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ABSTRACT
While exposure to diverse viewpoints may reduce polarization, it
can also have a backfire effect and exacerbate polarization when the
discussion is adversarial. Here, we examine the question whether
intergroup interactions around important events affect polariza-
tion between majority and minority groups in social networks.
We compile data on the religious identity of nearly 700,000 Indian
Twitter users engaging in COVID-19-related discourse during 2020.
We introduce a new measure for an individual’s group conformity
based on contextualized embeddings of tweet text, which helps us
assess polarization between religious groups. We then use a meta-
learning framework to examine heterogeneous treatment effects
of intergroup interactions on an individual’s group conformity in
the light of communal, political, and socio-economic events. We
find that for political and social events, intergroup interactions
reduce polarization. This decline is weaker for individuals at the
extreme who already exhibit high conformity to their group. In
contrast, during communal events, intergroup interactions can in-
crease group conformity. Finally, we decompose the differential
effects across religious groups in terms of emotions and topics of
discussion. The results show that the dynamics of religious polar-
ization are sensitive to the context and have important implications
for understanding the role of intergroup interactions.

1 INTRODUCTION
Polarization between identity groups is an important driver of social
unrest and may adversely affect a nation’s economic growth and
responses to crises [15, 16]. However, it is less clear how polarization
evolves during crises. On the one hand, collective suffering may
foster within-group solidarity [6]. On the other hand, it may lead
to attribution of blame on the “outside” group or increase between-
group competition for limited resources [24]. These behaviorsmight
be accentuated among people who have a tendency to interact only
within their groups, and hence might have a restricted information
environment [23]. Polarization has also been widely studied in the
social-media context. In particular, social media platforms such as
Twitter have becomemore polarized over time [19]. Consistent with
this, political polarization decreased for users who deactivated their
Facebook accounts before the US elections [1]. The depolarization
however, depends on an individual’s background and this pattern
might reverse for individuals having homogeneous offline social
networks [4]. Interactions within social media platformsmight have
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varying impacts on polarization. In an unfavourable environment,
exposure to outgroup viewpoints may lead to stereotype formation
and increase polarization. Bail et al. [5] conduct a field experiment
and find that republicans (democrats) who were offered financial
incentives to follow a liberal (conservative) twitter bot becamemore
conservative (liberal).

In this paper, we examine the impact of intergroup interactions
on polarization on Indian Twitter between religious majority and
minority groups in the context of COVID-19 related events. We
consider an individual to be engaging in intergroup interaction
if they post a reply to an individual outside their own group. We
introduce a new measure of an individual’s conformity to their own
group based on contextualized embeddings of tweet texts. We call
this theGroupConformity Score (GCS) of a user which measures
how similar a user’s tweets are to their own group as opposed to the
tweets by users of the other group. Polarization is the sum of GCS
over all the users, weighted by the inverse of their group size. We
then unveil the heterogeneous effects of intergroup interactions on
a person’s group conformity over different pandemic related events
using a meta-learning framework. We examine the heterogeneities
in the effect with respect to religion, topics, emotions, engagement,
and ego-network features. Finally, we decompose the differences
between the treatment effects for the two religious groups into the
treatment effects on change in topics of discussion and on change
in emotions.

Existing studies measure linguistic polarization between groups
on social media based on certain dimensions of tweet text such
as stance [12] or contextualized embeddings of specific keywords
[14]. Our approach is inspired by Gentzkow et al. [20] who propose
a bag-of-words (BOW)-based metric to measure partisanship in
congressional speech using the entire content. This metric over-
comes finite sample bias resulting from phrases that a group might
simply mention by chance. This metric has further been used to
examine polarization on twitter in the context of mass shooting
incidents in the US [13]. One limitation to the bag-of-words repre-
sentation is that it does not take the context or the synonymy in two
phrases into account. Our new contextualized- embeddings-based
measure (GCS) can address this by capturing different dimensions
of linguistic polarization more meaningfully.

Our work is motivated by the contact hypothesis which states
that intergroup contact can reduce prejudice towards the outgroup
when groups engage in equal status contact in the pursuit of com-
mon goals and in the presence of intergroup cooperation under a
favorable institutional environment [2]. Thus, intergroup interac-
tion can lead to a better understanding of outgroup perspectives
and lead to cross-group friendships [10, 32]. At a broader level, this
may facilitate national integration but may have the opposite effect
in polarized settings [7]. In the political arena, Levendusky and Stec-
ula [26] experimentally demonstrate that cross-party discussions
decrease affective polarization (or dislike of outgroup individuals)
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between Republicans and Democrats in the US. This decrease is
conditional on conversation topics not involving disagreements
[35]. The effects of intergroup contact might vary for majority and
minority groups with possibly weaker effects for minorities [36]. In-
terestingly, intergroup contact focusing on commonalities between
majority and minority groups can lead the minority to perceive the
majority group as fairer than they are [34]. In the Indian context,
Lowe [27] randomly assign individuals from different caste groups
to the same (collaborative contact) or opposing (adversarial con-
tact) cricket teams. They find that collaborative contact increases
cross-caste friendships while adversarial contact has the opposite
effect—thus highlighting the importance of the setting. In the online
context, intergroup conversations between Hindus and Muslims on
Whatsapp are found to decrease prejudice against Muslims [28]. We
add to this evidence by going beyond prejudice and focus on group
conformity in tweet text for both majority and minority groups,
and examine the heterogeneous effects of intergroup contact.

In line with the above discussion, we hypothesize that in general
intergroup interaction should decrease Group Conformity Score
(GCS), and thus polarization. However, such interaction should be
less likely to decrease GCS for individuals with already entrenched
positions and who might be less receptive to outgroup perspectives.
Further, when individuals in the minority group are dispropor-
tionately affected by an event, we expect intergroup interaction to
amplify GCS for them. We expect the opposite effect for the unaf-
fected majority group who might become sympathetic to minority
issues due to interaction. Finally, for politically salient events, in-
tergroup interaction should increase polarization for individuals
having a high predisposition towards political discussions and who
might have conflicting ideologies.

2 DATA
2.1 COVID-19 Tweets India
We use the “Global Reactions to COVID-19 on Twitter” data col-
lected by Gupta et al. [22]. The core data comprise over 132 million
english language tweets from more than 20 million unique users
using 4 keywords—“corona”, “wuhan”, “nCov”, and “COVID”. The
tweets were posted during January 28, 2020–January 1, 2021.1 We
use the India sample of the data, i.e. tweets pertaining to or origi-
nating from India.2 Hydrator application is used to obtain complete
information on tweets from their IDs (collected on May 4, 2021).
Out of a total of 6,166,152 tweet IDs, full data for 5,459,402 tweets
could be collected representing an attrition rate of 11.46%. This is
due to deletion of some of the tweets and accounts by the collection
date. The tweets in the data are posted by 871,203 unique users. The
tweets are cleaned by removing mentions, hyperlinks and extra
whitespaces. The data contains information on user name, their
account creation date, number of friends and followers, whether
a tweet is a retweet or a reply. It also contains information on

1The dataset of tweet IDs is publicly available at https://doi.org/10.3886/E120321V6.
2This restriction is imposed by mapping the user location attribute on twitter to
country using GeoNames’ cities15000 geographic database available at http://download.
geonames.org/export/dump/cities15000.zip. The place field and the user location field
are mapped to the India by matching them with a dictionary of cities and states in
India. For places that could not be mapped to India using the previous step we use
Nominatim—a search engine used for OpenStreetMap (OSM). This gives complete
address of a place and allows us to remove tweets posted from outside India.

five psycho-linguistic attributes for each tweet indicating the in-
tensity of valence, anger, fear, sadness, and joy extracted using
CrystalFeel—“a collection of machine learning-based emotion anal-
ysis algorithms for analyzing the emotional-level content from
natural language”.3

2.2 Events
To select events for subsequent analysis, we scan the news reports
for the important events that took place in 2020. We check which
events became a topic of discussionwithin COVID-related discourse
by scanning for event-related key-phrases in the tweets in our
dataset. We present the details in Appendix A Table 3. We find that
among all news headlines, the subsample in Table 1 were among
the most popular COVID-related subjects on Twitter. And we focus
our attention on these events in the rest of the paper.

3 METHODOLOGY
To study the treatment effect of Intergroup Interactions on the
Group Conformity of an individual, we first augment our dataset to
include all the variables of interest. We describe these in Sections
3.1–3.3 and then describe the steps for treatment effect estimation
in Section 3.4.

3.1 Inferring Religion
Since the data on religious identity is not available on Twitter,
we use usernames as a proxy of their religious identities. In In-
dia, names are highly correlated to the group identities and we
leverage tcharacter sequence-based machine learning models from
Chaturvedi and Chaturvedi [11] to obtain religion estimates.4 The
religion of each user is classified as Muslim (also referred to as
minority as Muslims are the largest minority group in India com-
prising 14% of total population of India according to Census 2011) or
non-Muslim (alternatively referred to as Hindus or majority group
comprising 80% of total population).

We transliterate the names from indic languages Hindi, Ben-
gali, Gujarati, Punjabi, Malayalam, Kannada, Tamil, Telugu, Oriya,
Marathi, Assamese, Konkani, Bodo, Nepali, and Urdu to English
using Indic-trans tool [8].5 We drop verified users from this data to
remove influential individuals/organizations from the data set. To
further distinguish individuals from organizations and to weed out
fake names, we construct a name part dictionary by using person
names from a 3% random sample of eligible voters from Indian
electoral rolls and Rural Economic & Demographic Survey (REDS)
data collected by the National Council of Applied Economic Re-
search. For every twitter user, only name parts that occur in the
constructed name part dictionary are retained. We further manually
scan the user names that either have more than 20,000 followers or
those who tweeted more than 60 times or user names that contain
any of the organization-related keywords provided in Appendix
B Table 4 and drop the tweeters having non-personal names from
this list.6

3See https://socialanalyticsplus.net/crystalfeel/.
4We use the Single Name SVM model to obtain the muslim-score as recommended.
5Available at https://github.com/libindic/indic-trans.
6To check for the possibility that our results might be influenced by bots, we use the
recent lists TwiBot-20 [18] and TwiBot-22 [17]. We find that less than 0.5% of users in
our data are listed as bots and contribute to 0.63% of the tweets.
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Table 1: Description of COVID-Related Events Highly Discussed in COVID Tweets India subset in year 2020

Event Date Description
Janata Curfew Mar 22 A day long curfew announced by the government, for all citizens barring essential services to curb the pandemic (and

possibly to prepare for future lockdown).
Tablighi Mar 31 Tablighi Jamaat is a congregation of Muslims where attendees share food, sit close together, and preach religious

teachings. Despite an ongoing ban on public gatherings, this assembly took place in Delhi and became a COVID-19
super-spreader event. Media reports about several participants (who were being quarantined post-gathering) spitting
on attending doctors and healthcare personnel fueled Islamophobic sentiments across social media along with a viral
hashtag #Corona Jihad. Much later, the Supreme Court slammed media outlets for communalizing the incident.

Migrant Deaths May 8 An estimated 10 million workers were forced to undertake long arduous journeys back home on foot after losing jobs
due to abrupt pandemic-related lockdown and suspension of train services. 16 of them were killed by an empty goods
train while they were sleeping on the tracks on this day.

Coronil Launch Jun 22 Indian multinational conglomerate Patanjali spearheaded by popular Indian yoga guru Ramdev launched an ayurvedic
remedy claiming that it cures the COVID-19. This claim was not backed by any clinical data, yet the remedy was
approved by Ministry of Ayush (for traditional medicine). The release received massive praise from some and harsh
criticism from others on social media. Amidst controversy, the ministry ordered halt on the sale and advertising
but later allowed it to be marketed as an immunity booster. However, it was completely banned by several state
governments who considered it a fake medicine.

Exam Satyagraha Aug 23 All India Students’ Association called for one-day hunger strike and satyagraha against the government’s decision
to conduct national-level examinations in-person. The reasons to oppose were personal health risks owing to the
COVID-19 pandemic and logistics related challenges faced by students owing to the lockdowns and suspension of
public transportation. More than 4000 students participated and multitudes showed support via social media.

GDP Contraction Aug 31 Indian government announced the biggest economic slump in GDP that India had seen in 24 years.
BJP Bihar Manifesto Oct 22 The ruling political party (BJP) promised free vaccines for everyone in Bihar in its Assembly election manifesto. People

from both the religious groups over social media condemned this, reacting with the hashtag #VaccineForVotes.

The model from [11] is trained on names obtained from official
records, while the twitter names sometimes also include additional
characters to reflect other personality attributes of the user. The
name classification exercise also depends on the distribution of
names in the specific domain the algorithm was trained on. There-
fore, we expect a domain shift while applying the model on our
data. To address the noisy classification issue, We experiment with
two alternative decision boundary thresholds of the muslim-score
returned by SVMmodel.7 In the first case, a threshold of zero is used.
This means that all users with muslim-score above 0 are classified
as muslims and non-muslim otherwise. In the second, we split all
the names into equal-width bins after sorting them on the basis
of the muslim-score. We used 20 bins of width 0.1 each (The first
bin encapsulates names with score below -0.9, and the last with 0.9
and above. We then randomly sample 50 names from each bin and
manually annotate them. Thereafter, we plot roc-auc curves and
analyze the gmean and Youden statistics to choose a threshold of
0.3 as the decision boundary. That is, if the muslim-score is greater
than 0.3, we classify a name as muslim, and non-muslim otherwise.8
We also find a very common non-muslim name Abhishek as being
classified Muslim, we manually classify this as non-muslim.

3.2 Measuring Polarization
Using the estimates of religious identities of tweeters, we next
measure the polarization in terms of conformity of each user to
their religious group.

3.2.1 Polarization via Bag-of-Words. We first consider the
leave-out estimator of phrase partisanship proposed by Gentzkow

7Both the thresholds lead to qualitatively similar end results.
8See Appendix C, Figure 5.

et al. [20].9 We compute daily user-level polarization [13] or the
bag-of-words-based Group Conformity Score (𝐺𝐶𝑆𝐵𝑂𝑊

𝑖,𝑑
) as follows:

𝐺𝐶𝑆𝐵𝑂𝑊
𝑖,𝑑

= 𝑞𝑖,𝑑 · 𝜌−𝑖,𝑑
Where 𝑞𝑖,𝑑 is the vector of token (unigram and bigram) frequen-

cies normalized by the sum of all token counts for user 𝑖 on day
𝑑 and 𝜌−𝑖,𝑑 is the vector denoting the sum of normalized token
frequencies across all users in 𝑖’s group 𝑔𝑖 ∈ {𝑀𝑢𝑠𝑙𝑖𝑚(𝑀), 𝑛𝑜𝑛 −
𝑀𝑢𝑠𝑙𝑖𝑚(𝑁𝑀)} while leaving 𝑖 out, relative to users in the other
group𝑔𝑖 . For token 𝑡 , 𝜌𝑡−𝑖,𝑑 =

∑
𝑗∈𝑔𝑖−{𝑖 } 𝑞

𝑡
𝑗
/(∑𝑔𝑖−{𝑖 } 𝑞

𝑡
𝑗
+∑𝑔𝑖 𝑞

𝑡
𝑗
).10

Intuitively, this captures similarity in phrase usage for user 𝑖 with
their group members relative to the similarity with the other group.
The daily polarization is then estimated as the following average:

𝜋
𝐿𝑂,𝐵𝑂𝑊

𝑑
=

1
2

∑︁
𝑔∈{𝑀,𝑁𝑀 }

1
|𝑔|

∑︁
𝑖∈𝑔

𝐺𝐶𝑆𝐵𝑂𝑊
𝑖,𝑑

3.2.2 Polarization via Contextualized Embeddings. The bag-
of-words-based polarization estimator ignores the larger context
of a tweet and can have several limitations. Firstly, distinct words
(for example, greetings such as salaam vs. namaste) used by two
groups conveying the same underlying message will contribute
positively towards the polarization estimate. Secondly, if two users
have different stance on a given issue while having broadly similar
phrase usage (for example, Coronil cures Covid vs. Coronil does not
cure Covid), the BOW estimator will consider them to be similar.

We address these by computing the contextualized-GCS score
or simply 𝐺𝐶𝑆𝑖,𝑑 for user 𝑖 on day 𝑑 . For this, we first map all
9Before applying this estimator, we lower-case the tweets, remove stopwords (see
Appendix D for the stopwords list) and punctuations, and stemwords using the NLTK’s
Snowball Stemmer. Removing stopwords leads to dropping 1,007 user-day observations
comprised entirely of stopwords and punctuations.
10We only consider tokens 𝑡 which are used by at least two users.
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the tweets to a 768-dimensional vector space using a sentence-
transformer—specifically, the pretrained all-mpnet-base-v2 model
[33]. This model is fine-tuned on over a billion sentence pairs from
diverse domains and has shown state-of-the-art results on semantic
search and sentence embedding tasks.11 We then average these
embeddings at the user-day level 𝑢𝑖,𝑑 . Next, we compute daily cen-
troids for both the groups by taking the mean of𝑢𝑖,𝑑 across all users
in a group. Analogous to the leave-out estimator, we first adjust the
group centroid by subtracting 𝑢𝑖,𝑑 from the group centroid before
computing𝐺𝐶𝑆𝑖,𝑑 . Thereafter, we compute the distances between
𝑢𝑖,𝑑 and both the centroids. Finally,𝐺𝐶𝑆𝑖,𝑑 is computed as the Eu-
clidean distance from the other group’s centroid relative to their
own adjusted centroid. We use the following formula:

𝐺𝐶𝑆𝑖,𝑑 =
∥𝑢𝑖,𝑑 − 1

|𝑔𝑖 |
∑

𝑗∈𝑔𝑖 𝑢 𝑗,𝑑 ∥

∥𝑢𝑖,𝑑 − 1
|𝑔𝑖−{𝑖 } |

∑
𝑗∈𝑔𝑖−{𝑖 } 𝑢 𝑗,𝑑 ∥ + ∥𝑢𝑖,𝑑 − 1

|𝑔𝑖 |
∑

𝑗∈𝑔𝑖 𝑢 𝑗,𝑑 ∥

Higher values of𝐺𝐶𝑆𝑖,𝑑 correspond to greater conformity of a user
to their own group. The daily polarization 𝜋𝐿𝑂

𝑑
is computed by

aggregating this measure across users in the two groups as before:

𝜋𝐿𝑂
𝑑

=
1
2

∑︁
𝑔∈{𝑀,𝑁𝑀 }

1
|𝑔|

∑︁
𝑖∈𝑔

𝐺𝐶𝑆𝑖,𝑑

3.3 Discussion Topics During COVID-19
To gain a deeper understanding of major topics discussed around
Covid-19 events and to include them as covariates for examining the
effect of intergroup interaction on change in group conformity, we
perform topic modeling over the tweets. We use the subset of tweets
considered for treatment effect estimation across all the events. We
leverage contextualized embeddings for this task as well. We first
drop the duplicated tweets so that retweeting does not affect topic
assignment. We then cluster the tweets’ contextual embeddings
obtained using sentence transformer model all-mpnet-base-v2 using
the k-means clustering algorithm [21, 37].12 For inferring represen-
tative topic labels, we preprocess the tweets by first lower-casing
them. Since the entire dataset comprises COVID-specific tweets, we
remove COVID and its synonyms for a more meaningful inference
of topic labels. We also replace different vaccine names with the
word vaccine, remove mentions, urls, numbers, special html enti-
ties such as &amp and &quot, punctuation, and extra spaces. We
then transform each tweet by joining together commonly occurring
multi-word phrases in that tweet using the Gensim phrase model
[29]. We then concatenate all the tweets within a topic as a single
document. Finally, we compute class-based TF-IDF defined as:

cTF-IDFi =
𝑡𝑖

𝑤𝑖
· 𝑙𝑜𝑔 𝑚∑𝑛

𝑗=1 𝑡 𝑗

Where, 𝑡𝑖 is frequency of a word/phrase within the 𝑖𝑡ℎ topic and𝑤𝑖

the total number of phrases in the topic. The total number of tweets
(or unjoined documents) is𝑚, and is normalized by the number of
occurrences of the word/phrase across all 𝑛 topic clusters.

11For more information, see https://huggingface.co/sentence-transformers/all-mpnet-
base-v2.
12We choose 7 as the optimal number of clusters based on manual scanning and the
elbow method heuristic by plotting inertia against the number of topics over 3 to 10
topic clusters.

We identify the following topics: General COVID response, COVID
prevention, COVIDNews/statistics (general), COVID news/statistics
(state-specific), Socio-Economic, Political-Religious, and China &
Global. We do a qualitative and quantitative analysis of the topic
clusters and find that the COVID-specific topics are very similar
and merge them into a single topic COVID Response to get final
four topics.13 We provide 50 most representative phrases associated
with each of these topics and and a sample of tweets associated
with each topic in Appendix F Tables 5 and 6 respectively.

3.4 Conditional Average Treatment Effect
In this section we describe our methodology to answer the question
do intergroup interactions change a user’s conformity to their group?.
We first describe the treatment and outcome variables:

3.4.1 Treatment: Intergroup Interaction. For each event, we
look at all tweets before the event. We consider tweets that are
replies, and check the religion of the user posting the reply and
that of the user being replied to. Our treatment variable interact is
a binary indicator that equals 1 if a user replies to someone outside
their group at least once, and 0 otherwise.14

3.4.2 Outcome.

Change in 𝐺𝐶𝑆 . For each event, we define an event window of
n days before and after it. We compute the n-day mean of𝐺𝐶𝑆𝑖 for
each user 𝑖 over the pre-event and post-event windows.15 Finally,
we take Δ𝐺𝐶𝑆𝑖 = 𝐺𝐶𝑆𝑖,𝑝𝑜𝑠𝑡 − 𝐺𝐶𝑆𝑖,𝑝𝑟𝑒 as the difference in the
averages post and pre-event. We choose the window size to be
large enough to balance the daily fluctuations and small enough to
rule out other events influencing the outcome.

Change in Topics and Emotions. We also estimate the treatment
effect of intergroup interaction on change in topics and emotions
after each event. This helps in decomposing the differential effects
of intergroup interaction on Δ𝐺𝐶𝑆𝑖 in terms of differential effects
on changes in topics and emotions across religions. We again take
the mean difference in these variable during post and pre-event
windows for each user.

3.4.3 Pre-treatment Covariates. We consider 30 days pre-event
window and compute the following covariates for adjustment: 30-
day averages of 𝐺𝐶𝑆 , emotion intensities for valence, anger, fear,
sadness, and joy; ego-network features such as friends and follow-
ers counts; engagement features such as tweet frequency, average
number of times a user’s tweets were retweeted and the fraction of
replies among tweets; the number of days lapsed since account cre-
ation to event date; muslim-score as given by the religion classifier;
and lastly the fraction of user tweets in the pre-treatment period
assigned to each topic. We use inverse hyperbolic sine transforma-
tion (arcsinh) for friends and followers-counts, tweet frequency and
average retweets, as these are right skewed. Arcsinh approximates
logarithmic transformation while allowing us to retain zero-values.
In We then normalize all the covariates and the outcome variable.
13The qualitative analysis is based on most frequent words associated with each topic
while quantitative analysis is based on cluster mean and mean of pairwise cosine
distances across clusters. Our results for metalearners in Section 4.2 remain the same
with and without merging topic clusters.
14The users who never reply to anyone are dropped from further analysis
15Users who do not tweet during any window are dropped.

4

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Bridging or Breaking: Impact of Intergroup Interactions on Religious Polarization Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

The descriptive statistics for the final event-level dataset are
provided in Appendix H Table 9.

Figure 1: T-Learner Framework. Source-Alves [3]

3.4.4 T-Learner. Given the outcome𝑌 (Δ𝐺𝐶𝑆) and specific values
of pre-treatment covariates 𝑋 = 𝑥 , Conditional Average Treatment
Effect (CATE) is defined as:

𝜏 (𝑥) = E[𝑌 (1) − 𝑌 (0) | 𝑋 = 𝑥] = 𝑀1 (𝑋 ) −𝑀0 (𝑋 )

Where, 𝑌 (1) is the Δ𝐺𝐶𝑆 observed for an individual in the Treat-
ment group (𝑇 = 1), i.e. if they interact outside their group and
𝑌 (0) is Δ𝐺𝐶𝑆 for the same individual considering they belong to
the control group (𝑇 = 0). Here, we can only observe either 𝑌 (1)
or 𝑌 (0) for any given individual. Since our treatment variable is
discrete, we can leverage meta-learning algorithms—which help us
estimate the response functions𝑀1 (𝑋 ) and𝑀0 (𝑋 ), and thus CATE.
In particular, we use T-Learner [25] which consists of the following
two stages as depicted in Figure 1:

(1) Training Stage: In the first stage, we learn approximations
of response functions 𝑀̂1 and 𝑀̂0 using observations from
the treatment and control groups respectively.

(2) Prediction Stage: In the second stage, we estimate Indi-
vidual Treatment Effect ITE for 𝑖𝑡ℎ user using predictions
from 𝑀̂1 and 𝑀̂0 over the complete set of observations in
the test set as:

𝜏 (𝑥𝑖 ) = 𝑀̂1 (𝑥𝑖 ) − 𝑀̂0 (𝑥𝑖 )

Implementation Details. For measuring the outcome, we use a
window size of 7 days post and pre-event. We use nested Lasso
regression with 10-fold cross validation (CV). We first split the
event-specific subsets for each treatment group into 10 folds. For
each iteration, we further split the training fold and run Lasso with
L2 regularization, using 10-fold CV. We report the average MSE
and R-squared along with the average treatment effect.16

16Base learners such as support vector regression (SVR), random forest, Ridge, or
RANSAC regression with grid-search for hyperparameter tuning lead to lower perfor-
mance metrics. We also experiment with window sizes of 5 or 10 days and find broadly
similar trends. We get qualitatively similar results using X-learner [25].

4 RESULTS
Here, we first discuss a qualitative analysis based on our proposed
metric𝐺𝐶𝑆 in Section 4.1 and then the results from treatment effect
estimation in Section 4.2. Finally, we explain the differences in the
treatment effect across the two religious groups in terms of the
effect on changes in topics and emotions using a decomposition
approach in Section 4.3.

4.1 Qualitative Content Analysis based on GCS
To compare the BOW and contextualized-embeddings-based esti-
mator, Figure 2 plots the seven-day exponential moving average
of polarization trends using 𝜋𝐿𝑂,𝐵𝑂𝑊 and 𝜋𝐿𝑂 . We find similar
trends using both the measures with the Pearson’s correlation of
66.87%. However, the fluctuations in BOW polarization are more
pronounced. The polarization increases during the Tablighi inci-
dence on March 31, 2020, which was marked by increased Islamo-
phobic sentiments. The highest peaks are during the Muslim festi-
vals—the beginning of holy month of Ramadan and its culmination
in Eid-ul-fitr. There are also smaller peaks during the Muslim festi-
vals of Eid-ul-zuha and Eid-e-Milad. We find that the Muslim tweets
during these festivals are mostly greetings and well wishes while
non-Muslim tweets discuss a variety of subjects. We do not find
any peaks around non-Muslim festivals.

To understand whether𝐺𝐶𝑆 provides a more meaningful mea-
sure compared to 𝐺𝐶𝑆𝐵𝑂𝑊 we examine tweets from users in both
religious groups having high and low values of these measures
up to seven days post each event.17 As expected, the tweets from
users in one group having high group conformity are similar to
tweets by users in the other group having low group conformity.
This holds even without exactly matching but semantically similar
tweets in case of 𝐺𝐶𝑆 . The highest 𝐺𝐶𝑆𝐵𝑂𝑊 tweets for the major-
ity group often comprise a few common words. This is consistent
with the results in Appendix E, Figure 6 in which we examine the
relation of tweet length with 𝐺𝐶𝑆𝐵𝑂𝑊 and 𝐺𝐶𝑆 . We find that the
average tweet length is low at extreme values of 𝐺𝐶𝑆𝐵𝑂𝑊 while
this relation is weak in case of 𝐺𝐶𝑆 .

To qualitatively examine each group’s tweeting patterns during
each event, we focus on high 𝐺𝐶𝑆 user tweets. Starting with the
pre-lockdown Janata Curfew, we notice hostile attitudes against
China and appreciation for frontline workers among non-Muslims,
while Muslims predominantly share news related to Kashmir (a
Muslim-majority state) and Muslim-majority countries. In context
of the Tablighi incidence, non-Muslims promoted the Indian prime
minister’s plea to light candles in a show of unity in fight against
COVID-19 at 9 p.m. for 9 minutes, whereas Muslim tweets express
anger over Islamophobia spread by Indian media in the context of
this event. A noteworthy example, in the aftermath of the Tablighi
incident, is of a non-Muslim user supporting Muslims: “The manner
in which media showed propaganda against tabliqi jamat & corona
jihad etc but didn’t shown Bombay HC judgements which said tab-
lighi’s were made scapegoats, same way they will show propaganda
against @Tweet2Rhea & @deepikapadukone but will not show u the
judgments later”. 𝐺𝐶𝑆 (0.497 or 9𝑡ℎ percentile) correctly identifies

17Appendix G, Tables 7 and 8 report samples of 5 tweets from high𝐺𝐶𝑆 and𝐺𝐶𝑆𝐵𝑂𝑊

users in each group.
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Figure 2: 7-day Exponential Moving Average of daily polarization estimated using contextualized approach 𝜋𝐿𝑂 vs. bag-of-words
approach 𝜋𝐿𝑂,𝐵𝑂𝑊 along with the number of COVID-related tweets by both religious groups. The COVID-related events are
marked with green vertical lines and major festivals are marked with yellow vertical lines.

low group conformity for this user while 𝐺𝐶𝑆𝐵𝑂𝑊 (0.84 or 99𝑡ℎ
percentile) fails to do so.

AfterMigrant Deaths there’s little discussion on the plight of
migrants among high𝐺𝐶𝑆 non-Muslims. When a discussion occurs,
it captures two viewpoints—one is the suffering of migrants and the
second is the increasing risk of COVID spread and economic issues
resulting from migration. On the other hand, high 𝐺𝐶𝑆 Muslims
express anger against the government and media for not cover-
ing the issue. After Coronil Launch, non-Muslims express relief
against COVID and pride in the Indian Ayurvedic medicine, though
a few express skepticism as well. On the other hand, several high
𝐺𝐶𝑆 Muslims label it a fake drug. In addition, Muslim discourse
remains centered around Islamophobia and the bigotry of news
media in coverage of Tablighi vs. government approval of Rath
Yatra—a Hindu religious congregation.

Post the call for Exam Satyagraha, high 𝐺𝐶𝑆 non-Muslim dis-
course is more varied with some concerns regarding increased
COVID risk due to in-person examination while high𝐺𝐶𝑆 Muslims
harshly criticize the decision of in-person exams. This is perhaps
due to Muslims being the poorest religious group in India and might
find it logistically harder to attend in-person exams. Similarly, dur-
ing GDP Contraction high 𝐺𝐶𝑆 non-Muslim discourse remained
more varied while Muslim tweets express criticism towards the
government over GDP decline. Finally, after the release of Bihar
Manifesto by the ruling party BJP, high𝐺𝐶𝑆 non-Muslim discourse
focuses on general COVID-related news with some criticizing the
vaccine for vote clause in the manifesto. This criticism appears to
be unanimous among the high 𝐺𝐶𝑆 Muslim tweeters.

4.2 Effect of Interaction on Change in GCS
In this section, we examine the results from T-learner. Table 2 shows
the average effect 𝜏𝐴𝑙𝑙 of intergroup interaction on change in over-
all 𝐺𝐶𝑆 and also separately for Muslims 𝜏𝑀𝑢𝑠𝑙𝑖𝑚 and non-Muslims
𝜏𝑛𝑜𝑛−𝑀𝑢𝑠𝑙𝑖𝑚 across all the events. Appendix I, Figure 7 shows corre-
sponding distributions of individual treatment effects for Muslims

and non-Muslims. We find that intergroup interaction decreases
overall 𝐺𝐶𝑆 (or 𝜏𝐴𝑙𝑙 < 0) for all events except GDP Contraction for
which there is an increase in 𝐺𝐶𝑆 (𝜏𝐴𝑙𝑙 = 0.05 standard deviations
or s.d.). In other words, talking to people from the other group
generally contributes to a decrease in polarization. The strongest
negative effect among these is for the Tablighi incident (-0.16 s.d.).
In contrast, while intergroup interaction decreases average𝐺𝐶𝑆 for
Muslims after all the other events, the effect is positive for the Tab-
lighi event (0.04 s.d.) which was a highly communal event followed
by increasing islamophobia in India. This suggests that intergroup
interaction amplifies the polarizing effect of such events for the
affected minorities. Notably, the negative effect for Muslims after
GDP Contraction is not statistically significant while all the other
coefficients we discuss are statistically significant at the 1% level of
significance. The strongest negative effect of intergroup interaction
on𝐺𝐶𝑆 for Muslims is in case of Janata Curfew (-0.24 s.d.) and after
the release of Bihar Manifesto (-0.18 s.d.).

We examine the heterogeneity in the treatment effect (TE) by
regressing the treatment effect 𝜏 on standardized pre-treatment
covariates for each event. The complete results are reported in
Appendix I, Figure 8 but we highlight the most important findings
here. We find a high positive correlation between pre-treatment
𝐺𝐶𝑆 and 𝜏 . In other words, the decline in 𝐺𝐶𝑆 due to intergroup
interaction is stronger for people with an already low 𝐺𝐶𝑆 . This is
especially true in case of Bihar Manifesto which is a highly political
event, and on which Hindus and Muslims might have divergent
perspectives. However, this positive correlation breaks down in
case of the Tablighi event. Among the topics, 𝜏 is more negative
after launch of Coronil remedy for people who were initially more
engaged in COVID response discussion, and hence, might have
shared concerns related to this. The other notable topic is Politics-
Religion with which 𝜏 has a highly positive correlation in case of
Exam Satyagraha and Bihar Manifesto both of which are political
events. Specifically, Exam Satyagraha was called for by the left wing
student organization AISA when the right wing ruling government
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Table 2: Effect of intergroup interaction on𝐺𝐶𝑆 estimated using Meta-learner using Lasso with 10-fold CV. We separately report
average treatment effects for each group and report bootstrapped standard errors in parentheses.

Event #Users 𝑀̂0 𝑀̂1 𝑚𝑒𝑎𝑛(Δ𝐺𝐶𝑆) Treatment Effect
𝑅2 MSE 𝑅2 MSE Control Treated 𝜏𝐴𝑙𝑙 𝜏𝑀𝑢𝑠𝑙𝑖𝑚 𝜏𝑛𝑜𝑛−𝑀𝑢𝑠𝑙𝑖𝑚 Δ𝜏 = 𝜏𝑀𝑢𝑠𝑙𝑖𝑚 − 𝜏𝑛𝑜𝑛−𝑀𝑢𝑠𝑙𝑖𝑚

Janata Curfew 4671 0.091 0.892 0.013 1.088 0.003 -0.027 -0.055 -0.240 -0.038 -0.203
(0.003) (0.009) (0.003) (0.010)

Tablighi 6946 0.344 0.642 0.345 0.719 -0.001 0.006 -0.160 0.044 -0.181 0.225
(0.002) (0.006) (0.002) (0.007)

Migrant Deaths 6387 0.116 0.856 0.068 1.080 0.002 -0.013 -0.093 -0.097 -0.093 -0.004
(0.002) (0.008) (0.002) (.008)

Coronil Launch 4622 0.240 0.753 0.099 0.930 0.007 -0.035 -0.050 -0.082 -0.047 -0.035
(0.002) (0.009) (0.003) (0.010)

Exam Satyagraha 3497 0.185 0.782 0.118 0.994 0.012 -0.053 -0.053 -0.027 -0.055 0.028
(0.002) (0.013) (0.002) (0.013)

GDP Contraction 3792 0.146 0.853 0.042 0.931 -0.012 0.051 0.050 -0.010 0.056 -0.066
(0.004) (0.012) (0.004) (0.010)

Bihar Manifesto 1989 0.066 0.930 -0.025 0.984 0.007 -0.028 -0.087 -0.181 -0.080 -0.101
(0.005) (0.033) (0.006) (0.032)

announced the decision to conduct exams. Among the emotions,
we find a high positive correlation of 𝜏 with Anger in case of the
communally charged Tablighi event indicating that the intergroup
interaction increased 𝐺𝐶𝑆 for people who expressed more anger
earlier.

4.3 Decomposition Analysis
Given that the effects of interaction on change in 𝐺𝐶𝑆 exhibit sub-
stantial heterogeneity across the two religious groups, a natural
question is—what is the contribution of topics and emotions towards
explaining these differences? Importantly, emotions and topics are
also computed as properties of the tweet text, and changes in 𝐺𝐶𝑆
partially embody changes in these attributes.18 Therefore, we de-
compose the mean of Δ𝜏 = 𝜏𝑀𝑢𝑠𝑙𝑖𝑚−𝜏𝑛𝑜𝑛−𝑀𝑢𝑠𝑙𝑖𝑚 into the effect on
each topic and emotion. We use the Oaxaca-Blinder method [9, 30]
to decompose the differences at the mean into explained and unex-
plained components and further into contributions of individual
covariates to explained differences.

Given ¯̂𝜏𝑔 =
∑
𝑥 𝛽𝑥𝑔

¯̂𝜏𝑥𝑔 , 𝑔 ∈ {𝑀𝑢𝑠𝑙𝑖𝑚(𝑀), 𝑛𝑜𝑛 − 𝑀𝑢𝑠𝑙𝑖𝑚(𝑁𝑀)},
where 𝛽𝑥𝑔 are the regression coefficients and ¯̂𝜏𝑥𝑔 are mean values of
covariates (the average treatment effects on 𝑥 ∈ 𝑡𝑜𝑝𝑖𝑐𝑠 ∨𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠):

Δ ¯̂𝜏 = ¯̂𝜏𝑀 − ¯̂𝜏𝑁𝑀

=
∑︁

𝑥∈𝑡𝑜𝑝𝑖𝑐𝑠∨𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠

𝛽𝑥𝑀
¯̂𝜏𝑥𝑀 − 𝛽𝑥𝑁𝑀

¯̂𝜏𝑥𝑁𝑀

=
∑︁

𝑥∈𝑡𝑜𝑝𝑖𝑐𝑠∨𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠

𝛽𝑥𝑁𝑀 ( ¯̂𝜏𝑥𝑀 − ¯̂𝜏𝑥𝑁𝑀 )︸                ︷︷                ︸
Explained

+ ¯̂𝜏𝑥𝑀 (𝛽𝑥𝑀 − 𝛽𝑥𝑁𝑀 )︸              ︷︷              ︸
Unexplained

The explained component captures what part of the mean dif-
ference in treatment effect across Muslims and non-Muslims is
due to a differential shift in topics and emotions due to intergroup
interaction. The residual or unexplained component captures to
what extent the marginal effect of each covariate on the outcome
is different across the two groups, given that they have the same
explanatory attributes.

Figure 3 shows the aggregate decomposition into the explained
and unexplained components. We observe the largest negative Δ ¯̂𝜏
18Appendix Figures 9–17 show the distribution of treatment effects on these explana-
tory variables across Muslims and non-Muslims for each event.

in case of Janata Curfew (-0.2 s.d), and Bihar Manifesto (-0.1 s.d.) and
the explained component of these differences are estimated at 46.5%
and 64.6% respectively. We also find a highly positive difference
(0.2 s.d.) in case of Tablighi incident and the explained component
of this difference is 7.8%. The difference in case of GDP Contraction
is (-0.07 s.d.). However, the explained component of this difference
is not significantly different from 0. We also observe small negative
Δ ¯̂𝜏 for Coronil Launch (-0.04 s.d.) and Exam Satyagraha (-0.03 s.d.).
For Coronil Launch, the covariates overexplain the difference with
the explained component at 144%, while for Exam Satyagraha the
explained difference is 94.9%.

Figure 4 further decomposes the explained component into the
contributions of emotions and topics. We find that, for Janata Cur-
few, 81% of Δ ¯̂𝜏 is explained by valence. This is because, for this
event, 𝛽𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑁𝑀
is negative—i.e. an increase in valence due to inter-

group interaction is associated with a decrease in 𝐺𝐶𝑆—and the
difference ¯̂𝜏𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑀
− ¯̂𝜏𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑁𝑀
is positive. Additionally, 30% of Δ ¯̂𝜏

is explained by the topic China & Global for this event. In con-
trast joy, sadness, and Politics-Religion topic have countervailing
effects, i.e. they pull Δ ¯̂𝜏 towards zero. In case of Tablighi incident,
valence (9%) and joy (14%) explain an important share of Δ ¯̂𝜏 while
anger has a countervaling contribution (-11%). For both the politi-
cally salient events—Exam Satyagraha and Bihar Manifesto—the
differential effect of intergroup interaction on Politics-Religion and
Socio-Economic topics explain Δ ¯̂𝜏 .

5 CONCLUSION
Our study explores the complex relationship between intergroup
interactions and polarization between religious groups on social
media in light of events during the COVID-19 pandemic in India.
We investigate whether these interactions serve as bridges that
mitigate polarization or barriers that exacerbate it. We use a novel
measure of group conformity based on contextualized embeddings
to uncover a compelling narrative. Consistent with our hypotheses,
intergroup interactions reduce polarization in general though this
effect is less pronounced for individuals with strong group con-
formity (high GCS). Further, intergroup interactions increase the
group conformity for the minority Muslim group individuals during
the communal Tablighi event. Finally, in the context of political
events such as Exam Satyagraha and Bihar Manifesto, intergroup
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Figure 3: Decomposition of difference in the effect of interaction on 𝐺𝐶𝑆 between Muslims and non-Muslims using Oaxaca-
Blinder decomposition. The red bars show the extent to which the effect is explained by topics and emotions. The error bars
represent 95% confidence intervals.

Figure 4: Contribution of emotions and topics towards explained component of difference in effect of interaction on change in
𝐺𝐶𝑆 across Muslims and non-Muslims using Oaxaca-Blinder decomposition. Errors bars show 95% confidence intervals.

interactions amplify polarization of politically inclined individuals.
Additionally, we leverage a well-known decomposition method to
explain the differences in average treatment effects of interaction
on group conformity across the two religious groups in terms of
effects on emotions and topics of discussion.

Our work highlights the importance of context-aware metrics
and nuanced approaches in studying polarization dynamics. In line

with previous works that utilize tweet content for predicting group
identity [31], GCS score can also help improve existing name classi-
fication algorithms. Future studies could explore interventions and
strategies to foster constructive intergroup interactions to encour-
age cross-group tolerance and peaceful coexistence in the face of
societal challenges.
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Appendix
A EVENTS THAT MADE NEWS HEADLINES IN INDIA IN 2020

Table 3: Events that made the news in 2020 in India and the frequency of tweets containing event-related key-phrases in 7 days
post event date (inclusive).

EVENT Date Search String Tweet Frequency
All non-Muslim Muslim

Maoist attack Feb 23 2020 (?i)(maoist)|(sukma)|(chhattisgarh)|(chattisgarh)|(cha-
teesgarh)|(martyr)

2 1 1

Delhi Riots Feb 23 2020 (?i)(riot)|(communal)|(\bcaa\b)|(nrc)|(npr)|(shaheen)|
(jaffraba)|(jafraba)|(delhipolice)|(delhipo-
lice)|(?=.*protest)(?=.*delhi)

192 173 19

Janata Curfew March 22 2020 (?i)(janata)|(curfew)|(janta)|(junta) 15032 13836 1196
Tablighi Mar 31 2020 (?i)(tabliqi)|(tablighi)|(jamat)|(jamaat)|(coronajihad) 10181 9020 1161
Palghar Mob
Lynching

Apr 16 2020 (?i)(palghar)|( mob )|(#mob )|(lynching)|(lynched) 1172 993 179

Ramadan Apr 23 2020 (?i)(ramdan)|(ramzan)|(ramadan)|(mubarak) 2240 1117 1123
Vizhag Gas
Leak

May 07 2020 (?i)((?=.*vizhag)|(?=.*vizag)|(?=.*vishakhap)|(?=.*visakhapa)|
(?=.*gas))(?=.*leak)|(?=.*leak)((?=.*lgpolymer)|(?=.*lg polymer))

720 647 73

Migrant Deaths May 08 2020 (?i)(\bmigrant) 2838 2507 331
Cyclone Am-
phan

May 15 2020 (?i)(amphan)|(cyclone) 1618 1476 142

idulfitr May 24 2020 (?i)(ul-fitr)|(al-fitr)|(\beid\b)|(#eid)|(idul)|(fitr)|(mubarak) 1446 739 707
Baghjan
GasLeak

May 27 2020 (?i)(baghjan)|(leak)|(oil( )?india) 117 108 9

Vijaywada
COVID facility
fire

(?i)(vijaywada)|(vijayawada)|(swarnahotel)|(swarna hotel)|
((?=.*care facility)(?=.*fire))

291 261 30

Cyclone Nisarg Jun 2 2020 (?i)(cyclone)|(nisarg) 2554 2353 201
Agro-
agrordinances

Jun 5 2020 (?i)((?=.*ordinance)|(?=.*act)|(?=.*bill))((?=.*farm)|(?=.*agro)|
(?=.*agricultur)(?=.*krishi)(?=.*kis[a]+n))

62 52 10

Rail Suspension Jun 25 2020 (?i)(railway)|(railband) 46 44 2
Sushant Singh
Case

Jun 14 2020 (?i)(sushant singh)|(sushantsingh)|(sushantsinghrajput) 391 357 34

China Border
Skirmish

Jun 15 2020 (?i)((?=.*border)|(?=.*skirmish)|(?=.*melee))(?=.*china)|
((gal)[vw](an))|((martyr)|(soldier)|(troops))|(gogra)|(chinese
aggression)|(boycott( )?china)

2563 2349 214

India UNSC
seat

Jun 17 2020 (?i)(?=.*india)(?=.*unsc)|(indiainunsc)|(unsc)|(?=.*member)(?=.*
un )|(?=.*un)(?=.*security council)

80 73 7

Coronil Launch Jun 23 2020 (ayurved)|(ayush)|(ramdev)|(coronil)|(patanjali) 6838 6366 472
Rail Suspension Jun 25 2020 v(railway)|(railband) 410 392 18
Ban Chinese
Apps tiktok

Jun 29 2020 (?i)(?=.*chinese)(?=.*ban)|(chinese app)|(chinese aap)|
(tiktok)|(tik-tok)|(digitalairstrike)

599 548 51

Vikas Dubey
Kills

Jul 3 2020 (?i)(dubey) 150 136 14

Pulwama Jul 5 2020 (?i)(pulwama) 13 6 7
Kargil Earth-
quake

Jul 5 2020 (?i)(kargil)|(earthquake) 44 37 7

Assam Flood Jul 21 2020 (?i)(flood)|(brahmaputra)|(assam) 265 221 44
NEP Jul 29 2020 (?i)(education policy)|(nep2020)|(\bnep\b) 61 57 4
Bakr-Eid July 30 2020 (?i)((?=.*ul)|(?=.*al))((?=.*zuha)|(?=.*adha))|(bakr)|(\beid\b)|

(#eid)|(mubarak)|((?=.*slaughter)|(?=.*kill)|(?=.*cruel)|(?=.*sacri-
fic))((?=.*animal)|(?=.*goat)|(?=.*lamb))

986 704 282
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Table 3: Events that made the news in 2020 in India and the frequency of tweets containing event-related key-phrases in 7 days
post event date (inclusive).

EVENT Date Search String Tweet Frequency
All non-Muslim Muslim

Ram Temple
Foundation

Aug 5 2020 (?i)((ram )(temple|mandir))|(ram(temple|mandir))|(ayo-
dhya)|(babri)|(jai(shri|sri|shree)ram)|(jai (shri|shree|sri)
ram)|(babar)|(?=.*demolish)(?=.*masjid)

1043 872 171

Air India crash Aug 8 2020 (?i)(airindia)|(crash) 643 558 85
Vijaywada Fire Aug 9 2020 (?i)(vijaywada)|(vijayawada)|(swarnahotel)|(swarnaho-

tel)|((?=.*care facility)(?=.*fire))
291 261 30

Farmer Protest Aug 9 2020 (?i)((?=.*ordinance)|(?=.*act)|(?=.*bill)|(?=.*protest))
((?=.*farm)|(?=.*agro)|(?=.*agricultur))|(krishi)|(kis[a]+n)

301 293 8

BLRiot Aug 11 2020 (prophet)|(?=.*riot)(?=.*b(e|a)ng[a]?l((ore)|(uru))) 120 107 13
Exam Satya-
graha

Aug 23 2020 (?i)(exam)|(student) 19384 17488 1896

GDP Contrac-
tion

Aug 31 2020 (gdp)|(economy)|(unemployment) 6293 5561 732

Chinese Apps
ban pubg

Sep 3 2020 (?i)(?=.*chinese)(?=.*ban)|(?=.*app)(?=.*ban)|(pubg)|(chinese
app)|(chinese aap)|(digitalairstrike)

515 443 72

Farm Bill Lower
House

Sep 14 2020 (?i)((?=.*ordinance)|(?=.*act)|(?=.*bill)|(?=.*protest))
((?=.*farm)|(?=.*agro)|(?=.*agricultur))|(krishi)|(kis[a]+n)

442 380 62

PM Modi’s
Birth-
day/#NationalUnemploymentDay

Sep 17 2020 (?i)((?=.*unemployment)|(?=.*b.?day)|(?=.*birthday))(?=.*modi) 268 203 65

IPL Sep 19 2020 (?i)(cricket)|(ipl) 797 708 89
Farm Bill Upper
House

Sep 20 2020 (?i)((?=.*ordinance)|(?=.*act)|(?=.*bill)|(?=.*protest))
((?=.*farm)|(?=.*agro)|(?=.*agricultur))|(krishi)|(kis[a]+n)

634 530 104

Bharat Bandh Sep 25 2020 (?i)(bharat band)|(bharatband)|((?=.*ordinance)|(?=.*act)|
(?=.*bill)|(?=.*protest))((?=.*farm)|(?=.*agro)|(?=.*agricul-
tur))|(krishi)|(kis[a]+n)

413 351 62

Hathras victim
dies

Sep 29 2020 substring:(?i)(manishavalmiki)|(manisha
valmiki)|(hathras)|(dalit)|(rape)

996 900 96

Babri Accused
Aquittal

Sep 30 2020 substring:(?i)(babri) 32 29 3

Journalist Ar-
rest

Oct 5 2020 substring:(?i)(kappan)|(siddique)|(hathras)|(dalit)|(rape)|(man-
ishavalmiki)|(manisha valmiki)

466 433 33

Bihar Mani-
festo

Oct 22 2020 (?i)(?=.*bihar)((?=.*election)|(?=.*manifesto)|(?=.*vote)|
(?=.*vaccine)|(?=.*bjp)|(?=.*modi))|((?=.*vote)|(?=.*bjp)|
(?=.*modi))(?=.*vaccine)

2455 2081 374

Love Jihad Yogi Oct 31 2020 (lovejiha)|(love jiha)|(love-jiha) 7 7 0
Diwali Nov 14 2020 (diwali)|(deepavali)|(deepawali) 1152 1074 78
Unlawful Con-
version Act
(Love Jihad
Law)

Nov 28 2020 (lovejiha)|(love jiha)|(love-jiha) 9 7 2

Bengal Rally Dec 12 2020-12 (?i)(bengal)|(rally)|(rallies)|(election) 803 714 89
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B ORGANIZATION NAME KEYWORDS

Table 4: Keywords used to filter out organization names from the tweeters after lower-casing the usernames

group, team, organization, foundation, official, college, university, universities, fan, fc, school, institute, institutions,
chamber, brand, service, board, bureau, gov, division, technology, consult, khabar, voice, collector, medical, health,
mirror, journal, chronicle, post, daily, times, today, channel, temple, station, bjp, congress, council, business, shop,
party, bollywood, cinema, academy, center, centre, state, collective, association, indian, group, sangh, NGO, RBI, online,
cooperative, retail, .com, .in, .edu, .org, hospital, research, solution, department, bank, adani, fan, HSBC, sena, dpro,
logic, tech, district, state, work, CPI, INC, BSP, AAP, CPM, NCP, BJP, trust, govt, Prakashan, corporation, socialist,
communist, committee, janta

C SELECTING MUSLIM CLASSIFICATION THRESHOLD

Figure 5: Sensitivity, specificity, Youden index, and geometric mean by prediction threshold.
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D STOPWORDS USED FOR COMPUTING BOW-GCS
appreciate, been, onto, mainly, wish, whence, with, yeh, also, certain, shes, cud, then, seemed, koi, that, several, causes, obviously, un,
mightnt, nor, everything, value, ko, both, appropriate, thoroughly, within, youve, aur, than, of, eg, h, upon, theres, old, couldnt, ll, especially,
p, e, presumably, c, et, edu, meanwhile, somewhere, regardless, trying, yours, perhaps, per, it, during, believe, itself, dont, forth, mustnt,
tends, those, her, together, keeps, other, mein, urself, no, anyway, doesnt, who, known, shes, brief, themselves, have, provides, beforehand,
sure, zero, km, whereby, enough, specified, here, toward, ss, etc, able, she, across, theirs, probably, qv, wherever, think, did, name, nine,
according, aside, hi, containing, although, allows, hopefully, none, furthermore, secondly, o, because, want, usually, seriously, may, com,
would, fifth, becomes, liked, r, re, oh, won, tweet, whether, whither, ain, try, ya, kept, is, through, different, given, hai, sir, howbeit, himself,
already, placed, against, btw, beside, he, y, knows, ones, wasn, tried, shud, didnt, dis, likely, yes, else, inward, latterly, via, l, so, thru, inner,
twice, nowhere, normally, dont, willing, ours, needn, what, do, hardly, man, nearly, less, behind, my, st, thats, haven, mustve, getting,
hereupon, whom, not, indicated, shell, hers, afterwards, going, happens, shant, selves, hereafter, useful, shall, further, are, us, many, non, for,
specify, regards, towards, nd, okay, goes, under, yourselves, beyond, will, done, their, uucp, herself, couldve, much, couldn, yu, most, inc,
ourselves, u, saying, due, got, apart, throughout, where, help, anyhow, actually, into, i, reasonably, soon, either, some, more, nevertheless,
thereupon, sorry, hain, k, herein, hereby, ab, six, two, below, z, tl, kuch, everywhere, n, novel, ji, downwards, t, unless, hell, hello, d, didnt, bt,
ive, wants, anybody, ex, shouldve, why, among, anyone, dnt, hasn, about, thanx, relatively, him, nothing, whatever, still, youll, saw, ltd, ur,
which, after, maybe, coz, best, sensible, now, cannot, aa, greetings, nhi, too, seen, in, tha, someone, shouldnt, around, being, elsewhere, them,
wherein, yah, mightve, wouldve, m, corresponding, appear, shan, entirely, hither, though, instead, over, hasnt, everybody, away, consider,
tweets, immediate, hadnt, sometimes, once, wonder, said, lo, way, currently, were, changes, wouldnt, near, to, you, needs, or, whereafter,
really, hoga, four, know, couldnt, should, and, otherwise, out, far, whose, hes, don, has, comes, as, but, only, various, didn, following,
specifying, its, doing, vs, sometime, hasnt, particularly, thereafter, shouldnt, therefore, bhai, seeing, wasnt, became, moreover, like, yet,
theyre, insofar, contain, thanks, neednt, b, hadn, arent, say, must, somewhat, least, well, uses, consequently, latter, used, contains, somebody,
que, co, third, always, off, such, use, ki, had, se, along, last, before, better, see, ho, twitter, second, available, however, self, went, mightn, does,
guy, lest, kal, wont, again, huh, sub, doesn, by, inasmuch, truly, gives, might, youre, something, having, gaya, awfully, look, im, these, havent,
keep, example, kr, eight, his, every, ie, next, theyve, if, get, whole, particular, lately, ignored, plus, ke, alone, a, could, rd, came, clearly, need,
since, please, come, never, follows, later, th, therein, whenever, ve, toh, except, all, w, aren, doesnt, above, nobody, anywhere, wouldn, looks,
ek, mostly, v, respectively, asking, neednt, somehow, mustn, s, youre, thorough, mustnt, cause, am, neither, your, considering, just, ok, same,
little, havent, former, down, on, youd, exactly, indicates, cd, namely, followed, everyone, associated, until, an, up, kya, new, amongst, even,
necessary, looking, allow, whereupon, was, sup, took, seven, youve, x, isnt, mean, overall, ever, werent, using, ought, nahi, without, thatll,
merely, besides, jo, me, rather, ask, any, becoming, f, whereas, anything, le, how, definitely, own, while, this, unto, very, five, often, sent, let,
despite, few, go, they, indicate, tell, one, our, there, unfortunately, almost, q, others, be, right, become, indeed, myself, formerly, wouldnt, cant,
says, take, from, unlikely, yourself, shouldn, hence, whoever, course, each, na, welcome, gotten, isn, at, serious, thereby, anyways, ka,
accordingly, outside, when, can, possible, seems, viz, between, its, another, thus, we, ohhh, thank, kar, the, quite, thence, gets, shouldve, bhi,
first, tries, j, described, three, certainly, taken, regarding, weren, gone, noone, ye, g, seem, concerning, ma, seeming.
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Figure 6: Tweet length and GCS.
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F COVID TWEETS TOPICS

Table 5: Top 50 keyphrases for each topic based on c-TF-IDF score

Topic Keywords/Phrases
COVID Response virus, india, new_case, case, patient, positive_case, tested_positive, active_case, death, pandemic, day, positive, hospital,

time, test, people, today, lockdown, fight, total_case, update, doctor, test_positive, testing, spread, vaccine, country,
treatment, infection, delhi, infected, year_old, world, case_death, disease, state, need, report, warrior, social_distancing,
case_reported, come, dr, outbreak, mumbai, indiafights, life, symptom, app, number

Politics-Religion india, modi, bjp, govt, pm, people, indian, state, delhi, congress, cm, fight, muslim, lockdown, time, crisis, pm_modi,
country, hindu, virus, party, indiafights, government, medium, politics, nation, leader, pakistan, pandemic, bihar,
rahul_gandhi, maharashtra, shame, police, issue, modiji, minister, mp, student, economy, exam, kashmir, modi_govt,
kejriwal, ppl, election, opposition, politician, situation, come

China & Global china, wuhan, wuhan_virus, chinese, chinese_virus, virus, world, chinesevirus, beijing, china_virus, ccp, country, chi-
navirus, whole_world, wuhan_china, taiwan, wuhanvirus, wuhan_lab, usa, india, lab, china_wuhan, trump, virus_china,
xi, xi_jinping, pandemic, virus_wuhan, chinaliedpeopledied, hong_kong, spread, entire_world, china_must, outbreak,
nation, pakistan, italy, war, biological_weapon, communist, rest_world, wuhan_health, wet_market, time, started,
chinese_govt, china_china, chinese_wuhan, origin, economy

Socio-Economic lockdown, time, india, crisis, pandemic, business, work, market, company, day, bank, post, year, fund, today, help,
economy, need, industry, demand, virus, thanks, service, month, home, job, people, money, good, situation, customer,
online, support, employee, student, loan, thank, issue, impact, app, family, march, read, order, sale, pm, life, sector,
state, hope

6



1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Bridging or Breaking: Impact of Intergroup Interactions on Religious Polarization Conference’17, July 2017, Washington, DC, USA

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table 6: Sample Tweets from each Topic Category from both religious groups

Topic Tweets

COVID
Response

(1) PLEASE SHARE - A list of all #COVID19 Helpline numbers from various States/UTs #CoronaVirus #COVID2019
#Corona #CoronaAlert #COVID19 #HelpUsToHelpYou <url>

(2) #SerumInstitute denies reports Indians to get free shots of #COVID19vaccine in 73 days #COVID19 #Coronavirus
#News #India

(3) @realDonaldTrump I would like to suggest use of Traditional Medicines like Unani and Ayurveda. Which is
more effective in treating such diseases or viruses. Please start using it and save life’s of human beings. We are
praying for whole humanity. Very soon Corona will be gone by the grace of LORD

(4) #Nationfirst Inshallah We will fight against Corona with unity.
(5) Sir, <person-name>-23 suspect Covid-19 wants a bed in any Hospital, they have visited 7 Hospitals No beds

available,Pl arrange a bed in any hospital & call <cellphone>.

Politics-
Religion

(1) @ApteVLA @DelhiPolice @CPDelhi @DCPSouthDelhi @drharshvardhan More outrageous is how was a
congregation of 1000+ people was being held by Muslims in the heart of Delhi i.e. Nizamuddin & Delhi Police
really had no clue about it. Now just praying a Corona explosion does not take place of this callousness.
@AmitShah @PIBHomeAffairs @PMOIndia

(2) Right now bjp is very strong and able to win easily 20+ seats out of 25 but if CM fail to handle #Corona ,migrant
labour issues ,current medical anarchy ,and solely depending on beurocrates he will loose badly .One more
thing Cm is popularity is decreasing day by day .

(3) What Demonetization, Aadhaar, NPR & CAA did not allow CoVID-19 will do for @narendramodi Unite India
Black money, Poverty, anti-Hindutva agenda are all pale Villain Mahamari i.e epidemic is an enemy worth
rallying against

(4) @OmarAbdullah seeing what your grandfather become so loyal to India? Where did he leave us. This countries
PM instead of combating corona virus is asking people thali bajaav & now diya jalaav. Like what made him
not to listen to Jinnah. Can you please give Farooq Abdullah’s no.?

(5) @ShashiTharoor Some of the fake news which can be taken care by Congress in its support base 1. If a health
worker asks number of family members, its not for NRC so kindly help him. 2. If any corona patient from
muslim area is taken for treatment, he will not be killed by injection.

China
&
Global

(1) Even assuming the outbreak was an accident of nature the fact that it didn’t travel beyond #Wuhan but went
global shows deliberate hiding of facts &a mishandling by #China. Given the virus is not natural China is again
complicit in this global tragedy. The rest is academic

(2) @KamalaHarris No ma’am actually it is universal disaster caused by China virus #Trump is working hard to
check this china virus (covid-19) #Trump taken all prication to save peoples life #America should move away
from China’s orbit

(3) Communist OLI running his government on communist Chinese OIL. Nepal thinks Chinese could save them
from India like Pakistan was thinking days before but they don’t know china is now destabilized after Chinese
Wuhan virus. #EnoughIsEnough

(4) C-hina O-riginated V-iral I-nfectious D-isease #COVID #WuhanCoronavius
(5) Whole #World knows mortality rate is 10-15#Europe #US spread data shows what really happened in #China

@JackMa saying we #manufacturing #Ventilators first #Chinese produced #Goods to Live then for #Death
#DeathToll will be #Millions by June2020

Socio-
Economic

(1) @realDonaldTrump What I admire most about you is how secure you must feel to post scenes from your
time-wasting Covid-trapping rallies whilst you’re busy spending taxpayer resources on not doing your job.

(2) All the kids who wrote JEE Mains (B Arch papers) today Sept 1st, 2020 would have been under tremendous
pressure. Parents will be in constant pain and pressure. COVID Situation apart, the real admission and classes
(on campus) would be the next challenge. Hope things work out well

(3) Indian Banks’ Association (IBA) is finalising a special restructuring proposal seeking for a year long moratorium
for impacted companies. Association feels it will take at least a year for recovery #CoronaCrisis #EconomicCrisis

(4) Whatwill happenwhen the news channels start discussingGDP, Economic crisis, Covid, lockdown, depression??
Will anything change by their reporting? It didn’t change anything when they used to do before June 14th
BUT (1/2)

(5) Sir oil price nosedived/but people didn’t got the benifit of the low crude price #people expecting fall in
petrol/desil price at pumps after Corona lockdown #will govt give concession or make good the low crude
price saving to Corona expenditure?
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G HIGH GCS TWEET EXAMPLES POST EVENTS
G.1 Embedding-GCS

Table 7: High Contextualized-GCS examples sampled 7 day post-event. A summary is provided before the example tweets.

Event Non Muslims Muslims

Janata
Curfew

China Blame, welcome Janata Curfew, bolster frontline work-
ers

(1) #user participated and salutes all the Doctors,
Nurses, health workers, sanitary workers, media
and police who are working & fighting against
#Corona. #JaiHind #JanataCurfew #CoronavirusPan-
demic #Covid_19india

(2) China - Manufacturer & Exporter of Corona Virus
across the Globe and responsible for the sufferings
of millions. #ChineseVirus

(3) They shd be charged with bioterrorism #CoronaJihad
#coronaterrorists #Corona #coronavirusindia #Chi-
neseWuhanVirus #ChinaVirus #WuhanCoronavius
#Wuhan

(4) Public is not threatened but those in Admin need to
be made aware of the seriousness of the situation.
Hence DM Act. Response from States were in fits and
starts till PM himself imposed janta Curfew. No one
imagined the tremendous response frm public. Now
onus is on babuz.#corona

(5) CHINAmust be dragged into International Court and
stripped of its VETO power in the UN ‘Crime against
humanity’ COVID-19 is a Chinese Virus. Copy and
paste. #ChineseVirus

Predominantly Kashmir news (the only Muslim majority state in
India), encouraging Lockdown; World news

(1) #BreakingNews: #Jordon reports first #Covid_19 death.
According to Petra, 83 year old Women had suffered from
blood poisoning. #COVID2019 #CoronavirusLockdown

(2) #COVID-19 Today’s picture from Lal Chowk Srinagar.
Complete Lockdown. Lockdown in Kashmir is a routine,
nothing new. Difference is that this time #COVID-19 is
responsible for lockdown.

(3) #Flash Pakistan cricketers to donate Rs 5 million to govt
emergency fund for Covid-19 pandemic..... #PakistanVs-
Corona #Pakistanis #PakistanFightsCorona’

(4) Prophet Muhammad (SAW) said, If you hear of an out-
break of plague in a land, do not enter it; but if the plague
breaks out in a place while you are in it, do not leave that
place. how to prevent Covid-19/CoronaVirus. He said this
approximately 1400 yrs ago

(5) 7 more test positive in Kashmir, cases surge to 27 in J&K
#COVID_19 #StayAtHomeStaySafe

Tablighi

Show of unity in fight against corona
(1) Today #9pm9minute Lets light up for a brighter future

and spread hope & motivation to all humanity in this
fight against Corona. Spread the light of unity, spread
the light of Safety. Stay Home Stay Safe. We are ready
ji. INDIA

(2) Thanks all the Committed Team memers of
BJYM,CENTRAL DIST & IMPHAL WEST Dist. for
your dedication to Combat Covid-19. We appreciate
for achieving our target.#FeedTheNeedy 3000+ in 6
hours.Great appreciation ji.

(3) Turn off all d lights of ur home. Stand at your
doors or balconies. Light diyas or torches for 9 min.
Do not cross d Lakshman Rekha of Social Distanc-
ing.Challenge d darkness spread by Corona crisis &
introduce it to the power of light #AaoPhirSeDiya-
Jalayen

(4) The message is loud and clear.. 130 crore Indians
and are with PM Shri and PM Shri ji is with 130
crore Indians.. Together let’s fight against Corona..
#9pm9minute

(5) Show your unity and throw away corona. Because
there is power in Unity. #Lightforglory #IndiaFight-
sCorona #Indiaglows #lightdiya9pm9mins

Criticizing Indian media for Islamophobia
(1) Sooner or later our nation will find cure from #COVID but

#Islamophobia like all other forms of racism has remained
an incurable disease & Indian media is a big contagion of
this disease

(2) Dear Indian Media, What about the 70-year-old super-
spreader guru, Baldev Singh? Warm regards, Indian.
#COVID #COVID19 #COVID-19 #Covid_19india #coron-
avirus #Coronavirustruth #CoronavirusOutbreak #Coron-
aVirusUpdates #CoronaVirusUpdate

(3) India has more big social virus than Corona! #Commu-
nalVirus #CasteVirus #HealthForAll #Nizamuddin #Tab-
lighiJamat

(4) What happened in Nizamudin Markaz presently is being
called as the Corona Jihad. They need villains to put the
entire blame of the pandemic and hide the failure of the
government in containing the spread of covid19. #Niza-
muddinMarkaz #Islamophobia

(5) Reality of #COVID Born in China Grown up in Italy Be-
come mature in America Become Muslim in India #medi-
avirus #foolishmedia
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Table 7: High Contextualized-GCS examples sampled 7 day post-event. A summary is provided before the example tweets.

Event Non Muslims Muslims

Migrant
Deaths

COVID related news. Some mention of labour suffering
(1) corona virus in slaughterhouses: politicians call for

stricter controls
(2) the labour in this country have suffered miserably

due to successive governments buckling down to left
pressure and continuing with archaic labour laws.
in the bargain they stifled industry. china prospered
because they respected industry. time we get this
right post corona

(3) one trusts corona figures coming from west bengal,
as my family lives there, they says very pathetic con-
dition, tmc goons charging hectic amount in hospital.

(4) end ‘tsunami of hate and xenophobia’ sparked by
covid-19, says un chief. migrants & refugees being
vilified as a source of virus in denying medical treat-
ment

(5) the economy is in free fall. so why isn’t the stock
market?

(6) the continuous inmigration and outmigration of
stranded labourers going on in different parts of india
may affect the economy of all these concerned states.
it will also change unemployment figures.their safety
must be ensured from the corona virus and its further
spreading also

Sharing the incidences of increasing islamophobia
(1) an audio clip of maulana saad, in which he insisted that

#covid_19 can do no harm to muslims and asked jamaat
members not to follow social distancing norms, is possibly
“doctored” and fake. this audio circulated widely by indian
media. #muslimphobia_in_india

(2) we turned masjids, madrasa hostel into quarantine centers
, we donated plasma for other patients ,we donated blood,
we donated to #pmcaresfund and still we are blamed by
terrorist organization like headed by terror chief

(3) the shocking news of #aurangabad proves the poors and
laborers lives in our country is not a concern to gov’t,
they only care about the rich. may almighty protect &
safeguard the health of migrants worker and poors in this
pandemic #covid_19 #trainaccident #migrantlivesmatter

(4) where is the money donated by the people of india being
spent...? #covid_19 #pmcaresfund

(5) #indiaisnotwithzeenews when news channel supposed to
show news about covid-19, migrant workers, govt relief
toward this, condition of health facilities, talk with doctors
etc.. instead of this they are showing rediculous content
like jihad, hindu muslim, debate wid spoksprson etc

Coronil
Launch

Pride and relief at launch of Coronil Ayurvedic remedy, little
skepticism in some tweets.

(1) #coronil during the launch, #patanjali co-founder
#babaramdev said that their clinical trial found that
69% of the patients tested recovered from covid-19
within three days, while 100% of the patients recov-
ered within a week

(2) coronavirus vaccine update: #patanjali launches coro-
nil drug, claims drug can cure #corona in 14 days
#coronavirus #covid19

(3) first corona medicine prepared by patanjali. <3 clini-
cal trials done , medicine launched today.. 69% patient
recovered in 3 days 100% recovered in 7 days. #patan-
jaliayurved

(4) watch ’s broadcast: join us for a live session with
eminent doctors of india, who will give answers to
all your questions about covid-19. #indiafightscorona
#stayhome

(5) #verified ayush ministry asks ramdev to tell composi-
tion of medicine being claimed for covid; site/hospital
where the research study was conducted; protocol,
sample size, ethics panel clearance & ctri registration
patanjali asked to stop advertising such claims imme-
diately

Calling out discriminatory media reports calling Tablighi a super-
spreader event and not discussing approval of Hindu religious
congregation by government and courts. Also, against exam and
Coronil, calling it a fake drug.

(1) during tablighi jamat congregation many other religious
congregation happened. none was called corona bombs
& terrorists but on tablighi and all muslims are facing
discrimination upto now though that was the starting
phase of pandemic. now yatra is allowed in worst corona
time

(2) salute to shahnawaz shaikh. it is observed,for last four
months,muslims are in front line to help the needy. more
power to corona warriors.almighty ast protect you from
evil forces.ameen....

(3) thank god for the majoritarian privileges. no one will
bat an eyelid on jagannath rath yath. with more than 4.4
lakh nationwide covid-19 cases, it still has the blessings
of the center, the state, the other states with no links to it
#thisthread

(4) urge you to arrest patanjali for spreading fake corona
drugs during covid times.

(5) lockdowns failed to control the spread of covid 19 and now
government of karnataka is planning to spread the virus
more intensively by conducting sslc exams and risking
lives of lakhs of students. #postponesslcexam
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Table 7: High Contextualized-GCS examples sampled 7 day post-event. A summary is provided before the example tweets.

Event Non Muslims Muslims

Exam
Satya-
graha

COVIDNews and also against in person exams during COVID
(1) covid-19 vaccine won’t end pandemic alone: who

warns
(2) & rest all central & state government pls arrange

bus,train services for all students who are attending
jee & neet exams & facing problems in reaching out
their venue. and pls arrange new dates for those as-
pirants who are covid patient

(3) in this exam center if you positive for corona..nobody
cannot save you and your family....even they don’t
give money for the treatment of corona

(4) covid-19: tamil nadu reports 5,980 new infection
cases, 80 fatalities

(5) there is nothing as of now for the covid +ve candi-
dates, for mains itself, how can we expect for adv.
also sir mr venugopal rao before the judgement of
sc himself said that there is no sky falling on us if
exams are not conducted, but aftr the judgement he
has not made any remark

Harsh criticism of government for conducting in person exams
during COVID

(1) while modi government is afraid to call parliament session
to discuss covid and pm cares fund, they are asking stu-
dents to attend exams! #satyagrah_againstexamsincovid
#studentskemannkibatt #rahulgandhi

(2) i appeal to the government again, to postpone exams.
covid is no joke and exposure could lead to life long com-
plications. even a single life lost is not worth it. in these
strange times, surely students shouldn’t have to risk their
life for an exam. #satyagrah_againstexamsincovid

(3) for the modi govt, college management lobby and paid
tuition mafia is more important than the lives and ca-
reers of 50 lakh students. what else explains it’s insistence
on conducting jee and nee now during peak-covid? #stu-
dentskemannkibaat #satyagrah_againstexamsincovid

(4) the growing opposition against jee neet exams is only
here.many major media’s of the respective states have
remained silent about it.they will report it when the first
student who wrote the exam tests +ve for covid. #satya-
grah_againstexamsincovid

(5) we want postponement of all the exams in september
covid is not a joke #nationwantsjee_neetpostponement
#webelievein_swamyji

GDP Con-
traction

World News, COVID medicine and vaccine
(1) Reasons for the day-trading trend include people

stuck at home who are bored and/or trying to re-
place lost income, the stock market’s recent volatility,
and a reduced number of sporting events available
for online sports betting. #trending

(2) German minister spat at and verbally abused at Covid
protest Dirty behavior

(3) HealthPartners recruiting Minnesotans for COVID-
19 vaccine trial

(4) FAQ’s on #COVID_19Management from AIIMS, New
Delhi E-ICU 1. Tocilizumab: Limited role, experimen-
tal 2. Favipiravir: Not Recommended 3.Remdesivir:
Not on suspected cases, but recommended for 5 days,
OD. 4. Ivermectin: Not recommended 5.Plasma Ther-
apy: Use with caution.

(5) There is a theory that Corona has lost its potency. But
what if the low fatality is a function of the rapid tests
that show even low viral loads as positive. This means
the virus might be as deadly as before. So maybe we
should continue to be cautious.

Criticizing PM for GDP decline, unemployment, student protests,
border clashes, etc.

(1) Non Congress Prime Minister with long duration,
Supreme Court Judges came to pressmeet, Prime Min-
ister to tour foreign countries, most Buisness mans loan
waved off, China in laddak PM in Photoshop History of
Corona 37 lacs, GDP is in top most in the world -24%,
#sabchangacee

(2) India is reeling under Modi-made disasters: Historic GDP
reduction -23.9% Highest Unemployment in 45 yrs 12 Crs
job loss Centre not paying States their GST dues Globally
highest COVID-19 daily cases and deaths External aggres-
sion at our borders #RahulGandhiSpeaksOnEconomy

(3) India is reeling under Modi-made disasters: 1. Historic
GDP reduction -23.9% 2. Highest Unemployment in 45 yrs
3. 12 Crs job loss 4. Centre not paying States their GST
dues 5. Globally highest COVID-19 daily cases and deaths
6. External aggression at our borders #GDPTruth

(4) India is reeling under Modi-made disasters: 1. Historic
GDP reduction -23.9% 2. Highest Unemployment in 45 yrs
3. 12 Crs job loss 4. Centre not paying States their GST
dues 5. Globally highest COVID-19 daily cases and deaths
Bure din hi wapas de do bhai

(5) India’s GDP at -23.9,covid cases daily reporting 70k+,flood
crisis in states,JEE-NEET in pandemic,SSC students
protesting Toh mera sawal hai : Aaj nashte mei Rhea ne
kya khaya hoga? #SpeakUpforSSCRailwaysStudends #JEE-
NEET #GDPDrop #COVID19 #mediascum #MediaBias
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Table 7: High Contextualized-GCS examples sampled 7 day post-event. A summary is provided before the example tweets.

Event Non Muslims Muslims

Bihar
Manifesto

COVID related news
(1) Addressing the inaugural function of the grand chal-

lenges annual meeting 2020, pm modi said, ...india
is now at the forefront of vaccine development for
covid-19. #trending

(2) media advisory - who africa online press briefing
on rapid diagnostic tests for covid-19 in africa – 22
october

(3) bjp’s covid-19 vaccine promise in bihar causes stir;
oxford says trial to continue after death of volunteer
via

(4) the bengali community in the delhi-ncr region is stay-
ing away from durga puja festivities, a community
affair in parks and other open spaces. and nowhere
is this more evident than in chittaranjan park, often
known as ‘mini bengal’.covid-19: durga puja ce. . .

(5) stage set for country’s first covid-era elections in
bihar | india news

Strong condemnation of BiharManifesto of ruling party promising
vaccine for vote

(1) brings dirty politics to their #bihar manifesto: “vaccine
for vote” . so only #bihar gets vaccine free & rest of india
pays? does this mean if doesn’t win then won’t people of
bihar get #corona vaccine?politicising a pandemic is utter
national shame!

(2) #biharelections2020 #covid19 bjp assures to give corona
vaccines if they wins bihar election

(3) bjp in bihar election :free covid vaccines for all ! *only for
bihar,the rest of the country don’t matter rn. * also only if
you vote for us,will give you this non-existent yet vaccine
*dosen’t matter that we’re currently leading country &
should provide it to all

(4) congress: free polio vaccines to all indians bjp-rss: we
will provide free covid vaccine to states having elections
(bihar) if you give us votes!!

(5) the free vaccination promise by bjp for bihar election
manifesto is illegal and unlawful. this renders opposition
at disadvantage. the vaccine program for covid-like pan-
demic is a universal immunization process and not just
state specific which can be used for electoral benefit.

G.2 High BOW-GCS Tweets

Table 8: High BOW-based GCS examples sampled 7 day post-event. For long tweets, a summary is provided before tweet
examples.

Event Non Muslims Muslims

Janata
Curfew

(1) Chup be
(2) Whistle
(3) Yes it is down. Here is the dis-

tant next best
(4)

#SantRampalJi_CanEndCorona
Please

(5) Thanks yar

COVID spread and lockdown news
(1) The funeral of the 65-year-old businessman, the first person in Kashmir to

succumb to coronavirus (COVID-19), the disease that has swept across the
globe, took place on Thursday in north Kashmir’s Sopore town of Baramulla
district.

(2) #BigBreaking 7 More Test Positive In Kashmir, COVID-19 Cases Surge To 27 In
Kashmir

(3) #COVID-19 Closure of all religious places in Srinagar is underway with active
cooperation of Managenent committees. Revered shrines Hazratbal, Naqshband
Saheb show the way: DC Srinagar

(4) May Allah have Mercy on us #covid_19_kashmir
(5) 5 More Test Positive In Kashmir, COVID-19 Cases Surge To 33 In J&K. 2 from

kashmir and 3 from Jammu. #BREAKING #COVID2019 #JammuAndKashmir
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Table 8: High BOW-based GCS examples sampled 7 day post-event. For long tweets, a summary is provided before tweet
examples.

Event Non Muslims Muslims

Tablighi

(1) bash on regardless
(2) Yess Sir !!!please Help us
(3) Woah
(4) Are they retarded ??
(5) Heartbreaking

COVID relief byMuslim leaders, taking back domicile law in Kashmir that might change
demographics of Muslim majority state, calls for releasing student activist arrested for
inciting communal violence during Delhi riots.

(1) Habeeb- E- Millat Janab Akbaruddin Owaisi Sahab Inspecting The Ration Kits
Wich Are Been Distributing To Needy people In Hyderabad. #akbaruddinowaisi
#covid #helpingothers #alhmdulillah

(2) #DomicileLaw is dangerous than #Covid_19 for J&K Youth, no more destruc-
tion of Youth. Youth Maange Apna Haq Outsiders are not allowed One voice,
one Slogan. #rollbackdomicilelaw #rollbackdomicilelaw #rollbackdomicilelaw
#rollbackdomicilelaw #rollbackdomicilelaw

(3) Instead of ’Corona Hunting’ ’Witch Hunting’ is going on #releasemeeranhaider
(4) Relief (Ration kits) was distributed in MCH colony & meer sagar kunta in

Jahanuma division by Bahadurpura MLA among the people who have been
affected due to #Covid_19 lockdown AIMIM Corporator Hussaini Pasha over-
seen the distribution.

(5) The virus of hate derived from Media Virus is more Dangerous than corona So
the Best thing to do now is Stop watching TV, especially News channels

Migrant
Deaths

(1) i agree with you, ...
(2) deleted?
(3) anyone else teared up a bit with

pride :’)
(4) #uttarpradesh for sure
(5) civilizational ethos! way to go.

About increasing islamophobia in India
(1) break the chains of hate undo the inhumanacts #skssf #uapa #skssfhomeprotest

#safoora_zargar #protestlockdown #email #covid_19
(2) triple talaq —– target muslim article 370 ——target muslim caa nrc npr — target

muslim delhi ‘genocide’ —- target muslim jamia students — target muslim
corona pandemic — target muslim #muslimphobia_in_india

(3) #muslimphobia_in_india triple talaq target muslim article 370 target muslim
caa nrc npr target muslim delhi ‘genocide’ target muslim jamia students target
muslim corona pandemic target muslim #muslimphobia_in_india

(4) #muslimphobia_in_india lynching of muslims in the name of beard. lynching of
muslims in the name of cap. lynching of muslims in the name of cow. lynching
of muslims in the name of j s r. lynching of muslims in the name of corona.
when will we bleed? #muslimphobia_in_india

(5) #covid-19 54 persons tested positive in kashmir valley since yesterday evening.
28 kulgam district. 10 handwara. 07 from jammu division. 05 from anantnag.
02 from reasi. 01 from kathua. 01 shopian. out of 54 positive samples, 47 tested
positive at skims and 07 at cd hosptl

Coronil
Launch

(1) indeed. and that too for a while
q 3/4 of fy 2017 !!!

(2) use the pause
(3) screenshot from
(4) seems this surgeon will unveil

mystery
(5) #oneindia. # beindianbuyindian

Calling out hypocrisy in congregations at COVID times and other COVID-related news
(1) people who branded covid ‘muslim virus’ after tablighi jamaat are quite on

odisha’s rath yatra! and the rath yatra was sanctioned by the supreme court at
the height of india’s covid spike! it’s all in the name as usual...

(2) seven more pakistan players test positive for covid-19 - (1)kashif bhatti (2)mo-
hammad hasnain (3)fakhar zaman (4)mohammad rizwan (5)mohammad hafeez
(6)wahab riaz (7)imran khan.....

(3) 45-year-old woman from south kashmir dies of covid-19, j&k toll 93
(4) #namastetrump welcome ceremony of corona
(5) earthquakes from the earth, locusts down from the sky & the virus like corona

between earth and the sky are testifying to the fact that the creator of all
universe is angry with us. it’s a time to repent. #timetorepent
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Table 8: High BOW-based GCS examples sampled 7 day post-event. For long tweets, a summary is provided before tweet
examples.

Event Non Muslims Muslims

Exam
Satya-
graha

(1) this is sobering. the unraveling
of america

(2) at his usual analytical best ..
(3) how reopening multiplexes and

hotels may pan out?
(4) impressive #bengalfightscorona
(5) wonderful. i admire.

Against long imprisonment of muslim student leader condemning center and state
governments for spreading hate against muslims

(1) history will remember corona less as pandemic & more a drive of witch-hunt &
persecution of muslims. this pandemic has proven to be powerful tool for fascist
forces to slay #muslim leading voices. #releaseasiftanha #100daysofinjustice

(2) we are suffering, not just from covid, but crisis of hunger and crisis of hatred
against #muslims. state is racially profiling anti caa protesters we will to do
what is the duty of citizens. you cannot silence the truth by jailing us. #re-
leaseasiftanha #100daysofinjustice

(3) #aimim chief barrister asaduddin owaisi representation letter to cm kcr on
consideration for the exempting of motor vehicle tax during the period of
covid-19 pandemic lock down

(4) muslims are abused for clearing #upsc. muslims are arrested for protesting
against biased laws like caa. muslims are falsely accused of spreading corona.
muslims are lynched by mobs without repercussion false propaganda by govt
#sabkasathsabkavikash ? #upsc_jihad

(5) kejriwal was more sanghi than sanghis. to blame jamaatis for covid, he re-
peatedly and explicitly blamed them. he also gave break up of infections split
between jamaati related and non jamaatis.#kejriwal_must_apologize’]

GDP Con-
traction

(1) fyi please
(2) -19 Identifies The Significance

Of Rewards And Wellness Pro-
grams on

(3) This is huge
(4) Sorry the above tweet was sent

by mistake.
(5) Neti(nasal cleansing) is even

better

COVID relief shortcomings, COVID news
(1) As per the inclusion assessment of COVID-19 entitlements, 63% of the Dalit

(out of 19,590) and 62% Adivasi (out of 2030) households, respectively, were not
enrolled with the Ujjwala Yojana. #IfWeDoNotRise

(2) All residents within radius of 50-meter micro containment zones to be tested
for COVID-19 in Sgr

(3) Intractable.......... The current banking challenge is the most intractable one even
before COVID-19

(4) #NHMMP_Employee_wants_JusticeMAMAMany employees in contract health
were corrected by Corona but the policy has not been implemented till June 5,
2018, such a selfish government has no right to live.

(5) Iam very thankful to Voulanteers of popular Front of India & SDPI, Kolar
DISTRICT. Who participated in the last rites of a Christian brother Covid-19
in KGF taluk today. Till today voulanteers of PFI & SDPI of Kolar District
completed respectful burial of 50 Covid-19 bodies.
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Table 8: High BOW-based GCS examples sampled 7 day post-event. For long tweets, a summary is provided before tweet
examples.

Event Non Muslims Muslims

Bihar
Manifesto

(1) thank you mam
(2) does this look like an appropri-

ate frother-seine interaction to
you?

(3) thank you, roadside golgappas,
samosas, and momos. :p

(4) a heartening reminder that
we’remore than our entrenched
hatreds.

(5) now trump’s gonna want a
large consignment of filth.

Against French ban on Muslim long robes in schools, and sarcasm against Bihar’s
manifesto’s vaccine for vote promise.

(1) approximately 28% of the world population is muslim. approximately $80 trillion
dollars is the world gdp. if all muslim countries #boycott_french_products i
can guarantee you that france would be on its knees within 6 months. french
economy is already weak due to covid-19

(2) covid 19 shall engulf france because of its moron president macron... people
will bear the fury of the disease on account for their bigoted president #boy-
cottfranceproducts #shameonyoumacron #macronthedevil

(3) india’s free covid vaccination calendar bihar: nov 2020 assam, kerala, tn, wb:
apr 2021 goa, up, hp, uk: feb 2022 gujarat: dec 2022 karnataka: may 2023 mp,
ch, rj: dec 2023 dates matching the schedule of assembly elections in the states
are purely coincidental.

(4) urgently need of blood plasma for covid patient. name : syed ghulam mohi
udin address : syed pora bata pora blood group: b postive admitted in skims
soura. bed no 5 ward no. surgical observation if anybody is interested contact
<tel.no.>

(5) people of bihar are going to vote on issues like unemployment, corruption,
mismanagement of covid, women security, floods, farmer issue, which clearly
signals the exit of bjp jdu govt from power #BiharWantsChange
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H SUMMARY STATISTICS

Table 9: Descriptive Statistics for the dataset. Averages over event specific data are reported along with standard deviations in
parentheses. ∗M: Muslim, NM: Non Muslim

EVENT Janata Tablighi Migrant Coronil Exam GDP Bihar
Curfew Deaths Launch Satyagraha Contraction Manifesto

Date Mar 22 2020 Mar 31 2020 May 8 2020 Jun 23 2020 Aug 23 2020 Aug 31 2020 Oct 22 2020
Muslim % 8.33 9.11 7.86 7.81 8.38 8.07 6.54

In
te
ra
ct Overall% 10.30 12.14 15.06 16.96 18.84 19.09 20.21

Muslim % 54.34 53.08 62.55 67.04 65.87 69.61 75.38
Non Muslim % 6.26 8.03 11.01 12.72 14.54 14.66 16.35

G
CS

Overall 0.5007 0.5008 0.5014 0.5012 0.5007 0.5007 0.5009
(0.002) (0.0027) (0.0026) (0.0023) (0.0024) (0.0022) (0.0024)

∗M Interact 0.4997 0.5003 0.5005 0.4996 0.5002 0.4999 0.4994
(0.0021) (0.0028) (0.0035) (0.0025) (0.0031) (0.0025) (0.0022)

∗NM Interact 0.5006 0.5005 0.5008 0.5016 0.5009 0.5009 0.5009
(0.0022) (0.0027) (0.0027) (0.0021) (0.0021) (0.0021) (0.002)

∗M non-Interact 0.5007 0.5019 0.5018 0.501 0.5011 0.5007 0.5009
(0.0022) (0.0034) (0.0033) (0.0028) (0.0033) (0.003) (0.0024)

∗NM non-Interact 0.5007 0.5007 0.5015 0.5012 0.5007 0.5008 0.5009
(0.002) (0.0026) (0.0025) (0.0023) (0.0023) (0.0022) (0.0024)

To
pi
cs

COVID Response 0.69 0.64 0.59 0.58 0.59 0.57 0.59
(0.27) (0.22) (0.19) (0.19) (0.2) (0.19) (0.19)

Politics-Religion 0.14 0.16 0.21 0.19 0.22 0.24 0.2
(0.22) (0.2) (0.22) (0.23) (0.27) (0.29) (0.28)

China & Global 0.06 0.07 0.04 0.07 0.02 0.02 0.03
(0.28) (0.22) (0.19) (0.16) (0.18) (0.18) (0.16)

Socio-Economic 0.11 0.13 0.17 0.15 0.16 0.16 0.17
(0.16) (0.17) (0.2) (0.23) (0.25) (0.25) (0.24)

Em
ot
io
ns

Valence 0.45 0.46 0.47 0.46 0.46 0.46 0.47
(0.05) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06)

Fear 0.45 0.45 0.44 0.45 0.45 0.45 0.44
(0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06)

Sadness 0.41 0.42 0.41 0.41 0.42 0.42 0.41
(0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05)

Joy 0.3 0.3 0.31 0.31 0.3 0.3 0.31
(0.05) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06)

Anger 0.44 0.44 0.44 0.44 0.44 0.44 0.43
(0.05) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)

Eg
o-
N
et

Followers 2496.63 2401.09 2867.94 3315.16 2954.83 2766.27 3823.92
(8586.73) (8384.17) (9929.8) (12296.33) (10296.9) (9375.01) (11418.67)

Friends 936.18 935.06 988.95 1004.55 986.22 966.25 1137.37
(1417.11) (1439.22) (1653.84) (1532.91) (1519.08) (1431.95) (1766.76)

En
ga
ge
m
en
t

retweets 1.93 2.27 2.41 2.57 3.51 4.28 2.87
(19.35) (16.01) (16.4) (16.28) (22.88) (38.91) (15.4)

Fraction of replies 0.66 0.61 0.53 0.51 0.51 0.54 0.48
(0.31) (0.31) (0.35) (0.37) (0.38) (0.39) (0.39)

Tweet frequency 7.5 12 16.07 13.08 10.73 9.89 9.34
(10.08) (16.93) (25.58) (24.94) (19.72) (19.96) (17.6)

Account days 2493.81 2476.94 2490.63 2539.8 2465.07 2524.91 2635.2
(1253.79) (1244.03) (1266.25) (1292.43) (1353.38) (1335.86) (1335.84)

Tweeters 4671 6946 6387 4622 3497 3792 1989

15



2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

Conference’17, July 2017, Washington, DC, USA Anon.

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

I TREATMENT EFFECT HETEROGENEITY

Figure 7: Effect of Interaction on GCS across Muslims and Non-Muslims
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Figure 8: Coefficient Plot of Covariates when Treatment Effect is regressed on them.
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Figure 9: Effect of Interaction on valence across Muslims and Non-Muslims
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Figure 10: Effect of Interaction on anger across Muslims and Non-Muslims
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Figure 11: Effect of Interaction on fear across Muslims and Non-Muslims
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Figure 12: Effect of Interaction on sadness across Muslims and Non-Muslims
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Figure 13: Effect of Interaction on joy across Muslims and Non-Muslims
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Figure 14: Effect of Interaction on topic: COVID statistics and response across Muslims and Non-Muslims
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Figure 15: Effect of Interaction on topic: politics and religion across Muslims and Non-Muslims
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Figure 16: Effect of Interaction on topic: China and global discourse across Muslims and Non-Muslims
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Figure 17: Effect of Interaction on topic: socio-economic issues across Muslims and Non-Muslims
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