho et al., 2025a).

Amplifying the Outputs of DHs Boosts ICL Accuracy. As
a prototypical empirical application utilizing the discovery of
DH, we try to amplify the output of DH on 8-shot inputs, i.e.,
multiply a scalar (1 + A\) on the outputs of DHs detected sim-
ilarly as the ablation in Table 2. The results with various A
are shown in Fig. 14, where a moderate amplification con-
sistently increases ICL accuracy. Especially in the random-
label scenario in §4.3, DH amplification yields a markedly
stronger effect, consistent with Fig. 6, where information re-
moval is weaker than in the true-label setting. This amplifi-
cation provides a frugal, plug-and-play way to boost ICL ac-
curacy and mitigate label noise without extra computational
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Figure 14: DH amplification re-
sults on Llama 3.2-1B and SST-2.

overhead, while reinforcing the causal link between information removal and ICL accuracy.

Due to computational constraints, we only identify the denoising heads on some of the layers of these
models, as shown in Appendix I, so the ablation results here do not cover all denoising heads.
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5 CONCLUSION AND DISCUSSION

Conclusions. This paper proposes a novel perspective to interpret ICL inference as a task-oriented
information removal from the query’s hidden states. In detail, we first demonstrate that injecting ex-
plicit low-rank filters into the zero-shot hidden states to reduce their redundant information improves
accuracy. We then show that few-shot ICL spontaneously performs this process, identify the DHs
responsible for it, and confirm both the independence from the induction head, and the significant
effectiveness of information removal for ICL tasks by ablation experiments.

Comparison and Connection to Previous Works. This paper is related to the two categories of
previous works: (1) Task vector-based mechanism. Our analysis of the attention patterns shows
that denoising heads access subspaces of the last hidden states through Wg W for the re-encoding

operation. The VVQT W thus acts as an operator extracting task representations to trigger and guide
the denoising operations. This view suggests a new direction for task-vector research: identifying the
subspaces that purify the task representation from the coarse-grained hidden states, and finding the
components that mediate their effects (Yang et al., 2025; Yin & Steinhardt, 2025), rather than only
relying on coarse steering. (2) Induction heads-based mechanism. As mentioned, current induc-
tion head-based works slough over the case of unseen labels and resort to vague explanations (Cho
et al., 2025a), which our paper addresses. From our ablation study (Table 2), ICL behavior can
be attributed almost fully to induction and DHs, with no significant bypasses since ablating DHs
in the unseen label scenario reaches near-0 accuracy. Although induction heads contribute more to
accuracy, the DH, as the complementary mechanism identified when they fail, remains meaningful.

Failure Case: Clustering vs. Translation. Notice that the task-oriented information removal in-
vestigated in this paper is essentially a dimensionality reduction operation, where it is conceivable
that classification tasks, which cluster a vast input space (i.e., the whole set of the input sentences x)
to a narrow label space, precisely align with such a dimensionality reduction. While, some works
identified translation operation (Merullo et al., 2024; Jiang et al., 2024; Bu et al., 2025) in hidden
states directing entities’ semantics towards their attributes, especially unique ones (called “Fact Re-
call” (Zhang et al., 2025), e.g., “Japan”—‘“Tokyo”), where the clustering operation as presented in
classification tasks can not be applyed since the mapping from the input space to the output space
is a bijection. Therefore, the task-oriented information reduction process observed in this paper is
unlikely to apply to the bijection scenario, as information is not removed: input can be losslessly
reconstructed from the output. We demonstrate this point by repeating the filter-injection experi-
ment shown in §4.2 on the country-capitals task as shown in Fig. 12, where no loss lower than the
0-shot baseline can be obtained by any filter, even if high-dimensional (not necessarily high-rank)
ones. As a comparison, we repeat the experiment on a similar fact recall task but with a clustering
structure, which maps a person’s name to their profession (e.g., “F. Nightingale”—“Nurse”). As
shown in Fig. 13, evaluation results better than 0-shot can be obtained by a low-rank filter, which
confirms our idea that the task-oriented information removal does not occur in bijective ICL tasks,
while clearly highlighting the distinction between these two types of tasks. Some works on synthetic
datasets also discuss the uniqueness of such a full-rank translation scenario (Dong et al., 2025) and
obtain similar conclusions. We develop such a discussion on a generative scenario in Appendix H.

Limitations. (1) Long-term effect of head ablation. In Fig. 7, we identify DHs by ablated metrics
only on the current layer’s hidden states. However, since the effect of ablation may propagate to
deeper layers, the DH sets could be underestimated. Exhaustively measuring all layers would be
costly, yet our ablation already shows that these heads, though not the whole set of DHs, produce
clear and significant effects on the outputs. (2) Fine-grained mechanism. We propose a prototype
mechanism for DHs as the extraction of denoising signals from some subspaces of hidden states. A
more detailed investigation is needed to validate such a mechanism prototype for DHs. (3) Efficient
localization of DHs. In §4.4, we adopt a naive ablation-remeasurement method, which is costly
for localization-controlling applications (Cho et al., 2025b). Future work may utilize gradient-based
methods, or leverage DH characteristics, such as the attention pattern in Fig. 10, for more efficient
localization. (4) Complex information bottleneck. In this paper, we utilize a linear low-rank filter
as the information bottleneck as shown in Fig. 1 (C). This essentially assumes that the features on
these subspaces are linearly separable in the linear space, as illustrated in Fig. 1 (A). However,
some works (Engels et al., 2025; Modell et al., 2025) show that features may also be embedded on
manifolds and be nonlinearly separable. Therefore, extending the discussion to more complex tasks
may require a more complex nonlinear information bottleneck.
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THE USE OF LARGE LANGUAGE MODELS

In this paper, LLMs are used and only used to polish writing.
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Appendices

Table 3: Prompt templates used in this paper.

Dataset Prompt Template (Unit) Label Tokens
SST-2 sentence: [z] sentiment: [y] \n negative, positive
MR review: [z] sentiment: [y] \n negative, positive
FP sentence: [z] sentiment: [y] \n negative, neutral, positive
SST-5 sentence: [x] sentiment: [y] \n poor, bad, neutral, good, great
AGNews news: [x] topic: [yl \n world, sports, business, science
Subjective review: [r] subjectiveness: [y] \n objective, subjective
country-capitals country: [z], label: [yl \n -
people-profession name: [z], label: [y] \n -
opus-100 sentence: [z], translation: [yl \n -
Table 4: Instruction used in Fig. 5.
Dataset Instruction
SST-2 You are a helpful assistant. Please predict the sentiment of the following sentence:
MR You are a helpful assistant. Please predict the sentiment of the following sentence:
£ FP You are a helpful assistant. Please predict the sentiment of the following sentence:
Eé SST-5 You are a helpful assistant. Please predict the sentiment of the following sentence:
AGNews  You are a helpful assistant. Please predict the category of this news:
Subjective  You are a helpful assistant. Please predict the subjectivity of this sentence:
g SST2 You are a helpful assistant. Please predict the sentiment of the following sentence in positive and negative:
8 MR You are a helpful assistant. Please predict the sentiment of the following sentence in positive and negative:
% FP You are a helpful assistant. Please predict the sentiment of the following sentence in positive, neutral, and negative:
< SST5 You are a helpful assistant. Please predict the sentiment of the following sentence in poor, bad, neutral, good, and great:
= AGNews  You are a helpful assistant. Please predict the category of this news in world, sports, business, science:
= Subjective  You are a helpful assistant. Please predict the subjectivity of this sentence in objective and subjective:
Table 5: Models and corresponding check-
A  EXPERIMENT DETAILS point names used in this paper.
Model Checkpoint
All the models and datasets are loaded from Hug- ~ Llama3.2-1B meta-llama/Llama-3.2-1B
Llama 3-8B meta-llama/Meta-Llama-3-8B

gingFace, with checkpoint names listed in Table 5.

Llama 3-13B Instruct

elinas/Llama-3-13B-Instruct

_ s H Qwen 2.5-3B Qwen/Qwen 2.5-3B
The Llama 3-13B Instruct is quantized to INT4. Qwen25.38 Instruct  Owen/owen2. 5-3B- Inst ruct
Qwen 2.5-7B Qwen/Qwen 2.5-7B

A.1 PROMPT TEMPLATE

In this paper, we build the input prompt from Cho & Inoue
(2025), detailed in Table 3. Moreover, in the experiments
shown in Fig. 5, we utilize the instructions as shown in Table 4,
with and without label spaces provided in the instruction.

We illustrate seen vs. unseen label scenarios in Fig. 15. In
the seen case, the query’s ground-truth answer appears at least
once in the demonstration, activating induction heads for di-
rect copying. In the unseen case, the answer is absent, and
induction heads lose their functionality (Cho et al., 2025a).

Seen Label

—  Politician
—  Nurse
N

Joe Biden
F. Nightingale
Yukichi Fukuzawa

Unseen Label

Joe Biden — Politician
F. Nightingale —  Nurse
Maurice Ravel -

Figure 15: Examples of seen la-
bel demonstration and unseen label
demonstration.

Also, a random label prompt utilized in §4.3 is built by randomly sampling the labels presented in
the demonstrations in the label space. For example, for the prompt shown in Fig. 16, we randomly
(with probability 50%) flip the “positive” to “negative” and “negative” to “positive”.

A.2 TRAINING DETAILS OF WeneWyece (§4.2)

As shown in Fig. 1 (C), in the experiment of §4.2, we train two contiguous linear layers in the
residual stream of the LMs, with only the first linear layer (parameterized by W) attached with
a bias term. During the training, only the two linear layers are unlocked for parameter update.
We sample 2048 zero-shot training examples, and train the filter on Adam (Kingma, 2014) with
learning rate 10~%, momentum factor B1 =0.9, B2 = 0.999. After the gradient calculation of every
32 training samples, we update the parameter once, i.e., we utilize a pseudo batch size of 32. The
filters are trained for 4 epochs. After the training, we test the model on a 512-size hold-out test set

by strict token matching across the entire vocabulary space.
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sentence: ’s a rollicking adventure for you and all your mateys , regardless of their ages .
sentiment: positive\n

sentence: playing a role of almost bergmanesque intensity ... bisset is both convincing and
radiant sentiment: positive\n

sentence: robust and scary sentiment: positive\n

sentence: addictive guilty pleasure sentiment: positive\n

sentence: chance to find love in the most unlikely place sentiment: positive\n

sentence: but because of the startling intimacy sentiment: positive\n

sentence: the movie ’s seams may show ... but sentiment: positive\n

sentence: if tragic ) sentiment: negative\n

sentence: likable story sentiment:

Figure 16: The input for attention visualization.

A.3 DETAILS FOR ECCENTRICITY / COVARIANCE FLUX AND EXPERIMENTS OF §4.3

We intuitively illustrate the eccentricity and co- Table 6: Accuracies (%) in all configurations
variance flux metrics in Fig. 23. shown in Fig. 5 and 6. Ims.: with basic in-
struction; Ins. (LS): with instructions and label
The Calculation of Covariance Flux. Given SPace prompt; Unseen: with unseen label settings;
the last token hidden state set "% = { plkN L Rand y: with randomly sampled demonstrations
K3 1= . .« .
from layer [ and k-shot ICL prompts, we recall label tokens in the original label space.
the low-rank filter obtained in §4.2 (indepen- Dataset | 0shot  0-ShOt  0shot | o 8ot  8-shot
dently trained from O-shot setting) as W, and Ins.  Ins. (IS) Unseen  Rand y
Weee. Then, we calculate the mapped® hidden SST2 | 449 2227 4883 | 8740 1514 7744
1k Ik N MR | 0.00 42.19 46.68 90.23 44.92 88.77
state set as H;"" = {h; WencWaec};-, and

FP 1.17 12.30 15.82 73.14 0.39 65.04
calculate the covariance matrix of the mapped

Llama 3.2-1B

SST5 | 000 078 1797 | 4219 293  37.60

i < AGNews | 020 234 1523 | 7178 2383 6621
; , : jecti . ) ) 143 0. )

set as D" = Cov[H;"], also the covariance e QMR gm ge nE
. .. Ik _ 1.k verage I . J d .53 n

matrix of the original set as D = Cov[H""]. SST2 | 1738 6660 2461 | 9131 2715 8271

Then, we calculate the covariance flux as: MR | 000 6504 6523 | 93.07 5283  83.89

£ FP | 2734 2598 2266 | 8271 957  57.03

Lk @ SST5 | 020 000 2363 | 4531 674 4023

) 1Dy |« £ AGNews | 098 1211 977 | 7559 3360 4873

Covariance Flux = TDLE] (I) 2 subjective | 000 000 000 | 7783 000 5381

[ D]l Average 765 2829 2432 7764 2166  61.07

. . R SST2 | 6348 566 5879 | 7686 2950  80.08

where the || : H* is the nuclear norm, i.e., the £ MR | 1113 156 4980 | 7979 3564  79.39
: = FP | 7070 625 2129 | 8311 6543  75.10

sum of the singular values. @ SST5 | 430 000 4258 | 4785 703 4434
P AGNews | 1367 2422 1465 | 6875 879  60.16

. . £ Subjective | 000 000 000 | 7979 000 5381
Experiment Details. Based onthe same 512- 2 =, 75701 628 aiis 7260 3275 6548

size test set with Appendix A.2, we sample 2 SST-2 | 4355 47.66  77.34 | 9258 5605 8184
demonstration sequence for each test sample MR | 28.13 6152 8438 | 9131 5098  83.01
. : . FP | 840 3105 7285 | 7881 2500 5586
with k& demonstrations. Then, on the specified SST5 | 000 000 4199 | 4814 537  4L4l
: AGNews | 059 2695 6719 | 7539 4150 5820

layer, we extract the hidden states from these Subjective | 000 000 voo | 79 000 254
1024 test samples to measure the 2 metrics. Average 1344 2786 5729 7484 2982 6214
SST-2 | 5605 5293 8281 | 9033 69.04  85.16

Qwen 2.5-3B

. . £ MR | 7421 2402 7949 | 89.84 6484  80.37

Accuracy with Instruction and Label Con- 5 FP | 1348 5371 66.21 87.80 7773 76.27
i i i ; SST5 | 039 117 3301 | 5078 1650  43.85
ﬁgur.atlons. As Sup pl.ementz}r) information, & AGNews | 137 3848 5957 | 7529 4892 5391
we list the accuracies in the input configura- § Subjective | 000 000 000 | 6933 1514 5371
tions shown in Fig. 5 and 6 in Table 6. S Average 1344 2786 5729 7484 2082 6214
SST-2 | 4805 20.12 8477 | 9307 5498 7520

= MR | 6953 059 430 | 9248 6572 8340

N FP | 078 1465 7188 | 6865 2607  41.80

A.4  DETAILS a SST-5 | 000 020 5059 | 5020 742 43.07
FOR ATTENTION VISUALIZATION IN FIG. 10§ AGNews | 020 020 3574 | 7568 4609  44.82
& Subjective | 000 000 000 | 6641 000 5547

In the attention visualization, we input an 8- Average 24.25  28.38 53.52 77.25 48.70 65.54

shot ICL prompt as shown in Fig. 16 into Llama 3.2-1B, and extract the attention scores from the
specified attention head.

SNotice that the bias terms in the linear layer do not affect the covariance, so we omit them here.
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Ecce. Reduce CeEcce. Increase
O

Information

Demonstration Numbers

Figure 17: An illustration of task-oriented information removal with nonmonotonic eccentricities
against the number of demonstrations. The ellipsoids refer to the hidden state point cloud with two
ground-truth labels (distinguished in colors), which is separated even no demonstrations are given,
according to previous works (Cho et al., 2025a; Yang et al., 2025).

B THE INFORMATION REMOVING MAGNITUDE OF LOW-RANK FILTER

Principle of Covariance Loaded as the Lower Bound of Information Removal. Given that
information theory suggests the covariance of a distribution can approximate its differential entropy
(i.e., information content), we can compute the upper bound of the covariance remained after the
filtering as a lower bound of the information removed by the filter. Evidently, this covariance upper
bound can be taken as the variance captured by its top-r principal components.

We utilize such a principle to estimate the gap between the real information removal to the lower
bound: if the eigenvectors of W, fall within the top principal component subspace of the hidden
states point cloud, thus we judge that W, can better preserve the information of point clouds, and
vice versa. Therefore, we map every eigenvector of W, to the orthonormal basis spanned by the
top-64 principal components of the hidden state point cloud, and calculate the ratio of vector norms
before and after the mapping, as shown in Fig. 25 - 30 for all the datasets on Llama 3.2-1B. In the
results, the norm ratios remain low, suggesting that not all the covariance on the top-64 principal
components of the hidden state point cloud can be preserved through the W, filter, i.e., the Wep,
filter is an effective information removal towards the hidden states.

Although the TVS is composed of two parts We,. and Wy, merely confirming that W, performs
significant information removal is sufficient to demonstrate that projecting the hidden state onto the
Wene Waec substantially reduces the amount of information contained in the hidden state point cloud.

C VISUALIZATION: THE DIRECTION OF INFORMATION REDUCTION

In §4.3, we observe that the eccentricities have a nonmonotonic pattern against the number of
demonstrations on SST-2 and Llama 3.2-1B, while in some of augmentation results of Appendix I,
e.g., results on MR and Llama 3.2-1B (Fig. 47), such nonmonotonic pattern can not be observed.

Our explanation is that: as shown in Fig. 17 (A), in some datasets, the distribution of the hidden
states (as sentence embeddings (Cho et al., 2025a)) of zero-shot queries does not dominate on the
task subspace, i.e., the first principal direction of such hidden state point clouds is orthogonal to the
TVS’. So, the early information removal when a few demonstrations are given is from a direction
near the first principal direction, which reduces the covariance loaded on the first principal direc-
tion, i.e., reduces the eccentricity. Such removal gradually reduces the dominance of task-irrelevant
information, causing the first principal component of the hidden state point cloud to progressively
approach the TVS, as shown in Fig. 17 (B). At this point, the eccentricity reaches its minimum

"In this visualization and the experiments of this section, we implicitly make the assumption that TVS
maximizes, or at least preserves, the separability of clusters produced by queries of different labels. This
assumption is acceptable: if TVS were to confound this separability, the mapping results on TVS would fail to
effectively distinguish different labels, which would contradict the high accuracy observed in Fig. 3.
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0-shot 2-shot 4-shot 64-shot

Eccentricity vs. Number of Shots

015 Min Eccentricity:

-~
01632 64 136
Number of Shots (k)

P PC1 : PC1 - PC1 - PC1

0-shot 2-shot 4-shot 64-shot

Eccentricity vs. Number of Shots

Min Eccentricity:
k=0

Py PC1 PC1 PC1 PC1

01632 o4 136
Number of Shots (k)

Figure 18: Visualization of the last token’s hidden states from Layer 13 of Llama 3.2-1B, (hpper)
on SST-2 with a nonmonotonic eccentricity, and (lower) on MR with a monotonic eccentricity. The
colors refer to the queries’ ground-truth label.

and then begins to increase (Fig. 17 (C)) gradually. While, in other datasets, the distribution of the
hidden states of zero-shot queries naturally dominates on or near the TVS, that is, the information
removal begins from Fig. 17 (B), causing a monotonic increase in the eccentricity.

. . . Attention S L. 6, Head 11
We prove our aforementioned inference by visual- S L e

izing the last token hidden state point clouds from
Layer 13 of Llama 3.2-1B on SST-2 (nonmonotonic)
and MR (monotonic) with various demonstration
numbers, as shown in Fig. 18. In this visualization,
on SST-2, the separability occurs on the 3rd principal
component at the beginning of demonstrating, and
turns to the 1st principal component on k = 4, where
the eccentricity reaches the minimum. However, on
MR, the separability occurs on the 1st principal com-
ponent at the beginning, causing a monotonic eccen- o
tricity. Such observations corroborate the process il- 0 60 80 100 120
lustrated in Fig. 18 and confirm an implicit yet im- Tolen Index (Attention Key)

portant property: task-oriented information removal ¢,

3

preserves the distribution along the separable direc- o

2010

tions of the hidden state point cloud, while com- £ |
B I

< L | [ |
0

pressing the distribution along the non-separable di- Do M e @

Token Index (Attention Key)

rections. Figure 19: (Upper) attention map; (lower) at-

Moreover, we consider the reason for such a distri- tention scores to the last token (*:”, as the at-
bution difference on SST-2 and MR as the difference tention query) of Layer 6 Head 11.
in the inputs. We observe some inputs in both datasets, as shown below:

N
S

°
&

e
5
Attention Score

Token Index (Attention Query)

0.00

Attention Heatmap (Layer 6, Head 11, Query: last token)

(Test samples from SST-2)

¢ video, and.

e stirs us as well.

* all of Dean’s mannerisms and self-indulgence,

(Test samples from MR.)
* Audiard successfully maintains suspense on different levels throughout a film that is both

gripping and compelling.
* The problem with the mayhem in Formula 51 is not that it’s offensive, but that it’s boring.
* Doesn’t deliver a great story, nor is the action as gripping as in past Seagal films.
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<|begin_of_text|> sentence : most ple asurable expressions of pure movie sentiment : positive

sentence : by a central plot that ' s pepper ed with false starts and populated by characters who are nearly impossible to care about sentiment : negative
sentence : is a small but rewarding comedy that takes aim at contemporary southern adolescence and never lets up . sentiment : positive

sentence : she ' s cut open a vein sentiment : negative

sentence : la con ic and very st ilt ed in its dialogue , this indie flick never found its audience , probably because it * s extremely hard to relate to any of the
characters . sentiment : negative

sentence : can watch , gig gle and get an adrenaline boost without feeling like you ' ve completely lowered your entertainment standards sentiment : positive
sentence : wo n 't join the pan theon of great monster /sc ience fiction flick s that we have come to love sentiment : negative

sentence : called ™ jar -j ar b inks : the movie sentiment : negative

sentence : barely|SHOBKINGI. barelylieresting and most sentiment :

<|begin_of_text|> sentence : takes itself all too seriously sentiment : negative

sentence : talented enough and sentiment : positive

sentence : the movie starts with a legend and ends with a story that is so far -f etched it would be impossible to believe if it were n 't true . sentiment : negative
sentence : a surprisingly an emic disappointment sentiment : negative

sentence : like this movie sentiment : positive

sentence : a ro te exercise in both animation and storytelling . sentiment : negative

sentence : the emperor ' s club any time sentiment : positive

sentence : the sentimental script has problems , but the actors pick up the slack sentiment : positive

sentence : ** home movie " is a sweet|fi@astilg and something well worth yourfiiliiél. sentiment :

<|begin_of_text|> sentence : heart w arming , non jud gment al kind sentiment : positive

sentence : it lacks the utter authority of a genre gem sentiment : negative

sentence : riv eting memories are rendered with such clarity that it ' s as if it all happened only yesterday sentiment : positive

sentence : freedom the ir anian people already possess , with or without access to the ballot box sentiment : positive

sentence : filled with more holes than c ly de bar row ' s car sentiment : negative

sentence : really , really good sentiment : positive

sentence : ~ hungry -man portions of bad ' sentiment : negative

sentence : the wonderfully lush mor vern call ar is pure punk existential ism , and ms . r ams ay and her co -w riter , li ana d ogn ini , have dram at ized the alan
war ner novel , which itself felt like an answer to ir vine wel sh ' s book trains pot ting . sentiment : positive

sentence : can be classified as one of those " alternate reality ‘[fiBUi€8l... except that it would have worked so much|[§&iiéi dealing in only one|fSaliljll sentiment :

Figure 21: Attention score visualization of DH (Llama 3.2-1B Layer 9 Head 15), where the last
token serves the attention query.

MR examples show clear sentiment tendencies, absent in SST-2, likely explaining the hidden state
distribution difference between the two datasets. Moreover, such a distributional property, i.e.,
signal-noise-ratio describing whether the zero-shot hidden states are in the status of Fig. 17 (A)
or (C), can be designed into a metric to characterize the task difficulty. We leave such a discussion
to future work.

D CASE ANALYSIS FOR DHS’ MECHANISM

In this section, we provide prototypical evidence for the mech-
anism of DH, i.e., locating the important query tokens with
task-related information by the attention scores, where the hid-
den states processed by the Wg Wk serve as a detector of such
tokens. In detail, we visualize the attention scores of Llama
3.2-1B Layer 9 Head 15 on the last tokens in some cases from
SST-2, as shown in Fig. 21. In the visualization, it is obvious
that the attention scores are concentrated on some sentiment- |

related tokens, which contain the task-related information for S, S N S S S
the sentiment analysis task defined on SST-2. This result con- _0'4_%&303%&;&% 08 1.0
ﬁ.rms that DHs can leverage attention scores to correctly ﬁlFer Figure 20: DH / RH ablation re-
hidden states generated by tokens containing task-relevant in-
formation, thereby amplifying task-related representations, so
as to relatively reduce task-irrelevant information. In this process, we can equivalently interpret
Wg W as extracting information from a certain subspace of the last-token hidden state, which en-
codes the criterion for determining task information, enabling the subsequent dot-product operations
with each hidden state vector to select task-relevant information.

—€— 8-shot w/o DH
8-shot w/o RH

e
o
S

0.151
\(

0.10

0.05 1

|
|

Accuracy (Unseen Label)

o
o
S

sults against ablation threshold.

E DISCUSSION ON THE SELECTION OF ABLATION THRESHOLD

The ablation experiments in §4.4 utilize a fixed threshold of —5%, which might be suspected to
be arbitrary. Therefore, this section aims to demonstrate that the ablation results are insensitive to
this threshold, showing that any mild threshold is sufficient to distinguish DH ablation from random
ablation. In detail, we vary this threshold and retest the results of ablating DHs and random heads
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with the same amount of DH. The results on Llama 3.2-1B SST-2 unseen setting are shown in
Fig. 20, where thresholds between -0.2 and 0 (note that we use the relative change rate of covariance
flux as the metric, so this is a fairly broad range) all successfully identify the causal effect of DHs
against RHs. While, if the threshold is too strict (extremely small values), no head will be ablated,
and an overly loose threshold will cause many or even all heads to be ablated. Therefore, we select
-0.05 within this range as the experimental setting.

F “IMPLICIT STEERING HEADS” DISCOVERED IN §4.4

Since we test the ablation effect on the accuracy of all the attention heads in §4.4, we can detect
more important heads rather than induction heads or denoising heads as an interesting supplement.
As shown in Fig. 59 - 64, ablating Head 11 in Layer 6 causes a very significant drop in accuracy;
therefore, we examine its attention map under the aforementioned setting shown in Appendix A.4,
as shown in Fig. 19. We find that the attention map exhibits a localized diagonal pattern that recurs
periodically with the location of label tokens. Ignoring the attention sink (Gu et al., 2025), this
pattern reflects the behavior of the head: locating tokens in the preceding context that are identical
to the current token (more evident in Fig. 19 (lower), where nonzero attention scores appear almost
exclusively at the “:” positions, identical to the current token). Consequently, the attention map
produces a periodic diagonal pattern around each label token, since the tokens at these positions are
exactly the same.

[T 1)

Intuitively, at the final token (*:”), this attention head copies information from all preceding “:
hidden states to the current position, where, each “:” stores the inference result of the previous
shot round (e.g., in an 8-shot input, due to the causal mask, the 8th “:” position is effectively the
output position of all preceding tokens, i.e., a 7-shot ICL input, and thus stores the previous round’s
inference result). In other words, this attention head functions similarly to “task vector steering”:
it implicitly steers the hidden state of the previous “:” (commonly used as a task vector in prior
work (Hendel et al., 2023)) to the current *“:” and aggregates it into an updated task vector. This may

partly explain why more demonstrations can yield better accuracy, requiring further discussion.

G GROUNDING THE METRICS TO INFORMATION MEASUREMENT

Since we utilize covariance-based metrics to measure the information-based quantity, which is usu-
ally measured by entropy, here we prove that the covariance is a linear-scale surrogate of entropy.

Notice that we need to handle the scenario with low-rank inputs (e.g., the point set mapped by the
low-rank filter Wep W), we define entropy on Hausdorff measure, instead of the typical differen-
tial entropy defined on Lebesgue measure, to avoid the entropy calculated being —oo.

Definition 1 (Hausdorff differential entropy on d-dimensional r-rank subspace). Let z € R? be a
random vector sampled from Gaussian X ~ N (u,Y), where the rank of ¥ is v < d. Let H" denote
the r-dimensional Hausdorff measure, embedded on the subspace M = p + im(X). If p is the
density of X on H", the Hausdorff differential entropy of X is defined as

B (X) = — /M p(x) log p(x) dH" (). @

On such an entropy measurement, we can build the link to the covariance.

Theorem 1 (Non-zero eigenvalues as Hausdorff entropy estimator). Let 2 € R? be a random vector
sampled from Gaussian X ~ N (u,X), where the rank of ¥ is v < d. Let Ay,..., A\, > 0 as the
non-zero eigenvalues of ¥. Then the Hausdor{f differential entropy hqy;-(X) is given by

1 T
e = 1 - ]
har (X) (log2m +1) + 5 ;71 log \; 3)

N3

The Theorem | shows that: the covariance loaded on each principal direction ()\;) can be a positive
correlated measurement of the information (entropy) contribution (log A;) on such direction, which
is the theoretical grounding of our metrics design.
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Table 7: Fine-grained data for Table 2.

Random Sample Unseen Labels Seen Labels
8-shot 8-shot 8-shot 8-shot 8-shot 8-shot
-shot = obH  wiorH | 3t wopH  wiorH | 3SHOU W DH  wioRH
SST-2 | 87.40 61.42 84.04161 | 15.14 4.78 17.425 15 87.79 62.10  68.731 84
=) MR | 90.23 81.25  88.60467 | 44.92 1.27 28.0111.81 | 90.53 81.64  65.54510
:1 FP | 73.11 67.38 7326369 | 0.39 0.00 0.68 o.71 75.00 6797 594244
i) SST-5 | 42.19 30.08  39.28305 | 293 0.29 3.46 134 48.63 3398  61.797.77
g AGNews | 71.78 36.72  63.879.17 | 23.83 0.00 14.32109.83 | 76.95 39.94 7732395
f Subjective | 61.42 5342 5471181 0.00 0.00 0.00 ¢.00 61.52 53.51 81.303.93
Average | 71.02 5505 6729384 | 1454 106  10.65.65 | 7340 5652  69.0237
SST2 | 9131 8623 90947 | 27.14 283 2646539 | 91.89 8691  91.500.45
~ MR | 93.07 91.31 92.800.45 | 52.83 33.69  40.671461 | 93.46 91.60  93.129.54
=3 FP | 8271 7959 8235055 | 9.57 4.69 88407 | 8496 8213 8547046
'; SST-5 | 45.31 43.16  45.73p43 | 6.73 391 6.01 1.29 54.39 5195  54.83¢.42
£ AGNews | 75.58 60.74  74.950.96 | 33.69 0.00 31.67283 | 80.27 66.70  78.301.32
ﬁ Subjective | 77.83 7129  71.56254 | 0.00 0.00 0.00 ¢.00 77.83 71.39 7497461
Average | 77.64 72.05  76.380.96 | 21.66 7.52 18.94305 | 80.47 75.11 79.701 30
SST-2 | 91.80 70.60  92.300.49 | 21.88 0.68 43.49.79 | 92.09 71.09  92.65¢.54
o~ MR | 89.06 81.05 89.94; 14 | 46.00 0.88 48.241051 | 91.11 81.44  90.331 43
:.: FP | 77.73 79.00 7945101 | 23.92 27.25 2531119 | 79.49 80.37  80.351.07
IS SST-5 | 49.71 40.53 4713151 5.47 1.07 543 519 55.76 46.09  53.44504
g AGNews | 74.80 7490 7422163 | 43.65 38.96 38.462.291 78.02 78.52  77.42180
3 Subjective | 60.74 6436  62.81,65 | 0.00 0.68  0.0000 | 62.01 6436 63.9455
Average \ 73.97 68.41 74.311 30 \ 23.49 11.59 26.823 82 \ 76.41 70.31 76.361 57
. SST-2 | 9033  89.94 90.780¢1 | 69.04 3828 6695749 | 90.43  90.04  89.960.5
= MR | 89.84 85.53  88.65:08 | 64.84 29.49 66.546.37 | 89.94 86.13  89.26¢ 52
| FP | 87.89 8594  88.6lp39 | 77.73 73.82 73.653.01 | 88.57 87.890  88.24¢.3¢
v SST-5 | 50.78 48.54  49.96¢55 | 16.50 10.06 13.97 230 | 56.44 54.59  56.33¢.34
o AGNews | 75.29 7529 7431190 | 4892 43.26 43.654.06 | 78.32 78.22  78.091.28
E Subjective | 69.33 68.16 7135754 | 15.14 30.17 13.18 343 | 69.43 68.26  66.441 16
=4 Average \ 77.24 75.57 77.281.90 \ 48.70 37.51 46.324.51 \ 78.86 77.52  78.05¢.50
Proof. Since ¥ has rank r, we write its eigen-decomposition as
A, 0\ A7 .
ZZQ(()T O>Q ’ Ar:dlag()‘17~-~»)‘r)- 4)
On the Hausdorff measure " on M, the probability density function of X is
(x) - S - w5 - ) )
x) = exp | —=(x — T —
P 2m) 72 det(A,) /2 TP\ T2 T w
where XV is the Moore-Penrose pseudoinverse of .
The Hausdorff differential entropy is therefore
har (X) = —E[log p(X)] (6)
T 1 1
=5 log(27) + B log det(A,.) + 3 E [(z- ) '8 (z - )] - (7

z~X

Since X7 inverts A, on the image of ¥ and annihilates the orthogonal complement, we obtain

Therefore,

hayr (X) =

NS N3

22

1
log(2m) + 3 log det(A,) + ;

1 T
(log2m + 1) + 3 ;log)\i

E [0S @— )] = (=) = (@) =1

(®)

)

(10)
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Figure 22: Eccentricity results of 3 non-classification tasks. (Left) people-profession; (Middle)
opus-100 translation: English to Chinese; (Right) country-capital.

H PROTOTYPE OF INFORMATION REMOVAL ON GENERATIVE SCENARIO

In §5, we discuss some infinite label space set- High Eccentricity Low Eccentricity
tings, i.e., the country-capitals task and the people-
profession task, but still on one-token or few-token
labels. Therefore, in this section, we generalize
these discussions to the generative tasks. In sum-
mary, we observe similar information removal dy-
namics on generative tasks with classification tasks
(Fig. 4 (middle)). However, as acknowledged in the
Limitation (4) (§5), we can not obtain a linear in-
formation bottleneck to evaluate the correctness of
such information removal (i.e., Covariance Flux). o -

Therefore, this experiment serves only as a proto- Figure 23: Diagram for eccentricity and co-

typical observation intended to motivate subsequent variance flux metrics. The green plain refers
research within our framework. to the TVS (Wene Wiec) obtained in §4.2.

P

High Covariance Flux

Low Cov. Flux

Specifically, we perform tests on the opus-100 (Zhang et al., 2020; Tiedemann, 2012) En-
glish—Chinese translation dataset and Llama 3.2-1B that follow the same procedure of eccentricity
calculation of Step 2 described in §3, yielding the results shown in Fig. 22 (middle). Note that trans-
lation is not a bijective task (i.e., a single translation may correspond to multiple possible source
sentences). Therefore, the translation task exhibits a clear information-removal trend. This is intu-
itive: with the prompt template “sentence: [original text], translation: [translated text]”, the target
language is not explicitly specified in zero-shot inputs. Thus, at the last token, the model encodes
verbalization patterns corresponding to all potential target languages, with the default pattern dom-
inating. Once some demonstrations are provided, non-target verbalizations are removed. If the
specified target language differs from the “default” pattern, this produces the decrease-and-increase
pattern as observed, following the description in Appendix C.

Such results directly confirm the information removal dy- 9 - o-shat (open-end)
namics in task recognition driven by ICL demonstrations
for generative and non-bijective tasks. However, itis con- &1
ceivable that the outputs of such generative tasks are dis-
tributed on a manifold (to be compared, the outputs of
classification tasks are distributed in the space spanned %67 /
by the unembedding vectors of their labels). Therefore,
utilizing a simple linear filter to actively remove task-
irrelevant information and locate denoising heads is diffi-
cult, as shown in Fig. 24, which echoes our Limitation 4.
Future work can intuitively utilize more complex infor- 3
mation bottlenecks to extend our framework to the non-
linear tasks.

o 2 4 6 8 10 12 14 16
Injected Layer Number

Figure 24: Filter-injection evaluations
Moreover, we repeat the experiment on the people- ©On 0pus-100 English-Chinese transla-
profession task and country-capital shown in Fig. 22 (left) tion task. In cross-entropy loss.
and (right). In these results, we can observe a clear information removal dynamic in the peo-
ple—profession task, while the country—capital task shows no visible interval of increasing eccen-
tricity, which is consistent with our earlier discussion in §5.
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I SUPPLEMENTARY MATERIALS OUTLINE

Augmentation Results for Fig. 3 (“Filter Injection”). We repeat the experiment shown in Fig. 3
on all the mentioned settings, as shown in Fig. 31 - 36, which are consistent with Fig. 3.

Augmentation Results for the Scatter Size of Fig. 3 (“Filter Injection: Covariance out of Rank
r”%).  We explicitly visualize the numerical results of the lower-bound of information removal (i.e.,
the covariance rate out of rank) shown as the scatter size in Fig. 3, as shown in Fig. 42 - 465.

Augmentation Results for Table 1 (“Symbolic Fine-tuning’’). We repeat the experiment shown
in Table 1 on Llama 3-8B and Qwen 2.5-3B, as shown in Fig. 39, which are consistent with Table 1.

Augmentation Results for Fig. 4 (“Eccentricity and Covariance Flux against £’). We repeat
the experiment shown in Fig. 4 on all the mentioned settings, as shown in Fig. 47 - 49. The results
are consistent with Fig. 4.

Augmentation Results for Fig. 5 and 6 (“Eccentricity and Covariance with Instruction and
Various Labels”). We repeat the experiment shown in Fig. 5 and 6 on all the mentioned settings,
as shown in Fig. 53 - 58. The results are consistent with Fig. 5 and 6.

Accuracy with Instruction and Label Configuration in Fig. 5 and 6. 'We report the test accura-
cies on the input configurations in Fig. 5 and 6 in Table 6.

Augmentation Results for Fig. 7 (“Finding Denoising Heads”). We repeat the experiment
shown in Fig. 7 on all the datasets with 8-shot inputs and Llama 3.2-1B, Llama 3-8B, Qwen 2.5-3B,
Qwen 2.5-3B Instruct in Fig. 59 - 82.

Augmentation Results for Fig. 8 (“Layer Distribution of Denoising Heads’”). We repeat the
visualization shown in Fig. 8 on all the datasets and Llama 3.2-1B, Llama 3-8B, Qwen 2.5-3B,
Qwen 2.5-3B Instruct in Fig. 83 - 86.

Augmentation Results for Fig. 11 (“Denoising Head Overlap among Datasets”). We repeat the
visualization shown in Fig. 11 on Llama 3-8B and Qwen 2.5-3B in Fig. 40.

Augmentation Results for Fig. 9 (“‘Overlap of Induction Heads and Denoising Heads”). We
repeat the visualization shown in Fig. 9 on all the datasets and Llama 3.2-1B, Llama 3-8B, Qwen
2.5-3B, Qwen 2.5-3B Instruct in Fig. 87 - 90.

Augmentation Results for Fig. 10 (‘“‘Attention Map Visualization”). We repeat the visualization
shown in Fig. 10 on more 2 denoising heads as shown in Fig. 41.

Augmentation Results for Table 2 (“Ablation Experiment”). We list the ablation results on
individual datasets rather than the average ones in Table 7.

Augmentation Results for Fig. 12 and 13 (“Factor-recall Filter Injection”). We repeat the ex-
periment shown in Fig. 12 and 13 on Llama 3-8B, Qwen 2.5-3B and 7B as shown in Fig. 37 and 38.

8The curve with r = 8 is usually plotted at a higher resolution, i.e., one point is drawn for each layer (if
r # 8, we sometimes draw one point for each 2 layers). Therefore, in some cases, the 7 = 8 curve appears
above curves with lower ranks since the scree plot is usually convex.
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Figure 25: The cosine similarity between all the eigenvectors (each for a scatter) of W, on specific
layers and the subspace spanned by the top-64 principal components of the hidden state point cloud,
measured by the ratio of vector norms before and after mapping to the principal subspace. On Llama
3.2-1B, SST-2, repeated on various inner ranks of TVS, i.e., the column dimensionality of Wey.

PC Norm of Rank 1 PC Norm of Rank 2 PC Norm of Rank 4 PC Norm of Rank 8 PC Norm of Rank 16
£021 = & L E £ 028 £
£ £5020 | £5022 g5 £s
g% 020 3 ‘I gz $Z 026 §Z030
23 *x |23 g3 RS g3
jEo1 §Z018{ * oy Bl 5E0201 [¥] £502s S
£ E 5% &€ S2025
53 0.18 * 50 ¥ H ‘ 0 g1g H I fL] | 50022 280
w= "= | o= EAIN == EPN
) Lo T ‘I\ ] ]w s FYELN 20 0.20 )
8 » E& 0.16 5 | 5 - 5
e " £5 ‘I“I‘” | =% 0161 §h] SEPON =% 020 1
58016 .o 5§ i ‘ ek s§0 5§ 11 111
Eiols . EZou i EZo0a4 f EZ 016 EZ s
Z5" L) “5 “5 “Z50.14 Z5
0 5 10 15 0 5 10 15 0 5 0 15 0 5 0 15 0 5 10 15
Injected Layer Number Injected Layer Number Injected Layer Number Injected Layer Number Injected Layer Number
Figure 26: The similar result with Fig. 25 on Llama 3.2-1B, MR.
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Figure 27: The similar result with Fig. 25 on Llama 3.2-1B, FP.
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Figure 28: The similar result with Fig. 25 on Llama 3.2-1B, SST-5.
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Figure 29: The similar result with Fig. 25 on Llama 3.2-1B, AGNews.
PC Norm of Rank 1 PC Norm of Rank 2 PC Norm of Rank 4 PC Norm of Rank 8 PC Norm of Rank 16
£ £ E £ £ 0.33
L5 " £ 5026 L5 L5 L5
§20209 L | £2026 £2 030 £2030
£Z 010 b . PR ‘ FEox EE £Eo028
550 . 55022 ES ., 1188 £8
&2 x o | £ 02291 | | 25025 2E£0.25
5o x x % | &S g20 g} I x| =S @o
y-a()le * y-a ‘ i ,'0;0.20 LT 1 11 ,"15 1”50,23
3 2018 | wlEr L 33 1 | e 12
£ S50 ‘;‘ Pl =% 018 § | =020 Tis111%1 =% 020 )
55017 *x 55 016 3‘ i 55 11t 55 H 55"
£3 £z E EEMG ““‘EE‘ - 4 14 EEQU ‘ L
. | :
23 0.16 < 2% 0.14 i 2501 25 s501s
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Injected Layer Number Injected Layer Number Injected Layer Number Injected Layer Number Injected Layer Number

Figure 30: The similar result with Fig. 25 on Llama 3.2-1B, Subjective.
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Figure 31: Augmentation results for Fig. 3 on Llama 3.2-1B.
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Figure 32: Augmentation results for Fig. 3 on Llama 3-8B.
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Figure 33: Augmentation results for Fig. 3 on Llama 3-13B.
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Figure 34: Augmentation results for Fig. 3 on Qwen 2.5-3B.
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Figure 35: Augmentation results for Fig. 3 on Qwen 2.5-3B Instruct.
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Figure 36: Augmentation results for Fig. 3 on Qwen 2.5-7B.
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Figure 37: Augmentation results for Fig. 12 on 3 models.
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Figure 38: Augmentation results for Fig. 13 on 3 models.
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Figure 42: Numerical results of covariance out of rank on Llama 3.2-1B.
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Figure 43: Numerical results of covariance out of rank on Llama 3-8B°.
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Figure 44: Numerical results of covariance out of rank on Qwen 2.5-3B°.
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Figure 45: Numerical results of covariance out of rank on Qwen 2.5-3B Instruct®.
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Figure 46: Numerical results of covariance out of rank on Qwen 2.5-7B®.
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Figure 47: Augmentation results for Fig. 4 on Llama 3.2-1B.
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Figure 48: Augmentation results for Fig. 4 on Llama 3-8B.
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Figure 50: Augmentation results for Fig. 4 on Qwen 2.5-3B.
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Figure 51: Augmentation results for Fig. 4 on Qwen 2.5-3B Instruct.

35



Published as a conference paper at ICLR 2026

° ° °
3 & z

Open-end Accuracy
o
o

Open-end Accuracy

e 2 e 2
3 ® :o ©
a g & 8

Eccentricity (Varience Ratio on PC1)

0.70

Open-end Accuracy
o ° °
2 s s
Eccentricity (Varience Ratio on PC1)

e
i

e
@

=
S

fiid

e
w
Eccentricity (Varience Ratio on PC1)

Open-end Accuracy
S
N

e

2
>

e
Y

==

Open-end Accuracy
2
Eccentricity (Varience Ratio on PC1)

2
N

e e
> 3

N
k<

==

Open-end Accuracy
Eccentricity (Varience Ratio on PC1)

e
i

016264 128 256
Number of Shots (k)

016264 128 256
Number of Shots (k)

016264 128 256
Number of Shots (k)

018264 128 256
Number of Shots (k)

016264 128 256
Number of Shots (k)

0168264 128 256
Number of Shots (k)

Eccentricity (Varience Ratio on PC1)

01632 64 128
Number of Shots (k)

SST-2

e
@

=
<

e
@

2
o

°

01632 64 128 256
Number of Shots (k)

MR

=
=
&

N
=
3

e
@
&

e
@
&

°
i
5

2
5
3

e
&

01632 64 256

128
Number of Shots (k)

01632 64 256

128
Number of Shots (k)

SST-5

e
@
&

e
5
a

2
5
3

e
@

e
>

01632 64 128
Number of Shots (k)

AGNews

01632 64 128 256
Number of Shots (k)

Subjective

Covarience Remained through Wen. Wi Covarience Remained through We. Wi Covarience Remained through WeaWoe Covarience Remained through WeaWoe. Covarience Remained through WeWoe.

Covarience Remained through Weu Woee

>

=

i

o

e
3

2
EY

N
<

2
©

0.2

0.1

0.3

0.2

0.1

o

0.8

0.4

0.2

0.3

0.2

0.1

0.4

0.3

0.2

0.1

==

01632 64 128
Number of Shots (k)

~—
pe—————

01632 64 128 256
Number of Shots (k)

e

ss=

01632 64 128 256
Number of Shots (k)

01632 64 256

128
Number of Shots (k)

&;:\t”_ —— —
X —
01632 64 256

| S

0 16 32 64 128 256
Number of Shots (k)

Figure 52: Augmentation results for Fig. 4 on Qwen 2.5-7B.
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Figure 53: (Left 2) augmentation results for Fig. 5, (right 2) for Fig. 6 on Llama 3.2-1B.
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Figure 54: (Left 2) augmentation results for Fig. 5, (right 2) for Fig. 6 on Llama 3-8B.
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Figure 55: (Left 2) augmentation results for Fig. 5, (right 2) for Fig. 6 on Llama 3-13B.
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Figure 56: (Left 2) augmentation results for Fig. 5, (right 2) for Fig. 6 on Qwen 2.5-3B.

40




Published as a conference paper at ICLR 2026

0-shot, w/o Inst.
0-shot, w/ Inst.

0-shot, w/ Inst. (-
8-shot, w/o Inst.

b
|
N

Eccentricity (Var. Ratio on PC1)
S
o

10 20 30
Layer Index

~#— 0-shot, w/o Inst.
~&— 0-shot, w/ Inst.
—&— 0-shot, w/ Inst. (+ Label
—- 8-shot, w/o Inst.

Eccentricity (Var. Ratio on PC1)

10 20 30
Layer Index

0-shot, w/o Inst.

0-shot, w/ Inst.

0-shot, wAlnst. (+ Label Spage
X

10 20 30
Layer Index

o
w
o

~#— 0-shot, w/o Inst.
—&— 0-shot, w/ Inst.

o o e
i i w
S & 3

Eccentricity (Var. Ratio on PC1)
°
=

10 20 30
Layer Index

o
w
&

0-shot, w/o Inst.

0-shot, w/ Inst.

hot, w/ Inst. (+ Label Space)
hot, w/o Inst.

o
@
3

o
Y
&

e
@

e
>

Eccentricity (Var. Ratio on PC1)
g
S

10 20 30
Layer Index

~#— 0-shot, w/o Inst.
—&— 0-shot, w/ Inst.
~#— 0-shot, w/ Ins
—- 8-shot, w/o

o
w
8

o
IS
&

o
I
S

e
=

e
)

Eccentricity (Var. Ratio on PC1)

10 20 30
Layer Index

°
=
S

Cov. Flux through WeneWaee

Cov. Flux through WeneWaee

Cov. Flux through WencWaee

hrough Wene Wiee

®
3}
=

Tu

Co

Cov. Flux through WencWaee

Cov. Flux through Wene Waee

o
w
&

e
w
S

~4~ 0-shot, wjo Inst.
—&— 0-shot, w/ Inst.
~#— 0-shot, w/ Inst. (+ Label Space)
—- 8-shot, w/o Inst.

o
=
S

e
w
&

e
w
3

e
IS
&

e
Y]
S

e
=

Eccentricity (Var. Ratio on PC1)

e
S

10 20
Layer Index

0-shot, w/o Inst.

8-shot, w/o Inst.

8-shot, Random Labels
8-shot, Unseen Labels

Cov. Flux through WencWaee

e
°
&

e
w
3

e
i
&

e
Y]
S

e
=

e
)

~#— 0-shot, wjo Inst.

—— 8-shot, w/o Inst.
8-shot, Random Labels

—#— 8-shot, Unseen Labels

30

SST-2

~#— 0-shot, w/o Inst.
—#— 0-shot, w/ Inst.

o
@
&

e
w
3

—#— 8-shot, w/o Inst.

~&— 0-shot, w/ Inst. (+ Label Space)

<
&
&

o
=
S

Eccentricity (Var. Ratio on PC1)

10 20
Layer Index

30

£
=

~4— 0-shot, w/o Inst.
—&— 0-shot, w/ Inst

Ofshot, w/ Inst. (+ Label Spdce),

o
w
&

o
w
8

e
0
S

Eccentricity (Var. Ratio on PC1)
e e S
o I
=3 &

10 20
Layer Index

30

FP

10 20 30
Layer Index

10 20 30
Layer Index

~#- 0-shot, w/o Inst.
—~— 8-shot, w/o Inst

8-shot, Random Labels
~#- 8-shot, Unseen Labels

Cov. Flux through Wene Weee

~#— 0-shot, w/o Inst.

~— 8-shot, w/o Inst.
8-shot, Random Labels

~#— 8-shot, Unseen Labels

10 20 30
Layer Index

10 20 30
Layer Index

~#- 0-shot, w/o Inst,
4~ 8-shot, w/o Inst.
8-shot, Random Labels
8-shot, Unseen Labels

Cov. Flux through WeyWee

~#— 0-shot, w/o Inst
—#— 8-shot, w/o Inst.

10 20 30
Layer Index

10 20 30
Layer Index

~#— 0-shot, w/o Inst

—#— 8-shot, w/o Inst.
8-shot, Random Labels

~#— §-shot, Unseen Labels

10 20 30
Layer Index

0451 4~ o-shot, wio Inst. 0.300 0.shot, wo Inst.
0,40 —#= 0-shot, w/ Inst. Q 8-shot, w/o Inst.
. ~&— 0-shot, w/ Inst. (+ Label Space), = 0.275
0.35 -~ 8-shot, w/o Inst. S
£ 0.250
0.30 5]
& 0.225
0.25 B
£ 0.200
0.20 =
20175
0.15 S
010 £ 0150
005 80125
: ]
10 20 30 10 20 30
Layer Index Layer Index
0.7 0.35

, wfo Inst.
, w Inst

0.6 -shot, w/ Inst. (+ Label Space;

, wfo Inst.

o
Y

10 20
Layer Index

e
w
8

e
0
&

e
=3

Eccentricity (Var. Ratio on PC1)
e e
o o
> S

30

AGNews

0.45
~#— 0-shot, w/o Inst.
0.40 { == O-shot, w/ Inst.
~#~ 0-shot, w/ Inst. (+ Label Space)
0.35{ —#= 8-shot, wio Inst.
0.30
0.25
0.20
0.15
0.10

0.45

0.40

0.35

0.30

0.25

0.20

Eccentricity (Var. Ratio on PC1)

10 20
Layer Index

30

Subjective

0-shot, w/o Inst.
8-shot, /o Inst.

8.shot, Random Labels

‘shot, Unseen Labels

Cov. Flux through WeeWaee

~4— 0-shot, wo Inst.
0.6 | —~#— 8-shot, w/o Inst
8-shot, Random Labels
~4— 8-shot, Unseen Labels

10 20 30
Layer Index

10 20 30
Layer Index

~#~ 0-shot, w/o Inst.
—— 8-shot, w/o Inst

8-shot, Random Labels
~#- 8-shot, Unseen Labels

\

/N
A

Cov. Flux through Wene Waee

~#— 0-shot, w/o Inst.

—#— 8-shot, w/o Inst.
8-shot, Random Labels

~#— 8-shot, Unseen Labels

10 20 30
Layer Index

10 20 30
Layer Index

Figure 57: (Left 2) augmentation results for Fig. 5, (right 2) for Fig. 6 on Qwen 2.5-3B Instruct.
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Figure 58: (Left 2) augmentation results for Fig. 5, (right 2) for Fig. 6 on Qwen 2.5-7B.
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Figure 59: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3.2-1B, SST-2.
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Figure 60: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3.2-1B, MR.
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Figure 61: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3.2-1B, FP.
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Figure 62: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3.2-1B, SST-5.
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Figure 63: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3.2-1B, AGNews.
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Figure 64: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3.2-1B, Subjective.
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Figure 65: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on

Llama 3-8B, SST-2.
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Figure 66: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3-8B, MR.
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Figure 67: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3-8B, FP.
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Figure 68: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3-8B, SST-5.
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Figure 69: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3-8B, AGNews.
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Figure 70: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Llama 3-8B, Subjective.
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Figure 71: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on

Qwen 2.5-3B, SST-2.
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Figure 72: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on

Qwen 2.5-3B, MR.
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Figure 73: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B, FP. 66
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Figure 74: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B, SST-5. 68
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Figure 75: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on

Q

wen 2.5-3B, AGNews. 70
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Figure 76: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B, Subjective. 72
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Figure 77: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B Instruct, SST-2. 74
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Figure 78: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B Instruct, MR. 76
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Figure 79: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B Instruct, FP. 78
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Figure 80: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on

Qwen 2.5-3B Instruct, SST-5.
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Figure 81: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B Instruct, AGNews. 82
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Figure 82: (Left) augmentation results for Fig. 7, (right) induction score of each attention head on
Qwen 2.5-3B Instruct, Subjective. 84
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Figure 83: Augmentation results for Fig. 8 on Llama 3.2-1B.
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Figure 84: Augmentation results for Fig. 8 on Llama 3-8B.
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Figure 85: Augmentation results for Fig. 8 on Qwen 2.5-3B (the threshold is set to £2.5%).
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Figure 86: Augmentation results for Fig. 8 on Qwen 2.5-3B Instruct (the threshold is set to £2.5%).
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Figure 87: Augmentation results for Fig. 9 on Llama
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Figure 88: Augmentation results for Fig. 9 on Llama 3-8B.
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