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ARTICLE INFO ABSTRACT

Keywords: Accurate detection and segmentation of lung tumors from volumetric CT scans is a critical area of research
Segmentation for the development of computer aided diagnosis systems for lung cancer. Several existing methods of 2D
CT scan biomedical image segmentation based on convolutional autoencoders show decent performance for the task.
Lung tumor

However, it is imperative to make use of volumetric data for 3D segmentation tasks. Existing 3D segmentation
networks are computationally expensive and have several limitations. In this paper, we introduce a novel
approach which makes use of the spatial features learned at different levels of a 2D convolutional autoencoder
to create a 3D segmentation network capable of more efficiently utilizing spatial and volumetric information.
Our studies show that without any major changes to the underlying architecture and minimum computational
overhead, our proposed approach can improve lung tumor segmentation performance by 1.61%, 2.25%, and
2.42% respectively for the 3D-UNet, 3D-MultiResUNet, and Recurrent-3D-DenseUNet networks on the LOTUS
dataset in terms of mean 2D dice coefficient. Our proposed models also respectively report 7.58%, 2.32%, and
4.28% improvement in terms of 3D dice coefficient. The proposed modified version of the 3D-MultiResUNet
network outperforms existing segmentation architectures on the dataset with a mean 2D dice coefficient of
0.8669. A key feature of our proposed method is that it can be applied to different convolutional autoencoder
based segmentation networks to improve segmentation performance.

Convolutional autoencoders
Deep learning

1. Introduction reduce the mortality rate. A study of the National Lung Screening
Trial (NLST) [5] revealed that early diagnosis using low-dose CT scans
resulted in a 20% reduction in mortality from lung cancer [3]. How-

ever, several challenges remain in lung cancer diagnosis and screening.

Lung cancer is one of the most common forms of cancer and is the
most threatening in terms of mortality. In 2020, lung cancer was the

leading cause of cancer-related deaths with around 1.80 million deaths
worldwide [1]. Lung cancer is accompanied by weight loss, fatigue,
chronic cough, and chest pain, causing unthinkable suffering to the
patient. Lung cancer occurs due to the uncontrolled growth of cells in
the lung. The rapidly dividing cells accumulate and form lung masses
or tumors which might be visible in a radiological investigation. Lung
cancer diagnoses are classified into two main groups: small cell lung
cancer (SCLC), and non-small cell lung cancer (NSCLC). Approximately
85% of all cancer diagnoses are non-small cell lung cancer [2]. Physical
symptoms are often absent or similar to respiratory infections during
the early stages of lung cancer. Due to the late onset of symptoms
and lack of screening programs, most of the patients are diagnosed
with an advanced stage of lung cancer [3]. The 5-year survival rate
of lung cancer is an alarmingly low 18% [4], which is largely due
to the delayed diagnosis. Diagnostic approaches like X-ray, CT and
PET imaging, and histological examination of tumor biopsies can be
used for lung cancer [2]. Early diagnosis of lung cancer can drastically
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There are several steps involved in the diagnosis and treatment of lung
cancer. The delineation of the tumor volume is usually performed by
an expert radiologist and this step is essential for the proper detection
of cancerous tumors present in the lung as well as for the next steps
in treatment such as a biopsy, therapy, or surgery. This is a difficult,
time-consuming, and error-prone task [6]. Especially in developing and
underdeveloped countries, resources and manpower are scarce. This
results in numerous cases of lung cancer going undiagnosed. To this
end, computer-aided tools for automatic detection and segmentation
of lung cancer might be able to assist medical professionals by greatly
simplifying and speeding up the diagnostic process.

1.1. Related work
Traditional computer-aided approaches to lung cancer detection

involved thresholding, morphological operations, connected compo-
nent analysis, and other image processing techniques [7,8]. These
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techniques were not fully automated and involved multiple steps for
different tasks, for example — segmentation of the Lung ROI (Re-
gion of Interest) through thresholding, image processing operations for
lung nodule detection, followed by a rule-based technique to classify
cancer [9]. Some researchers took a two-step approach, where image
enhancement and segmentation were followed by extracting tumor
features [10] to detect lung cancer. Later Aerts et al. [11] and Lambin
et al. [12] introduced rigorous radiomics analysis for comprehensive
quantification of tumors from image features. Following these findings,
machine learning algorithms like EK-Means clustering [13], Support
Vector Machines (SVMs) [14], etc. were used to detect lung cancer from
extracted features. While these techniques can detect the existence of
lung tumors to a certain degree, there is a large variance in the tumor
appearance [13], and other masses like lesions, nodules, the clavicles,
and the heart present in the scans make it difficult to accurately
segment lung tumor volumes using image processing techniques alone.
This calls for the utilization of more advanced techniques like deep
learning.

Deep learning [15] makes use of deep networks, which are com-
putational models composed of multiple layers. Deep networks can
learn complex representations of data at multiple levels of abstraction.
Deep learning methods have made notable breakthroughs in speech
recognition, visual object recognition, object detection, and many other
domains like drug discovery and genomics as well [15]. More recently,
deep learning has seen success in various medical image processing
applications. For example, artificial neural networks [16] and deep
learning [17] have been utilized for the detection of lung cancer from
CT images. Segmentation of the tumor volume in lung cancer patients is
also an important task. Unlike detection, which is the task of identifying
the presence of a disease, segmentation is a more challenging task,
where the goal is to identify the exact location of the tumor. Early
approaches to image segmentation have used pixel-wise segmentation
with fully convolutional networks [18]. However, this approach was
not efficient and suitable for biomedical segmentation tasks. The U-Net
network by Ronneberger et al. [19] revolutionized the field of biomed-
ical image segmentation by outperforming all previous approaches of
the time. The U-Net network consists of an encoder—decoder-based
convolutional neural network architecture and made strong use of data
augmentation. This architecture has been the cornerstone of biomedical
image segmentation and several biomedical segmentation networks like
the ResUNet++ [20], MultiResUNet [21], DRINet [22], etc. improved
upon UNet. Dilated fully convolutional neural networks [23] have also
been utilized for semantic segmentation of biomedical scans. Most of
these networks have taken a two-dimensional approach to the task of
biomedical segmentation and achieved respectable performance.

However, many biomedical images, for example, CT scans and MR
images are volumetric scans consisting of several continuous slices
along the transverse anatomical plane, calling for a three-dimensional
segmentation problem. Two-dimensional approaches to biomedical seg-
mentation only consider one slice at a time, therefore they are not
able to process the spatial context along the missing dimension. There
have been several approaches to address this issue. A three-dimensional
version of the UNet network [24] has been introduced for learning
dense volumetric segmentation from sparsely annotated data. Milletari
et al. [25] introduced a fully convolutional autoencoder architecture for
3D segmentation of prostate MRI volumes. Chen et al. [26] introduced
deep voxel-wise residual networks for brain segmentation from 3D MR
images. However, utilizing the full 3D volume with a convolutional
neural network is very difficult due to the exponential increase in
compute and memory requirements. At the same time, networks be-
come very large and require more training data, which is often scarce.
To address these issues, these networks either take small patches of
voxels instead of the full scan [26] or downsample the input to the
network [25] to reduce computation costs. Taking small patches of
voxels leads to the same limitation of losing spatial context. When
performing volumetric segmentation of larger anatomical regions like
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the heart, the brain, lungs, kidneys, the prostate, etc. it is possible to
downsample the scans without losing too much context. However, for
the task of lung-tumor segmentation where fine pixel-level features of
smaller tumors are important, downsampling may lead to loss of data.
3D segmentation of lung tumors from volumetric scans is, therefore, a
challenging task.

The development, training, and evaluation of a computer-assisted
diagnostic method for lung cancer detection and diagnosis require care-
fully annotated biomedical data which is not widely available. There
have been some recent initiatives for the curation and collection of
biomedical data for such applications. The Lung Image Database Con-
sortium (LIDC) and the Image Database Resource Initiative (IDRI) have
compiled a database [27] of low-dose lung CT scans from 1010 patients.
The 2016 LUNA16 challenge [28] included scans from this dataset
to develop an automated CAD system for the automatic detection of
pulmonary nodules in CT images. The 2017 Kaggle Data Science Bowl
challenge [29] aimed at improving lung cancer detection from CT im-
ages. These competitions saw a multitude of deep learning approaches
to address tasks like lung nodule segmentation and classification. The
2018 IEEE VIP Cup challenge [30] involved lung tumor region seg-
mentation on CT Scans from the NSCLC-Radiomics Dataset [31]. In
conjunction with the IEEE VIP Cup challenge, the Lung-Originated
Tumor Segmentation (LOTUS) Benchmark [32] was created to provide
a unique dataset for lung tumor segmentation. Several approaches
like a 3D Dilated Convolutional Neural Network [33], Recurrent-3D-
DenseUNet [34], Deeply Supervised MultiResUNet [35] etc. were de-
veloped on this benchmark and showed promising performance on the
dataset.

1.2. Our contributions

For the task of lung tumor segmentation on the LOTUS Bench-
mark [32], two-dimensional networks like UNet [19] and its vari-
ants [35] show respectable performance for segmenting tumors. On
the other hand, it is difficult to train an effective 3D Segmentation
network from scratch. In this paper, we try to address this issue
by making use of the learned features at different levels of the 2D
networks to enhance the performance of 3D segmentation networks.
There have been a few attempts in the literature [33,36] to combine
segmentation features or results from both the 2D and 3D domains.
However, in this paper, we take a novel approach to utilize the spatial
features learned at different levels of the segmentation network while
maintaining feature space balance. The 3D segmentation networks
have also been slightly modified to accommodate the changes without
introducing any significant computational complexity. Our proposed
approach can be incorporated into existing convolutional autoencoder-
based 3D segmentation networks to enhance performance. We applied
our proposed methodology to different segmentation networks like the
UNet [19,24], MultiResUNet [21], Recurrent-3D-DenseUNet [34], etc.
without incorporating any major changes to the underlying architec-
ture. We were able to record performance improvements of 1.61%,
2.25%, and 2.42% in terms of 2D dice-coefficient respectively for our
proposed modified versions of the 3D-UNet, 3D-MultiResUNet, and
Recurrent-3D-DenseUNet networks. The best performing network is our
proposed SFF-3D-MultiResUNet architecture which achieved a mean
dice-coefficient of 0.8669 outperforming all previous approaches on
the dataset [33-35]. We have also introduced the 3D dice coefficient
to evaluate the performance of volumetric segmentation, which has
not been reported by earlier approaches on this dataset. In terms of
the 3D dice coefficient, our proposed networks respectively achieved
7.58%, 2.32%, and 4.28% improvement in performance compared to
their baselines and the best-performing SFF-3D-MultiResUNet model
achieved a 3D dice score of 0.5938 which is significantly higher than
the other baseline models.
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Fig. 1. Illustration of different augmentations on a training sample: (a) Random rotation,
(e) Random noise, (f) Blurring.
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(b) Horizontal flip, (¢) Random elastic deformation, (d) Random contrast normalization,
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Fig. 2. MultiResUNet architecture, figure adapted with permission from [21]. (a) Network architecture, (b) MultiRes block, (c) Res path.

2. Materials and methods
2.1. Dataset

The dataset used in this paper is the LOTUS Benchmark [32] pre-
pared as part of the IEEE VIP Cup 2018 Challenge [30]. The LO-
TUS dataset is a modified version of the NSCLC-Radiomics black-
dataset [31]. The dataset contains Computed Tomography (CT) scans of
300 lung cancer patients which are provided in DICOM format. The CT
scanners are from two different sources — Siemens and CMS Imaging
Inc. 3D volumes consisting of a varying number of slices are provided
for each patient. The 2D slices for the scans each have a resolution of
512 x 512. Annotations for the Gross Tumor Volume (GTV), Clinical
Target Volume (CTV), and Planning Tumor Volume (PTV) provided by
an expert radiologist are available. The LOTUS benchmark involves the
segmentation of the GTV. For training and evaluation, the dataset is
divided into two sets identical to the approach of [33-35]. The training
and testing sets contain 260 and 40 scans respectively. 10% of the
training data is kept as a validation set. A detailed summary of the
dataset is presented in Table 1.

2.2. Data preprocessing

The dataset is provided in DICOM format. The PyDicom [37] library
was utilized to read the DICOM scans as well as the annotations
for the lung tumor volumes. However, there are discrepancies in the
Hounsfield Unit (HU) values of the scans associated with different
manufacturers. Scans from CMS Imaging Inc. have HU values from

Table 1
Dataset statistics for the LOTUS benchmark [32].
Dataset Patients CT scanner Number of slices
CMS Siemens Tumor Non-
imaging Inc. tumor
Train 260 60 200 4296 26951
(13.7%) (86.3%)
Test 40 34 6 848 3610
(18.9%) (81.1%)

—1024 to 3071 whereas scans from Siemens have HU values between 0
and 4095. The HU values were adjusted to account for this discrepancy
and scaled between 0 and 1. The slices are then resized using bilinear
interpolation to a resolution of 256 x 256 to reduce the GPU memory
requirements while training the deep neural networks.

As we can see from Table 1, a large portion of the slices does not
contain any tumors. To enable the 2D segmentation networks to better
learn the features associated with tumors, only the slices which contain
tumors are taken from the 3D volume to train the 2D segmentation
networks. While training the 3D segmentation networks, stacks of eight
consecutive slices are taken to perform 3D volumetric segmentation.
Stacks that contain at-least one tumor-containing slice are considered
for training.

2.3. Data augmentation

Medical image analysis applications are heavily reliant on various
data augmentation techniques to address the problem of overfitting due
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Fig. 3. Recurrent-3D-DenseUNet architecture [34].

to limited training data. There are mainly two approaches for data
augmentation — transforming the data beforehand and storing it in
memory, or using generators to transform data on-the-fly [38]. Wang
et al. [39,40] utilized the former approach and performed a multi-
way data augmentation on chest CT images. Their proposed approach
yielded impressive results for the task of Covid-19 diagnosis. However,
this approach might introduce difficulty when working with larger
3D datasets in our case, depending on how heavily the dataset size
has been inflated. Due to memory constraints, only a finite amount
of augmented data can be stored, introducing finite variability in the
training data. A separate preprocessing step will also add to the total
training time.

Data generators that randomly apply one or more augmentation
methods from a pool of predefined transformations on-the-fly do not
require a separate preprocessing step or massive memory requirements.
Since on-the-fly methods apply a random number of transformations
with random parameters for each sample, any sample is highly unlikely
to be similar to another and thus introduces very high variability in
the training data. Up until recently, these methods were considered
to slow down the training process due to computational overhead.
However, modern computers with parallel computing are capable of
handling data augmentation on-the-fly. For example, Isensee et al. [41]
utilized an on-the-fly data augmentation scheme which has shown
excellent segmentation performance in a wide range of biomedical
segmentation tasks. Our proposed data augmentation method intro-
duces additional transformations and randomly performs one or more
of the following transformations on the fly — horizontal flips, random
rotations, random elastic deformations, random noise addition, random
contrast normalization, blurring, etc. Fig. 1 illustrates different types of
augmentations on a training sample.

2.4. Baseline model architectures

2.4.1. UNet

The UNet [19] network is a convolutional autoencoder architecture.
The original UNet network consists of four levels of contracting paths
(encoder) and four levels of expansive paths (decoder). Each step in the
contracting path consists of successive convolution operations followed
by max-pooling. For the expansive path, each step contains upsampling
convolution operations. The results are concatenated via skip connec-
tions from the contracting path, followed by operations similar to the
encoder blocks. Before the sigmoid activation at the final layer, there
is a final convolution operation to generate the segmentation mask.

2.4.2. MultiResUNet

The MultiResUNet [21] architecture is a modified version of the
UNet architecture. It replaces the convolutional blocks with the ‘Mul-
tiRes Block’ (Fig. 2b) which consists of multiple convolutional opera-
tions followed by concatenation and a shortcut connection. The skip

connections of the UNet network are replaced with the ‘Res Path’
(Fig. 2c) which contains multiple convolutions and shortcut connec-
tions to promote residual learning. Fig. 2a shows a brief overview of
the MultiResUNet architecture.

2.4.3. Recurrent-3D-DenseUNet

The Recurrent-3D-DenseUNet [34] network follows the autoencoder
architecture inspired by UNet. This is a 3D segmentation network that
can perform segmentation on 3D volumes of stacked 2D scans. The
encoder and decoder blocks contain several 3D-convolutional layers
that are densely connected. However, instead of 3D pooling, 2D max-
pooling is performed. The decoder block also performs 2D upsampling
in place of 3D upsampling, which is followed by the 3D Dense Convolu-
tions. The network makes use of a recurrent block consisting of several
ConvLSTM layers to make use of the inter-slice continuity. The network
architecture is illustrated in Fig. 3.

2.5. Proposed methodology

2.5.1. 2D autoencoders

Fig. 4 illustrates the basic structure of a 2D autoencoder architecture
with three levels of contracting and expanding paths. Both paths follow
successive 2D convolutions followed by either a downsampling or
upsampling operation. Let, x be the 2D input image and x,, x5, x3, b
be the corresponding outputs at different levels of the encoder. The
encoder blocks are defined as E,, E,, E;, B and the Decoder blocks
are defined by D,, D,, D;. P denotes the pooling operation, and
U,, U,, U; define the up-sampling convolution operations. O denotes
the 1 x 1 convolution of the final layer. The intermediate outputs
at different levels of the encoder are defined by y,, y,, y3, and y
denotes the final output (resulting segmentation mask). The following
equations express the architecture of an autoencoder network with
three contracting/expanding paths:

x; = E{(x)
= E,(P
X2 2(P(x1)) a
x3 = E3(P(x,))
b= B(P(x3))
y3 = D3(x3 + Uy (b))
=D U.
%) (X3 + Uy(33)) @

1 = Di(x; +Us(»))
y=0(@y)
Here, the encoders (E,, E,, E;, B) perform successive convolutions
on a 2D input CT Scan slice. As we know, convolutional layers detect

local conjunctions of features from previous layers while the pooling
layers merge semantically similar features, and higher-level features are
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Fig. 4. Basic architecture of a 2D autoencoder.

obtained by composing lower-level ones [15]. Based on this notion, if
the 2D segmentation networks can successfully segment lung tumors
from 2-Dimensional CT scan slices, we can deduce that the first half of
the network (x - x; — x, — x3 — b) has learned to extract successively
higher levels of semantic features which are used by the second half
of the network to gradually perform segmentation at different levels
and generate the final segmentation map y at the same level of the
input scan x. The primary intuition behind our proposed approach is
that we could be able to utilize the learned feature representations
(x1,x,,x3, b) at different levels of the 2D autoencoder networks to aid
the 3D segmentation process.

2.5.2. 3D autoencoders

A significant limitation of 2D segmentation networks for the task of
volumetric segmentation is the inability to consider inter-slice relations
and volumetric features. A simple approach to address this issue is to
extend the 2D autoencoder architectures to their 3D counterparts. This
can be achieved like [24] by replacing the 2D convolution, 2D pooling,
and 2D upsampling operations with their 3D counterparts. 3D opera-
tions are more resource-intensive compared to their 2D counterparts
and segmenting the entire 3D volume at once is computationally ex-
pensive. Patch-wise segmentation networks [26] have been introduced
to solve this issue but not without limitations as discussed earlier.
3D convolution operations require more parameters compared to 2D
convolutions. As a result, the 3D versions of existing 2D segmenta-
tion networks quickly become computationally complex when working
with large 3D volumes. The resulting networks contain more hyper-
parameters which increase the probability of overfitting [42]. Deep
networks are heavily reliant on big data to avoid overfitting [38].
Therefore, more complex models will require more training data to
further combat overfitting. However, medical data being scarce makes
the task more difficult. Our proposed approach aims to solve this issue
by utilizing the spatial feature representations learned from the 2D seg-
mentation networks to better generalize an identical 3D segmentation
network.

Certain modifications are required to allow the integration of spatial
features learned from the 2D networks with the 3D architectures. If
the 3D segmentation networks employ 3D max-pooling operations, it
halves the spatial resolution along all axes at each encoder level. The
2D feature representations are incompatible with a network employing
3D max-pooling since the 2D networks perform 2D max-pooling along
the axial plane only, which will lead to a mismatch in dimension along
the longitudinal axis. In order to make the 3D networks compatible
with the spatial features (i.e. have the same spatial resolution), it is

essential that a similar maxpooling strategy is applied in both networks.
Also, lung tumor thickness along the longitudinal axis is often small.
Maxpooling along that axis may lead to the loss of valuable information
relevant to the segmentation of the tumor volume. Therefore, we
choose to use 2D max-pooling along the axial plane of the 3D scans
instead of 3D max-pooling. This allows for the preservation of more
information along the longitudinal plane and at the same time makes
the network compatible with the 2D feature representations.

The decoders in the autoencoder essentially have the opposite re-
sponsibility of the encoders, which is to gradually upscale the outputs
from different levels to generate the final segmentation mask. Corre-
sponding to the 2D max-pooling operations in the encoder, 2D up-
sampling convolution operations are performed in the decoder instead
of 3D max-pooling. Before implementing our proposed spatial feature
fusion networks, we modified the baseline 2D networks (2D-UNet, 2D-
MultiResUNet, etc.) to their 3D versions with the above changes to
accommodate 2D feature fusion.

Say, a CT scan is a set of n consecutive slices and s; is a single 2D
slice along the axial plane, where i € [0,n]. We consider stacks of d
scans for segmentation, where d is the depth of the scans along the
longitudinal axis. Here, the input to the 3D network is:

3

Similarly, if the 2D segmentation masks are denoted by m;, then the
target data for the 3D network can be expressed as:

X = [8;, 841> -+ ,S(Hd)],WheI‘e ie[0,n—d]

4

y=I[m,mgy, ... ,m(Hd)],Where ie[0,n—d]

2.5.3. Spatial feature extraction

As discussed in Section 2.5.1, the 2D segmentation networks can
be used to extract relevant spatial feature maps at different stages of
the network. We can define a spatial feature extraction network @,
which takes the input 2D slice s; and returns the relevant feature maps
Si1»Si2s 83+ ... €tc. If instead of a single slice s;, we pass a stack of 2D
scans (x) to the feature extraction network, we can get a stack of the
features at different levels of the network ¢, ¢,, ¢5. Here,

@1, Py, 3 = D(x), where x = [, 5,41, ..., Si1q] (5)
bj = [51js Sty o s Siwar s

where j is the level of the feature map

©

In the inset of Fig. 5, we can see the architecture of the 2D feature
extraction network which is a cut-down version of the 2D segmentation
network (Fig. 4) only containing the encoder blocks.
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Table 2
Summary of proposed models based on spatial feature fusion.

Proposed model Based on Modifications 2D feature extraction network
SFF-3D-UNet 2D-UNet 3D convolutions in place of 2D convolutions. 2D max-pooling and 2D 2D-UNet with 3 levels pretrained on
upsampling convolutions used for scaling up/down. Spatial feature fusion 2D data
at encoders.
SFF-3D- 2D-MultiResUNet Similar modifications to SFF-3D-UNet (2D pooling/upsampling). Modified 2D-MultiResUNet with 3 levels
MultiResUNet 3D ‘MultiRes’ for encoder/decoder blocks and 3D ‘ResPath’ instead of skip pretrained on 2D data

connections. Spatial feature fusion at encoders.

SFF-Recurrent-3D-
DenseUNet

Recurrent-3D-
DenseUNet

No major modifications required. Spatial feature fusion added at encoders.

2D-DenseUNet (proposed) with 3
levels pretrained on 2D data

2.5.4. Proposed spatial feature fusion networks

The proposed approach for spatial feature fusion consists of a 3D
autoencoder network, which also makes use of the 2D feature maps
produced in the previous step. The input to the network is denoted
x, where x = [s;,5G41)s > Sira))s and ¢y, ¢y, @5 are the spatial fea-
ture maps at different levels of the network produced by the feature
extraction network @. The proposed network concatenates the spatial
features with the corresponding features at different levels of the
3D network (x;,x,,x3). Let, the 3D encoder blocks be defined as
E3p,» Esp,, E3p,, Bsp and the 3D decoder blocks be Dsp , D3p,, D3p,.
P,p defines the 2D max-pooling operation and Usp,, U,p,, U,p, deter-
mine the 2D upsampling convolution operations. If Os, is the final 1
x 1 x 1 3D convolutional layer, then the network is mathematically
expressed as follows:

x; = E;3p, (x)

Xy = E3p, (Pyp(x)) + 1)
x3 = E3p, (Pyp(xy) + )
b = B3p(Pyp(x3) + ¢3)
¥3 = D3p,(x3 + Usp, (b))
¥2 = D3p,(x2 + Usp, (33))

7

¥1 = D3p,(x1 + Upp,(32)
y=03p(y)

Fig. 5 shows a brief overview of the proposed spatial feature fusion
networks. Our proposed method has been used to create three archi-
tectures — the SFF-3D-UNet architecture, the SFF-3D-MultiResUNet ar-
chitecture, and the SFF-Recurrent-3D-DenseUNet Architecture. A brief
summary of the proposed models based on spatial feature fusion is
shown in Table 2.

Since there is no compatible 2D version of the Recurrent-3D-
DenseUNet network, we had to design a 2D counterpart for this
network from scratch to use as a feature extraction network. A 2D-UNet
network was modified to contain dense connections in the encoder
and decoder blocks. ConvLSTM blocks are not used since they are not
relevant for 2D images. A densely connected encoder block is used
as the bottleneck instead. We call this the 2D-DenseUNet network.
This network is used to extract the relevant features for use in the
SFF-Recurrent-3D-DenseUNet architecture.

2.6. Training setup

All deep learning models are built and trained using the Tensor-
flow [43] framework. The models are trained on a cloud server with
an Intel Xeon CPU, 12 Gigabytes of RAM, and an Nvidia Tesla V100
GPU. The Adam optimizer was used to train the final models since it
outperformed the stochastic gradient descent optimizer for training. We
used binary cross-entropy as the loss function since it has outperformed
other loss functions for this dataset [34]. Training data has to be
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carefully selected for training both the 2D and 3D networks since the
class imbalance of the training data might heavily skew the training
process.

The baseline 2D networks must be trained first before we can build
the proposed networks. Following the preprocessing steps mentioned in
Section 2.2, normalized 2D CT scan slices and corresponding binarized
segmentation masks are generated. Since the 2D networks will mainly
be utilized to generate tumor features, only tumor-containing slices
are taken for training the 2D segmentation network. The 2D feature
extractor of a spatial feature fusion network is obtained from the
baseline 2D segmentation network for the corresponding architecture.
For example, a 2D-UNet is trained, and the contracting path of the
network is used as a feature extractor for the SFF-3D-UNet architecture.
Similarly, the 2D-MultiResUNet and the 2D-DenseUNet architectures
are utilized as feature extractors for the SFF-3D-MultiResUNet and the
SFF-Recurrent-3D-DenseUNet architecture. The 2D feature extraction
network, which is part of the spatial feature fusion network now is
frozen (set to not-trainable) while training to preserve 2D features and
avoid issues with inconsistent gradients. To reduce model complexity
and computational expense while preserving spatial resolution, stacks
of eight consecutive 3D CT scans are taken instead of the whole 3D CT
volume. We only take slices that contain at least one tumor to train the
3D networks to reduce a bias towards false negatives.

2.7. Segmentation mask generation

The 3D segmentation networks are trained to produce results on
stacks of eight consecutive slices. To produce the segmentation mask on
the whole CT image, overlapping stacks of CT slices are passed to the
segmentation networks. The result is a set of overlapping segmentation
masks. The overlapping masks are averaged out which serves as a step
to remove noise in the output. The predicted segmentation masks are
outputs of a sigmoid function which give a probability that a pixel
contains a tumor or not between 0 and 1. A binary thresholding oper-
ation is usually performed to produce binary segmentation masks from
the predictions. The thresholding operation also removes unwanted
noise and reduces false positives. We also experiment with a novel
two-step thresholding approach to improve detection and segmentation
performance. This approach involves taking a higher threshold value
to first filter out false-positive slices from the scan. Later, a lower
threshold is applied to the remaining 2D slices to generate the final
tumor volume. The rationale behind this two-step approach is discussed
in detail in Section 3.3.2.

3. Results and discussion
3.1. Evaluation metrics

The dice coefficient has been used as the main metric for evaluating
the segmentation performance between the generated masks and the
ground truth for all test images. The dice coefficient quantifies the
relative overlap of two sets between 0O and 1, where O represents
no overlap and 1 represents perfect overlap. The dice coefficient is
calculated using the following formula:

_2%|XnY]

S IXI+Y]

Here X and Y represent the two sets corresponding to the binary
segmentation masks of the ground truth and the prediction respectively.

Similar to [34,35], the following conventions are used to compute the
dice coefficient for true-negative and false-positive cases:

(8)

1. For True-Negative cases (Model successfully detects that no
tumor is present), the dice coefficient is 1.

2. For False-Positive cases (Model mistakenly classifies tumor), the
dice coefficient is 0.
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Table 3
Dice coefficients (validation set) for different optimizers and learning rates for the 2D
models.

Model Optimizer Learning rate Dice coefficient (Validation)
2D-UNet SGD 0.1 0.5327
2D-UNet SGD 0.01 0.4799
2D-UNet Adam 0.01 0.5327
2D-UNet Adam 0.001 0.5950
2D-MultiResUNet Adam 0.01 0.6066
2D-MultiResUNet Adam 0.001 0.5436
2D-DenseUNet Adam 0.01 0.6088
2D-DenseUNet Adam 0.001 0.5926
Table 4
Dice coefficients (test set) for the 2D models.
Model Optimizer  Learning rate ~ Threshold  Dice coefficient
(Test set)
2D-UNet Adam 0.001 0.5 0.5886
0.7 0.6510
2D- Adam 0.01 0.5 0.6706
MultiResUNet 0.7 0.7158
2D- Adam 0.01 0.5 0.6098
DenseUNet 0.7 0.6911

We also report the 3D dice score for the 3D segmentation networks
which is the 3D dice coefficient of the predicted tumor volumes with
respect to the tumor volumes present in the ground truth. To evaluate
the detection performance of our proposed networks, we also report the
F1-score and Matthew’s Correlation Coefficient (MCC). If the number of
True-Positive, False-Positive, True-Negative, and False-Negative cases
predicted by our networks are represented by TP, FP, TN, and FN
respectively, then the F1-Score and MCC can be calculated as follows:

2% TP

Fl, =——="--
seore = 2%« TP+ FP+FN

)]

(TPXTN)—(FPXFN)

MCC =
\/(TP+FP)(TP+FN)(TN+FP)(TN + FN)

(10

3.2. Baseline 2D networks

3.2.1. Selection of training parameters

The baseline 2D networks need to be trained on 2D slices containing
tumors from the dataset before we can utilize them for training the
proposed 3D segmentation networks. We experiment with different
optimizers and learning rates to fine-tune our baseline 2D networks
— 2D-UNet, 2D-MultiResUNet, and our proposed 2D-DenseUNet ar-
chitecture. Table 3 shows the different dice coefficients (2D) on the
validation set resulting from different optimizers and learning rates. For
the 2D-UNet architecture, we found that the Adam optimizer performed
significantly better than Stochastic Gradient Descent (SGD). Therefore,
Adam is chosen as the optimizer of choice for further experimentation.
We experimented with different learning rates for the architectures
and settled on a learning rate of 0.001 for 2D-UNet, and 0.01 for
2D-MultiResUNet and 2D-DenseUNet architectures.

3.2.2. Model performance

After training the baseline 2D networks with their optimal pa-
rameters, the trained models are evaluated against the test set to
measure their performance in terms of 2D dice. Table 4 shows the
dice coefficients for all the 2D models at different thresholds. The 2D-
MultiResUNet model shows a better score in terms of the 2D dice
coefficient among the different models. From the results, we can con-
clude that all the models can segment the 2D slices with a respectable
degree of accuracy and are ready to be used in the next step for the
formation of the proposed models.
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Table 5
3D dice coefficients (validation set) for different learning rates for the 3D models.

Model Optimizer  Learning rate 3D dice (Validation)
3D-UNet Adam 0.001 0.5942
3D-UNet Adam 0.0001 0.5955
SFF-3D-UNet Adam 0.001 0.6550
SFF-3D-UNet Adam 0.0001 0.6568
3D-MultiResUNet Adam 0.001 0.5615
SFF-3D-MultiResUNet Adam 0.001 0.6175
Recurrent-3D-DenseUNet Adam 0.0001 0.5979
SFF-Recurrent-3D-DenseUNet ~ Adam 0.001 0.6458

3.3. 3D networks

3.3.1. Selection of training parameters

The Adam optimizer is used to train all the 3D models. We exper-
imented with different learning rates for training the models. Table 5
shows the 3D dice coefficients on the validation set for different model
configurations. The 3D models are larger in terms of the number
of parameters, and when the learning rate is lowered compared to
the learning rate of their corresponding 2D networks, the networks
usually show better performance. From our experimentation, we can
see that the 3D-UNet and SFF-3D-UNet models show marginally better
performance at a learning rate of 0.0001. The 3D-MultiResUNet and
SFF-3D-MultiResUNet models did not converge for a learning rate of
0.0001 and therefore the learning rate of 0.001 was an ideal choice.
We chose a learning rate of 0.0001 for the Recurrent-3D-DenseUNet
according to [34]. The SFF-Recurrent-3D-DenseUNet model showed
better performance at a learning rate of 0.001.

3.3.2. Model performance

The 3D models such as 3D-UNet, 3D-MultiResUNet, and Recurrent-
3D-DenseUNet, along with their counterparts with spatial feature fusion
are trained using the Adam optimizer and the optimal learning rates
found in the previous section. The best models are selected based on
their performance on the validation set. The detection and segmenta-
tion performance of the best models are evaluated on the separate test
set which contains data from 40 test subjects. We have experimented
with different thresholding techniques while evaluating the models’
performance.

The generated prediction masks of the segmentation networks are
evaluated against the ground truth to benchmark their segmentation
performance. The segmentation performance is evaluated mainly in
terms of the mean dice coefficient (2D). To get a better idea of the
volumetric segmentation performance of the segmentation networks,
we also report the 3D dice coefficient which has not been reported
before on this dataset. Before calculating the dice coefficients, the
predicted segmentation masks are first binarized with binary threshold-
ing techniques. The models are evaluated at different threshold values
between 0.4 and 0.9 on the validation set. The threshold value of 0.7
provided the best 2D dice coefficient whereas the threshold value of 0.5
provided the best 3D dice coefficient on the validation set. The models
are then evaluated for these threshold values on the test set and the
results are reported in Table 6.

We can notice a common trend in the segmentation (Table 6)
and detection (Table 7) performance for different thresholds. A lower
threshold (0.5) generates a more accurate delineation of the 3D tumor
volumes at the cost of more false positives and a lower overall 2D dice
score. A higher threshold (0.7) gives fewer false positives and improves
the overall dice, but the performance of 3D delineation falls signifi-
cantly. To combat the issue and balance the trade-offs between false
positives and segmentation accuracy, we have introduced a two-step
thresholding approach discussed in Section 2.7. This method improves
the overall dice by reducing the false positives and improving the
delineation of the 3D volume at the same time. The segmentation
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performance of the different models with and without two-step thresh-
olding is also reported in Table 6. We can see from the results that the
two-step thresholding approach improves the 2D dice score by 1.30%
on average.

It can also be concluded from the results that each of the proposed
SFF models always performs better compared to their baseline 3D
models in terms of both 2D and 3D dice coefficients. The 3D-UNet,
the 3D-MultiResUNet, and the Recurrent-3D-DenseUNet - all show an
improvement in both spatial and volumetric segmentation performance
when spatial feature fusion is introduced. According to the mean 2D
dice coefficient, the models respectively show a 1.61%, 2.25%, and
2.42% increase in performance when our proposed modifications are
introduced. In terms of the 3D dice coefficient, the proposed models
respectively show a performance improvement of 7.58%, 2.32%, and
4.28%. The best-performing model in terms of both 2D and 3D dice
is our proposed SFF-3D-MultiResUNet architecture which achieves an
impressive mean 2D dice score of 0.8669 and a mean 3D dice score of
0.5938. This is the best 2D dice score reported on the dataset compared
to all previous works [33-35]. At the same time, this architecture is
most efficient in terms of computational complexity (Table 9).

To detect the presence of a tumor, we use the predicted seg-
mentation mask after thresholding. The detection is considered on
a slice-by-slice basis, where if any pixel of the segmentation mask
corresponding to the slice is greater than the threshold, we consider
that the slice contains a tumor. Otherwise, the slice is classified as non-
tumor. We experiment with different thresholds (0.5, 0.7) to evaluate
the detection performance. Table 7 reports the various detection met-
rics like the number of true positives (TP), false positives (FP), true
negatives (TN), false negatives (FN), Fl-score, and MCC (Matthew’s
Correlation Coefficient) for the different 3D models. From the detection
performance of the different models, we can see that there is a tradeoff
between the number of true positives and false positives with the
change in threshold values. For a threshold value of 0.5, the models
perform better in terms of true positive values. However, this increases
the number of false positives, which reduces the overall detection and
segmentation performance (see Table 6). The threshold value of 0.7
seems to give an optimum detection performance and results in the
highest F1 and MCC scores. We can also see that the modified version
of each of the 3D models performs better in terms of both F1 score and
MCC. For threshold values of 0.7, the modified versions of the 3D-UNet,
3D-MultiResUNet, and Recurrent-3D-DenseUNet models with spatial
feature fusion respectively report 4.71%, 7.73%, and 6.95% improve-
ment in terms of the F1 score compared to their baseline. A similar
trend is visible for the MCC values as well. Here, the best performing
model in terms of detection is our proposed SFF-3D-MultiResUNet model
with an F1 score of 0.7194. The detection performance of the model is
significantly better compared to the results reported by other works
on the same dataset [34,35]. It is to note that our proposed two-step
thresholding approach gives detection scores similar to that with a
threshold of 0.7, therefore it is not separately shown in the table.

It is evident from the quantitative analysis that our proposed models
with spatial feature fusion perform significantly better in terms of
detection and segmentation compared to their baseline models. It is
worth mentioning that out of the 40 patients in the validation set, our
proposed best model is able to detect the presence of tumors in 38 of
them and provides a mean 2D dice coefficient greater than 0.80 for 33
out of 40 scans, which signifies a good overall segmentation score.

3.4. Computational overhead and training time

Naturally, 3D segmentation networks are computationally more
expensive compared to 2D segmentation networks. However, the use of
2D upsampling convolutions in the decoder instead of 3D upsampling
convolutions helps keep the computational costs tolerable. One might
argue that the introduction of the 2D feature extraction network might
add significant computational overhead while training. However, the
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Table 6
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Comparison of the dice coefficients (Test set) for different models at different thresholds.

Model Threshold: 0.5 Threshold: 0.7 Two-step threshold
2D dice 3D dice 2D dice 3D dice 2D dice 3D dice
3D-UNet 0.7874 0.5460 0.8056 0.5102 0.8144 0.5440
SFF-3D-UNet 0.7914 0.5886 0.8178 0.5504 0.8275 0.5853
3D-MultiResUNet 0.8304 0.5844 0.8365 0.5368 0.8478 0.5803
SFF-3D-MultiResUNet 0.8437 0.5992 0.8555 0.5506 0.8669 0.5938
Recurrent-3D-DenseUNet 0.7777 0.5715 0.7984 0.5147 0.8080 0.5634
SFF-Recurrent-3D-DenseUNet 0.7916 0.5971 0.8143 0.5386 0.8276 0.5874
Table 7
Detection performance (Test set) of the different 3D models at different thresholds.
Model Threshold TP FP TN FN F1 score McCC
3D-UNet 0.5 603 488 3416 245 0.6219 0.5264
0.7 549 367 3267 299 0.6224 0.5307
SFF-3D-UNet 0.5 639 520 3114 209 0.6367 0.5460
0.7 583 358 3276 265 0.6517 0.5664
3D-MultiResUNet 0.5 611 319 3315 237 0.6872 0.6111
0.7 546 241 3393 302 0.6678 0.5945
SFF-3D- MultiResUNet 0.5 633 283 3351 215 0.7176 0.6493
0.7 577 179 3455 271 0.7194 0.6601
Recurrent-3D-DenseUNet 0.5 637 539 3095 211 0.6294 0.5367
0.7 566 403 3231 282 0.6230 0.5295
SFF-Recurrent-3D-DenseUNet 0.5 664 526 3108 184 0.6516 0.5661
0.7 606 365 3269 242 0.6663 0.5893
Table 8
Comparison of different 3D models in terms of computational overhead.
Model Number of Trainable Epochs to Training time per Testing time  Dice score
parameters parameters converge epoch (min.) (min.) (2D)
3D-UNet 5433 x 10° 5430 x 100 29 13:43 4:02 0.8144
SFF-3D-UNet 6.882 x 106 6.591 x 100 20 14:18 4:10 0.8275
3D-MultiResUNet 4.297 x 10° 4.285 x 10° 30 22:18 6:27 0.8478
SFF-3D-MultiResUNet 5.135 x 10° 4932 x 10° 17 22:48 7:02 0.8669
Recurrent-3D-DenseUNet 19.220 x 10° 19.216 x 10° 29 29:04 8:01 0.8080
SFF-Recurrent-3D-DenseUNet 25.012 x 10° 24.551 x 10° 28 32:55 9:47 0.8276

baseline 2D networks that we selected for feature extraction are scaled-
down and light-weight and we make efficient use of them by using
only the first three encoder levels to generate features. Additionally,
these layers are frozen (not trainable) at the time of training and do
not affect the backward pass of the training step. Table 8 shows a brief
comparison of the number of parameters between the various models.
We can see that the SFF versions of the 3D-UNet and 3D-MultiResUNet
architectures do not add significant computational complexity (number
of parameters) compared to the baseline architectures. The same is
reflected in the reported training times and testing times where the
modified networks show only a marginal increase. The training and
testing times are reported for a batch size of 2 with an Nvidia Tesla
V100 GPU. It is to note that the Recurrent-3D-DenseUNet architecture,
which we have used as-is from its original implementation [34] and
its modified counterpart both are inherently computationally expensive
due to the dense and recurrent connections present in the network.

The convergence of training with our proposed models is also in
general faster compared to the baseline models. Where the baseline
models usually take around 30 iterations to converge, our proposed
SFF-3D-UNet model converges after 20 iterations of training. Con-
vergence is even faster for the best performing SFF-3D-MultiResUNet
model. Although an additional step in training is required to train the
baseline 2D network for feature extraction, the overall training time is
cut down by a significant margin for the proposed networks using spa-
tial feature fusion. However, the SFF-Recurrent-3D-DenseUNet model
takes longer to converge compared to the other models. This might be
due to the unusually large number of parameters.

3.5. Comparison with other models

Table 9 reports a comparative analysis of the different models
reported in the literature. Our proposed architectures with spatial

feature fusion show excellent performance in terms of mean dice co-
efficient (2D). The Deeply Supervised MultiResUNet [35] with Test
Time Augmentation (50 rotations) is the only model that performs bet-
ter than our proposed SFF-3D-UNet and SFF-Recurrent-3D-DenseUNet
models. Considering we have not implemented deep supervision or TTA
with our models, the performance of these models in terms of dice
coefficient is respectable. However, our best performing model, the
SFF-3D-MultiResUNet shows significantly better performance both in
terms of segmentation and detection compared to all the other models.
This model reports the best 2D dice coefficient (0.8669) on the dataset
which is a significant improvement over the previous best model, the
Deeply Supervised MultiResUNet with TTA (dice coefficient: 0.8472).
In terms of detection performance, our best model reports the best
F1-Score (0.7194) and MCC (0.6601) as well. The Deeply Supervised
MultiResUNet reports 123 False positives which is less than our model
(179). However, our model performs much better in terms of true pos-
itives (577 compared to their 505) which is a more important measure
when it comes to the diagnosis and detection of lung cancer. It is also
worth mentioning that our proposed models can achieve good detection
scores without sacrificing volumetric segmentation performance.
From Table 9, we can see that our best performing model, the
SFF-3D-MultiResUNet model, is also the most efficient in terms of
model complexity (number of parameters) among the models which
have a competitive mean dice coefficient. This model uses significantly
fewer parameters while providing the best performance in terms of
both segmentation and detection. The Recurrent-3D-DenseUNet and its
modified version are both computationally expensive. However, the
introduction of spatial feature fusion does significantly boost the per-
formance of the model. Our proposed SFF-3D-UNet model can achieve
similar dice scores without any major architectural overhaul at a much
lower computational complexity. The next best-performing model in
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3D-UNet (DC: 0.76) 3D-MultiResUNet (DC: 0.89) Recurrent-3D-DenseUNet (DC: 0.70)

SFF-3D-UNET (DC: 0.86) SFF-3D-MultiResUNet (DC: 0.92) SFF-Recurrent-3D-DenseUNet (DC: 0.90)

Fig. 6. Illustration of the ground truth (red) and predicted tumor boundaries (blue) for various models. Proposed models show significantly better segmentation performance (DC:
Dice Coefficient).

3D-UNet (DC: 0.80) 3D-MultiResUNet (DC: 0.86) Recurrent-3D-DenseUNet (DC: 0.57)

SFF-3D-UNet (DC: 0.92) SFF-3D-MultiResUNet (DC: 0.92) SFF-Recurrent-3D-DenseUNet (DC: 0.90)

Fig. 7. Illustration of the ground-truth (red) and predicted tumor boundaries (blue) for various models. Our proposed models generate more accurate segmentation masks relative
to the baseline models (DC: Dice Coefficient).

the literature, the Deeply Supervised MultiResUNet architecture with CT slices at once. Also, the authors have utilized TTA with 50 rota-

TTA has a computational complexity that is higher than both the SFF- tions for evaluating the Deeply Supervised MultiResUNet model, which
3D-UNet and the SFF-3D-MultiResUNet architectures. It is also worth increases the inference time of their model 50-fold. Our proposed SFF-
mentioning that this model performs 2D segmentation whereas our 3D-MultiResUNet model achieves better performance without any such
proposed models perform volumetric segmentation of eight consecutive alterations at a significantly lower computational cost.
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3D-UNet (DC: 0.90)

SFF-3D-UNet (DC: 0.95)

3D-MultiResUNet (DC: 0.92)

SFF-3D-MultiResUNet (DC: 0.95)

Recurrent-3D-DenseUNet (DC: 0.90)

SFF-Recurrent-3D-DenseUNet (DC: 0.92)

Fig. 8. Illustration of the ground-truth (red) and predicted tumor boundaries (blue) for various models. The proposed models generate finer and more accurate segmentation

boundaries (DC: Dice Coefficient).

Table 9
Comparison of mean dice coefficient (2D) with other models.
Model Mean dice Number of
coefficient (2D) parameters
2D-LungNet [33] 0.6267 1.30 x 10°
3D-LungNet [33] 0.6577 403 x 10°
3D-DenseNet [34] 0.6884 14 x 10°
Recurrent-3D-DenseUNet [34] 0.7228 19.22 x 10°
Deeply-Supervised-MultiResUNet [35] 0.8472 7.28 x 10°
SFF-3D-UNet 0.8275 6.59 x 10°
SFF-3D-MultiResUNet 0.8669 5.13 x 10°
SFF-Recurrent-3D-DenseUNet 0.8276 2501 x 10°

3.6. Visual analysis

From our detailed quantitative analysis in Section 3.3.2, it is evident
that our proposed networks are able to perform better in terms of
both segmentation and detection. In all cases, our proposed models
have shown better performance compared to their baseline architec-
tures. This is also evident from a visual analysis of the generated
segmentation boundaries on various 2D CT slices from the dataset. A
few examples of the generated segmentation boundaries of the various
3D and SFF models are illustrated in Figs. 6-8. We can see from
Fig. 6 that the segmentation performance is significantly better for the
models modified with our proposed spatial feature fusion. Here, our
proposed models show a relative improvement in terms of classifying
the tumor and its neighboring regions. A similar trend can be seen in
Fig. 7 where our proposed models with spatial feature fusion provide a
more accurate segmentation mask. In cases where the tumor volume is
clearly visible and easy to delineate, the baseline models do a good
job. However, our proposed models are able to generate finer and
more accurate segmentation boundaries in such cases as illustrated in
Fig. 8. Our proposed best model SFF-3D-MultiResUNet shows impressive
segmentation performance in all of the cases.
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3.7. Limitations and future work

Although our proposed models perform well in most cases, there are
some cases where our segmentation networks fail to perform proper
segmentation of the tumor volume. Some of these cases for the 3D-
MultiResUNet and the SFF-3D-MultiResUNet models are illustrated
in Fig. 9. The models sometimes falsely identify lung nodules and
tumor-like masses present in the lung as tumors (Fig. 9a, b). The
models also occasionally fails to accurately detect tumor regions with
erratic boundaries (Fig. 9b, c¢) or when the tumor region is very small
(Fig. 9d). However, it is evident from a visual analysis of the results
that the proposed model based on spatial feature fusion shows better
performance compared to the baseline model even during these edge
cases. Our networks might be able to better perform on such edge
cases if exposed to a more diverse and larger training set. Publicly
available biomedical segmentation data is a scarce resource, and our
training sample is sufficiently small compared to the complexity of the
segmentation task. Extensive collection and careful curation of more
training samples might help our models learn from manifold examples
and generalize better.

The main goal of this research is to address the issues with 3D
convolutional neural networks for biomedical image segmentation and
provide an approach that can make efficient use of both the spatial
and volumetric features present in biomedical images. Thereby, this
work has not focused on the modification of any architectural building
blocks of UNet and other autoencoder segmentation networks. Instead,
we have taken existing architectures like the UNet, MultiResUNet,
and Recurrent-3D-DenseUNet and applied spatial feature fusion to
establish the effectiveness of our proposed methodology. A limitation
to this approach, as also evident in our quantitative analysis is that
the performance of our proposed models is somewhat limited by the
performance of their underlying architecture. For example, the perfor-
mance of the MultiResUNet model is proven to be better than UNet
in terms of segmentation [21]. This similar trend is translated over
to the performance of our proposed models as well with the SFF-3D-
MultiResUNet outperforming the SFF-3D-UNet. Therefore, it is logical
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Predictions from 3D-MultiResUNet (without Spatial Feature Fusion)

Fig. 9. Limitations of our segmentation networks.

to presume that any architectural improvements of UNet or any of the
segmentation networks of the autoencoder family can be translated
into better performance with the help of our proposed methodology.
Recent works on biomedical segmentation [35,44] have also utilized
techniques like deep supervision which involve the evaluation of the
loss at different levels of the network instead of only at the output.
Further architectural modifications and advanced training strategies
like deep supervision might open up room for improvement of our
proposed segmentation models.

The UNet architecture and its many variants have successfully
been utilized in many different volumetric biomedical image segmen-
tation tasks involving the brain, lungs, heart, breast, liver, prostate,
pancreas, etc. across various modalities like CT, MRI, Ultra Sound,
etc. [45]. Although our experimentation and research mainly focus on
lung tumor segmentation from CT images, the same approach might
be extended to other biomedical image segmentation domains as well
to improve volumetric segmentation performance. There is room for
further experimentation on how our proposed architectures perform
across biomedical images from different domains and modalities.

4. Conclusion

The accurate detection and segmentation of 3D biomedical images
is a challenging task. In this paper, we have proposed a novel ap-
proach for the volumetric segmentation of lung tumors from 3D CT
images. Our proposed method of spatial feature fusion enables existing
autoencoder-based segmentation models to make use of both spatial
(2D) features and volumetric information with minor architectural
modification while significantly improving the performance of all the
segmentation models. The proposed methodology has allowed us to
achieve excellent results at the cost of minimum computational over-
head, and the proposed SFF-3D-MultiResUNet network outperforms all
previous approaches to achieve outstanding segmentation performance
in terms of both 2D and 3D dice coefficient. Our proposed approach
is able to provide more accurate detection and delineation of the
tumor boundaries and we believe that it will be able to speed up the
diagnostic process of lung cancer by assisting medical professionals
and radiation oncologists. This might facilitate early detection of lung
cancer which has the potential for saving lives. We plan to continue
further research on this topic and explore different avenues to improve

Some edge cases where our predictions are imperfect.
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the overall pipeline and achieve better results. For example, we intend
to explore architectural modifications of our proposed networks along
with more advanced training strategies. We would also like to explore
the performance of our proposed methodology on different medical
imaging tasks.
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