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ABSTRACT

Pre-Trained language models (PLM) mark the state-of-the-art for natural language
understanding. However, their large size poses challenges in deploying them for
inference in real-world applications, due to significant GPU memory requirements
and high inference latency. This paper explores weight-sharing based neural ar-
chitecture search (NAS) as a form of structural pruning to find sub-parts of the
fine-tuned network that optimally trade-off efficiency, for example in terms of
model size or latency, and generalization performance. Unlike traditional pruning
methods with fixed thresholds, we propose to adopt a multi-objective approach
that identifies the Pareto optimal set of sub-networks, allowing for a more flexi-
ble and automated compression process. Our NAS approach achieves up to 50%
compression with less than 5% performance drop for a fine-tuned BERT model
on 7 out of 8 text classification tasks.

1 INTRODUCTION

Pre-trained language models (PLMs) represent the current state-of-the-art for natural language un-
derstanding (NLU) tasks (Devlin et al., [2019). However, deploying PLMs for inference can be
challenging due to their large parameter count. Current PLMs demand significant GPU memory and
exhibit high inference latency, making them impractical for many real-world applications, for exam-
ple when used in an end-point for a web service or deployed on an embedded systems. Recent work
(Blalock et al., 2020; [Kwon et al., 2022; Michel et al., 2019; [Sajjad et al., 2022) demonstrated that
in many cases only a subset of the pre-trained model significantly contributes to the downstream
task performance. This allows for compressing the model by pruning parts of the network while
minimizing performance deterioration.

Unstructured pruning (Blalock et al.l [2020) computes a score for each weight in the network, such
as the weight’s magnitude, and removes weights with scores below a predetermined threshold. This
approach often achieves high pruning rates with minimal performance degradation, but it also leads
to sparse weight matrices, which are not well-supported by commonly used machine learning frame-
works. Structured pruning (Michel et al., 2019; |Sajjad et al., [2022)) removes larger components of
the networks, such as layers or heads. Although it typically does not achieve the same pruning
rates as unstructured pruning, it only prunes entire columns/rows of the weight matrix, making it
compatible with popular deep learning frameworks and hardware.

Recent work on neural architecture search (Zoph & Le, 2017} Real et al., 2017} Bergstra et al., [2013)
(NAS) finds more resource efficient neural network architectures in a data-driven way. To reduce the
computational burden of vanilla NAS, weight-sharing-based neural architecture search (Pham et al.,
2018 |Liu et al.l 2019b; [Elsken et al 2018)) first trains a single super-network and than searches
for sub-networks within the super-network. It can be considered as a form of structural pruning,
where one aims to find sub-networks that sustain performance of the given super-network. Most
structural pruning approaches prune the networks based on a predefined threshold on the pruning
ratio. In scenarios where there is no strict constraint on model size, it can be challenging to define
such a fixed threshold in advance. NAS offers a distinct advantage over other pruning strategies
by enabling a multi-objective approach to identify the Pareto optimal set of sub-networks, which
captures the nonlinear relationship (see Figure [I)) between model size and performance instead of
just obtaining a single solution. This allows us to automate the compression process and to select the
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Figure 1: Illustration of our approach. We fine-tune the pre-trained architecture by updating only
sub-networks, which we select by placing a binary mask over heads and units in each MHA and
FFN layer. Afterwards, we run a multi-objective search to select the optimal set of sub-networks
that balance parameter count and validation error.

best model that meets our requirements post-hoc after observing the non-linear Pareto front, instead
of running the pruning process multiple rounds to find the right threshold parameter.

While there is a considerable literature on improving the efficiency of LLM, to the best of our
knowledge there is no work yet that explored the potential of NAS for pruning fine-tuned PLMs.
Our contributions are the following:

* We discuss the intricate relationship between weight-sharing based NAS and structural
pruning and present a NAS approach that compresses PLMs for inference after fine-tuning
on downstream tasks, while minimizing performance deterioration. Our focus lies not in
proposing a novel NAS method per se, but rather in offering a practical use-case for NAS
in the context of LLM.

* We propose four different search spaces to prune components of transformer based LLM
and discuss their complexity and how they affect the structure of sub-networks. We also
show how existing structural pruning approaches operate in two of these search space.

* Our method offers a more accurate approximation of the Pareto front that better balances
generalization performance and parameter count than running state-of-the-art structural
pruning techniques multiple times with different thresholds.

* We perform a thorough ablation study of weight-sharing based NAS and show that this use
case serves as a useful test bed to benchmark NAS methods. In the long run we anticipate
that our work will drive the development of future NAS methods.

We present an overview of related work in Section [2] and describe our methodology in Section [3}
Section @ provides an empirical comparison of our proposed approach with other structural pruning
methods from the literature, along with an in-depth ablation study.

2 RELATED WORK

Neural Architecture Search (NAS) (see [Elsken et al.| (2018) for an overview) automates the de-
sign of neural network architectures to maximize generalization performance and efficiency (e.g.,
in terms of latency, model size or memory consumption). The limiting factor of convential NAS is
the computational burden of the search, which requires multiple rounds of training and validating
neural network architectures (Zoph & Lel 2017} [Real et al., |2017). To mitigate this cost, various
approaches have been proposed to accelerate the search process. For example, some of these meth-
ods early terminate the training process for poorly performing configurations (Li et al.| [2018) or
extrapolating learning curves (White et al., [2021b). Weight-sharing NAS (Pham et al.; 2018; [Liu
et al.| 2019a)) addresses the cost issue by training a single super-network consisting of all architec-
tures in the search space, such that each path represent a unique architecture. Initially, Liu et al.
(2019a) framed this as a bi-level optimization problem, where the inner objective involves the op-
timization of the network weights, and the outer objective the selection of the architecture. After
training the super-network, the best architecture is selected based on the shared weights and then
re-trained from scratch. However, several papers (Li & Talwalkar, 2020; |Yang et al., 2020) reported
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that this formulation heavily relies on the search space and does not yield better results than just
randomly sampling architectures. To address this limitation, |Yu et al.| (2020) proposed a two-stage
NAS process. In the first stage, the super-network is trained by updating individual sub-networks
in each iteration, instead of updating the entire super-network. After training, the final model is se-
lected by performing gradient-free optimization based on the shared weights of the super-network,
without any further training. Concurrently, (Cai et al.| (2020) applies a similar approach for convo-
lutional neural networks in the multi-objective setting by first training a single super-network and
then searching for sub-networks to minimize latency on some target devices. Related to our work is
also the work by Xu et al.|(2021)), which searches for more efficient BERT architectures during the
pre-training phase.

Structural Pruning involves removing parts of a trained neural network, such as heads (Michel
et al.| 2019), or entire layers (Sajjad et al., 2022), to reduce the overall number of parameters while
preserving performance. Individual components are pruned based on a specific scoring function, us-
ing a manually defined threshold. For transformer-based architectures, Michel et al.[(2019) observed
that a significant number of heads, up to a single head in a multi-head attention layer, can be deleted
after fine-tuning without causing a significant loss in performance. [Voita et al.| (2019) proposed LO
regularization as a means to prune individual heads in a multi-head attention layer. [Kwon et al.
(2022) prunes individual heads and units in the fully-connected layers after fine-tuning according to
the Fisher information matrix. [Sajjad et al.| (2022)) demonstrated that it is even possible to remove
entire layers of a pre-trained network prior to fine-tuning, with minimal impact on performance. In
comparison to our data-driven approach, Sajjad et al|(2022) suggested using predefined heuristics
(e.g., deleting top / odd / even layers) to determine layers to prune. However, as shown in our exper-
iments, the appropriate architecture depends on the specific task, and more data-driven methods are
necessary to accurately identify the best layers to prune.

Distillation (Hinton et al., 2015) trains a smaller student model to mimic the predictions of a pre-
trained teacher model. For instance, Sanh et al.[(2020) used this approach to distill a pre-trained
BERT model (Devlin et al.,2019) into a smaller model for fine-tuning. Jiao et al.|(2019)) proposed a
knowledge distillation approach specifically for transformer-based models, which first distills from
a pre-trained teacher into a smaller model and then performs task-specific distillation in a second
step based on a task augmented dataset. Related to our method is also AdaBERT (Chen et al.| [2020))
which trains task-specific convolutional neural networks based on differentiable NAS (Liu et al.|
2019a) by distilling the knowledge of a PTL such as BERT. Unlike pruning-based methods, dis-
tillation allows for complete architectural changes beyond merely dropping individual components.
However, from a practical standpoint, determining the optimal structure and capacity of the student
network needed to match the performance of the teacher network also amounts to a hyperparameter
and neural architecture search problem. Additionally, training a student network requires a signif-
icant amount of computational resources. For example, Sanh et al.| (2020) was trained for around
90 hours on 8 16GB V100 GPUs. This cost can be amortized by fine-tuning the student model to
solve many different tasks but depending on the downstream tasks, it potentially requires a substan-
tial amount of iterations which is not always desirable for practitioners who aim to solve a single
specific task. This is especially important in the multi-objective setting where many networks need
to be distilled to map the full size/accuracy Pareto front.

Quantization (Dettmers et al.,[2022; |Dettmers & Zettlemoyer, 2023)) reduces the precision of model
parameters from floating-point numbers to lower bit representations (e.g., 8-bit integers). The main
advantage of quantization is the reduction in memory footprint. However, as we show in the Ap-
pendix [E] this does not necessarily lead to faster latency. Quantization is independent of our NAS
approach and can be employed on the pruned network to further decrease memory usage.

3 STRUCTURAL PRUNING VIA NEURAL ARCHITECTURE SEARCH

We first provide a multi-objective problem definition for compressing fine-tuned LLM. Afterwards,
we describe our weight-sharing based NAS approach and present four search spaces to prune
transformer-based architectures, with a different degree of pruning.
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3.1 PROBLEM DEFINITION

We consider a pre-trained transformer model based on an encoder-only or decoder-only archi-
tecture, such as for example BERT (Vaswani et al., 2017), with L non-embedding layers, each
composed of a multi-head attention (MHA) layer followed by a fully connected feed forward
(FFN) layer. Given an input sequence X € R"*@modact where n represents the sequence length
and dpmoder the size of the token embedding, the MHA layer is defined by: MHA(X) =
Sranw WP wh wh X) where WS W W e Rimesrxd and WS e
RHA*dmodel are weight matrices. Att(-) is a dot product attention head (Bahdanau et al., 2015)
and H is the number of heads. The output is then computed by Xp;ga = LN(X + MHA(X)),
where LN denotes layer normalization (Ba et al.,[2016). The FFN layer is defined by FFN(X) =
Wio(WyX), with Wy € RIXdmodet and W € R¥meaet>I \where I denotes the intermediate size

and o(-) is a non-linear activation function. Also here we use a residual connection to compute the
final output: zppy = LN(X]WHA + FFN(XMHA))

We define a binary mask Mp,cqq € {0, 1}LXH for each head in the multi-head attention layer and
a binary mask M, curon € {0, 1}LXU for each neuron in the fully-connected layers. The output

of the I-th MHA layer and FFN layer is computed by M HA;(X) = Zf Mipeqali, 1] o Att(-) and
FFEN|(X) = M, curon|l] o Wio(WpX), respectively.

Now, let’s define a search space 8 € © that contains a finite set of configurations to define possible
sub-networks sliced from the pre-trained network. We define a function CREATEMASK that maps
from a configuration @ — M,cqq, My curon to binary masks. Let’s denote the function fp : © — R
as the validation error of the sub-network defined by configuration 6 after fine-tuning on some
downstream task. To compute the validation score induced by 8 we place corresponding masks
M cad, My euron over the network. Additionally, we define the total number of trainable parameter
f1 : ©® — N of the subnetwork. Our goal is to solve the following multi-objective optimisation
problem:

mingee (fo(0), f1(8)). (1)

In the multi-objective setting, there is no single 8, € © that simultaneously optimizes all M objec-
tives. Let’s define 8 >~ 0’ iff f;(0) < f:(0'),Vi € [M] and 3i € [k] : f:(0) < f;(0"). We aim to
find the Pareto Set: Py = {6 € ©|}16’ € © : @ = 0} of points that dominate all other points in the
search space in at least one objective.

3.2 WEIGHT-SHARING BASED NAS

Following previous work (Yu et al., 2020; [Wang et al.l [2021)), our weight-sharing based NAS ap-
proaches consists of two stages: the first stage is to treat the pre-trained model as super-network
and fine-tune it on the downstream task, such that sub-networks do not co-adapt. The second stage,
utilizes multi-objective search strategies to approximate the Pareto-optimal set of sub-networks (see
FigureT|for an illustration).

3.2.1 SUPER-NETWORK TRAINING

In the standard NAS setting, we would evaluate fy(0) by first fine-tuning the sub-networks defined
by 6 on the training data before computing the score on the validation data. The weights of the sub-
network are initialize based on the pre-trained weights. While more recent NAS approaches (Li &
Talwalkar, [2020; Klein et al., 2020) accelerate the search process by early stopping poorly perform-
ing sub-networks, this still amounts to an optimization process that requires the compute of multiple
independent fine-tuning runs.

The idea of two-stage weight-sharing-based NAS (Yu et al., 2020) is to train a single-set of shared
weights, dubbed super-network, that contains all possible networks in the search space. After train-
ing the super-networks, evaluation f(€) only requires a single pass over the validation data.

We consider the pre-trained network as super-network with shared weights that contains all possible
sub-networks 8 € O. To avoid that sub-networks co-adapt and still work outside the super-network,
previous work (Yu et al.;,2020; Wang et al., 2021) suggested to update only a subset of sub-networks
in each update step, instead of the full super-network. We adapt this strategy and sample sub-
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networks according to the sandwich rule (Yu et al., |2020; Wang et al.| [2021)) in each update step,
which always updates the smallest, the largest and k£ random sub-networks. The smallest and largest
sub-network correspond to the lower and upper bound of ©, respectively. For all search spaces ©
define below, the upper bound is equal to full network architecture, i.e, the super-network and the
lower bound removes all layer except the embedding and classification layer.

Additionally, we use in-place knowledge distillation (Yu et al.,|2019) which accelerate the training
process of sub-networks. Given the logits msypernet() of the super-network, which we obtain
for free with the sandwich rule, and the logits of a sub-network g (), the loss function to obtain
gradients for the sub-networks follows the idea of knowledge distillation:

T supernet o
Lxp =L D ( N ) , 2
KD cr + Dk (o T )U(T) )
where Dy, (+) denotes the Kullback-Leibler divergence between the logits of the super-network and
the sub-network, 7" a temperature parameter, o (-) the softmax function and L¢ g is the cross-entropy
loss.

3.2.2 SUB-NETWORKS SELECTION

After training the super-network, we compute the validation error fy(8) by applying M},qq and
M, oo to the shared weights and performing a single pass over the validation data. This substan-
tially reduces the computational cost involved in the multi-objective problem stated in Equation 1]

Previous work (White et al.,|2021a)) has demonstrated that simple local search often performs com-
petitively compared to more advanced NAS methods. In this paper, we propose a straightforward
multi-objective local search approach. Starting from the current Pareto front Py, which is initial-
ized by some starting point, we randomly sample an element 8, ~ P and then generate a random
neighbor point by permuting a single random entry of 8,. The pseudo code for our local search is
provided in Appendix [

3.3 SEARCH SPACE

The search space © defines sub-networks of the pre-trained network architecture. An expressive
© allows for fine-grained pruning but might also become infeasible to explore. We propose the
following search spaces that exhibit different levels of complexity. For each search space we provide
pseudo code to define the CREATEMASK function in Appendix

* LARGE: For each head and neuron in the fully-connected layer we define a single binary
©; = {0,1} which is combined to form the search space © = G X ... X Op g7
This is the most expressive search space, but also grows quickly with the model size. The
search space is also commonly used by other structural pruning approaches (Kwon et al.,
2022). It might not be very useful in practice, because we cannot easily remove single
rows/columns of the weight matrix with most transformer implementations and hence it
will not necessarily reduce the inference latency. However, it provides us a reference in
terms of predictive performances that can be retained under a certain pruning ratio.

* MEDIUM: Based on the previous search space, we allow for a flexible number of heads
/ units per layer. For each layer [ € [0, L], we define H; = [0, H]| and U; = [0, U], such
that the final search space is © = Ho x Uy ... H x Ur. For each layer, we always keep
the first h € H heads and u € U units, respectively, to enforce that CREATEMASK is a
bijective mapping (see Appendix [B).

* LAYER: Inspired by Sajjad et al.[(2022), we prune individual attention and fully-connected
layers instead of single heads and neurons. We define a search space © = {0, 1}¥ that
contains one binary hyperparameter for each layer that determines if the corresponding
layer is removed.

* SMALL: We define the number of heads H = [0, H], the number of units &/ = [0, U] and
the total number of layers £ = [0, L], such that © = H x U x L. Compared to the other
search spaces, the dimensionality of this search space with different model sizes, and only
its upper bound increases. As for the MEDIUM search space we also keep the first heads
and units in each layer.
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Figure 2: Examples of head masks Mj,.,q sampled uniformly at random from different search
spaces. Dark color indicates that the corresponding head is masked. The same pattern can be
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Figure 3: Distribution of the parameter count f; (@) for uniformly sampled 6 ~ ©.

Each search space induces a different pattern for M}.,q and M, c..0n that we place over the super-
network to select sub-networks (see Figure 2] for some examples). To see how this effects the distri-
bution over parameter count and hence the sampling during the super-network training, we sample
N = 500 configurations {6y, ..., 0} uniformly at random and compute the number of trainable
parameters { f1(6;), ..., f1(6x} for all four search spaces (see Figure[3). The SMALL search space
is somewhat biased to smaller networks. The MEDIUM search space, even though more expressive,
is highly biased towards mid-size networks, since on average half of the heads / neurons are masked
out. For the two binary search spaces LAYER and LARGE, we can achieve a uniform distribution
over the number of parameters, by using the following sampling process. We first sample an integer
k ~ U(0, K), where k = L for the LAYER search space, and k = L(H + I) for the LARGE search
space. Afterwards, we randomly select k entries of the binary vector @ € © and set them to 1.

4 EXPERIMENTS

We evaluate our approach on eight text classification datasets from the GLUE (Wang et al., 2019)
benchmark suite. We provide a description of each dataset in Appendix [C] All datasets come with a
predefined training and evaluation set with labels and a hold-out test set without labels. We split the
training set into a training and validation set (70%/30% split) and use the evaluation set as test set.
We fine-tune every network for 5 epochs on a single GPU. For all multi-objective search methods,
we use Syne Tune (Salinas et al., |2022) on a single GPU instance. We use BERT-base (Devlin et al.,
2019) (cased) as pre-trained network, which consists of L = 12 layers, I = 3072 units and H =
12 heads (other hyperparameters are described in Appendix [A]), because it achieved competitive
performance too larger models on these benchmarks and allows for a more thorough evaluation. We
also present a comparison to quantization in Appendix

4.1 COMPARISON

We now present a comparison against other structural pruning approaches. For NAS we use the
SMALL search space defined in Section[3.3]based on our ablation study in Section[d.2} We compare
against the following relevant baselines:

* Retraining Free Pruning (RFP) (Kwon et al.l 2022)) uses a three-phased pruning strategy
that, based on a threshold «, prunes individual heads in the MHA layer and units in the
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Figure 4: Loss in test performance versus the parameter count relative to the un-pruned BERT-base-
cased model on all 8 text classification datasets. On 7 out of 8 dataset our NAS strategy is able to
prune 50% with less than 5% drop in performance (indicated by the dashed line) in performance.

FEN layer. The first phase computes a binary mask for heads and units by computing the
diagonal Fisher information matrix. The matrix is then rearranged by a block-approximated
Fisher information matrix. In the last step, the masked is further tuned by minimizing
the layer-wise reconstruction error. This method operates in the LARGE search space
described in Section We run RFP with different values for @ € {0.1,0.2,...,0.9} to
obtain a Pareto set of architectures.

* Layer Dropping (LD): Following [Sajjad et al. (2022) we first remove the top n €
1, ..., L — 1 layers and fine-tune the remaining layers directly on the downstream task. To
obtain a Pareto set of IV points, we fine-tune N models with different amount of layers
removed. This method serves as a simple heuristic to explore the LAYER search space.

¢ DistilBERT (Sanh et al., 2020)) is a distilled version of BERT based on a smaller architec-
ture (L = 6, H = 12, = 3072) which we directly fine-tuned on the downstream task.

* Standard NAS (S-NAS) uses the same multi-objective search but without the super-
network training. Instead each sub-network is initialized with the pre-trained weights and
then fine-tuned independently.

For each method except DistilBERT, we obtain a Pareto set of solutions with different parameter
counts; note that parameter count is related to model inference time as discussed in [E] To compare
results, we normalize the number of parameters to [0, 1] and bin results based on different thresholds
£ € {0.2,...0.9}. Note that roughly 20% of the parameters of BERT-base are included in the
embedding and classification head, and hence cannot be pruned. For each bin, we report the best
performance of the solution with < [ parameters.

Figure E| shows the parameter count (horizontal axis) and the test error (vertical axis) relative to
the unpruned network for all datasets. For reference, we indicate 5% and 10% relative error to the
unpruned network by dashed lines. NAS achieves strong performance, especially for higher pruning
ratios. For smaller pruning ratios, i.e larger parameter counts (right side of plots), all methods
exhibit comparable performance. Notably, NAS showcases more fine-grained pruning capabilities
compared to LD, as demonstrated by the smooth curves in the results.

Apart from the quality of the final Pareto set, we also evaluate the total runtime of each method.
Figure ] left shows the total runtime in terms of wall-clock time for the MNLI dataset. Plots for all
other datasets are in Appendix [D} For both, RFP and NAS, we also include the fine-tuning of the
super-network in the runtime analysis. LD exhibits significantly higher runtime, in terms of wall-
clock time compared to NAS, since it fine-tunes n sub-networks. While RFP is overall faster, our
NAS approach provides the best performance / runtime trade-off.

For a qualitative comparison, we show the results for a single run on the SST2 dataset in Figure [3]
right. On this dataset our NAS approach finds sub-networks with approximately 50% the size of the
unpruned network (dashed line) with almost no drop in performance.
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Figure 5: Total runtime in seconds for each method (left), including training time for the super-
network, to generate the Pareto fronts (right) on the MNLI dataset. While RFP is faster than our
NAS approach, its Pareto front performs poorly in the smaller sub-network regime. LD and S-NAS
exhibit similar performance on this benchmark, but they consume substantially more resources.
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Figure 6: Comparison of different search spaces to define sub-networks. Even though larger search
spaces are more expressive, they under-perform within the select budget.

4.2 ABLATION STUDY

We now present a detailed ablation study to evaluate different components of our NAS approach.
To quantify the performance of a Pareto set, we compute the Hypervolume (Zitzler et al., [2003)
frequently used in the multi-objective literature. We first normalize each objective based on all
observed values across all methods and repetitions via Quantile normalization. This results in a uni-
form distribution between [0, 1], and we use (2, 2) as reference point. We train each super-network
five times with a different random seed. For each model checkpoint, i.e super-network, we run
multi-objective search five times also with different random seeds. This leads to 25 different Pareto
sets and we report mean and total variance of the corresponding hypervolume. To cut computational
cost, we report results only on the four smallest datasets: RTE, MRPC, COLA and STSB.

4.2.1 SEARCH SPACE

First, we compare the search spaces definitions from Section[3.3] We fine-tune the super-network as
described in Section [3:2]and sample 100 sub-networks uniformly at random to compute the hyper-
volume. Within this budget (see Figure[6), the SMALL search space achieves the best performance.
Interestingly, even though the MEDIUM search space allows for a more fine-grained per layer prun-
ing, it leads to worse results. We attribute this to the non-uniform distribution of parameter count as
described in Section[3.3] The LARGE search space, which is a superset of the other search spaces,
seems infeasible to explore with random sampling over so few observations. We use the SMALL
search space for the remaining experiments.

4.2.2 SUPER-NETWORK TRAINING
Next, we compare the following super-network training strategies:

 standard: Which trains all weights of super-network in the standard fine-tuning setting

* random: Samples a single random sub-network in each update steps
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Figure 7: Comparison of super-network training strategies. More advances strategies that sample a
set of sub-network outperform standard fine-tuning or just sampling a single random sub-network.
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Figure 8: Hypervolume of different multi-objective search methods over the number of function
evaluation. We report the difference to the optimal hypervolume given the reference point.

* random-linear: Following [Yu et al.|(2020), we either sample a random sub-network with
probability p or the full-network with probability of 1 — p in each update step. Thereby, p
is linearly increased from 0 to 1 after each update step over the course of training.

» sandwich: The super-network is updated according to the sandwich rule described in Sec-
tion[3.2] We set the number of random sub-networks in each update step to k = 2.

* kd: Update & = 2 random sub-networks according to Equation 2]

« full: Implements the training protocol described in Section [3.2] i.e it combines the sand-
wich rule with in-place knowledge distillation to update sub-networks.

Figure [7] middle shows the hypervolume across all repetitions. Standard fine-tuning and just ran-
domly sampling a sub-network leads to significant worse results. Linearly increasing the probability
of sampling a random sub-networks stabalizes results. Better results are achieved by using the sand-
wich rule or knowledge distilation. Thereby, combining both slightly improves results further.

4.2.3 MULTI-OBJECTIVE SEARCH

Lastly, we compare in Figure [§] the following multi-objective search methods: our local search
(LS) described in Section @ (see Appendix for details). Random search (RS) (Bergstra & Ben-
gio| 2012)) samples architectures uniformly at random from the search space. NSGA-2 (Deb et al.,
2002) is a frequently used genetic algorithm from the multi-objective literature. Bayesian optimiza-
tion (Garnett, 2023) with a linearized scalarization of the objectives (LS-BO) and with a randomizes
scalarization of the objectives (RS-BO) (Paria et al., 2019).

While all methods yield comparable results (note the high uncertainty bars), LS performs slightly
better. RS-BO and LS-BO under perform to RS because their scalarization approach causes them
to concentrate solely on specific parts of the Pareto front, thereby failing to adequately capture its
complete extent. NSGA-2 appears to suffer from sample inefficiency on this benchmark.

4.3 CONCLUSIONS

We propose weight-sharing-based NAS to compress fine-tuned PLMs by slicing sub-networks. By
utilising a multi-objective approach, we can find the Pareto optimal set of architectures that balance
model size and validation error, allowing practitioners to select the optimal network without running
the pruning process multiple times with different thresholds. Furthermore, our method is more
runtime efficient than baselines and more effective than structural pruning methods.
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A HYPERPARAMETERS

Table [A] shows the hyperparameters for fine-tuning the super-network. We largely follow default
hyperparameters recommended by the HuggingFace transformers library. For all multi-objective
search method, we follow the default hyperparameter of Syne Tunel!

Hyperparameter \ Value
Learning Rate 0.00002
Number of random sub-networks k 2
Temperature T’ 10
Batch Size 4

B MASKING

Algorithm ] 2| [3|and ] show pseudo code for the LAYER, SMALL, MEDIUM and LARGE search
space, respectively. Note that, 1 indicates a vector of ones. For a matrix M, we write M [:,: N] to
denote the first IV columns for all rows and, vice versa, M[: N, :] for the first NV rows.

input : sub-network configuration 8 € {0, 1}
OUtPUt: Mhead7 Mneuron
Mhead — [O]LXH;
M curon [O]LXI;
for(=0,...,L—1do

Mhead[la I] — 9[[],

Mneuron[l7 :] <~ 0[”,
end

Algorithm 1: CREATEMASK function for LAYER search space

input : sub-network configuration @ € Ho X Uy ... Hr X Uy,
OUtPUt: Mheada Mneuran
Mhead — [O]LXH;
My euron [O]LXI;
for(=0,...,L—1do
h=0[2x]]; /* number of heads in layer [ =/
u=0[2x1+1]; /* number of units in layer [ */
MheadUﬁ h] < 1;
Mneuron[l7: u] — 1;
end
Algorithm 2: CREATEMASK function for MEDIUM search space

input : sub-network configuration @ € H x U x L
output: Mheada Mneu'r'on

h=0[0]; /* number of heads x/
u=0[1]; /* number of units =*/
1=0[2]; /* number of layers x/

Mhead — [O}LXH;
Mneuran — [O]LXI;
Mhead[: Z,: h] —1;
Mneuron[5 l: u} «—1;
Algorithm 3: CREATEMASK function for SMALL search space
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input : sub-network configuration 8 € {0, 1}£*(H+U)

output: Mheada Mneu'ron
Mhead < 9[:,: H],
Mneuron — 0[:; H :];
Algorithm 4: CREATEMASK function for LARGE search space

C DATASETS

We use the following 8 dataset from the GLUE 2019) benchmarking library. All dataset
are classification task, except for STSB, which is a regression dataset.

* The Recognizing Textual Entailment (RTE) dataset aims to identify the textual entailment
of two sentences.

* The Microsoft Research Paraphrase Corpus (MRPC) dataset consists of sentence pairs ex-
tracted from online news sources. The task is to predicts if these pairs are semantically
equivalent to each other.

» The Corpus of Linguistics Acceptability (COLA) dataset contains English sentences that
are labeled as grammatically correct or not.

* The Semantic Textual Similarity Benchmark (STSB) consists of sentences pairs that are
scored between 1 and 5 based on their similarity.

* The Stanford Sentiment Treebank (SST2) datasets classifies the positive / negative senti-
ment of sentences extracted from movie reviews.

* The Multi-Genre Natural Language Inference Corpus (MNLI) is a dataset with sentence
pairs where one sentence represents a premise and the other sentence a hypothesis. The
task is to predict whether the premise entails the hypothesis.

* QNLI is a modified version of the Stanford Question Answering Dataset which is a collec-
tion of question / answer pairs where question are written by human annotators and answers
are extracted from Wikipedia. The task is to predict whether the answers is correct.

* Quora Question Pairs (QQP) dataset includes question pairs from the Quora website. The
task is to predict whether two questions are semantically equivalent.

D ADDITIONAL RESULTS

In this section we present additional results that from the experiments described in Sectiond} Fig-
ure [9] shows the mean standard deviation of the runtime for each method for all 8 datasets. For a
detailed discussion see Section[]in the main paper.

RTE MRPC CoLA STSB

Nas. Arp NAS RFP NAs| are
methods methods methods.
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Figure 9: Runtime distributions for each method on all 8 GLUE datasets.
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Figure 11: Test error versus memory footprint (left) and latency (right) on 3 different GPU types for
the Pareto front found by our NAS strategy and the un-pruned network with 8bit and 4bit quantiza-
tion.

E QUANTIZATION

Quantization (Dettmers et al., 2022} Dettmers & Zettlemoyer, |2023)) is a powerful technique that
significantly reduces the memory footprint of neural networks. However, its impact on latency
is not immediate, especially when dealing with batch sizes that can not fit into the cache of the
device |Dettmers & Zettlemoyer| (2023). With our flexible NAS framework we can simply replace
objectives and directly optimize latency on the target device instead of parameter count.

Figure [T1] left shows the Pareto set obtained with our NAS approach, where we optimize latency
instead of parameter count on the COLA dataset across 3 different GPU types. Additionally, we
evaluate the performance of the unpruned super-network with 8-bit (Dettmers et al.l [2022) and
4-bit (Dettmers & Zettlemoyer, [2023) quantization. While quantization substantially reduces the
memory footprint (Figure[II|right), it actually leads to worse latency. While quantization introduces
a small overhead due to the additional rounding steps, the latency could potentially be reduced by
optimizing the low-level CUDA implementation. Somewhat surprisingly using a int-8bit quantiza-
tion leads to high performance drop on some hardware. NAS effectively reduces the sizes of weight
matrices, leading to reduced GPU computation and, thus, is less hardware depend.

We can also apply quantization to sub-networks, making it orthogonal to our NAS methodology and
offering further improvements to the memory footprint. Overall, these findings shed light on the
trade-offs between memory footprint reduction and latency optimization. We leave it to future work
to explore the connection between NAS and quantization.

14



Under review as a conference paper at ICLR 2024

F MULTI-OBJECTIVE LOCAL SEARCH

We start with evaluating a starting point 8,,+, Which we set as the upper bound of our search space.
The initial Pareto front P, is initialized with the start point Py < {05t }. Afterwards, in each step
our local search samples a random neighbour of a randomly selected points of the current Pareto
front until we reach a fix number of iteration. We consider 1-step neighbourhood, which randomly
permutes the given point only in a single dimension.

input : Search space ©, number of iteration 7', starting point @44+

output: Pareto front P

/+ evaluate starting point */
PO — {Bstart};

Ystart = [fO(estart)y fl (estart];

Y « {ystart}§

/* main loop */
fort=1,...,T do
/+ sample random element from the population */
0 ~U(P;-1);
/* mutate */
d~U(0,|0); // sample random dimension
0 < copy(0y);
0[d] — U(O4); // sample a new value from the search space
/+ evaluate */
ye = [fo(6), f1(0)];
Y%YUyt
/+ update population */
SY)={y eY: {y eY ¥y =y, v #£y'} =0} // Pareto front
Py« {6:y(0) € S(Y)};

end
Algorithm 5: Local Search
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