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Abstract

Pretrained large language models (LLMs) are001
surprisingly effective at performing zero-shot002
tasks, including time-series forecasting. How-003
ever, understanding the mechanisms behind004
such capabilities remains highly challenging005
due to the complexity of the models. We study006
LLMs’ ability to extrapolate the behavior of dy-007
namical systems whose evolution is governed008
by principles of physical interest. Our results009
show that LLaMA 2, a language model trained010
primarily on texts, achieves accurate predic-011
tions of dynamical system time series without012
fine-tuning or prompt engineering. Moreover,013
the accuracy of the learned physical rules in-014
creases with the length of the input context015
window, revealing an in-context version of neu-016
ral scaling law. Along the way, we present017
a flexible and efficient algorithm for extract-018
ing probability density functions of multi-digit019
numbers directly from LLMs.020

1 Introduction021

Since the introduction of the transformer architec-022

ture (Vaswani et al., 2017), Large language models023

(LLMs) have shown a variety of unexpected emer-024

gent properties, such as program execution (Nye025

et al., 2021) and multi-step reasoning (Suzgun et al.,026

2022).027

Despite the empirical success of LLMs, how they028

compress vast amounts of information and imple-029

ment complex algorithms within their architecture030

is not readily discoverable. To this end, recent031

studies used representation probes to decipher how032

concepts and functions are encoded in the layers033

of trained neural networks (Akyürek et al., 2022;034

Gurnee and Tegmark, 2023; Marks and Tegmark,035

2023; Park et al., 2023; Hendel et al., 2023).036

Our work explores LLMs’ ability to model the037

world by proposing a new perspective and em-038

pirical approach. Inspired by the recent observa-039

tions that LLMs are capable of in-context time040

Figure 1: Evolution of the loss function for the predicted
next state by LLaMA-13b with respect to the number
of observed states in various physical systems. We em-
ploy the Bhattacharyya distance as a loss function for
stochastic systems (solid lines), and the squared devia-
tions from the mean (SDM) for deterministic systems
(dashed lines). Brownian motion and geometric Brown-
ian motion deviate significantly from power law scaling,
which can be explained by their lack of stationary distri-
butions (Appendix A.8).

series extrapolation without specific prompting or 041

fine-tuning (Gruver et al., 2023; Jin et al., 2023a), 042

we aim to quantify LLMs’ ability to extrapolate 043

stochastic dynamical systems. We find that, as the 044

number of observed time steps increases, an LLM’s 045

statistical prediction consistently converges to the 046

ground truth transition rules underlying the system; 047

leading to an empirical scaling law, as observed 048

in Figure 1. 049

Our main contributions are as follows: 050

• demonstrating LLMs’ zero-shot ability to model 051

the evolution of dynamical systems without in- 052

struction prompting; 053

• implementing a computationally efficient frame- 054

work called Hierarchy-PDF to extract statistical 055

information of a dynamical system learned by a 056

transformer-based LLM; 057

• discovering a scaling law between the accuracy in 058

the learned transition rules (compared to ground 059

truth) and the context window length. 060
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2 Background and related work061

In-context learning refers to LLM’s emergent062

ability to learn from examples included in the063

prompt (Brown et al., 2020). One example of064

in-context learning is zero-shot time series fore-065

casting (Gruver et al., 2023). This work aims to066

forecast empirical time series and introduces a tok-067

enization procedure to convert a sequence of float-068

ing point numbers into appropriate textual prompts069

for LLMs. This led to several subsequent studies070

on the application of LLMs for time series forecast-071

ing (Chen et al., 2023; Jin et al., 2023b,a; Dooley072

et al., 2023; Schoenegger and Park, 2023; Wang073

et al., 2023; Xu et al., 2023).074

Unlike these prior studies, our work does not075

focus on forecasting real-world time series, such076

as weather data or electricity demand, where the077

underlying model generating the sequence is un-078

available or undefined. Instead, we aim to extract079

the learned transition rules from the probability080

vector generated by the LLM and compare them081

against the ground truth rules (chaotic, stochastic,082

discrete, continuous, etc.) governing the input time083

series.084

3 Methodology085

Our methodology for testing LLMs’ ability to learn086

physical rules from in-context data consists of three087

steps:088

1. Sample a time series {xt}t≥0 from a given dy-089

namical system governed by Markovian transi-090

tion rules Pij .091

2. Prompt the LLM with this time series to extract092

the learned probability densities for subsequent093

digits P̃ij .094

3. Measure the discrepancy, between the ground095

truth Pij and learned P̃ij , using Bhattacharyya096

distance. 1097

3.1 Prompt generation098

Markov processes. Most of our testing data may099

be modeled as discrete-time Markov chains, where100

the probability distribution function (PDF) of the101

next state at time t+ 1 depends solely on the previ-102

ous state xt at time t:103

P (Xt+1|x1, . . . , xt) = P (Xt+1|xt).104

1Other loss functions may be appropriate depending on
whether the dynamical system is stochastic or deterministic,
see Appendix A.1

This models either discrete iterative systems 105

or continuous dynamical systems after time- 106

discretization. 107

Time series tokenization. An input time series 108

typically consists of (∼ 103) time steps, each rep- 109

resented as a real number. We first rescale each 110

number and represent it using n digits (typically, 111

n = 3). Each time series is rescaled to the inter- 112

val [1.50, 8.50] so that the number of digits never 113

changes throughout the series. We then follow the 114

scheme introduced in (Gruver et al., 2023) to seri- 115

alize the time series as strings and tokenize them. 116

3.2 Extraction of transition rules 117

Discrete state space. When the Markov process is 118

discrete and has a finite state space, each state can 119

be represented by a single token. We employ tokens 120

corresponding to the ten number strings: 0, . . . , 9. 121

We find that even the most sophisticated LLaMA 122

model (LLaMA-70b) can only learn up to 9 discrete 123

states. Therefore, we do not attempt to go beyond 9 124

distinct states by extending to non-number tokens 125

(see Appendix A.3.3 for more details). 126
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Figure 2: Extracting learned transition rules of systems
with discrete state space.

Figure 2 illustrates our framework for learning 127

discrete Markov chains with LLMs. First, we ran- 128

domly sample an n×n transition matrix (Pij). We 129

then generate a Markov chain according to Pij , to- 130

kenize the time series and pass to an LLM with 131

no additional “prompt engineering". The length of 132

the series is chosen such that the tokenized repre- 133

sentation does not exceed the length of the LLM’s 134

context window. We extract the LLM’s prediction 135

for the next state by performing a softmax oper- 136

ation on the output logits corresponding to the n 137

allowed states and discarding all other logits. 138

Continuous state space. Many stochastic pro- 139

cesses, such as the Brownian motion (Einstein, 140

1905; Perrin, 1909), are supported on continuous 141

state space. For these processes, we represent the 142

value of each state as a multi-digit number and sep- 143

arate each state using the comma symbol “,”. As 144
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observed in (Jin et al., 2023a), an LLM prediction145

of multi-digit values can be naturally interpreted146

as a hierarchical softmax distribution (Mnih and147

Hinton, 2008; Challu et al., 2023).148

Specifically, let u denote a multi-digit string rep-149

resenting the value of a state at a given time-step,150

then the LLM’s softmax prediction for the ith digit,151

ui, provides a histogram of ten bins of width 0.1i.152

Subsequently, the prediction of the (i+ 1)th digit153

goes down one level into the hierarchical tree by154

refining one of the bins into ten finer bins of width155

0.1i+1, and so on until the last digit is processed156

(see Figure 3). The top right of the figure shows157

an example of a time series serialized as an input158

string.159
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Figure 3: An example of hierarchical transition rules
extracted from LLaMa-13b. The PDF bins are color-
coded based on resolutions, which in this example are
more refined near the mode. The height of P̃ (xt+1|xt)
is shown in log scale.

Hierarchy-PDF algorithm. While a single pass160

through the LLM yields a discretized PDF repre-161

sented by bins of various widths, we can refine the162

PDF by querying each coarse bin. For example,163

to furnish a maximal resolution PDF of a 3-digit164

number, we need to query all 102 combinations165

of the first two digits of that number. Suppose a166

time series consists of S values (steps), each repre-167

sented as n digits. Obtaining a maximal resolution168

PDF for each value of the entire sequence requires169

10n−1S forward passes of the LLM. This daunt-170

ing process could be significantly simplified be-171

cause most of the 10n−1S inputs differ only in the172

last tokens, and thus one can recursively cache the173

key and value matrices associated with the shared174

tokens. The computation can be further reduced175

by refining only the high-probability bins near the176

mode, which dominate the loss functions, as shown177

in Figure 3. Algorithm 1 outlines the Hierarchy-178

PDF algorithm used to recursively refine the PDF179

associated with a multi-digit value in a time series180

(more details available in Appendix A).181

Algorithm 1 Hierarchy-PDF

Input: Unrefined PDF, current depth Dc, target
depth Dt

Procedure: RecursiveRefiner(PDF, Dc, Dt)
if Dc = Dt then

end the recursion
else if current branch is refined then

Alter the last digit to launch 9 recursive
branches
RecursiveRefiner(PDF, Dc, Dt)

else if current branch is unrefined then
refine PDF with new logits
if Dc + 1 < Dt then

Append the last digit to launch 10 recur-
sive branches
RecursiveRefiner(PDF, Dc + 1, Dt)

end if
end if

Output: Refined PDF

4 Experiments and Results 182

This section reports empirical in-context learning 183

results on two example systems: discrete Markov 184

chain and stochastic logistic map. We defer dis- 185

cussion of other systems, reported in Figure 1, to 186

Appendices A.3 and A.4. The experiments are 187

repeated ten times with trajectories initiated by dif- 188

ferent random seeds. 189

Model choice. All numerical experiments re- 190

ported in this section are performed using the open- 191

source LLaMA-13b model. While we observe that 192

larger language models, such as LLaMA-70b, may 193

achieve lower in-context loss on some dynamical 194

systems (Appendix A.3.3), they do not display qual- 195

itative differences and affect our conclusions. 196

4.1 Markov chains with discrete states 197

The transition rules of a time-independent Markov 198

chain with n states consist of a stochastic matrix 199

(Pij)1≤i,j≤n, defined as 200

Pij = P (Xt+1 = j|Xt = i), 1 ≤ i, j ≤ n. 201

Using the testing procedures elaborated in Sec- 202

tion 3.2, we generate 10 Markov chains, each from 203

a distinct and randomly generated transition matrix 204

of size n = 4. 205

The corresponding loss curves between the LLM 206

predictions and the ground truth are displayed in 207

Figure 4. The LLM formulates remarkably accu- 208

rate statistical predictions as more time steps are ob- 209
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Figure 4: Markov chain in-context loss curves decay
rapidly with respect to the input time series length. The
average loss is obtained from 10 individual loss curves.

served in context, even though the transition rules210

are synthesized completely at random. These con-211

clusions hold for larger transition matrices (n > 4)212

and more sophisticated LLMs, such as LLaMA-213

70b (see Appendix A.3.3).214

4.2 Noisy logistic map215

The logistic map, first proposed as a discrete-time216

model for population growth, is one of the sim-217

plest dynamical systems that manifest chaotic be-218

haviors (Strogatz, 2015). It is governed by the219

following iterative equation:220

xt+1 = f(xt) = rxt(1− xt), x0 ∈ (0, 1),221

where r ∈ [1, 4) is a parameter. The logistic map222

system becomes stochastic when one introduces223

small Gaussian perturbations of variance at each224

step, resulting in modified iterative equation:225

xt+1 = f(xt + ϵ),226

where ϵ i.i.d∼ N (0, σ2). In this case, the ground truth227

distribution of the next state, xt+1, conditioned on228

the current state xt is Gaussian with mean f(xt)229

and variance (σf ′(xt))
2:230

Xt+1|{Xt = xt} ∼ N
(
f(xt), (σf

′(xt))
2
)
. (1)231

The first derivative of f measures how sensitive the232

local dynamics are to external perturbations. This233

intuitively explains why the standard deviation of234

the conditional distribution should be proportional235

to f ′. We note that the approximation in Equa-236

tion (1) assumes a small perturbation compared to237

the second derivative, that is σ2 ≪ 1/f ′′(x).238

We again observe a power-law-like decay of the239

in-context loss function with respect to the length240

of the observed time series in Figure 5. To achieve241

low in-context loss, the LLM must learn to predict242

not only the mean, but also the variance of future243

steps. This is shown in Figure 6 and discussed244

further in Appendix A.9.245

Figure 5: Stochastic logistic map in-context loss curves.

Figure 6: Noisy logistic map standard deviation as a
function of the state value xt, learned by the LLM, along
with the ground truth.

5 Discussion and conclusion 246

Main observations. We showed that, with suf- 247

ficient context, LLMs can accurately recover the 248

probablistic transition rules underlying determinis- 249

tic, chaotic, and stochastic time series. 250

In-context neural scaling law. Neural scaling 251

laws (Kaplan et al., 2020) are power laws that char- 252

acterize how the loss of trained neural networks 253

vary with respect to parameters of the model, such 254

as model size, dataset size, and computational re- 255

sources. To the best of our knowledge, neural scal- 256

ing laws have so far only been observed in the train- 257

ing procedure, which updates the weights of neu- 258

ral networks using an explicit algorithm, such as 259

stochastic gradient descent and Adam (Kingma and 260

Ba, 2014). The loss curves observed in the different 261

numerical experiments (see Figures 1 and 18) re- 262

veal an additional in-context scaling law for LLMs 263

zero-shot learning of dynamical systems. Further 264

analysis of these scaling laws are resented in Ap- 265

pendix A.6. 266

Future directions. The in-context neural scal- 267

ing law hints at a learning algorithm that LLMs 268

implicitly implement during inference, such as gra- 269

dient descent (Von Oswald et al., 2023). Charac- 270

terizing such an algorithm is an open question of 271

broad interest (Shen et al., 2023). Another excit- 272

ing future direction is to study the generalization 273

of the observed in-context neural scaling laws for 274

other LLMs, such as GPT4 (OpenAI, 2023), and 275

the newly proposed state space models (Gu and 276

Dao, 2023). 277
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Limitations278

Data Leakage. Although the accurate predictions279

made by LLMs of the next time step value are280

highly unlikely to be due to memorization, it is es-281

sential to address this possibility thoroughly. Given282

the vast number of potential sequences even with283

a thousand numerical values encoded to three dig-284

its (resulting in 103000 instance), this far exceeds285

the approximate 1012tokens in the training cor-286

pus (Touvron et al., 2023). Future work should287

ensure rigorous testing to further rule out data leak-288

age.289

Mechanistic Interpretation. While this work290

presents the novel observation that LLMs’ are ca-291

pable of extracting transition rules underlying in-292

context data, it does not address how LLMs achieve293

this, or what in-context learning algorithms are294

employed by LLMs. Understanding the internal295

processes and algorithms that enable such capabil-296

ities remains an open question and is crucial for297

advancing the field.298

Model selection. At the time of this299

manuscript’s preparation, newer models, such as300

LLaMA-3, have been released. Due to constraints301

in time and computational resources, this work302

does not evaluate these latest models. Future re-303

search should include these and other emerging304

models to provide a more comprehensive under-305

standing of the phenomena observed.306
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A Appendix 481

A.1 Loss Functions 482

Once the learned transition rules, P̃ (Xt+1|Xt), have been extracted, we quantify the deviation from the 483

ground truth P (Xt+1|Xt). Depending on the nature of the system, one of the following two loss functions 484

may be more appropriate (see Section 4). 485

Bhattacharyya distance. For stochastic time series, we use the Bhattacharyya distance to characterize 486

the distance between learned and ground truth transition functions. The Bhattacharyya distance between 487

P and P̃ , on a domain X is defined as (Bhattacharyya, 1943, 1946; Kailath, 1967): 488

DB(P, P̃ ) = − ln

(∫
X

√
p(x)p̃(x)dx

)
, (2) 489

and has been widely employed by feature selection and signal extraction methods (Choi and Lee, 2003; 490

Kailath, 1967). Since P̃ (Xt+1|Xt) takes the form of a hierarchical PDF, one may approximate the integral 491

in Equation (2) via a discrete quadrature rule as 492

DB(P, P̃ ) = − ln

(∑
x

√
p(x)p̃(x)∆x

)
, (3) 493

where ∆x denotes the length of the sub-interval containing x in the partition of X . 494

Squared deviations from the mean. For deterministic systems, the true transition functions become 495

delta-functions. As a result, the discretized Bhattacharyya distance from Equation (3) reduces to (see 496

Equation (5) in Appendix A.2) 497

DB(δ(x− xtrue), P̃ ) = −1

2
ln(p̃(xtrue)) + C, 498

which is proportional to the negative log-likelihood (NLL) assigned to the true data by the LLM, plus a 499

constant C2. NLL references only the finest bins in the hierarchical PDF and is thus unstable as in-context 500

loss. As an alternative, we use the squared deviations from the mean (SDM) (Kobayashi and Salam, 2000) 501

as the in-context loss for deterministic systems: 502

SDM(xtrue, P̃ ) =

(
xtrue −

∑
x∈X

p̃(x)x∆x

)2

, 503

where the mean µP̃ =
∑

x p̃(x)x∆x is extracted from the hierarchical PDF. Note that unlike the 504

Bhattacharyya distance, which references the model prediction p̃ only at xtrue, the SDM takes into 505

account the entire support x ∈ X . Our numerical experiments suggest that SDM is more stable and better 506

captures the in-context learning dynamics of deterministic systems (see Appendix A.4). 507

A.2 Additional loss functions 508

KL-divergence. The KL-divergence between two PDFs, P and P̃ , is defined as 509

DKL(P, P̃ ) =
∑
x∈X

P (x) log

(
P (x)

P̃ (x)

)
. (4) 510

Although commonly used as the training loss for a variety of machine learning systems, this loss function 511

may suffer from numerical instabilities as the learned transition function P̃ are often close to zero, as 512

shown in Figures 8 and 13, where the probability density is concentrated in small regions of the support. 513

2This constant is determined by the base B of the system, and the number of digits n as C = − ln∆x = n logB.
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Discretized Bhattacharyya distance for deterministic systems. For deterministic systems, the ground514

truth transition function is a delta function. Therefore, the Bhattacharyya distance between it and the515

Hierarchy-PDF prediction only references the finest bin associated with the true value xtrue.516

DB(δ(x− xtrue), P̃ ) = − ln

(∑
x

√
δ(x− xtrue)p̃(x)∆x

)
= −1

2
ln(p̃(xtrue))− ln∆x

= −1

2
ln(p̃(xtrue)) + constant.

(5)517

As a result, the Bhattacharyya distance is reduced to an affine-transformed negative log-likelihood518

assigned to data by the LLM. Such local sensitivity on p̃(xtrue) explains the wild fluctuations seen in the519

Bhattacharyya loss in Appendix A.4.520

Higher moments and kurtosis. While the Bhattacharyya distance and SDM measure the agreement521

between the extracted transition rules P̃ and the ground truth distribution P , they do not explicitly522

characterize the type of the distribution (e.g., Gaussian or uniform). We employ the kurtosis as an523

additional measure to assess whether the LLM recovers the correct shape of P . The kurtosis of a524

distribution P is defined as (Joanes and Gill, 1998)525

Kurt(P ) =
Ex∼P [(x− µP )

4]

Ex∼P [(x− µP )2]2
=

µ4

(σ2)2
, (6)526

where σ2 and µ4 are the second and fourth central moments, which can be approximated using a527

hierarchical PDF as528

σ2(P ) =
∑
x

p(x)(x− µp)
2∆x, µ4(P ) =

∑
x

p(x)(x− µp)
4∆x. (7)529

The kurtosis is equal to 3 for a Gaussian distribution and 9/5 for bounded uniform distributions. Figure 7530

shows the kurtosis of Brownian motion transition rules learned by LLM, which converges to 3 as the531

context length increases.532

Figure 7: Kurtosis of Brownian motion transition rules with respect to the input length. Blue: kurtosis of LLM
predicted PDF. Red: ground truth kurtosis, which is 3 for all Gaussian distributions.

A.3 Additional Experiments: stochastic time series533

A.3.1 Brownian motion534

Brownian motion is an example of a continuous-time stochastic process (Einstein, 1905), and is described535

by a stochastic differential equation (SDE):536

dXt = µdt+ σdWt, (8)537

where Xt represents the state of the system at time t, µ is the drift coefficient, σ is the volatility coefficient,538

and dWt is the increments of a Wiener process (Revuz and Yor, 2013), modeling the randomness of539

motion.540
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Figure 8: Next state prediction of Brownian motion. Top: Input stochastic time series shown in black, and the state
to be predicted is highlighted in red. Bottom: The LLM’s prediction, along with the ground truth distribution.

To simulate trajectories of Brownian motion, we use the Euler–Maruyama method (Platen, 1999), 541

which discretizes Equation (8) as Xt+∆t = Xt + µ∆t+ σ
√
∆tZ, where ∆t is the time resolution, and 542

Z ∼ N (0, 1) is a random variable that follows a standard Gaussian distribution. The Euler–Maruyama 543

method may also be written as a conditional distribution: 544

Xt+∆t|{Xt = xt} ∼ N (xt + µ∆t, σ2∆t), 545

which is the ground truth transition function visualized in Figure 8. Indeed, the ground truth next state 546

is described as a Gaussian distribution, and we observe in Figure 8 that the LLM prediction agrees 547

well with the true, underlying distribution. Additionally, as shown in Figure 8, the LLM displays the 548

correct Gaussian shape for the PDF, converging to a measured kurtosis of 3 (see Appendix A.2). We then 549

simulate ten different trajectories using random seeds for Z and report the resulting LLM learning curves 550

in Figure 9, measured in the Bhattacharyya distance. 551

Figure 9: Bhattacharyya distance between the LLM predicted PDF and the ground truth transition function of
Brownian motion with respect to the input length.

A.3.2 Geometric Brownian motion 552

Geometric Brownian motion (GBM) (Oksendal, 2013) is a stochastic process that is commonly used in 553

mathematical finance to model the trajectories of stock prices and other financial assets (Hull, 2021). A 554

GBM is governed by the following SDE: 555

dXt = µXtdt+ σXtdWt, (9) 556

where Xt models the price of an asset at time t, and the fluctuation term σXtdWt is proportional to the 557

current asset price Xt. The Euler–Maruyama discretization of the GBM reads Xt+∆t = Xt + µXt∆t+ 558

σXt

√
∆tZ, and leads to the ground truth transition function: 559

Xt+∆t|{Xt = xt} ∼ N (xt + µxt∆t, (σxt)
2∆t). (10) 560

We simulate ten different GBM trajectories using random seeds and report the corresponding learning 561

curves in Figure 10. 562
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Figure 10: Geometric Brownian motion in-context loss curve.

We perform an additional numerical test to verify that the LLM is learning the correct relationship563

between the variance of the GBM and the state value Xt (see Equation (10)). To investigate this, we564

display in Figure 11 the expected standard deviation along with the learned one, extracted from the565

Hierarchy-PDF using Equation (7), across all predicted states. We find that the LLM respects the ground566

truth standard deviation of the GBM, as prescribed by the underlying transition function.567

Figure 11: Evolution of the geometric Brownian motion standard deviation with respect to the state value xt (see
Equation (10)), along with the predicted standard deviation extracted from the LLM at each time step.

A.3.3 Markov chains with LLaMA-70b568

Our experiments show that LLMs generally achieve lower in-context loss for Markov chains with fewer569

discrete states n, as shown in Figure 12. For both LLaMA-13b and LLaMA-70b, the in-context loss570

curves cease to decrease significantly for numbers of states n ≥ 9.571

Figure 12: In-context loss curves for LLaMA-13b (left) and LLaMA-70b (right) with respect to the number of states
in the transition matrix.

A.4 Additional Experiments: deterministic time series572

A.4.1 Logistic map573

The logistic map, first proposed as a discrete-time model for population growth, is one of the simplest574

dynamical systems that manifest chaotic behavior (Strogatz, 2015). It is governed by the following575

iterative equation:576

xt+1 = f(xt) = rxt(1− xt), x0 ∈ (0, 1), (11)577
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which may also be written using conditional distributions to reflect the deterministic nature of the system 578

as Xt+1|{Xt = xt} ∼ δf(xt), where δ denotes the Dirac delta distribution. This conditional distribution 579

is the ground truth transition function displayed in red in Figure 13. The parameter r ∈ [1, 4) controls the 580

behavior of the system and is set to r = 3.9. At this value, the dynamics are naturally confined within 581

the interval (0, 1), and the system has no stable fixed points. Due to the chaotic nature of the system, 582

two initial nearby trajectories diverge exponentially in time. This property allows us to sample multiple 583

uncorrelated trajectories by using different initial conditions x0, sampled uniformly in (0, 1). 584

Figure 13: Next state prediction of the logistic map. Top: Input chaotic time series shown in black, and the state to
be predicted is highlighted in red. Bottom: The LLM’s statistical prediction for the last state. The ground truth
distribution is delta-distributed, which is shown as a vertical red line.

Figure 13 displays one of the ten tested trajectories and an LLM’s prediction of the last state. The PDF 585

of the next state prediction is extracted using the Hierarchy-PDF algorithm described in Section 3.2. We 586

find that the LLM prediction is close to the ground truth, except for minor deviations manifested by small, 587

but non-zero, probability densities in neighboring values. While the extracted prediction is only reported 588

for the last time step in the bottom panel of Figure 13, we also extract the model prediction at every time 589

step for all tested trajectories and report the corresponding Bhattacharyya and SDM losses in Figure 14. 590

Figure 14: Logistic map in-context loss curves. For deterministic systems, Bhattacharyya loss is subject to large
fluctuations while SDM loss is more stable.

As foreshadowed in Section 3, the Bhattacharyya loss suffers from large fluctuations with deterministic 591

systems such as the logistic map, while the SDM loss better captures the in-context learning dynamics. In 592

particular, the SDM loss decreases rapidly with the number of observed states, without any fine-tuning 593

nor prompt engineering of the LLM. This suggests that the LLM can extract the underlying transition 594

rules of the logistic map from in-context data. 595

A.4.2 Lorenz system 596

The Lorenz system (Lorenz, 1963) is a three-dimensional (3D) dynamical system derived from a simplified 597

model of convection rolls in the atmosphere. It consists of a system of three ordinary differential equations: 598

ẋ(t) = σ(y − x), ẏ(t) = x(ρ− z)− y, ż(t) = xy − βz, 599

where σ = 10, ρ = 28 and β = 8/3 are parameters dictating the chaotic behavior of the system. We 600

compute ten 3D trajectories using a first-order explicit time-stepping scheme. All trajectories share the 601
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same initial conditions in y and z, and differ only in the x-coordinate, which is uniformly sampled in602

(0, 0.3). The chaotic nature of the system guarantees that the sampled trajectories quickly diverge from603

one another. We prompt the LLM with the x-component of the simulated series and extract the next604

predicting values.605

Figure 15: Loss curves for predicting the x-component of the Lorenz system with respect to the number of observed
time steps.

When the x, y, and z components are observed, the system is deterministic and Markovian; in the606

sense that a state vector s⃗t = (xt, yt, zt) at time t fully determines the next state s⃗t+1. However, if the607

x-component is the only one observed, then the system ceases to be Markovian but remains deterministic608

if one expands the state vector to include information from earlier states. Hence, Takens’ embedding609

theorem (Takens, 2006) guarantees that the observation of at most seven states of the series x0:t is sufficient610

to predict xt+1. Finding the optimal number of states to reconstruct the system’s trajectory is an area of611

active research (Strogatz, 2015). Despite this apparent difficulty, LLaMA-13b can formulate increasingly612

accurate predictions of the series as it observes more states, as evidenced by the decaying loss curves613

plotted in Figure 15.614

A.5 Continuous State Space Visualization615

One may naively remark upon the possibility that the in-context learning task for the Lorenz system616

and the logistic map could be rendered trivial if xt+1 always falls close to xt, in which case the LLM617

only needs to learn a static noisy distribution in order to decrease the loss. This is not the case with our618

experiments. In this section, we demonstrate the non-triviality of the learning tasks in Figures 16 and 17.619

In both cases, it is clear that the LLM has successfully learned to actively predict the expected mean620

position of the next state, and, in the logistic map example, the variance of the next state distribution as621

well. We note that the Lorenz system is simulated deterministically, hence the true next-state distribution622

is represented as a delta-function.623

A.6 In-context neural scaling law624

Neural scaling laws (Kaplan et al., 2020) describe how the performance of trained neural networks,625

particularly language models, scales with changes in key factors such as model size (N ), dataset size626

(D), and computational resources used for training (C). These laws are often observed as power-law627

relationships in the following form:628

L(N) =

(
N

Nc

)αN

, L(D) =

(
D

Dc

)αD

, L(C) =

(
D

Cc

)αC

,629

where L represents the loss or performance metric of the model. The characteristic factors (Nc, Dc, and630

Cc), and power coefficient (α) are extracted empirically from training curves. The fitted quantities depend631

on the distribution of data, the model architecture, and the type of optimizer used for training. Such632

power-law relations appear in log-log plots as straight lines, whose slopes correspond to the parameter α.633

Our loss curves from learning dynamical systems (see Figure 1) reveal an additional neural scaling law634

that applies to in-context learning:635

L(Din) =

(
Din

Dc

)α

,636

12



Figure 16: 4 consecutive states in a noisy logistic map.
Ground truth is shown in red and LLaMA predictions
in blue.

Figure 17: 4 consecutive states in a Lorenz system
trajectory. Ground truth is shown in red and LLaMA
predictions in blue.
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where Din stands for the length of time series observed in the prompt (in-context). In Figure 18, we637

display the fitted power laws to the in-context loss curves.638

Figure 18: In-context loss curves from LLaMA-13b fitted with power law, with fitted power coefficient α shown
in legend. Left: loss of stochastic series measured in Bhattacharyya distance. Right: loss of deterministic series
measured in SDM.

A.7 Baselines for noisy logistic map and Markov chains639

In this section, we compare LLM’s predictions against baseline models of known architectures, in order640

to understand the difficulty of the in-context learning task and make better sense of the Bhattacharyya641

loss. Specifically, we consider the following baseline models: unigram and bi-gram models for discrete642

Markov chains, and linear and non-linear autoregressive models with 1-step memory (AR1) for noisy643

logistic maps. The bi-gram model for the Markov chain has an unfair advantage since it is designed to644

model Markovian processes where the probability distribution of a token depends only on the previous645

token, ie., inferring the values of the transition matrix. The unigram model, on the other hand, models all646

tokens as drawn i.i.d. from the same distribution.647

Figure 19: LLM in-context loss curves against the baseline model loss curves. The coefficient α denotes the fitted
scaling exponent.

The neural network AR1 model takes a state xt−1 as input, and outputs prediction for next state xt as648

a Gaussian distribution parameterized by mean and variance: fθ : xt → N (µθ(xt), σθ(xt)). As such,649

it also has the unfair advantage of hard-coded Gaussianiety. LLaMA, on the other hand, must infer the650

correct distribution family from data. Despite this intrinsic disadvantage, LLaMA still outperforms the651

neural network AR1 model in the large context limit. The NN used in the non-linear AR1 models features652

three fully connected hidden layers of widths 64, 32, and 16. We found that simpler neural networks are653

easily trapped in local minima, leading to unstable performance. The loss curves in Figure 19 are obtained654

by training an independent copy of this neural network to convergence at each context length, and predict655
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the next state distribution using the trained NN. The training loss is defined as the negative log-likelihood 656

of the observation data: 657

L(data, θ) = −
∑

xt−1,xt∈data

logP (xt;µθ(xt−1), σθ(xt−1)) 658

=
∑

xt−1,xt∈data

log σθ(xt−1)−
1

2

(
xt − µθ(xt−1)

σθ(xt−1)

)2

. 659

Furthermore, the ensemble of NNs allows us to visualize the learned transition functions P (xt+1|xt) 660

at each context length. In Figure 20, we show how the transition rules learned by the NNs gradually 661

converge to the ground truth as context length increases. Since at large context length, the LLMs achieve 662

similar loss as the NN-based AR1 model, it is reasonable to expect the LLM to have learned a transition 663

function of similar accuracy as shown in the 5th plot in Figure 20. However, it is difficult to visualize the 664

full transition rules P (xt+1|xt), for xt ∈ [0, 1], as learned by an LLM, because doing so would require 665

appending an array of xts at the end of a training sequence, which would render the training sequence 666

incorrect. 667

Figure 20: Noisy logistic map transition rules, P (xt|xt − 1), learned by a neural network-based AR1 model against
the ground truth transition rule.

A.8 Invariant measure and the early plateauing of in-context loss 668

While most datasets are well-described by the power laws, two loss curves — the Brownian motion and 669

geometric Brownian motion — plateau early at a context length of about 102, as shown in Figure 18. We 670

attribute this early plateauing to the fact that the Brownian and geometric Brownian motions “wander out 671

of distribution" at large time t, while all other dynamical systems studied in this paper converge to stable 672

distributions (i.e., the invariant measure). A Markovian system (stochastic or deterministic) governed by a 673

transition rule P (xt+1|xt) is said to have an invariant measure π if 674

π(xt+1) =

∫
X
π(xt)P (xt+1|xt) dxt, xt+1 ∈ X . (12) 675

If a system is initialized by π(x) and evolves according to P , then the distribution of states at the next 676

step will still follow π(x). This property makes π an invariant or stationary distribution for the system. It 677

has been shown that the logistic map and Lorenz systems in the chaotic regime converge almost surely to 678

their respective invariant measure, regardless of the initialization (Strogatz, 2015). 679
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For discrete Markov chains governed by a transition matrix p, the stationary distribution is defined as a680

discrete probability mass function, denoted by π⃗, such that681

π⃗ = pπ⃗, (13)682

which is analogous to the continuous case described by Equation (12). By definition, any non-negative683

right eigenvector of p with eigenvalue λ = 1 is a stationary distribution of p. (Sethna, 2021) showed that a684

valid transition matrix has at least one stationary distribution. On the other hand, neither the Brownian nor685

the geometric Brownian motion has invariant distributions3 on unbounded domains (e.g., when X = R).686

This can be seen from the marginalized distribution P (xt) at time t. For the Brownian motion defined in687

Equation (8), the marginalized distribution of xt at time t is a normal distribution:688

P (xt) =
1√

2πσ2t
exp

(
−(xt − µt)2

2σ2t

)
, (14)689

while for the geometric Brownian motion defined in Equation (9), the marginalized distribution of xt is a690

log-normal distribution (Crow and Shimizu, 1987):691

P (xt) =
1

xt
√
2πσ2t

exp

(
−
(log( xt

x0
)− µt− σ2

2 t)2

2σ2t

)
. (15)692

Both Equations (14) and (15) are time-dependent and do not converge to a stationary distribution in693

the limit t → ∞. For the Brownian and geometric Brownian motions, the LLM might decide to only694

consider the most recent segment of time steps, and ignore the earlier data, which are in some sense “out695

of distribution”. This could explain the early plateauing of loss curves. Indeed, the classical neural scaling696

laws can be improved or broken if the scheduling of the training data shifts in distribution, as shown in697

(Sorscher et al., 2023). Different from (Sorscher et al., 2023; Lu et al., 2022), which alter the scheduling698

of data to achieve better learning curves that decrease faster with the size of training data, our experiments699

consider time series with pre-determined transition laws. We cannot tamper with the scheduling of our700

data to make it stationary without altering the underlying transition rules.701

A.9 Temperature and variance702

The temperature T is a hyper-parameter that controls the variance of the softmax output layer. Although703

most LLMs are trained at T = 1, it is common practice to tune the temperature in the interval T ∈ [0.8, 1.2]704

during inference. Then, one can opt for increased diversity (high T ), or better coherence (low T ) in the705

generated output. The temperature hyper-parameter affects the uncertainty, or variance, in the Hierarchy-706

PDF extracted from the LLM. Figures 21 and 22 show how different temperatures change the shape of the707

Hierarchy-PDF. In both cases, higher temperature leads to higher variance in the PDF.708

We highlight the different refinement schemes used in these figures: for GBM, the PDF is refined to the709

last (third) digit near the mode, and left coarse elsewhere. This is because the true variance for GBM can710

span two orders of magnitude (see Figure 11), with most data points trapped in the low-variance region at711

small Xt. Hence, we require high precision to resolve these small variances in Figure 23. On the other712

hand, the noisy logistic map time series does not suffer from this issue, and thus we uniformly refine its713

PDF only up to the second digit.714

While the loss curves in our paper are calculated at T = 1, the predicted σ shown in Figures 6 and 11715

are extracted at T = 0.7. We performed a grid search on the temperature ranging from T = 0.3 to T = 3716

(see Figures 24 and 25), and observed that T = 0.7 consistently results in better prediction quality of the717

variance.718

3For stochastic systems, the invariant measure is sometimes referred to as the stationary distribution.
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Figure 21: Next state prediction for Geometric Brownian
motion. Topmost: Input stochastic time series (black),
and the state to be predicted (red). Rest: The Hierarchy-
PDF prediction extracted from LLaMA-13b evaluated at
different temperatures ranging from T = 0.3 to 3, along
with ground truth PDF (red).

Figure 22: Next state prediction for the noisy logistic map.
Topmost: Input stochastic time series (black), and the state
to be predicted (red). Rest: The Hierarchy-PDF prediction
extracted from LLaMA-13b evaluated at different temper-
atures ranging from T = 0.3 to 3, along with ground truth
PDF (red).

Figure 23: Most data points in GBM are trapped in low variance region with small Xt. The hierarchy-PDF must be
very refined to resolve these minuscule variances.
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LLM temperature = 0.3

LLM temperature = 0.7

LLM temperature = 1

Figure 24: GBM standard deviation σ as a function of state
value Xt, learned by the LLM, along with the ground truth.
The LLM prediction is evaluated at temperatures ranging
from T = 0.3 to 1.

LLM temperature = 0.3

LLM temperature = 0.7

LLM temperature = 1

Figure 25: Noisy logistic map standard deviation σ as a
function of state value Xt, learned by the LLM, along
with the ground truth. The LLM prediction is evaluated at
temperatures ranging from T = 0.3 to 1.
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A.10 Hierarchy PDF 719

This section documents all three parts of the Hierarchy-PDF algorithm. We refer to the GitHub repository 720

for further details. 721

Algorithm 2 Refine Each State in a Stochastic Sequence

Input:
- Straj: A string representing a sampled stochastic trajectory whose states are separated by commas.
- LPDF: List of unrefined PDFs for each state.
- KVcache: Key-value cache of running model.forward(Straj).
for each state and PDF in Straj and LPDF do
PDF← RecursiveRefiner(True, state, Dc, Dt, KVcache)

end for

Algorithm 3 Detailed Hierarchy-PDF Recursive Refiner

Input: Object multi_PDF representing unrefined PDF using bins of various widths
Procedure: RecursiveRefiner(mainBranch, sequence, Dc, Dt, KVcache)

if Dc = Dt then
return {Terminate if target refinement depth is reached}

end if
if mainBranch is True then

{Launch 9 recursive branches if the current sequence is refined}
Lnew ← Form 9 new sequences by changing the last digits
for each sequence in Lnew do

RecursiveRefiner(False, sequence, Dc, Dt,KVcache)
end for

else
{Collect refined logits}
newLogits, newKVcache← NextTokenProbs(sequence,KVcache)
Refine multi_PDF using newLogits

end if
if Dc + 1 < Dt then

{Launch 10 more branches if Dt not met}
Lnew ← Form 10 new sequences by appending digits
for each sequence in Lnew do

RecursiveRefiner(False, sequence, Dc + 1, Dt, newKVcache)
end for

end if
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Algorithm 4 Extract Next Token Probabilities
function NextTokenProbs(sequence, KVcache, model)

NextTokenLogit← model.forward(sequence, KVcache)[last] {Extract distribution of next token}
Update KVcache

return NextTokenLogit, KVcache
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