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Abstract

Modern machine learning architectures are often highly expressive. They are usually over-
parameterized and can interpolate the data by driving the empirical loss close to zero. We
analyze the convergence of Local SGD (or FedAvg) for such over-parameterized models in
the heterogeneous data setting and improve upon the existing literature by establishing
the following convergence rates. For general convex loss functions, we establish an error
bound of O(1/T ) under a mild data similarity assumption and an error bound of O(K/T )
otherwise, where K is the number of local steps and T is the total number of iterations.
For non-convex loss functions we prove an error bound of O(K/T ). These bounds improve
upon the best previous bound of O(1/

√
nT ) in both cases, where n is the number of nodes,

when no assumption on the model being over-parameterized is made. We complete our
results by providing problem instances in which our established convergence rates are tight
to a constant factor with a reasonably small stepsize. Finally, we validate our theoretical
results by performing large-scale numerical experiments that reveal the convergence behavior
of Local SGD for practical over-parameterized deep learning models, in which the O(1/T )
convergence rate of Local SGD is clearly shown.

1 Introduction

Distributed optimization methods have become increasingly popular in modern machine learning, owing to
the data privacy/ownership issues and the scalability of learning models concerning massive datasets. The
large datasets often make training the model and storing the data in a centralized way almost infeasible.
That mandates the use of distributed optimization methods for training machine learning models. However,
a critical challenge in distributed optimization is to reduce the communication cost among the local nodes,
which has been reported as a major bottleneck in training many large-scale deep learning models (Zhang
et al., 2017; Lin et al., 2017).

One naive approach to tackling this challenge is using the Minibatch Stochastic Gradient Descent (SGD)
algorithm, which generalizes SGD to the distributed optimization setting by averaging the stochastic gradient
steps computed at each node (or client) to update the model on the central server. Minibatch SGD has
been shown to perform well in a variety of applications, see, e.g., Dekel et al. (2012); Cotter et al. (2011).
Recently, Local SGD (Stich, 2018; Mangasarian, 1995) (also known as Federated Averaging) has attracted
significant attention as an appealing alternative to Minibatch SGD to reduce communication cost, where
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during a communication round, several local SGD iterations are performed at each node before the central
server computes the average.

Local SGD has been widely applied in Federated Learning (Li et al., 2020), and other large-scale optimization
problems and has shown outstanding performance in both simulation results (McMahan et al., 2017) as well as
real-world applications such as keyboard prediction (Hard et al., 2018). At the same time, recent works have
studied the theoretical convergence guarantees of Local SGD in various settings (Li et al., 2019; Koloskova
et al., 2020; Gorbunov et al., 2021; Qin et al., 2020; Yang et al., 2021). Specifically, an O( 1

nT ) convergence
rate was shown for strongly convex loss functions (Karimireddy et al., 2020), where n is the number of nodes
and T is the total number of iterations. Moreover, an O( 1√

nT
) convergence rate was shown for general convex

loss functions in Khaled et al. (2020). In addition, an O( 1√
nT

) convergence rate was shown for non-convex
loss functions (Yu et al., 2019; Haddadpour & Mahdavi, 2019). When the Polyak-Lojasiewicz condition is
assumed, Haddadpour & Mahdavi (2019) showed O( 1

nT ) convergence rate for non-convex loss functions and
Maralappanavar et al. (2022) showed O(exp(−T/K2)) convergence rate, where K is the number of local
steps.1 These works made substantial progress toward understanding the theoretical convergence properties
of the Local SGD. Their results are for general models without the over-parameterization (or interpolation)
assumption.

However, despite past efforts, the current results have shortcomings in explaining the faster convergence
of Local SGD compared to Minibatch SGD, which is significant especially when training large-scale deep
learning models (McMahan et al., 2017). In Woodworth et al. (2020b), the authors give a lower bound on the
performance of local SGD that is worse than the Minibatch SGD guarantee in the i.i.d. data setting (i.e.,
when all local loss functions are identical). The situation is even worse in the heterogeneous data setting (i.e.,
when local loss functions are different), which is the setting that we consider in this paper. Local SGD is
shown to suffer from “client drift”, resulting in unstable and slow convergence (Karimireddy et al., 2020), and
it is known that Minibatch SGD dominates all existing analyses of Local SGD. (Woodworth et al., 2020a).

On the other hand, a key observation for explaining the fast convergence of SGD in modern machine learning
was made by Ma et al. (2018) that says modern machine learning architectures are often highly expressive
and are over-parameterized. Based on both theoretical and empirical evidence (Zhang et al., 2021; Chaudhari
et al., 2019), most or all local minima in such over-parametrized settings are also global. Therefore, the
authors in Ma et al. (2018) assumed interpolation of the data: the empirical loss at every data point can be
driven to zero. Under such interpolation assumption, a faster convergence rate of SGD was proven (Ma et al.,
2018; Vaswani et al., 2019). Furthermore, it was shown in Ma et al. (2018) that under certain conditions,
a mini-batch size larger than some threshold m∗ is essentially helpless for SGD. This is important since,
in distributed optimization, it means: for Minibatch SGD, larger batch sizes will not speed up convergence,
while for Local SGD, more local steps can potentially speed up convergence. This provides a new direction
for explaining the fast convergence of Local SGD for large-scale optimization problems as well as its faster
convergence compared to Minibatch SGD.

Motivated by the above studies, in this paper, we formally study the theoretical convergence guarantees of
Local SGD for training over-parameterized models in the heterogeneous data setting. Our results improve
the existing literature and include the natural case of training large-scale deep learning models.

1.1 Related Works

Adopting a Neural Tangent Kernel (NTK) framework of analysis, two recent works, Huang et al. (2021); Deng
et al. (2022) studied the convergence rate of Local SGD for specific over-parameterized Neural Networks and
showed error bounds that are O(exp(−T/K2)) and O(exp(−T/K)) respectively. However, both works focus
on very restrictive and somewhat unrealistic types of Neural Networks. Huang et al. (2021) only considered
two-layer fully connected Neural Networks with ReLU activation, and they require the width of the Neural
Network to be Ω(N4), where N denotes the total number of data samples in the training set2, which is
not very realistic in practical applications. Likewise, Deng et al. (2022) considered fully connected Neural

1The PL condition is a generalization of strong convexity and requires the loss function to exhibit quadratic growth, which is
a very strong assumption.

2This parameter N is written as n in the original work Huang et al. (2021).
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Table 1: Existing theoretical bounds for local SGD for heterogeneous data. GC and NC stand for general
convex and non-convex, n is the number of nodes, T is the number of total iterations, and K is the number
of local steps (R = T/K is the number of communication rounds).

Objective Convergence Rate Over-parameterzied Extra References
Assumption

GC O( 1√
nT

) No / Khaled et al. (2020)
NC O( 1√

nT
) No / Koloskova et al. (2020)

NC O( 1
nT ) No PL condition Haddadpour & Mahdavi (2019)

NC O(exp(−T/K2)) Yes PL condition Maralappanavar et al. (2022)
GC O(1/T ) Yes c > 0 in (5) This work
GC O(K/T ) Yes / This work
NC O(K/T ) Yes / This work

Networks with ReLU activation but with multiple layers, and they require the width of the Neural Network
to be Ω(N16), which is not practical in large-scale problems. As a comparison, we give analysis under the
over-parameterized regime for strongly convex, convex, and non-convex loss functions that include the natural
case of training large-scale Neural Networks but is not limited to it, which is a much broader analysis.

The work Li et al. (2022) also studied the convergence of Local SGD for over-parameterized Neural Networks.
Utilizing the no critical point property of extra-wide Neural Networks shown in Allen-Zhu et al. (2019), they
relaxed the commonly seen L-smoothness assumption of the local functions and proved the convergence
of Local SGD but did not show an explicit convergence rate. Employing a new notion called iterate bias,
Glasgow et al. (2022) recently showed lower bounds for the convergence rate of Local SGD without the
over-parameterized assumption that matches (or nearly matches) the existing upper bounds, showing that
without the over-parameterized assumption, the existing upper bound analysis is not improvable.

1.2 Contributions and Organization

Our main contributions can be summarized as follows:

• For general convex loss functions, we establish an error bound of O(1/T ) under a mild data similarity
assumption and an error bound of O(K/T ), otherwise. Before our work, Zhang & Li (2021) showed
the asymptotic convergence of Local Gradient Descent (GD) in this setting but did not provide
an explicit convergence rate. To the best of our knowledge, the best convergence rate in this
setting was O(1/

√
nT ) (Khaled et al., 2020) which was achieved without assuming the model being

over-parametreized.

• For nonconvex loss functions, we prove an error bound of O(K/T ). To the best of our knowledge,
the best convergence rate in this setting was O(1/

√
nT ) (Koloskova et al., 2020) which was achieved

without assuming the model being over-parametreized.

• We provide two problem instances to show that our convergence rates for the case of general convex
and nonconvex functions are tight up to a constant factor under a reasonably small stepsize scheme.

• we validate our theoretical results by performing large-scale numerical experiments that reveal the
convergence behavior of Local SGD for practical over-parameterized deep learning models, in which
the O(1/T ) convergence rate of Local SGD is clearly shown.

In fact, by establishing the above error bounds, we partially prove the effectiveness of local steps in speeding
up the convergence of Local SGD, thus partially explaining the fast convergence of Local SGD (especially
when compared to Minibatch SGD) when training large-scale deep learning models.

Our analysis builds upon the techniques used in Ma et al. (2018) and Vaswani et al. (2019) for analyzing
centralized SGD in the over-parameterized setting and applies them to analyze both the local descent progress
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and the global descent progress in Local SGD. Specifically, we adopt new techniques in the proof of Theorem
1 that directly relate the local progress with the global progress instead of measuring the progress made by
x̄t, where we made use of the consensus error, i.e., 1

n

∑n
i=1 E∥xt

i −x̄t∥2 to improve convergence, which is in
contrast to prior works. The new technique allows us to use a constant stepsize that does not scale with 1

K
and to establish better bounds. In the proof of Theorem 2, we use the techniques in Ma et al. (2018) and
Vaswani et al. (2019) to bound both the global descent progress and the consensus error of Local SGD. These
techniques may be of independent interest to the readers.

In Section 2, we formally introduce the problem. In Section 3, we state our main convergence results for
general convex and non-convex local functions. We also provide a lower bound to show the tightness of our
convergence rate bounds for reasonably small step sizes. We justify our theoretical bounds through extensive
numerical results in Section 4. Conclusions are given in Section 5. We defer all the proofs to Section A.

2 Problem Formulation

We consider the problem of n nodes [n] = {1, 2, . . . , n} that collaboratively want to learn an over-parameterized
model with decentralized data as the following distributed stochastic optimization problem:

min
x∈Rd

f(x) := 1
n

n∑
i=1

fi(x), (1)

where the function fi(x) ≜ Eξi∼Di
fi(x, ξi) denotes the local loss function, ξi is a stochastic sample that node

i has access to, and Di denotes the local data distribution over the sample space Ωi of node i.
Assumption 1 (Bounded below, L-smooth, unbiased gradient). We assume f(x) is bounded below by f⋆

(i.e., a global minimum exists), fi(x, ξi) is L-smooth for every i ∈ [n], and ∇fi(x, ξi) is an unbiased stochastic
gradient of fi(x).

Moreover, for some of our results, we will require functions fi(x, ξi) to be µ-strongly convex with respect to
the parameter x as defined next.
Assumption 2 (µ-strong convexity). There exists a constant µ ≥ 0, such that for any x, y ∈ Rd, i ∈ [n],
and ξi ∈ Ωi, we have

fi(x, ξi) ≥ fi(y, ξi) + ⟨∇fi(y, ξi), x − y⟩ + µ

2 ∥x − y∥2. (2)

If µ = 0, we simply say that each fi is convex.

The over-parameterized setting, i.e., when the model can interpolate the data completely such that the loss
at every data point is minimized simultaneously (usually means zero empirical loss), can be characterized by
the following two assumptions (Ma et al., 2018; Vaswani et al., 2019):
Assumption 3 (Interpolation). Let x⋆ ∈ arg minx∈Rd f(x). Then, ∇fi(x⋆, ξi) = 0, ∀i ∈ [n], ξi ∈ Ωi.
Assumption 4 (Strong Growth Condition (SGC)). There exists constant ρ such that ∀x ∈ Rd, i ∈ [n],

Eξi∼Di
∥∇fi(x, ξi)∥2 ≤ ρ∥∇f(x)∥2. (3)

Notice that for the functions to satisfy SGC, local gradients at every data point must all be zero at the
optimum x⋆. Thus, SGC is a stronger assumption than interpolation, which means Assumption 3 implies
Assumption 2.

The SGC assumption can be viewed as an adaptation of a mild assumption, Strong Growth with noise, i.e.,

Eξi∼Di
∥∇fi(x, ξi)∥2 ≤ ρ∥∇f(x)∥2 + σ2, (4)

to the over-parameterized/interpolation setting, which implies that the gradient with respect to each point
converges to zero at the optimum, suggesting that σ = 0 in (4). The Strong Growth with noise assumption is
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a generalization of the Bounded Variance assumption commonly used in the stochastic approximation setting,
i.e.,

Eξi∼Di∥∇fi(x, ξi)∥2 ≤ ∥∇f(x)∥2 + σ2.

The work Vaswani et al. (2019) discusses functions satisfying Assumption 4 (SGC) and shows that for linearly
separable data, the squared hinge loss satisfies the assumption. In addition to that, we perform experimental
verification in Appendix B using the same problem setup as in Section 4.1 (training over-parameterized
ResNet18 Neural Network on the Cifar10 dataset) and show that Assumption 4 (SGC) is indeed a valid
assumption for over-parameterized models in practice.

When the local loss functions are convex, we define the following quantity c ∈ [0, 1] that allows us to measure
the dissimilarity among them.
Definition 1. Let Assumption 1, Assumption 2 and Assumption 3 (Interpolation) hold with µ ≥ 0. Let
x∗ ∈ arg minx∈Rd f(x). We define c as the largest real number such that for all x1, . . . xn ∈ Rd and
x̄ := 1

n

∑n
i=1 xi, we have

1
n

n∑
i=1

(fi(xi) − fi(x∗)) ≥ c(f(x̄) − f(x∗)). (5)

If Assumption 2 and Assumption 3 (Interpolation) hold, the left hand side of (5) is always non-negative,
which implies c ≥ 0. In particular, by taking x1 = . . . = xn we have c ≤ 1. Moreover, as the local loss
functions become more similar, c will become closer to 1. In particular, in the case of homogeneous local loss
functions, i.e., fi = f ∀i, using Jensen’s inequality we have c = 1.

In the next section, we will proceed to establish our main convergence rate results for various settings of
strongly convex, convex, and nonconvex local functions.

3 Convergence of Local SGD

This section reviews Local SGD and then analyzes its convergence rate under the over-parameterized setting.

In Local SGD, each node performs local gradient steps, and after every K steps, sends the latest model to the
central server. The server then computes the average of all nodes’ parameters and broadcasts the averaged
model to all nodes. Let T be the total number of iterations in the algorithm. There is a set of communication
times I = {0, K, 2K, . . . , T = RK}3, and in every iteration t, Local SGD does the following: i) each node
performs stochastic gradient updates locally based on ∇fi(x, ξi), which is an unbiased estimation of ∇fi(x),
and ii) if t is a communication time, i.e., t ∈ I, it sends the current model to the central server and receives
the average of all nodes’ models. The pseudo-code for the Local SGD algorithm is provided in Algorithm 1.

3.1 Convergence Rate Analysis

We now state our main result on the convergence rate of Local SGD under over-parameterized settings for
general convex functions.
Theorem 1 (General convex functions). Let Assumption 1, Assumption 2 and Assumption 3 (Interpolation)
hold with µ = 0, and let c be defined as in Definition 1. Moreover, let

wt =
{

1 if t ∈ I or t + 1 ∈ I,

c otherwise,

and define W =
∑T −1

t=0 wt and x̂T ≜ 1
W

∑T −1
i=0 wtx̄(t). If we follow Algorithm 1 with stepsize η ≤ 1

2L and
K ≥ 2, then

E[f(x̂T ) − f∗] ≤ K∥x(0) − x∗∥2

η(cKT + 2(1 − c)T ) .

3To simplify the analysis, we assume without loss of generality that T is divisible by K, i.e., T = RK for some R ∈ N.
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Algorithm 1 Local SGD

1: Input: x(0)
i = x(0) for i ∈ [n], number of iterations T , the stepsize η, the set of communication times I.

2: for t = 0, . . . , T − 1 do
3: for i = 1, . . . , n do
4: Sample ξ

(t)
i , compute ∇fi(x(t)

i , ξ
(t)
i )

5: x(t+ 1
2 )

i = x(t)
i − η∇fi(x(t)

i , ξ
(t)
i )

6: if t + 1 ∈ I then
7: x(t+1)

i = 1
n

∑n
j=1 x(t+ 1

2 )
j

8: else
9: x(t+1)

i = x(t+ 1
2 )

i

10: end if
11: end for
12: end for

As a special case, if we choose η = 1
2L , we have

E[f(x̂T ) − f∗] ≤ 2KL∥x(0) − x∗∥2

cKT + 2(1 − c)T . (6)

The convergence of Local GD for general convex loss functions in the over-parameterized setting was shown
earlier in Zhang & Li (2021) without giving an explicit convergence rate.4 Instead, for similarity parameters
c > 0 and c = 0, we give convergence rates of O(1/T ) and O(K/T ) for Local SGD, respectively. The significant
difference between the convergence rates for the case of c > 0 and c = 0 suggests that having slight similarity
in the local loss functions is critical to the performance of Local SGD, which also complies with the simulation
findings in McMahan et al. (2017). To the best of our knowledge, Theorem 1 provides the first O(1/T ) or
O(K/T ) convergence rates for Local SGD for general convex loss functions in the over-parameterized setting.
On the other hand, in Section 3.2, we provide a problem instance suggesting that in the worst case, the
O(K/T ) convergence rate obtained here might be tight up to a constant factor.

It is worth noting that the speedup effect of local steps when c > 0 is a direct consequence of the O(1/T )
convergence rate shown in Theorem 1. When c = 0, a closer look at (6) and the weights wt reveals that
wt = 1 if t ∈ I or t + 1 ∈ I, implying that at least the first and the last local steps during each communication
round is “effective". This, in turn, shows that local steps can speed up the convergence of Local SGD by at
least a factor of 25.

For the case of non-convex loss functions, we have the following result.
Theorem 2 (Non-convex functions). Let Assumption 1, Assumption 4 (SGC) hold. If we follow Algorithm 1
with stepsize η ≤ 1

3KLρ , and K ≥ 2, we will have

min
0≤t≤T −1

E∥∇f(x̄t)∥2 ≤ 9(f(x0) − f∗)
ηT

.

As a special case, if we choose η = 1
3KLρ , we have

min
0≤t≤T −1

E∥∇f(x̄t)∥2 ≤ 27KLρ(f(x0) − f∗)
T

. (7)

4In fact, a convergence rate of O(1/
√

T ) was discussed in Zhang & Li (2021). However, the argument in their proof seems to
have some inconsistencies. For more detail, please see Section D.

5Similar to Woodworth et al. (2020a), we compare the convergence rate of Local SGD to Minibatch SGD with R = T/K
steps and a batch size K times larger than that of Local SGD. The convergence rate of Minibatch SGD (for over-parameterized
setting), as stated in Theorem 6 in Vaswani et al. (2019), is 4LK(1+ρ)∥x(0)−x∗∥2

T
, which is at least 4 times slower than our rate

when c = 0. On the other hand, according to our analysis and using Lemma 2, we can show the convergence rate of Minibatch
SGD as 2LK∥x(0)−x∗∥2

T
, which is 2 times slower than Local SGD.

6



Published in Transactions on Machine Learning Research (03/2024)

Theorem 2 provides an O(K/T ) convergence rate for Local SGD for non-convex loss functions in the over-
parameterized setting, which is the first O(1/T ) convergence rate for Local SGD under this setting. However,
this rate is somewhat disappointing as it suggests that local steps may not help the algorithm to converge
faster. This is mainly caused by the choice of stepsize η = 1

3KLρ , which is proportional to 1/K. On the other
hand, in Section 3.2, we argue that this choice of stepsize may be inevitable in the worst case because there
are instances for which the choice of stepsize η greater than O(1/K) results in divergence of the algorithm.

3.2 Lower Bounds for the Convergence Rate of Local SGD

In this section, we present two instances of Problem (1) showing that the convergence rates shown in Section
3.1 are indeed tight up to a constant factor. First of all, we restrict to the scenario when Local SGD is
run with stepsize η ≤ 1

L , as it is known from Nesterov et al. (2018) that Gradient Descent can provably
diverge for stepsize η > 1

L
6. Then, we show that when Local SGD is run with stepsize η ≤ 1

L and under the
over-parameterized regime:

1. for general convex loss functions, there exist functions fi satisfying Assumption 1, Assumption 2 and
Assumption 3 (Interpolation) with µ = 0 and c = 0 in Definition 1, such that Local SGD incurs an
error bound of f(x̄T ) − f∗ = Ω(KL/T ).

2. for non-convex loss functions, there exist functions fi satisfying Assumption 1, Assumption 4 (SGC),
such that Local SGD with a stepsize η ≥ 2

LK will not converge to a first-order stationary point.

Proposition 1 (General Convex Functions). There exists an instance of general convex loss functions fi

satisfying Assumption 1, Assumption 2 and Assumption 3 (Interpolation) with µ = 0 and c = 0 in Definition
1, such that Local SGD incurs an error bound of f(x̄T ) − f∗ = Ω(KL/T ).

Proof. Consider Problem (1) in the following setting. Let n = 4R = 4T/K, d = 1, and f1(x) = L
2 x2, f2(x) =

f3(x) = · · · = fn(x) = 0. Then f(x) = L
2n x2, and clearly every fi is L-smooth and satisfies Assumption

2 and Assumption 3 (Interpolation) with µ = 0, c = 0. Suppose Algorithm 1 is run with stepsize η ≤ 1
L ,

and initialized at x0 = 1. We will show that mint∈[T ](f(x̄t) − f∗) ≥ KL
16T . To that end, first we note that

the global optimal point is x∗ = 0, and local gradient steps for all nodes except node 1 keeps local variable
unchanged. Moreover, since η ≤ 1/L, we have xt

1 ∈ [0, 1], ∀t ∈ [T ]. Therefore, {x̄t} is a non-increasing
sequence that lies in interval [0, 1]. Thus, we only need to show f(x̄T ) ≥ KL

16T .

Next, we claim that x̄(r+1)K ≥ n−1
n x̄rK , ∀r. In fact, since x(r+1)K−1/2

1 ≥ 0 and x(r+1)K−1/2
i = x̄rK , for

i = 2, . . . , n, we have

x̄(r+1)K = 1
n

n∑
i=1

x(r+1)K−1/2
i ≥ n − 1

n
x̄rK .

Therefore, we can write

f(x̄T ) = L

2n
(x̄T )2 ≥ L

2n
(n − 1

n
)2R ≥ L

2n
(1 − 2R

n
) = L

16R
= KL

16T
,

which completes the proof.

Proposition 2 (Non-convex Functions). There exists an instance of nonconvex loss functions fi satisfying
Assumption 1, Assumption 4 (SGC), such that Local SGD with a stepsize η ≥ 2

LK will not converge to a
first-order stationary point.

Proof. Consider Problem (1) in the following setting. Let n = 2, d = 1 and f1(x) = L
2 x2, f2(x) = − L

4 x2.
Then f(x) = L

4 x2, and clearly every fi is L-smooth and satisfies Assumptions 4 (SGC) with ρ = 2. Suppose
6We note that η ≤ 1/L is a standard requirement when applying SGD-like algorithms on L-smooth functions, see e.g., Bubeck

(2014). Many numerical experiments also show that stepsize η > 1/L will cause divergence. In other words, when Local SGD is
run with stepsize η > 1

L
, there are problem instances that Local SGD perfroms poorly
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Algorithm 1 is run with stepsize η ≤ 1/L and initialized at x0 = 1. We want to show that for such distributed
stochastic optimization problem, if we run Algorithm 1 for any stepsize η ≥ 2

LK , the gradient norm at any
iterate will be lower bounded by mint∈[T ] ∥∇f(x̄t)∥2 ≥ L2

16 .

First, we note that the global optimal point is x∗ = 0, which is the only critical point. Since η ≤ 1/L, we
have xt

1 ≥ 0, ∀t ∈ [T ], and local gradient steps for node 2 will always increase the value of xt
2. Next, we

claim that if η ≥ 2
LK , then x̄rK ≥ 1, ∀r, and prove it by induction. First notice that x̄0 = 1 ≥ 1. Suppose

x̄rK ≥ 1, then

x(r+1)K− 1
2

2 = x̄rK − η

(r+1)K−1∑
t=rK

∇f2(xt
2)

= x̄rK + η

(r+1)K−1∑
t=rK

L

2 xt
2

≥ 1 + 2
LK

(r+1)K−1∑
t=rK

L

2 = 2.

Since x(r+1)K−1/2
1 ≥ 0, we have

x̄(r+1)K = 1
2(x(r+1)K−1/2

1 + x(r+1)K−1/2
2 ) ≥ 1,

which proves the claim. Therefore, xt
2 ≥ 1, ∀t ∈ [T ] and xt

1 ≥ 0, ∀t ∈ [T ], which implies x̄t ≥ 1/2, ∀t ∈ [T ].
This shows that ∥∇f(x̄t)∥2 ≥ L2/16, as desired.

Remark 1. According to Proposition 2, in the worst case a stepsize of η ≤ O(1/K) for Local SGD is
inevitable. This in view of Vaswani et al. (2019) implies a convergence rate of at most O(K/T ).

4 Numerical Analysis

In this section, we conduct some numerical experiments where we use Local SGD to train an over-parameterized
ResNet18 neural network (He et al., 2016) on the Cifar10 dataset (Krizhevsky et al., 2009). This is a standard
setting of nonconvex functions under over-parameterization. We also conduct another set of experiments
focusing on general convex objective functions, where a perceptron is trained for a synthetic linearly separable
binary classification dataset.

4.1 ResNet18 Neural Network for Cifar10

We distribute the Cifar10 dataset (Krizhevsky et al., 2009) to n = 20 nodes and apply Local SGD to train a
ResNet18 neural network (He et al., 2016). The neural network has 11 million trainable parameters and,
after sufficient training rounds, can achieve close to 0 training loss, thus satisfying the interpolation property.

For this set of experiments, we run the Local SGD algorithm for R = 20000 communication rounds with
a different number of local steps per communication round K = 1, 2, 5, 10, 20 and report the training error
of the global model along the process. We do not report the test accuracy of the model, which is related
to the generalization of the model and is beyond the scope of this work7. Following the work Hsieh et al.
(2020), we also use Layer Normalization (Ba et al., 2016) instead of Batch Normalization in the architecture
of ResNet18 while keeping everything else the same.

We first sort the data by their label, then divide the dataset into 20 shards and assign each of 20 nodes 1
shard. In this way, ten nodes will have image examples of one label, and ten nodes will have image examples
of two labels. This regime leads to highly heterogeneous datasets among nodes. We use a training batch
size of 8 and choose stepsize η to be 0.1 based on a grid search of resolution 10−2. The simulation results

7Without data augmentation, the final test accuracy of the model in this set of experiments is around 80%.
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are averaged over 3 independent runs of the experiments. We show the global landscape of the result in
figures 1a and 1b, where the training loss and the reciprocal of the training loss over the communication
rounds are reported, respectively. The decrease in the training loss can be divided into Phase 1, Phase 2, and
a transition phase between them, as shown in figures 3a, 3b, and 3c.

Phase 1: As figure 3a shows, in the first ≈ 3000 communication rounds, the reciprocal of the training loss
grows nearly linearly with respect to the number of communication rounds. This is strong evidence of the
O(1/R) = O(K/T ) convergence rate of Local SGD as we stated in Theorem 2. We can also see that in this
phase, the decrease of training loss depends only on the number of communication rounds R regardless of the
number of local steps K, thus validating Theorem 2.

Phase 2: After ≈ 6000 communication rounds, as the training loss further decreases (below 0.01), we can
observe from figures 3c and figure 2 a clear linear dependence of the reciprocal of the training loss and the
total iterations T (notice in figure 2 all lines share similar slope). This corresponds to a O(1/T ) convergence
rate of Local SGD. In fact, we conjecture that in this phase, the model has moved close enough to the
neighborhood of a global optimal point, which simultaneously minimizes the loss at every single data point.
Therefore, every local step moves the model closer to that global optimal point regardless of at which node it
is performed, causing the aggregation step to be no longer meaningful and resulting in the convergence rate
of O(1/T ) instead of O(1/R). Another possible explanation is that in Phase 2, the iterates eventually reach
a locally convex region and so resemble the convex regime.

The experimental results provided here have two important implications:

• First, from the upper bound in Theorem 2, lower bound in Proposition 2 and the experimental results
in Figures 1,2,3, we can imply that for over-parameterized deep learning models, Local SGD indeed
converges at a O( 1

T ) rate8, which is a strong characterization of the algorithm’s actual convergence
rate.

• Second, the phenomenon of the two phases also gives us an important empirical implication that in
real implementations of the Local SGD algorithm, it might be better to adjust the number of local
steps during each communication interval to enforce more frequent communication at first (as in
Phase 1 the O(1/R) = O(K/T ) convergence rate suggests local steps are more or less useless) and
less frequent communication later on when one observes the training has entered Phase 2 (by, e.g.,
observing training loss ≤ 0.05).

To conclude, we have performed large scale experiments that reveal the convergence behavior of Local SGD
for practical over-parameterized deep learning models. We observe from the experiments that the decrease of
the training loss can be divided into Phase 1, Phase 2, and a transition phase between them. The convergence
rate of Local SGD in practice can be O(K/T ) (Phase 1), or O(1/T ) (Phase 2), or somewhere in between
(transition phase). Experimental results in Phase 1 strongly support our theoretical findings in Theorem 2,
while experimental results in Phase 2 partially support it and also raise new interesting questions.

4.2 Perceptron for Linearly Separable Dataset

We generate a synthetic binary classification dataset with N = 10000 data-points uniformly distributed in a
d = 100 dimensional cube [−1, 1]d. Then, a hyperplane is randomly generated, and all data points above it
are labeled ‘1’ with other data points labeled ‘−1’, after which the two sets of points with different labels are
"pulled apart" to add a small gap between them. This ensures the dataset is linearly separable and satisfies
the interpolation property. We divide the dataset among n = 16 nodes and apply Local SGD to distributedly
train a perceptron to minimize the finite-sum squared-hinge loss function:

f(w) = 1
N

N∑
i=1

max(0, 1 − yix
T
i w)2.

8If taken into consideration the factor of K, then the rate is between O(K/T ) (Phase 1), and O(1/T ) (Phase 2).
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(a) (b)

Figure 1: 1a: Training loss vs. communication rounds with different local steps. 1b: 1/Training loss vs.
communication rounds with different local steps.

Figure 2: 1/(Training loss) vs. Total number of iterations T with different local steps.

We partition the dataset in three different ways to reflect different data similarity regimes and evaluate the
relationship between training loss, communication rounds, and local steps for Local SGD under each of the
three regimes. As in Section 4.1, we plot both the training loss and 1/(training loss) vs. the number of
communication rounds. We stop the algorithm after at most 106 communication rounds or if the training loss
is below 10−4. We choose stepsize η = 0.075.

1. Even partition: The dataset is partitioned evenly to all nodes, resulting in i.i.d. local data
distribution. The simulation results for this regime are shown in Figure 5a,4a.

2. Pathological partition: The dataset is partitioned by 17 hyperplanes that are parallel to the initial
hyperplane. Distances between adjacent hyperplanes are the same. Each node gets assigned one of
the 16 ’slices’ of data points. This is a highly heterogeneous data partition since 15 out of the 16
nodes will have only one label. The simulation results for this regime are shown in Figure 5b,4b.

3. Worst case partition: All data points are assigned to one node. The other 15 nodes have an
empty dataset. This partition corresponds to the setting in Example 1. The simulation results for
this regime are shown in Figure 5c,4c.

An O(1/T ) Convergence Rate: In general, we can clearly observe that the reciprocal of the training
loss grows linearly with respect to the number of communication rounds, as well as a linear speedup of the

10
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(a) (b) (c)

Figure 3: 1/(Training loss) vs. communication rounds for different phases. 3a: Phase 1. 3b: Transition phase.
3c: Phase 2.

convergence rate with the number of local steps in all three regimes. This implies an O( 1
KR ) = O(1/T )

convergence rate for Local SGD, validating our result in Theorem 1. The simulation results suggest that
despite the O(K/T ) worst-case upper bound, the optimistic O(1/T ) convergence rate in Theorem 1, as well
as the effectiveness of local steps, can generally be expected in practice. We also notice cases where Local
SGD converges faster than the O(1/T ), we remark that this is also reasonable since Theorem 1 only provides
a lower bound for the convergence rate of Loca SGD.

Effect of Data Heterogeneity: While in general, Local SGD enjoys an O( 1
KR ) = O(1/T ) convergence

rate, data heterogeneity is still a key issue and will cause the algorithm to become slower. Comparing the
convergence rate of Local SGD under the three different partition regimes, especially the slow convergence of
the worst case regime stands in contrast with the similar fast convergence of the other two regimes, we can
see that having at least a little data similarity among different nodes is crucial for the convergence rate of the
algorithm, as we predicted in Theorem 1.

(a) (b) (c)

Figure 4: Training loss vs. communication rounds with different local steps under the three data partition
regimes. 4a: even partition regime. 4b: pathological partition regime. 4c: worst case partition regime.

5 Conclusion

We studied the theoretical convergence guarantees of Local SGD for training over-parameterized models in the
heterogeneous data setting and established tight convergence rates for strongly-convex, convex and non-convex
loss functions. Moreover, we validated the effectiveness of local steps in speeding up the convergence of
Local SGD in various settings both theoretically and using extensive simulations. However, our theoretical
results fall short of explaining the effectiveness of local steps in the later phase of training non-convex
over-parameterized Neural Networks, as observed in our experiments. We leave this important issue as a
future research direction. Our results partially explain the fast convergence of Local SGD (especially when
compared to Minibatch SGD) when training large-scale deep learning models.

11



Published in Transactions on Machine Learning Research (03/2024)

(a) (b) (c)

Figure 5: 1/(Training loss) vs. communication rounds with different local steps under the three data partition
regimes. 5a: even partition regime. 5b: pathological partition regime. 5c: worst case partition regime.

As future work, one interesting direction would be to generalize our results to the partial node participation
setting, which is practical in federated learning. Another interesting direction would be to further study and
quantify the two-phase convergence phenomenon of Local SGD when training large-scale neural networks,
as we discussed in Section 4.1. This may need combining the interpolation assumption with the special
architectures of neural networks (see, e.g., (Allen-Zhu et al., 2019; Du et al., 2019)).
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A Proof of Theorems

Define ḡ(t) := 1
n

∑n
i=1 ∇fi(x(t)

i , ξ
(t)
i ) as the average of the stochastic gradients evaluated at all nodes, and

rt := E∥x̄(t) − x∗∥2 as the expected distance to the optimum solution.

A.1 Preliminary Propositions

Proposition 3. Let f : Rd → R be an L-smooth and convex function and x∗ ∈ arg minx∈Rd f(x). Then,

1
2L

∥∇f(x)∥2 ≤ f(x) − f(x∗) (8)

Proposition 4. Let x̄ = 1
n

∑n
i=1 xi. For any x′ ∈ Rd, we have

n∑
i=1

∥xi − x′∥2 =
n∑

i=1
∥xi − x̄∥2 + n∥x̄ − x′∥2. (9)

As a consequence, we have the following inequalities:
n∑

i=1
∥xi − x̄∥2 ≤

n∑
i=1

∥xi∥2, (10)

∥x̄ − x′∥2 ≤ 1
n

n∑
i=1

∥xi − x′∥2. (11)

A.2 Proof of Theorem 1

Let x∗ ∈ arg minx∈Rd f(x). From Assumptions 3 (Interpolation) and 2, we have ∇fi(x⋆, ξi) = 0, which
implies

x∗ ∈ arg min
x∈Rd

fi(x, ξi), ∀i ∈ [n], ξi ∈ Ωi

.

We first bound the progress made by local variables xi in one local SGD update as follows:
Lemma 2. Let Assumption 1, Assumption 2 and Assumption 3 (Interpolation) hold with µ = 0. If we follow
Algorithm 1 with stepsize η ≤ 1

2L , we will have

Eξt
i
∥xt+ 1

2
i − x∗∥2 ≤ ∥xt

i − x∗∥2 − η(fi(xt
i) − fi(x∗)) (12)

Proof.

Eξt
i
∥xt+ 1

2
i − x∗∥2

= Eξt
i
∥xt

i − x∗ − η∇fi(xt
i, ξt

i)∥2

= ∥xt
i −x∗∥2 − 2η⟨xt

i −x∗, ∇fi(xt
i)⟩ + η2Eξt

i
∥∇fi(xt

i, ξt
i)∥2

(2)(8)
≤ ∥xt

i − x∗∥2 − 2η(fi(xi) − fi(x∗) + µ

2 ∥xt
i − x∗∥2)

+ η2Eξt
i
[2L(fi(xt

i, ξt
i) − fi(x∗, ξt

i))]
= (1 − ηµ)∥xt

i − x∗∥2 − (2η − 2Lη2)(fi(xi) − fi(x∗))
(η≤ 1

2L ,µ=0)
≤ ∥xt

i − x∗∥2 − η(fi(xt
i) − fi(x∗)).
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Next, we bound the progress made by x̄ in one communication round as follows:
Lemma 3. Let Assumption 1, Assumption 2 and Assumption 3 (Interpolation) hold with µ = 0. Assume that
the nodes follow Algorithm 1 with stepsize η ≤ 1

2L , and let wt = 1 if t ∈ I or t + 1 ∈ I, and wt = c otherwise.
Then, for r = 0, 1, . . . , R − 1, we have

E∥x̄(r+1)K−x∗∥2 ≤E∥x̄rK−x∗∥2−η

(r+1)K−1∑
t=rK

wtE[f(x̄t)−f∗].

Proof.

E∥x̄(r+1)K − x∗∥2 = E∥ 1
n

n∑
i=1

x(r+1)K− 1
2

i − x∗∥2

(9)= 1
n

n∑
i=1

E∥x(r+1)K−1
2

i −x∗∥2− 1
n

n∑
i=1

E∥x(r+1)K−1
2

i −x̄(r+1)K∥2

(12)
≤ 1

n

n∑
i=1

E
[
∥xrK

i − x∗∥2 − η

(r+1)K−1∑
t=rK

(fi(xt
i) − fi(x∗))

]
− 1

n

n∑
i=1

E∥x(r+1)K− 1
2

i − x̄(r+1)K∥2

(5)
≤ E∥x̄rK − x∗∥2 − η

n

n∑
i=1

E[fi(x̄rK) − fi(x∗)] − η

n∑
i=1

(r+1)K−2∑
t=rK+1

cE[f(x̄t) − f(x∗))]

− η

n

n∑
i=1

E[fi(x(r+1)K−1
i ) − fi(x∗)] − 1

n

n∑
i=1

E∥x(r+1)K− 1
2

i − x̄(r+1)K∥2

=E∥x̄rK −x∗∥2−η

(r+1)K−2∑
t=rK

wtE[f(x̄t) − f∗]− η

n

n∑
i=1

E[fi(x(r+1)K−1
i )−fi(x∗)]

− 1
n

n∑
i=1

E∥x(r+1)K− 1
2

i −x̄(r+1)K∥2

︸ ︷︷ ︸
T1

.

Since T1 ≥ 0, we can bound T1 as

T1 = 1
n

n∑
i=1

E∥x(r+1)K−1
i − x̄(r+1)K−1 − η∇fi(x(r+1)K−1

i , ξ
(r+1)K−1
i ) + ηḡ(r+1)K−1∥2

= 1
n

n∑
i=1

E∥x(r+1)K−1
i − x̄(r+1)K−1∥2 + η2 1

n

n∑
i=1

E∥fi(x(r+1)K−1
i , ξ

(r+1)K−1
i ) + ḡ(r+1)K−1∥2

−2η
1
n

n∑
i=1

E[⟨x(r+1)K−1
i −x̄(r+1)K−1,∇fi(x(r+1)K−1

i )−ḡ(r+1)K−1⟩]

≥ 1
n

n∑
i=1

E∥x(r+1)K−1
i − x̄(r+1)K−1∥2 − 2η

1
n

n∑
i=1

E
[
fi(x̄(r+1)K−1) − fi(x(r+1)K−1

i )

+ L

2 ∥x(r+1)K−1
i − x̄(r+1)K−1∥2

]
(η≤ 1

2L )
≥ 2η

1
n

n∑
i=1

E[fi(x̄(r+1)K−1) − fi(x(r+1)K−1
i )]

= 2ηE[f(x̄(r+1)K−1)] − 2η

n

n∑
i=1

E[fi(x(r+1)K−1
i )].
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Therefore,

T1 ≥ T1

2 ≥ηE[f(x̄(r+1)K−1)]− η

n

n∑
i=1

E[fi(x(r+1)K−1
i )].

Substituting back we get

E∥x̄(r+1)K − x∗∥2

≤ E∥x̄rK − x∗∥2 − η

(r+1)K−2∑
t=rK

wtE[f(x̄t) − f∗] − η

n

n∑
i=1

E[fi(x(r+1)K−1
i ) − fi(x∗)]

−
(

ηE[f(x̄(r+1)K−1)] − η

n

n∑
i=1

E[fi(x(r+1)K−1
i )]

)

= E∥x̄rK − x∗∥2 −η

(r+1)K−2∑
t=rK

wtE[f(x̄t)−f∗]−ηE[f(x̄(r+1)K−1) − f(x∗)]

= E∥x̄rK − x∗∥2 − η

(r+1)K−1∑
t=rK

wtE[f(x̄t) − f∗].

To complete the proof of Theorem 1, using Lemma 3, we can write

E∥x̄(T ) − x∗∥2 = E∥x̄RK − x∗∥2

≤E∥x̄(R−1)K − x∗∥2 − η

RK−1∑
t=(R−1)K

wtE[f(x̄t) − f∗]

≤ · · · ≤ ∥x(0) − x∗∥2 − η

T −1∑
t=0

wtE[f(x̄t) − f∗].

Therefore, we can write

1
W

T −1∑
t=0

wtE[f(x̄t) − f∗] ≤∥x(0) − x∗∥2

ηW
= K∥x(0) − x∗∥2

η(cKT + 2(1 − c)T ) .

Theorem 1 now follows from Jensen’s inequality.

A.3 Proof of Theorem 2

Define Vt := 1
nE

∑n
i=1 ∥x(t)

i − x̄(t)∥2 to be the expected consensus error and et := Ef(x̄(t)) − f(x∗) to be the
expected optimality gap. Moreover, let ht := E∥∇f(x̄(t))∥2 be the expected gradient norm of the average
iterate.

We first establish the following descent lemma to bound the progress of x̄t in one iteration:

Lemma 4. Let Assumption 1, Assumption 4 (SGC) hold. If we follow Algorithm 1 with stepsize η ≤ 1
3KLρ

and K ≥ 2, we have

et+1 ≤ et − 1
3ηht + 2

3ηL2Vt (13)
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Proof.

Ef(x̄(t+1)) = Ef(x̄(t) − η
1
n

n∑
i=1

∇fi(x(t)
i , ξ

(t)
i )

≤ Ef(x̄(t)) − ηE⟨∇f(x̄(t)), 1
n

n∑
i=1

∇fi(x(t)
i , ξ

(t)
i )⟩︸ ︷︷ ︸

T1

+ L

2 η2E∥ 1
n

n∑
i=1

∇fi(x(t)
i , ξ

(t)
i )∥2

︸ ︷︷ ︸
T2

.

To bound the term T1, we can write

E⟨∇f(x̄(t)), 1
n

n∑
i=1

∇fi(x(t)
i , ξ

(t)
i )⟩

=E⟨∇f(x̄(t)), 1
n

n∑
i=1

∇fi(x(t)
i )⟩

=E∥∇f(x̄(t))∥2 + E⟨∇f(x̄(t)), 1
n

n∑
i=1

(∇fi(x(t)
i ) − ∇fi(x̄(t))⟩

≥1
2E∥∇f(x̄(t))∥2 − 1

2n

n∑
i=1

E∥∇fi(x(t)
i ) − ∇fi(x̄(t))∥2

≥1
2E∥∇f(x̄(t))∥2 − L2

2n

n∑
i=1

E∥x̄(t) − x(t)
i ∥2

=1
2ht − L2

2 Vt,

where in the third inequality we have used ⟨a, b⟩ ≥ − 1
2 ∥a∥2 − 1

2 ∥b∥2. Next, in order to bound T2, we have

E∥ 1
n

n∑
i=1

∇fi(xt
i, ξt

i)∥2 ≤ 1
n
E

n∑
i=1

∥∇fi(xt
i, ξt

i)∥2

(3)
≤ ρ

n
E

n∑
i=1

∥∇f(xt
i)∥2

≤2ρ

n
E

n∑
i=1

∥∇f(x̄t)∥2 + 2ρ

n
E

n∑
i=1

∥∇f(xt
i) − ∇f(x̄t)∥2

≤2ρht + 2L2ρVt.

Putting everything together and subtracting f(x∗) from both sides of the resulting inequality, we get

et+1 ≤ et − η(1
2ht − L2

2 Vt) + Lη2

2 (2ρht + 2L2ρVt)
(η≤ 1

6Lρ )
≤ et − 1

3ηht + 2
3ηL2Vt.

Next, we bound the consensus error Vt using the following lemma:
Lemma 5. Let Assumption 1, Assumption 4 (SGC) hold. Assume the nodes follow Algorithm 1 with stepsize
η ≤ 1

3KLρ , and define τ(t) := maxs≤t,s∈I s. Then,

Vt ≤ 3η2Kρ

t−1∑
j=τ(t)

hj . (14)
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Proof.

nVt = E
n∑

i=1
∥xt

i − x̄t∥2

=
n∑

i=1
E∥(xτ(t)

i −
t−1∑

j=τ(t)

η∇fi(xj
i , ξj

i )) − (x̄τ(t)−
t−1∑

j=τ(t)

ηḡj)∥2

=
n∑

i=1
E∥ −

t−1∑
j=τ(t)

η∇fi(xj
i , ξj

i ) +
t−1∑

j=τ(t)

ηḡj∥2

(10)
≤

n∑
i=1

E∥
t−1∑

j=τ(t)

η∇fi(xj
i , ξj

i )∥2

≤ η2(t − τ(t))
n∑

i=1

t−1∑
j=τ(t)

E∥∇fi(xj
i , ξj

i )∥2

(3)
≤ η2(t − τ(t))ρ

n∑
i=1

t−1∑
j=τ(t)

E∥∇f(xj
i )∥2

≤ 2η2(t − τ(t))ρ
n∑

i=1

t−1∑
j=τ(t)

E
[
∥∇f(x̄j) − ∇f(xj

i )∥2 + ∥∇f(x̄j)∥2
]

≤ 2nη2Kρ

t−1∑
j=τ(t)

hj + 2nη2KρL2
t−1∑

j=τ(t)

Vj .

Since η ≤ 1
3KLρ , we have

Vt ≤ 2η2Kρ

t−1∑
j=τ(t)

hj + 1
4Kρ

t−1∑
j=τ(t)

Vj .

Unrolling all Vj , j = τ(t), . . . , t − 1, and noting that ρ ≥ 1, we have

Vt ≤ 1
4Kρ

t−1∑
j=τ(t)

Vj + 2η2Kρ

t−1∑
j=τ(t)

hj

≤ 1
4Kρ

t−2∑
j=τ(t)

Vj2η2Kρ

t−1∑
j=τ(t)

hj + 1
4Kρ

( 1
4Kρ

t−2∑
j=τ(t)

Vj + 2η2Kρ

t−2∑
j=τ(t)

hj)

≤ · · · ≤ (1 + 1
4Kρ

)K2η2Kρ

t−1∑
j=τ(t)

hj

≤ 3η2Kρ

t−1∑
j=τ(t)

hj .
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To complete the proof of Theorem 2, we combine (13) and (14) by applying a telescoping sum on (13) to get

1
3η

T −1∑
t=0

ht ≤ e0 + 2
3ηL2

T −1∑
t=0

Vt

(14)
≤ e0 + 2ηL2

T −1∑
t=0

η2Kρ

t−1∑
j=τ(t)

hj

= e0 + 2η3L2Kρ

T −2∑
j=0

hj

τ(j)+K∑
t=j+1

1

≤ e0 + 2η3L2K2ρ

T −2∑
t=0

ht

(η≤ 1
3KLρ )
≤ e0 + 2

9ρ
η

T −1∑
t=0

ht

≤ e0 + 2
9η

T −1∑
t=0

ht.

Therefore, we have

1
T

T −1∑
t=0

ht ≤ 9e0

ηT
⇒ min

0≤t≤T −1
ht ≤ 9e0

ηT
.

This completes the proof for Theorem 2.

B Experimental Verification of Assumption 4 (SGC)

Here, we perform experimental verification of Assumption 4 (SGC) with the same problem setup as in Section
4.1. For verification purposes, we use centralized SGD to train the aforementioned ResNet18 neural network
on the Cifar10 dataset for a total of 1000 epochs, and we plot the global gradient norm and the maximum of
per-sample gradient norm of the model as well as the ratio between the two gradient norms in Figure 6.

It is shown in Figure 6 that throughout the training, the ratio r = maxi,ξi
∥∇fi(x,ξi)∥

∥∇f(x)∥ never exceeds 4000, and
after a transient phase quickly stablizes aroung 500. Since Assumption 4 requires that

Eξi∼Di
∥∇fi(x, ξi)∥2 ≤ ρ∥∇f(x)∥2, ∀i,

while we always have

Eξi∼Di
∥∇fi(x, ξi)∥2 ≤ max

ξi

∥∇fi(x, ξi)∥2

and in most cases

Eξi∼Di
∥∇fi(x, ξi)∥2 << max

ξi

∥∇fi(x, ξi)∥2,

we have verified that Assumption 4 (SGC) is a valid assumption for over-parameterized models in practice.

C O(exp(−T )) Convergence for Strongly Convex Loss Functions

For strongly convex loss functions, an error bound of O(exp(−T )) can be achieved under the over-parameterized
setting, where T is the total number of iterations. Before our work, the best-known convergence rate was
O(exp(−T/K)) (Qu et al., 2020; Koloskova et al., 2020).
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Figure 6: The global gradient norm, maximum of per-sample gradient norm and the ratio between them vs.
number of epochs. The red line is the global gradient norm and the orange line is the maximum of per-sample
gradient norm, they are plotted in log scale whose values correspond tothe y axis on the left. The blue line is
the ratio between the two norms whose value correspond tothe y axis on the right.

Theorem 3 (Strongly convex functions). Let Assumption 1, Assumption 2 and Assumption 3 (Interpolation)
hold with µ > 0. If we follow Algorithm 1 with stepsize η ≤ 1/L, we will have

E∥x̄(T ) − x∗∥2 ≤
(
1 − ηµ

)T ∥x(0) − x∗∥2,

where x̄(t) := 1
n

∑n
i=1 x(t)

i is the average of all nodes’ iterates at time step t. As a special case, if we choose
η = 1/L, then

E∥x̄(T ) − x∗∥2 ≤
(
1 − µ

L

)T ∥x(0) − x∗∥2. (15)

It was shown in Qu et al. (2020); Koloskova et al. (2020) that Local SGD achieves a geometric convergence
rate for strongly convex loss functions in the over-parameterized setting. However, both Qu et al. (2020) and
Koloskova et al. (2020) give an O(exp(−T/K)) convergence rate, while our convergence rate is O(exp(−T )).
The difference between these two rates is significant because the former rate implies that local steps do not
contribute to the error bound (since the convergence rate essentially depends on the number of communication
rounds R = T/K). In contrast, the latter rate suggests local steps can drive the iterates to the optimal
solution exponentially fast. The difference between the rates in Qu et al. (2020); Koloskova et al. (2020) and
Theorem 3 can be explained by the fact that Qu et al. (2020); Koloskova et al. (2020) use a smaller stepsize
of η = O( 1

KL ), while our analysis allows a larger stepsize of η = 1/L.

C.1 Proof of Theorem 3

Let x∗ ∈ arg minx∈Rd f(x). From Assumptions 3 (Interpolation) and 2, we have ∇fi(x⋆, ξi) = 0, which
implies x∗ ∈ arg minx∈Rd fi(x, ξi), ∀i ∈ [n], ξi ∈ Ωi.

We first bound the progress made by local variables xi in one local SGD update as follows:
Lemma 6. Let Assumption 1, Assumption 2 and Assumption 3 (Interpolation) hold with µ > 0. If we follow
Algorithm 1 with stepsize η ≤ 1

L , we will have

Eξt
i
∥xt+ 1

2
i − x∗∥2 ≤ (1 − ηµ)∥xt

i − x∗∥2 (16)
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Proof.

Eξt
i
∥xt+ 1

2
i − x∗∥2

= Eξt
i
∥xt

i − x∗ − η∇fi(xt
i, ξt

i)∥2

= ∥xt
i −x∗∥2 − 2η⟨xt

i −x∗, ∇fi(xt
i)⟩ + η2Eξt

i
∥∇fi(xt

i, ξt
i)∥2

(2)(8)
≤ ∥xt

i − x∗∥2 − 2η(fi(xi) − fi(x∗) + µ

2 ∥xt
i − x∗∥2)

+ η2Eξt
i
[2L(fi(xt

i, ξt
i) − fi(x∗, ξt

i))]
= (1 − ηµ)∥xt

i − x∗∥2 − (2η − 2Lη2)(fi(xi) − fi(x∗))
(η≤ 1

L )
= (1 − ηµ)∥xt

i − x∗∥2.

Using Lemma 6 and Proposition 4, we can bound the progress made by x̄ in one communication round as
follows:
Lemma 7. Let Assumption 1, Assumption 2 and Assumption 3 (Interpolation) hold with µ > 0. If we follow
Algorithm 1 with stepsize η ≤ 1

L , we will have

E∥x̄(r+1)K − x∗∥2 ≤ (1 − ηµ)KE∥x̄rK − x∗∥2,

for r = 0, 1, . . . , R − 1.

Proof.

E∥x̄(r+1)K − x∗∥2 = E∥ 1
n

n∑
i=1

x(r+1)K− 1
2

i − x∗∥2

(11)
≤ 1

n

n∑
i=1

E∥x(r+1)K− 1
2

i − x∗∥2

(16)
≤ 1

n

n∑
i=1

(1 − ηµ)KE∥xrK
i − x∗∥2

= (1 − ηµ)KE∥x̄rK − x∗∥2.

The proof of Theorem 3 now follows by simply noting that

E∥x̄(T ) − x∗∥2 = E∥x̄RK − x∗∥2

≤ (1 − ηµ)KE∥x̄(R−1)K − x∗∥2

≤ · · · ≤ (1 − ηµ)T ∥x(0) − x∗∥2

C.2 Perceptron for Linearly Separable Dataset, Strongly Convex Case

To evaluate the performance of Local SGD for the over-parameterized model with strongly-convex loss
functions, we adopt the same experimental setup as in Section 4.2 but add a correction term to the squared-
hinge loss to make it strongly convex and run another experiment on the pathologically partitioned dataset.
The result is shown in Figure 7. The O(exp(−KR)) = O(exp(−T )) convergence rate can be observed from
the figure, validating our result in Theorem 3.
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Figure 7: Local SGD for the over-parameterized model with strongly-convex loss functions. Training loss vs.
communication rounds with different local steps under the pathological data partition regimes. Training loss
is in log scale.

D Discussion on the proof in Zhang & Li (2021)

In Section 9.3.2. Discussion on Theorem 3 of the paper Zhang & Li (2021), the authors stated that
Mn ≥ mini

Ti

L2
i
, which is essential to their result in the Discussion, which can be interpreted as an O( 1√

T
)

convergence rate. However, this inequality does not hold. A simple counterexample is when one of the
local nodes finds the optimal point after the first local step, in which case hi,n(0) = 1 and hi,n(t) = 0 for
all t = 1, 2, . . . Ti − 1, and Mn = mini αi

∑Ti−1
t=0 hi,n(t) ≤ αi = 1

L2
i
. However, this contradicts the claimed

inequality Mn ≥ mini
Ti

L2
i
.
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