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ABSTRACT

We study universal traits which emerge both in real-world complex datasets, as well
as in artificially generated ones. Our approach is to analogize data to a physical sys-
tem and employ tools from statistical physics and Random Matrix Theory (RMT)
to reveal their underlying structure. We focus on the feature-feature covariance
matrix, analyzing both its local and global eigenvalue statistics. Our main obser-
vations are: (i) The power-law scalings that the bulk of its eigenvalues exhibit are
vastly different for uncorrelated normally distributed data compared to real-world
data, (ii) this scaling behavior can be completely modeled by generating Gaussian
data with long range correlations, (iii) both generated and real-world datasets lie
in the same universality class from the RMT perspective, as chaotic rather than
integrable systems, (iv) the expected RMT statistical behavior already manifests
for empirical covariance matrices at dataset sizes significantly smaller than those
conventionally used for real-world training, and can be related to the number of
samples required to approximate the population power-law scaling behavior, (v) the
Shannon entropy is correlated with local RMT structure and eigenvalues scaling,
is substantially smaller in strongly correlated datasets compared to uncorrelated
ones, and requires fewer samples to reach the distribution entropy. These findings
show that with sufficient sample size, the Gram matrix of natural image datasets
can be well approximated by a Wishart random matrix with a simple covariance
structure, opening the door to rigorous studies of neural network dynamics and
generalization which rely on the data Gram matrix.

1 INTRODUCTION

Natural, or real-world, images are expected to follow some underlying distribution, which can be
arbitrarily complex, and to which we have no direct access to. This distribution could have infinitely
many nonzero moments, with varying relative importance compared to one another. In practice, we
only have access to a very small subset of samples from the underlying distribution, which can be
parameterized as X ∈ Rd×M , where d is the dimension of each image vector and M is the number
of samples. The first moment of the data can always be set to 0, since we can remove the mean from
each sample, without losing information regarding the distribution. The second moment, however,
cannot be set to 0, and holds valuable information. This observation motivates the study of the
empirical covariance (Gram) matrix, ΣM = 1

MXXT .

The properties of ΣM in real world data are entirely unknown a priori, as we do not know how to
parameterize the process which generated natural images. Nevertheless, interesting observations
have been made. Empirical evidence shows that the spectrum of ΣM for various datasets can be
separated into a set of large eigenvalues (O(10)), a bulk of eigenvalues which decay as a power law
λi ∼ i−1−α (Ruderman, 1997; Caponnetto and De Vito, 2007) and a large tail of small eigenvalues
which terminates at some finite index n. Since the top eigenvalues represent the largest overlapping
properties across different samples, these are not simply interpreted without more information on the
underlying distribution. The bulk of the eigenvalues, however, can be understood as representing the
correlation structure of different features amongst themselves, and has been key to understanding the
emergence of neural scaling laws (Kaplan et al., 2020; Maloney et al., 2022).

In this work, we study both the scaling laws present in natural datasets, and their spectral statistics,
with the goal of obtaining a universal, analytically tractable model for real world Gram matrices,
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regardless of their origins. While this may not be feasible for any ΣM , fortunately, the standard
datasets used today are high dimensional and contain many samples, a ubiquitous regime found in
complex systems, and typically studied using tools from Random Matrix Theory (RMT).

RMT is a powerful tool for describing the spectral statistics of complex systems. It is particularly
useful for systems that are chaotic but also have certain coherent structures. The theory predicts
universal statistical properties, provided that the underlying matrix ensemble is large enough to
sufficiently fill the space of all matrices with a given symmetry, a property known as ergodicity (Guhr
et al., 1998). Ergodicity has been observed in a variety of systems, including chaotic quantum
systems (Bohigas et al., 1984; Mehta, 1991; Pandey, 1983), financial markets, nuclear physics and
many others (Plerou et al., 1999; Brody, 1981; Efetov, 1997). To demonstrate that a similar universal
structure is also observed for correlation matrices resulting from datasets, we will employ several
diagnostic tools widely used in the field of quantum chaos. We will analyze the global and local
spectral statistics of empirical covariance matrices generated from three classes of datasets: (i) Data
generated by sampling from a normal distribution with a specific correlation structure for its features,
(ii) Uncorrelated Gaussian Data (UGD), (iii) Real-world datasets composed of images, at varying
levels of complexity and resolution. Our research aims to answer the following questions:

• Is power-law scaling a universal property across real-world datasets?; what determines the
scaling exponent and what properties should an analytic model of the dataset have, in order to
follow the same scaling?

• What are the universal properties of datasets that can be gleaned from the empirical covariance
matrix and how are they related to local and global statistical properties of RMT?

• How to quantify the extent to which complex data is well characterized by its Gram matrix?
• What, if any, are the relations between datasets scaling, entropy and statistical chaos diagnostics?

Our primary contributions are:

1. We find that power-law scaling appears across various datasets. It is governed by a single scaling
exponent α, and its origin is the strength of correlations in the underlying population matrix 1 .
We accurately recover the behavior of the eigenvalue bulk of real-world datasets using Wishart
matrices with the singular values of a Toeplitz matrix (Gray, 2006) as its covariance. We dub
these Correlated Gaussian Datasets (CGDs).

2. We show that generically, the bulk of eigenvalues’ distribution and spacings are well described by
RMT predictions, verified by diagnostic tools typically used for quantum chaotic systems. This
means that the CGD model is a correct proxy for real-world data Gram matrices.

3. We find that the effective convergence of the empirical covariance matrix as a function of
the number of samples correlates with the corresponding RMT description becoming a good
description of the statistics and the eigenvalues scaling.

4. The Shannon entropy is correlated with the local RMT structure and the eigenvalues scaling, and is
substantially smaller in strongly correlated datasets compared to uncorrelated data. Additionally,
it requires fewer samples to reach the distribution entropy.

2 BACKGROUND AND RELATED WORK

Neural Scaling Laws Neural scaling laws are a set of empirical observations that describe the
relationship between the size of a neural network, dataset, compute power, and its performance.
These laws were first proposed by Kaplan et al. (2020) and have since been confirmed by a number
of other studies (Maloney et al., 2022; Hernandez et al., 2022) and studied further in (Ivgi et al.,
2022; Alabdulmohsin et al., 2022; Sharma and Kaplan, 2022; Sorscher et al., 2022; Debowski, 2023;
Fernandes et al., 2023). The main finding of neural scaling laws is that the test loss of a neural network
scales as a power-law with the number of parameters in the network. This means that doubling
the number of parameters roughly reduces the test loss by 2α. However, this relationship does not
persist indefinitely, and there is a point of diminishing returns beyond which increasing the number
of parameters does not lead to significant improvements in performance. One of the key challenges

1There are systems which display multiple correlation scales, showing several bulk exponents (Levi and Oz,
2023).
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in understanding neural scaling laws is the complex nature of the networks themselves. The behavior
of a neural network (NN) is governed by a large number of interacting parameters, making it difficult
to identify the underlying mechanisms that give rise to the observed scaling behavior, and many
advances have been made by appealing to the RMT framework.

Random Matrix Theory RMT is a branch of mathematics that was originally developed to study
the properties of large matrices with random entries. It is particularly suited to studying numerous
realizations of the same system, where the number of realizations M → ∞, the dimensions of the
system d → ∞, and the ratio between the two tends to a constant d/M → γ ≤ 1, γ ∈ R+. Results
from RMT calculations have been applied to a wide range of problems in Machine Learning (ML),
beyond the scope of neural scaling laws, including the study of nonlinear ridge regression (Pennington
and Worah, 2017), random Fourier feature regression (Liao et al., 2021), the Hessian spectrum (Liao
and Mahoney, 2021), and weight statistics (Martin and Mahoney, 2019; Thamm et al., 2022). For
a review of some of the recent developments, we refer the reader to Couillet and Liao (2022) and
references therein.

Universality Considerable work has been dedicated to the concept of universality, i.e. that certain
features are shared between seemingly disparate systems, when the systems are sufficiently large. For
instance, spectra that are generated by different dynamical processes may have similar distributions
(Bao et al., 2015; Baik et al., 2004; Hu and Lu, 2022; Bai and Silverstein, 2010). Universality is
powerful since it often happens that System A’s complex structure is difficult to analyze, and can be
explained by system B, which lies in the same universality class, and is much easier to study. In our
work, system A represents real-world datasets with unknown statistics generated from a complex
process, while system B is our CGD, whose Gram matrix is a simple Wishart matrix. The fact
that real world datasets fall in the same universality class as CGD allows us to replace its complex
covariance matrix by the simple CGD one, while retaining the information encoded in its spectrum.

3 CORRELATIONS AND POWER-LAW SCALING

In this section, we analyze the feature-feature covariance matrix for datasets of varying size, com-
plexity, and origin. We consider real-world as well as correlated and uncorrelated gaussian datasets,
establish a power-law scaling of their eigenvalues, and relate it to a correlation length.

3.1 FEATURE-FEATURE EMPIRICAL COVARIANCE MATRIX

We consider the data matrix Xia ∈ Rd×M , constructed of M columns, each corresponding to a single
sample, composed of d features. In this work, we focus on the empirical feature-feature covariance
matrix, defined as

Σij,M =
1

M

M∑
a=1

XiaXaj ∈ Rd×d . (1)

Intuitively, the correlations between the different input features, Xia, should be the leading order
characteristic of the dataset. For instance, if the Xia are pixels of an image, we may expect that
different pixels will vary similarly across similar images. Conversely, the mean value of an input
feature is uninformative, and so we will assume that our data is centered in a pre-processing stage.

A random matrix ensemble is a probability distribution on the set of d × d matrices that satisfy
specific symmetry properties, such as invariance under rotations or unitary transformations. In order
to study Eq. (1) using the RMT approach, we define Σij,a as a single sample realization of the
population random matrix ensemble Σij , and thus Σij,M is the empirical ensemble average, i.e.
ΣM = ⟨Σa⟩a∈M = 1

M

∑M
a=1 Σa approximating the limits of M → ∞, d → ∞. If M and d are

sufficiently large, the statistical properties of ΣM will be determined entirely by the underlying
symmetry of the ensemble. We refer to this scenario as the "RMT regime".

3.2 DATA EXPLORATION

We study the following real-world datasets: MNIST (LeCun et al., 2010), FMNIST (Xiao et al.,
2017), CIFAR10 (cif), Tiny-IMAGENET (Torralba et al., 2008), and CelebA (Liu et al., 2015)
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(downsampeld to 109 × 89 in grayscale). We proceed to center and normalize all the datasets
in the pre-processing stage, to remove the uninformative mean contribution. The uncorrelated
gaussian data is represented by a data matrix Xia ∈ Rd×M , where each column is drawn from a
jointly normal distribution N (0, Id×d). We then construct the empirical covariance matrix ΣM =
1
M

∑M
a=1 XiaXaj ∈ Rd×d. To generate correlated gaussian data, we repeat the same process,

changing the sample distribution such to N (0,Σd×d), where we choose a specific form for Σ which
produces feature-feature correlations with and includes a natural cut-off scale, as

ΣToe
ij = S, T = Iij + c|i− j|α = U†SV, α, c ∈ R. (2)

The matrix ΣToe
ij is a positive semi definite diagonal matrix of singular values S constructed from T ,

a full-band Toeplitz matrix. The sign of α dictates whether correlations decay (negative) or intensify
(positive) with distance along a one-dimensional feature space2.

3.3 CORRELATIONS DETERMINE THE NOISE TO DATA TRANSITION

CGD (0.5)
UGD (-1)

Figure 1: Left: Scree plot of Σij,M for several different vision datasets, as well as for UGD and a CGD with
fixed α. Here, the number of samples is taken to be the entire dataset for each real-world dataset, and M = 50k
for the gaussian data, where we set c = 1. We see a clear scaling law for the eigenvalue bulk as λi ∝ i−1−α

where all real-world datasets display α ≤ 1/2. Right: The power-law scaling parameter α value can be tuned
from α = 1/4 to α = −1 by corrupting the FMNIST dataset with a varying amount of normally distributed
noise.

We begin by reproducing and extending some of the results from Maloney et al. (2022). In Fig. 1, we
show the Σij,M eigenvalue scaling for the different classes of data (i.e. real-world, UGD and CGDs).
We find that for all datasets, the eigenvalues bulk scales as a power-law

λi ∝ i−1−α, α ∈ R, i = 10, . . . dbulk , (3)
where i = 10 is approximately where the scaling law behavior begins and dbulk is the effective bulk
size, where the power-law abruptly terminates. We stress that this behavior repeats across all datasets,
regardless of origin and complexity.

The value of α can be readily explained in terms of correlations within our CGD model. Taking the
Laplace Transform of the second term in Eq. (2), the bulk spectrum is given by Appendix B as

λbulk
i = c · Γ(α+ 1)

(
d

i

)1+α

, (4)

where Γ(x) is the Gamma function. This implies that the value of α determines the strength of
correlations in the original data covariance matrix. For real-world data, we consistently find that
α > 0, which corresponds to increasing correlations between different features. In contrast, for
UGD, the value of α ∼ −1, and the power-law behavior vanishes. Interpolating between UGD, and
real-world-data, the CGD produces a power-law scaling, which can be tuned from −1 < α ≤ 0, in
the case of decaying long range correlations, or 0 ≤ α < ∞ for increasing correlations, to match any
real-world dataset we examined. Lastly, we can extend this statement further and verify the transition
from correlated to uncorrelated features by corrupting a real-world dataset (FMNIST) and observing
the continuous deterioration of the power-law from α ∼ 1/4 to α = −1, implying that the CGD can
mimic the bulk behavior of both clean and corrupted data.

2Correlation strength which grows with distance is a hallmark of some one-dimensional physical systems,
such as the Coulomb and Riesz gases (Lee and Yang, 1966; Smorodinsky, 1953), which display an inverse
power-law repulsion, while decaying correlations are common in the 1-d Ising model (Ising, 1925).
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4 GLOBAL AND LOCAL STATISTICAL STRUCTURE

4.1 RANDOM MATRIX THEORY

In this section, we move on from the eigenvalue scaling, to their statistical properties. We begin by
describing the RMT diagnostic tools, often used to characterize RMT ensembles, with which we
obtain our main results. We define the matrix ensemble under investigation, then provide an overview
of each diagnostic, concluding with a summary of results for the specific matrix ensemble which both
real-world and gaussian datasets converge to.

We interpret ΣM for real world data as a single realization, drawn from the space of all possible
Gram matrices which could be constructed from sampling the underlying population distribution.
In that sense, ΣM itself is a random matrix with an unknown distribution. For such a random
matrix, there are several universality classes, which depend on the strength of correlations in the
underlying distribution. These range from extremely strong correlations, which over-constrain the
system and lead to the so called Poisson ensemble (Atas et al., 2013), to the case of no correlations,
which is equivalent to sampling independent elements from a normal distribution, represented by the
Gaussian Orthogonal Ensemble (GOE) (Mehta, 2004). These classes are the only ones allowed by
the symmetry of the matrix XXT , provided that the number of samples and the number of features
are both large. Since the onset of the RMT regime depends on the population statistics, it is a priori
unknown. Determining if real data Gram matrices converge to an RMT class, and to which one they
converge to at finite sample size would inform the correct way to model real world Gram matrices.

Below we review the tools used in our analysis. While we provide an overview of each diagnostic,
we refer the reader to Tao (2012); Kim et al. (2023) for a more comprehensivereview. We then apply
these tools to gain insights into the statistical structure of the datasets.
Spectral Density: The empirical spectral density of a matrix Σ is defined as,

ρΣ(λ) =
1

n

n∑
i=1

δ(λ− λi(Σ)), (5)

where δ is the Dirac delta function, and the λi(Σ), i = 1, ..., n, denote the n eigenvalues of Σ,
including multiplicity. The limiting spectral density is defined as the limit of Eq. (5) as n → ∞.
Level Spacing Distribution and r-statistics: The level spacing distribution measures the probabil-
ity density for two adjacent eigenvalues to be in the spectral distance s, in units of the mean level
spacing ∆. The procedure for normalizing all distances in terms of the local mean level spacing is
often referred to as unfolding. We unfold the spectrum of the empirical covariance matrix ΣM (ρ)
by standard methods (Kim et al., 2023), reviewed in Appendix A. Ultimately, the transformation
λi → ei = ρ̃(λi) is performed such that ei shows an approximately uniform distribution with unit
mean level spacing. Once unfolded, the level spacing is given by si = ei+1 − ei, and its probability
density function p(s) is measured.

The distribution p(s) captures information about the short-range spectral correlations, demonstrating
the presence of level repulsion, i.e., whether p(s) → 0 as s → 0, which is a common trait of the GOE
ensemble, as the probability of two eigenvalues being exactly degenerate is zero. Furthermore, the
level spacing distribution p(s) for certain systems is known. For integrable systems, it follows the
Poisson distribution p(s) = e−s, while for chaotic systems (GOE), it is given by the Wigner surmise

pβ(s) = Zβs
βe−bβs

2

, (6)
where β, Zβ , and bβ depend on which universality class of random matrices the covariance matrix
belongs to (Mehta, 2004). In this work, we focus on matrices that fall under the universality class of
the GOE, for which β = 1, as we show that both real-world data and CGD Gram matrices belong to.

While the level spacing distribution depends on unfolding the eigenspectrum, which is only heuristi-
cally defined and has some arbitrariness, it is useful to have additional diagnostics of chaotic behavior
that bypass the unfolding procedure. The r-statistics, first introduced in Oganesyan and Huse (2007),
is such a diagnostic tool for short-range correlations, defined without the need to unfold the spectrum.

Given the level spacings si, defined as the differences between adjacent eigenvalues · · · < λi <
λi+1 < · · · without unfolding, one defines the following ratios:

ri = Min(si, si+1)/Max(si, si+1) , 0 ≤ ri ≤ 1 . (7)
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The expectation value of the ratios ri takes very specific values if the energy levels are the eigenvalues
of random matrices: for matrices in the GOE the ratio is ⟨r⟩ ≈ 0.536. The value becomes typically
smaller for integrable systems, approaching ⟨r⟩ ≈ 0.386 for a Poisson process (Atas et al., 2013).

Spectral Form Factor: The spectral form factor (SFF) is a long-range observable that probes the
agreement of a given unfolded spectrum with RMT at energy scales much larger than the mean level
spacing. It can be used to detect spectral rigidity, which is a signature of the RMT regime.

The SFF is defined as the Fourier transform of the spectral two-point correlation function (Cotler
et al., 2017; Liu, 2018)

K(τ) = |Z(τ)|2/Z(0)2 ≃ 1

Z

〈
|
∑
i

ρ(ei)e
−i2πeiτ∥2

〉
, (8)

where Z(τ) = Tre−iτΣM . The second equality is the numerically evaluated SFF (Juntajs et al., 2020),
where ei is the unfolded spectrum, and Z =

∑
i |ρ(ei)|2 is chosen to ensure that K(τ → ∞) ≈ 1.

The SFF has been computed analytically for the GOE ensemble, and it reads
KGOE(τ) = 2τ − τ ln(1 + 2τ) for 0 < τ < 1, KGOE(τ) = 1 for 1 ≤ τ . (9)

Several universal features occur in chaotic RMT ensembles, manifesting in Eq. (9) and discussed in
detail in Liu (2018); Kim et al. (2023). We mention here only two: (i) The constancy of K(τ) for
τ ≥ 1 is simply a consequence of the discreteness of the spectrum. (ii) The existence of a timescale
that characterizes the ergodicity of a dynamical system. It is defined as the time when the SFF of the
dynamical system converges to the universal RMT computation. More concretely, it is indicated by
the onset of the universal linear ramp 2τ as in equation 9, which is absent in non-ergodic systems.

4.2 INSIGHTS FROM THE GLOBAL AND LOCAL STATISTICAL STRUCTURE

4.2.1 EIGENVALUES DISTRIBUTIONS

While the scaling behavior of the bulk of eigenvalues is certainly meaningful, it is not the only
piece of information that can be extracted from the empirical covariance matrix. Particularly, it is
natural to inquire whether the origin of the power-law scaling determines also the degeneracy of
each eigenvalue. We can test this hypothesis by comparing the global and local statistics of the bulk
between real-world data and their CGD counterparts.

For the gaussian datasets we generate, there are known predictions for the spectral density, level
spacing distribution, r-statistics and spectral form factor. In these special cases, the empirical
covariance matrix in Eq. (1) is known as a Wishart matrix (Wishart, 1928): Σij,M ∼ Wd(Σ,M).

For a Wishart matrix, the spectral density ρ(λ) is given by the generalized Marčenko-Pastur (MP)
law (Silverstein and Bai, 1995; Couillet and Liao, 2022), which depends on the details of Σ and
specified in Appendix B, for certain limits. For Σ = σ2Id, the spectral density is given explicitly by
the MP distribution as

ρ(λ) =
1

2πσ2

√
(λmax − λ)(λ− λmin)

γλ
for λ ∈ [λmin, λmax] and 0 otherwise , (10)

where σ ∈ R+, λmax/min = σ2(1±√
γ)2, γ ≡ d/M and d,M → ∞.

In Fig. 2, we show that the CGDs capture not only the scaling behavior of the eigenvalue bulk, but
also the spectral density and the distribution of eigenvalues, for ImageNet, CIFAR10, and FMNIST,
measured by the Kullback–Leibler divergence (KL) (Kullback and Leibler, 1951). We further
emphasize this point by contrasting the distributions with the MP distribution, which accurately
captures the spectral density of the UGD datasets. This measurement alone is insufficient to determine
that the system is well approximated by RMT, and we must study several other statistical diagnostics.

4.2.2 LEVEL SPACING DIAGNOSTICS

RMT predicts that certain local and global statistical properties are determined uniquely by symmetry.
Therefore, the empirical covariance matrix must lie either in the GOE ensemble if it is akin to a
quantum chaotic system3 or in the Poisson ensemble, if it corresponds to an integrable system.

3Large random real symmetric matrices belong in the orthogonally invariant class.
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CGD FMNIST, (KL=0.001)
UGD

CGD CIFAR10, (KL=0.006)

UGD

CGD ImageNet, (KL=0.01)

UGD

CGD FMNIST CGD CIFAR10 CGD ImageNet

Figure 2: Top row: Scree plot of Σij,M for several different configurations and datasets. We show the
eigenvalues of the population covariance matrix ΣToe, the eigenvalues for the empirical covariance of the full
real-world dataset with M = 50k and finally the eigenvalues of the empirical covariance using the same ΣToe,
with M = 50k. The datasets used here are (left to right): FMNIST, CIFAR10, ImageNet. Bottom row: Spectral
density for the bulk of eigenvalues for the same datasets, as well as a comparison against UGD of the same
dimensions. The λ̄ indicates normalization over the maximal eigenvalue among the bulk. We also provide the
KL divergence between the CGDs and the real-world data distributions.

Both the level spacing and r statistics (the ratio of adjacent level spacings) probability distribution
functions and SFF for a Wishart matrix in the limit of d,M → ∞ and d/M = γ, are given by the
GOE universality class:

pGOE(s) =
π

2
se−

π
4 s2 , pGOE(r) =

27

4

(r + r2)

(1 + r + r2)5/2
Θ(1− r), ⟨r⟩GOE = 4− 2

√
3, (11)

CGD CIFAR10

CGD FMNIST
UGD

UGD
UGD
CGD
CGD

CGD CIFAR10
CGD FMNIST

UGD

Figure 3: The r probability density (left), the unfolded level spacing distribution (center) and the spectral
form factor (right) of ΣM for FMNIST, CIFAR10, their CGDs, and UGD, obtained with M = 50000. Black
curves indicate the RMT predictions for the GOE distribution from Eq. (11). These results indicate that the bulk
of real-world data eigenvalues belongs to the GOE universality class, and that system has enough statistics to
converge to the RMT predictions.

In Fig. 3, we demonstrate that the bulk of eigenvalues for various real-world datasets behaves as the
energy eigenvalues of a quantum chaotic system described by the GOE universality class. This result
is matched by both the UGD and the CGDs, as is expected of a Wishart matrix. Here, the dataset size
is taken to be M = 50000 samples, and the results show that this sample size is sufficient to provide
a proper sampling of the underlying ensemble.

4.2.3 EFFECTIVE CONVERGENCE

Having confirmed that CGDs provide a good proxy for the bulk structure for a large fixed dataset
size, we may now ask how the statistical results depend on the number of samples.

As discussed in Section 3.1, ΣM can be interpreted as an ensemble average over single realizations
of the true population covariance matrix Σ. As the number of realizations M increases, a threshold
value of Mcrit is expected to appear when the space of matrices that matches the effective dimension
of the true population matrix is fully explored.
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The specific value of Mcrit can be approximated without knowing the true effective dimension by
considering two different evaluation metrics. Firstly, convergence of the local statistics of ΣM , given
by the point at which its level spacing distribution and r value approximately match their respective
RMT ensemble expectations. Secondly, convergence of the global spectral statistics, both of ΣM to
that of Σ and of the empirical parameter αM to its population expectation α.

Here, we define these metrics and measure them for different datasets, obtaining analytical expecta-
tions for the CGDs, which accurately mimic their real-world counterparts.

We can deduce Mcrit from the local statistics by measuring the difference between the empirical
average r value and the theoretical one given by

|rM − rRMT| = δ(M)rGOE, (12)

where rGOE = 4− 2
√
3 ≃ 0.536 for the Gaussian Orthogonal Ensemble.

Next, we compare the results obtained for Mcrit from δ(M) to the ones obtained from the global
statistics by using a spectral distance measure for the eigenvalue bulk given by

|αM − α| = ∆(M), (13)
where αM is the measured value obtained by fitting a power-law to the bulk of eigenvalues for a fixed
dataset size M , while α represents the convergent value including all samples from a dataset.

Lastly, we compare the entire empirical Gram matrix ΣM with the convergent result Σ obtained using
the full dataset by taking

|ΣM − Σ| = ϵ(M)|Σ|, (14)
where |A| is the spectral norm of A, and ϵ(M) will be our measure of the distance between the two
covariance matrices.

 Mcrit  Mcrit

UGD
CGD FMNIST CGD FMNIST

UGD

Figure 4: Left: The r distance metric δ(M) for the bulk of eigenvalues. Center: The α distance metric ∆(M)
for the bulk of eigenvalues. Right: The full matrix comparison metric ϵ(M). We show the results for CIFAR10,
FMNIST, UGD, and the FMNIST CGD as a function of the number of samples. The results show that the bulk
distances decrease as 1/M , where M is the number of samples, asymptoting to a constant value at similar values
of Mcrit ∼ d (black dashed), where d is the number of features.

In Fig. 4, we show the results for each of these metrics separately as a function of the number of
samples M . We find that the δ(M) parameter, which is a measure of local statistics, converges to the
expected GOE value at roughly the same Mcrit as the entirely independent ∆(M) parameter, which
measures the scaling exponent α. The combination of these two metrics confirms empirically that
the system has become ergodic at sample sizes roughly Mcrit ∼ d, which is much smaller than the
typical size of the datasets.

4.2.4 DATASETS ENTROPY

The Shannon entropy (Shannon, 1948) of a random variable a measure of information, inherent to
the variable’s possible outcomes (Rényi, 1956), given by H = −

∑n
i=1 pi log(pi) where pi is the

probability of a given outcome and n is the number of possible states. For covariance matrices, we
define pi given the spectrum as pi = λi/

∑nbulk

i=1 λi, where nbulk is the number of bulk eigenvalues.

In Fig. 5 (left) we plot the Shannon entropies of real and gaussian datasets as a function of the number
of samples. The entropies grow linearly and reach a plateau whose value is related to the correlation
strength, with strong correlation corresponding to low entropy. We see the same entropy for both
the gaussian and real datasets that have the same scaling exponent, implying that they also share the
same eigenvalues degeneracy.

3We omit UGD from the center panel, as α = −1 regardless of M.
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4.2.5 ENTROPY, SCALING AND R-STATISTICS

In Fig. 5 (left), we see that the entropy saturation is correlated with the effective convergence in Fig. 4
as a function of the number of samples, while the middle and right plots show the correlation between
the convergence of the entropy, the scaling exponent and the r-statistics, respectively. We see that real
data and gaussian data with the same scaling exponent exhibit similar convergence behaviour.

 Mcrit
CGD FMNIST
UGD

CGD FMNIST
UGD
CGD FMNIST

Figure 5: Convergence of the various metrics in Eqs. (12) to (14) in relation to entropy for the bulk of
eigenvalues. Left: The Shannon entropy HM as a function of the dataset size M . Center: Convergence of the
normalized α metric ∆M/∆ to its asymptotic value as a function of the normalized entropy HM/H . Right:
Convergence of the normalized r statistics metric δM/δ to its asymptotic value as a function of the normalized
entropy HM/H . We show the results for CIFAR10, FMNIST, MNIST, UGD, and the FMNIST CGD5.

5 CONCLUSIONS

In this work, we have shown that the bulk eigenvalues of Gram matrices for real world data can be
well approximated by a Wishart matrix with a shift invariant correlation structure and a defining
exponent α. The fact that these Gram matrices are universally GOE, regardless of the generating
process, implies that this approximation is good not only for the scaling of the eigenvalues, but also
for their distribution, as the latter can be derived using RMT tools.

We believe our work bridges the gap to producing provable statements regarding NNs beyond the
ubiquitous random feature model, which lacks data-data correlations. Although the random feature
model is an obvious over-simplification, it has been useful in understanding certain aspects of the
NN learning process, related to learning dynamics (Gerace et al., 2021; Mei and Montanari, 2020;
dAscoli et al., 2020), parameter scaling limits (Maloney et al., 2022), weight evolution (Arous et al.,
2018), to name a few. As a basic application, we show in Appendix D how our results are required to
solve the dynamics of even the simplest teacher-student model with correlated data.

We suggest an RMT model of data much closer to the real world, whereby correlations are simply
introduced, but the RMT structure is maintained. This has been done to some extent in the neural
scaling laws literature, but we believe that by re-affirming this approach with much stronger tools, we
allow practitioners to make predictions much more aligned with behaviors found in the real world.

Our work can also aid in understanding the underlying distribution of real data; Not every distribution
will converge to a GOE rather than Poisson with a finite number of samples. This sets constraints
on the moments of the underlying distribution of real images, and can also help understand the data
generation process which conforms to these constraints.

In this manuscript, we focused on the Gram matrix, which, by construction ignores spatial information.
We therefore do not capture the full statistics of the images. The strength of our analysis is in its
generality. By proposing the simplest model for Gram matrices, we can easily extend our analysis
to other domains, such as language datasets, or audio signals, offering valuable insights into the
universality of scaling laws across modalities. Additionally, the interplay between eigenvectors and
eigenvalues in neural networks merits further exploration, as both components likely play crucial
roles in the way neural networks process information.

Finally, while our empirical results indicate that real-world data displays chaotic properties, the exact
source is not evident. We believe that further work is necessary to determine whether it is due to the
underlying strongly correlated structure that is manifest in real-world data, or if it stems from the
chaotic sampling process that generates noise, which is captured in the finer details encoded in the
eigenvalue bulk.

5We omit UGD from the center panel, as α = −1 regardless of M .
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A THE UNFOLDING PROCEDURE

Here, we provide additional details on the unfolding procedure used to produce Fig. 3 in the main
text.

Care must be taken when analyzing the eigenvalues of the empirical covariance matrix ΣM , since
they exhibit unavoidable numerical errors. To control for the effect of numerical errors, we adopted
a robust phenomenological procedure that utilizes the fact that all eigenvalues of ΣM must be non-
vanishing by definition. To ensure we consider only eigenvalues of ΣM unimpacted by edge effects,
we inspect only the bulk spectrum.

Restricting to the bulk removes many eigenvalues of ΣM as many are zero for small M. However,
for larger M when ΣM ’s structure is clearly visible, this is not the case. The procedure ensures
the eigenvalues kept are robust and not significantly impacted by numerical precision. From the
significant eigenvalues of the empirical covariance matrix ΣM , we compute the spectrum λi.
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Figure 6: Bulk eigenvalue distribution for the empirical covariance matrix constructed from M =
50000 samples of FMNIST, before unfolding (left), and after unfolding (right) The unfolded spectrum
displays approximately unit mean, and defined on the interval [0, 1].

The unfolding procedure used to derive the unfolded spectrum is as follows:

1. Arrange the non-degenerate eigenvalues, λi , of the empirical covariance matrix ( ΣM ) in
ascending order.

2. Compute the staircase function S(λ) that enumerates all eigenstates of the empirical covariance
matrix ( ΣM ) whose eigenvalues are smaller than or equal to λ.

3. Fit a smooth curve, denoted by ρ̃(λ) , to the staircase function. Specifically, we used a 12th-order
polynomial as the smooth approximation.

4. Rescale the eigenvalues λi as follows:
λi → ei = ρ̃(λi) (15)

5. By construction, the unfolded eigenvalues ei should show an approximately uniform distribution
with mean level spacing 1. This can be used to check if the procedure was successful by plotting
the unfolded levels and checking the flatness of the distribution.

In Fig. 6, we show an example of the unfolding procedure for the FMNIST dataset. Specifically, we
show the eigenvalue distribution before (P (λi) ) and after (P (ei)) unfolding. Up to the quality of the
smoothing function ρ̃(λi), the unfolded eigenvalue distribution displays a uniform distribution on the
unit interval.
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B SPECTRAL DENSITY FOR WISHART MATRICES WITH A CORRELATED
FEATURES

For z ∈ C\supp(ρΣ), the Stieltjes transform G and inverse Stieljes transform ρΣ are defined as

G(z) =

∫
ρΣ(t)

z − t
dt = − 1

n
E
[
Tr(Σ− zIn)

−1
]
, ρΣ(λ) = − 1

π
lim

ϵ→0+
ℑG(λ+ iϵ), (16)

where E[. . .] is taken with respect to the random variable X and (Σ− zIn)
−1 is the resolvent of Σ.

For the construction, discussed in the main text, and general α, there is no closed form for the
spectral density. However, in certain limits, analytical expressions can be derived from the Stieljes
transform using Eq. (16). Specifically, given a determinstic expression for Σ, the spectral density
can be derived by evoking Theorem 2.6 found in Couillet and Liao (2022), which uses the following
result by Silverstein and Bai (1995)

G(z) =
1

γ
G̃(z) +

1− γ

γz
, G̃(z) =

(
−z +

1

M
Tr
[
Σ(Id + G̃(z)Σ)−1

])−1

, (17)

where γ ≡ d/M and d,M → ∞, and we substitute C from the original theorem with Σ.

The empirical covariance matrix of the Gaussian correlated datasets discussed in the main text, is a
Wishart matrix with a deterministic covariance, and thus fits the requirements of Theorem 2.6, where
ΣToe = S, S = V †TU , and Ti,j = Iij + c|i− j|α. In order to use Eq. (17), it is useful to first find
the singular values of Ti,j . This can be done by using the discrete Laplace transform (extension of
the Fourier transform), leading to

ΣToe(s) = S(s) = 1 + cLi−α

(
e−

s
d

)
− ce−sΦ

(
e−

s
d ,−α, d

)
, (18)

where s = 1 . . . d, Φ(x, k, a) is the Lerch transcendent, and Li(x) is the Poly-log function. Note that
by the definition of S, Eq. (18) is a non-negative function of s. Because the identity matrix commutes
with ΣToe, we may substitute Eq. (18) in Eq. (17) to obtain

G̃(z) =
1

−z + γ
dSd(α)

, (19)

where we define the sum Sd(α) to be

Sd(α) =

d∑
s=1

ΣToe(s)

1 + G̃(z)ΣToe(s)
. (20)

Since the behavior of ΣToe(s) is intrinsically different for positive and very negative α, we separate
the two cases. First, consider the case of α < −1, where correlations decay very quickly. In this
scenario, the covariance matrix reduces to Σ̃Toe(s) ≃ 1.

Here, Sd(α) is given simply by the α → ∞ limit

Sd(α → −∞) =

d∑
k=1

1

1 + G̃(z)
=

d

1 + G̃(z)
, (21)

which is precisely the case of Σ = Id.

Solving Eq. (19) using the above result yields the following expression for G̃(z)

G̃(z) =
−1− z + γ −

√
(−1− z + γ)2 − 4z

2z
. (22)

Finally, substituting Eq. (22) into Eq. (16) leads to the known Marčenko-Pastur (MP) law Couillet
and Liao (2022)

ρ(λ) =
1

2π

√
(λmax − λ)(λ− λmin)

γλ
for λ ∈ [λmin, λmax] and 0 otherwise , (23)

where λmax/min = (1±√
γ)2.

The other interesting limit is that of α > −1, in which the correlations do not decay quickly, and for
d → ∞ the Laplace transform of the Toeplitz matrix simplifies to

ΣToe(s) ≃ c · Γ(1 + α)

(
d

s

)1+α

. (24)
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Figure 7: Theoretical predictions for the bulk spectral density of a CGD matrix against the empirical
densities of FMNIST and the CGD. The green curve represents the generalized MP distribution,
given by the solution to the inverse Steiljes transform in Eq. (27). The CGD curve has a value of
c = 1.14, and γ = 380/1000 since that is the approximate number of bulk eigenvalues.

Using this approximation for the population covariance in Eq. (20) we obtain

G̃(z) =

(
−z +

γ

d

d∑
s=1

c(s/d)−1−α

1 + G̃(z)c(s/d)−1−α

)−1

, ĉ = cΓ(1 + α). (25)

In the d → ∞ limit,we can convert the sum to an integral using the Riemann definition

lim
d→∞

1

d

d∑
i=1

f(i/d) = lim
d→∞

d∑
i=1

f(xi)∆x =

∫ b

a

dxf(x), ∆x =
b− a

d
=

1

d
, (26)

allowing us to write the equation for G̃(z) as

G̃(z) =

(
−z +

γ

d

d∑
s=1

ĉ(s/d)−1−α

1 + G̃(z)ĉ(s/d)−1−α

)−1

≃
(
−z + γ

∫ 1

0

ĉx−1−α

1 + G̃(z)ĉx−1−α
dx

)−1

(27)

=

−z + γ
2F1

(
1, 1

α+1 ; 1 +
1

α+1 ;−
1

ĉG̃(z)

)
G̃(z)

−1

,

where 2F1(a, b; c; z) is the Gaussian hypergeometric function. Eq. (27) is an algebraic equation
which can be solved numerically, or analytically approximated in certain limits.

In Fig. 7, we show the theoretical results for the spectral density of a Wishart matrix with ΣToe

covariance, for a value of α and c matching FMNIST, against the empirical densities for FMNIST
and the matching CGD. The green curve shows the generalized MP distribution given by the inverse
Stieljes transform of Eq. (27).

C ROBUSTNESS OF OUR RESULTS

Here, we discuss some details regarding the robustness of our local and global statistical analyses.

For all of our analyses, we focused on the full Gram matrix, consisting of every sample in a given
dataset. This implies that we only have access to a single realization of a ΣM empirical Gram matrix,
per dataset, thus limiting our ability to perform standard statistics, for instance averaging over an
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ensemble of ΣM , and obtaining confidence bands. This is not an issue in the RMT regime, as the
matrix itself is thought of as an ensemble on to itself, and its eigenvalues have an interesting structure
due to a generalization of the Central Limit Theorem (CLT).

CGD FMNIST

Figure 8: Left: The r statistics distribution for FashionMNIST, comparing M = 50000 with
M = 1000 subsets. In the first case, we obtain only a single realization of the Gram matrix, and
so the r statistics appear more noisy, however, when taking 40 realizations of a smaller subset, still
above Mcrit, we see that the fit to the GOE prediction (green) improves. We will add these figures,
either in the main text or appendices, including goodness of fit measures on the rest of the datasets
studied in the paper. Right: The r statistics distribution for FashionMNIST and its CGD. In red, we
show the singular values of the population covariance, ΣToe used in the main text. In Orange, the
true FMNIST r distribution, obtained by taking 40 different realizations of a M = 1000 subset of the
full dataset, leading to a perfect fit to the GOE prediction (blue). In green, we show the CGD using a
1000 samples as well. This figure illustrates that the deterministic population covariance does not
sufficiently capture all the information that resides in the Gram matrix, while the CGD does.

CGD FMNIST
CGD FMNIST

CGD FMNIST

Figure 9: Left: Scree plot for the eigenvalues of the FashionMNIST Gram matrix (blue), its CGD
(orange) using M = 1000 for 50 runs, and the Toeplitz population covariance matrix (green). Here,
we show that the population and empirical covariance matrices match precisely in spectral scaling.
The Gram matrices for FMNIST and its analogue are obtained by first normalizing the samples (mean
subtraction and dividing by the standard deviation) and the population covariance is rescaled by
a constant factor that depends only on the input dimension d. Right: The eigenvalue distribution
for FashionMNIST, Gram matrix (blue), its CGD (orange) using M = 1000 for 50 runs, and the
Toeplitz population covariance matrix (green). We see that the three distributions are similar, as
can be expected, but that certain local features (such as the spacing between eigenvalues) is poorly
captured by the deterministic population covariance.

We can still attempt to persuade the reader that our results are robust a posteriori, by noting that
the number of samples required to reach the RMT regime is approximately Mcrit ∼ d. This
implies that we can consider sub-samples of the full empirical Gram matrix, consisting of Mcrit, as
ΣMcrit = 1/Mcrit

∑Mcrit

a=1 XiaXaj , and average over multiple sub-sample matrices.
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In Fig. 8, we see an implementation of this process for FMNIST, demonstrating that additional
sampling pushes the distribution to a perfect fit for the GOE r-statistics, while in Fig. 9, we see the
same type of convergence for the eigenvalue distribution.

D UNIVERSALITY IN NEURAL NETWORK ANALYSIS - A TOY EXAMPLE

Universality laws have been employed in various ways to study error universality in neural networks,
for instance in Mei and Montanari (2022); Gerace et al. (2020); Goldt et al. (2022); Hu and Lu
(2022). In this context, one looks directly at the universality of the training and generalisation errors
instead of the features, taking into account the labels and the task. It has also been observed to hold
for correlated Gaussian data in teacher-student settings in Loureiro et al. (2021). Furthermore, it
has been shown that for a simple regression task, the computation of the error reduces to an RMT
problem Wei et al. (2022), which is linked to the work presented in the main text regarding the data
features themselves. In particular, it has been noted that in some cases the structure of the bulk
fully characterises the error, even for multi-modal distributions, see Gerace et al. (2023); Pesce et al.
(2023).

As a self contained example of applying universality in neural network analysis, we call upon an
exceedingly simple machine learning setup, namely, training a linear network using gradient descent
to learn a teacher-student mapping. We show that even in this basic example, it is necessary to
apply the results demonstrated in the main text in order to correctly analyze the system, when data
correlations are present in the underlying population covariance.

Teacher-student models have been the subject of a long line of works (Seung et al., 1992; Watkin
et al., 1993; Engel and Van den Broeck, 2001; Donoho, 1995; El Karoui et al., 2013; Saxe et al., 2014;
Zdeborov’a and Krzakala, 2016; Donoho and Montanari, 2016) , and have experienced a resurgence
of interest in recent years (Mei and Montanari, 2019; Hastie et al., 2019; Cand‘es et al., 2020;
Aubin et al., 2020; Salehi et al., 2020) as a powerful tool to study the high-dimensional asymptotic
performance of learning problems with synthetic data.

The teacher-student model can be described as follows: The teacher uses ground truth information
along with a probabilistic model to generate data which is then passed to the student who is supposed
to recover the ground truth as well as possible only from the knowledge of the data and the model.

Here, we consider a linear teacher-student model, where the data inputs xi ∈ Rdin are identical
independently distributed (iid) normal variables drawn from a Gaussian distribution with non-trivial
population covariance xi ∼ N (0,Σpop). We draw Ntr training samples, and the teacher model
generates output labels by computing a vector product on each input y = w∗ · x, where w∗ ∈ Rdin ,
assuming a perfect, noiseless teacher. The student, which shares the same model as the teacher,
generates predictions ŷ = w · x, where w ∈ Rdin as well. The loss function which measures
convergence of the student to the teacher outputs is the standard MSE loss. Our analysis is done
in the regime of large input dimension and large sample size, i.e., din, Ntr → ∞, where the ratio
λ ≡ din/Ntr ∈ R+ kept constant. The student model is trained with the full batch Gradient Descent
(GD) optimizer for t steps with a learning rate η. The training loss function is given by

Ltr =
1

Ntr

Ntr∑
i=1

∥(w − w∗)Txi∥2 = Tr
[
∆TΣtr∆

]
, (28)

where we define ∆ ≡ w − w∗ as the difference between the student and teacher vectors. Here,
Σtr ≡ 1

Ntr

∑Ntr

i=1 xix
T
i is the din × din empirical data covariance, or Gram matrix for the training

set. The elements of w∗ and w are drawn at initialization from a normal distribution w0, w
∗ ∼

N (0, 1/(2din)). We do not include biases in the student or teacher weights, as they have no effect on
centrally distributed data.

The generalization loss function is defined as its expectation value over the input distribution, which
can be approximated by the empirical average over Ngen randomly sampled points

Lgen = Ex∼N
[
∥(w − w∗)Tx∥2

]
= Tr

[
∆TΣgen∆

]
. (29)

Here Σgen is the covariance of the generalization distribution. Note that in practice the generalization
loss is computed by a sample average over an independent set, which is not equal to the analytical
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expectation value. The gradient descent equations at training step t are
∆t+1 = (I − 2ηΣtr)∆t, (30)

where γ ∈ R+ is the weight decay parameter, and I ∈ Rdin×din is the identity.

Eq. (30) can be solved in the gradient flow limit, setting η = η0dt and dt → 0, resulting in
∆̇(t) = −2η0Σtr∆(t) → ∆(t) = e−2η0Σtrt∆0, (31)

where ∆0 is simply the difference between teacher and student vectors at initialization. It follows
that the empirical losses, calculated over a dataset admit closed form expressions as

Ltr = ∆T
0 e

−4η0ΣtrtΣtr∆0, Lgen = ∆T
0 e

−2η0ΣtrtΣpope
−2η0Σtrt∆0. (32)

Since the directions of both ∆ and the eigenvectors of Σtr are uniformly distributed, we make the
approximation that the projection of ∆ on all eigenvectors is the same, which transforms Eq. (32) to
the simple form

Ltr ≈
1

din

∑
i

e−4η0νitνi , (33)

while the calculation for the generalization loss amounts to

Lgen ≈ 1

din

∑
i,j

e−2η0(νi+νj)t(UΣpopU
†)ij , (34)

where U is a random unitary matrix used to rotate to the basis of Σtr.

Now we turn to the choice of Σpop and the implication for Σtr. As demonstrated in the main text, the
empirical covariance matrix of many real world data-sets can be faithfully modelled by a Wishart
matrix with long range correlations, where the bulk of eigenvalues is described by the population
covariance Σpop = Γ(1+α)(i/d)−1−αδij . As we discussed in Appendix B, we can utilize our RMT
observations to give a closed formula expression for the empirical Gram matrix eigenvalues and
spectral density, in terms of a generalized MP law.

Following this choice of data modelling, and focusing on the bulk eigenvalues alone, it is clear that
the sums Eqs. (33) and (34) are the empirical averages over the function e−4η0νtf(ν), if ν follows
the spectral density derived in Appendix B. We can the solve the training dynamics by approximating
the sum by its respective expectation value,

Ltr(η0, λ, α, t) ≈ Eν∼ρΣpop (λ,α)

[
νe−4η0νt

]
. (35)

In order to proceed further for the generalization loss, we note that the rotation matrices which form
the basis for Σtr are random unitary matrices, drawn from the Haar measure. This implies that we can
glean further information by averaging over training realizations, which will not change the training
trajectory at all, but will provide with an average generalization loss ⟨L⟩U . We utilize the following
property of ensemble averaging over unitary random matrices Nielsen (2002)

Φ(X) ≡ EU [UXU†] ≡
∫
U
dµ(U)UXU† =

1

din
Tr(X)I, (36)

where dµ(U) is the Haar measure. Since the eigenvalue distribution does not change upon this
averaging, the average generalization loss can be expressed as

⟨Lgen⟩U ≈ Tr(Σpop)×
1

din

∑
i

e−4η0νit , (37)

which can be approximated by its expectation value
⟨Lgen(η0, λ, α, t)⟩U ≈ Tr(Σpop)Eν∼ρΣpop (λ,α)

[
e−4η0νt

]
, (38)

completing the dynamical analysis of the loss curves for the model at hand.

Above we gave a toy example of how one may use our results to obtain justified theoretical predictions.
Namely, we solved a simple teacher-student model with power law correlated data, and showed that
the training dynamics and convergence both depend on the spectral density of the Gram matrices
studied in the main text. We obtained analytical expressions for the training and generalization losses.

We stress that on their own, these findings do not attempt to fully explain many aspects of neural
network dynamics and generalization, which depend on additional factors beyond the bulk spectrum,
such as the large outlier eigenvalues, eigenvectors and higher moments.
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Analyzing the interaction between these elements and learning dynamics/generalization remains
an important open question, as recent works have started to demonstrate how outliers impact early
gradient steps and network collapse.

For instance, as shown by Seddik et al. (2020) and verified by our results, the outliers can also
be described by a Gaussian model, but simply not the CGD that we presented in this work, as the
largest eigenvalues are expected to describe the most shared features in the entire data, and do not
demonstrate the local correlation structure of the bulk. They are certainly important in classification
tasks, and in particular their effect, as well as the effect of the different class mean values are the
most important for linear classifiers, as shown in Saxe et al. (2019).

Our approach focused more on the regime where one would like to understand improved performance
using more and more data, where the largest eigenvalues have long been well captured, and the only
performance gain that can be achieved is squeezed out of the bulk alone. This has proven a sufficient
path to construct solvable models which approximate real-world generalization curves Kaplan et al.
(2020); Maloney et al. (2022); Mei and Montanari (2022).
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