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ABSTRACT

Recent developments in large language models (LLMs), have significantly ad-
vanced healthcare applications, especially the electronic health record (EHR) pro-
cessing, and demonstrated great potential in disease prediction. EHR are dig-
ital records of patients’ medical data, including historical visits, diagnoses, lab
tests, and treatments, organized across hospital visits for clinical and research use.
Despite LLMs’ great potentials, previous methods to predict disease with EHRs
based on LLMs face several persistent challenges: (1) they often concatenate short
and fixed number of EHR visits (e.g., the latest five) from individual patients and
then feed it to LLMs due to either limited input context length or LLMs’ capabil-
ities to understand long context, which limits the disease prediction with longitu-
dinal EHR; (2) most prior work focuses on clinical note and overlook EHR’s in-
herent nature like heterogeneity; and (3) EHR are characterized by heterogeneous
patterns of missingness (e.g., the missingness of various vital signs). To tackle
these problems, we propose a novel progressive memory-augmented framework
HeLoM that consists of three key steps: For the first challenge, in a current EHR
visit, HeLoM first adaptively fetches previously refined memory (i.e., the patient’s
previous visits) most relevant to the current disease prediction and then refine this
visit to update its memory bank. For the second challenge, we incorporate the het-
erogeneous data, vital signs, from EHR to enhance the prediction performance.
For the third challenge, we introduce two imputation strategies to handle missing
data: one leverages LLMs to generate plausible values, and the other applies linear
interpolation algorithms to estimate the missing value. By collecting a real-world
longitudinal EHR data on Type-2 diabetes from the hospital of our institution, we
show the superior performance of HeLoM in disease prediction in terms of both
prediction accuracy and early detection. Comprehensive ablation studies under-
score the importance of generating missing values from heterogeneous sources,
and provide insights into building reliable systems for real-world EHRs.

1 INTRODUCTION

The integration of artificial intelligence (Al) into healthcare, particularly through large language
models (LLMs) such as GPT-4 (Achiam et al,, |2023) and DeepSeek-R1 (Guo et al.l [2025)), has
profoundly transformed modern health management. Emerging research highlights the potential of
LLMs to enhance clinical decision-making through the use of electronic health records (EHRs) (Li
et al., 2024). EHRs are comprehensive, longitudinal, and digital repositories of patients’ health
information created and maintained in clinical settings. EHRs are characterized by their richness and
scale, but also by challenges such as incompleteness, heterogeneity, irregular sampling across visits,
and variability in clinical documentation. These features make EHRs both a powerful resource for
predictive modeling, and a complex domain requiring careful data preprocessing and methodological
adaptation (Yang et al.| |2022; Theodorou et al., [2023). EHRs often span decades of patient history,
which makes the data not only large in volume but also longitudinal in nature, containing sequential
observations across irregular time points. Therefore, this rich, heterogeneous, and longitudinal data
offers both immense potential and significant challenges for disease modeling and prediction (Bush
et al.,|2017; L1 et al., 2020).
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To fully harness the potential of LLMs for disease prediction using EHRs, several key challenges
must be addressed. First, EHR data is inherently longitudinal and often contains lengthy clinical
notes. Existing methods typically limit input to a fixed number of visits (e.g., the most recent five)
due to resource constraints, the context length limitations of LLMs, or the models’ ability to reason
over long sequences. Clinical notes from these visits are concatenated and fed into the model,
which restricts adaptability. For example, LLMs may require more (or fewer for early detection)
patients’ visits to capture sufficient diagnostic context and preserve continuity across time (Hager
et al., 2024; Zhu et all |2024). Second, EHRs encompass diverse heterogeneous data, including
structured measurements such as vital signs (e.g., temperature, weight, body mass index) recorded
at each visit, alongside unstructured clinical notes. This heterogeneity and irregularity complicate
integration and necessitate robust strategies to extract clinically meaningful information. Third,
EHRs are characterized by heterogeneous patterns of missingness. Prior work has highlighted the
importance of missing data in healthcare and emphasized the need for principled methods to address
it (Zhou et al., 2025)).

To jointly address these challenges, we first collect heterogeneous and longitudinal EHR data from
Type-2 diabetes (T2D) patients and the control group (non-T2D) spanning 10 years in EPIC sys-
tems from a hospital. Motivated by prior evidence that memory mechanisms can help LLMs store
and retrieve information efficiently (Liang et al. |2024; |Zhang et al., 2023)), we design an adaptive
memory-augmented framework that addresses the unique challenges of heterogeneous and longi-
tudinal EHR data. Specifically, each patient visit is iteratively fed into the LLM. For the current
visit, LLMs will utilize the past visits from the “memory bank” that are important for the current
prediction as the context. This combined input (past memory and the current patient visit) is then
fed into the LLM to predict disease. Unlike previous methods, these settings enable LLMs to adapt
to different patients, where different numbers of visits are dynamically used to ensure better disease
prediction. It also helps effectively expand the usable context length for the EHRs, since the input
will only include the current visit and a refined important prior visits. In addition, to deal with the
heterogeneous data, we incorporate the patient’s vital signs from each visit as supplementary infor-
mation. However, these vital signs are often incomplete, resulting in missing or irregular values that
complicate reliable modeling. To handle the incomplete vital signs, we explore two complementary
imputation strategies: (1) leveraging the reasoning capabilities of the LLM to infer and complete
the missing values. (2) applying an linear interpolated imputation workflow. Taken together, we
contribute to the following directions:

* We propose a novel memory-augmented inference-based framework, referred to as HeLoM,
that enables LLMs to perform iterative disease prediction without any fine-tuning or gra-
dient updates. Our approach dynamically refines each patient visit note one at a time and
accumulates the previously refined notes in a memory bank through a step-by-step pipeline,
supporting efficient inference across varying visit lengths.

* We introduce a heterogeneity-aware prompting mechanism that incorporates incomplete
structured data (e.g., vital signs) with clinical notes. Then we employ two complemen-
tary imputation strategies: leveraging the LLM reasoning ability and classic interpolated
imputation methods to generate the missing values. These approaches improve prediction
robustness, particularly in handling heterogeneous and missing data.

* Due to the limited number of complete longitudinal EHRs available to the public, we collect
a real-world EHR dataset spanning 10 years (2011-2021) from a hospital for T2D. Empir-
ical analyses show that our methods achieve superior performance in disease prediction
with earlier diagnosis visits, particularly under data scarcity, imbalanced visit frequency,
and heterogeneous EHR settings.

2 RELATED WORKS

Recent advances in LLMs has opened up new possibilities for healthcare applications. Notably,
GPT-4 has demonstrated exceptional performance in answering medical questions, showcasing
strong zero-shot and few-shot reasoning capabilities on expert-level content (Nori et al., [2023a)).
Building on this, Medprompt (Nori et al.l [2023b)) introduces specialized prompting strategies that
enhance the effectiveness of general foundation models like GPT-4. For medical LLMs, [Yang
et al.[(2022) introduced GatorTron, the first clinical LLM trained from multi-billion parameter scale,
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achieving substantial improvements over previous general methods. Google’s Med-PaLM was the
first LLM to reach the passing threshold on the US Medical Licensing Examination (USMLE) (Sing-
hal et al.| [2022)). Its successor, Med-PaLM 2, combined a more powerful base model (PaLM 2),
medical domain-specific fine-tuning, and tailored prompting strategies. It achieved expert-level per-
formance, received higher ratings from physicians for quality in answering patient questions (Sing-
hal et al., 2025). In addition, while LLMs demonstrate strong potential for handling heterogeneous
EHR data, only a limited number of methods have been proposed to effectively integrate these di-
verse sources. For example, [Zhang et al.| (2024) proposed a heterogeneous mixture of LoRA expert
modules that aggregate architecturally diverse models. Similarly, |Liu et al.|(2025) extended LoRA
by incorporating rank heterogeneity to enhance both communication and computational efficiency.
Another line of research focuses on managing heterogeneity of data. Wang et al.| (2025a) intro-
duced semantic operators to enable heterogeneous data analytics in data lakes, while |Zhang et al.
(2025) proposed two novel disaggregation techniques to jointly address model and data heterogene-
ity. Efforts have also been made to leverage knowledge graphs and graph neural networks (GNNs):
Ko et al.| (2024) exploited knowledge graphs to fill missing values, and |Gao et al.| (2025b) em-
ployed GNNs to encode complex relationships within heterogeneous data. In addition, |Gao et al.
(2025a) combined LLM-based summarization and classification with GNN-based representation to
handle diverse data. Several works studied domain-specific scenarios where heterogeneity is salient.
For instance, [Wang et al.| (2025b)) introduced a temporal batching prediction framework to im-
prove efficiency in medical Q&A. More broadly, [Tang et al.|(2024b) developed a large graph model
with a heterogeneous graph instruction tuning paradigm to capture complex relational heterogeneity.
While these approaches demonstrate promising directions, they often require complex architectures,
typically substantial labeled data, and computational resources. Furthermore, it has yet to show
robustness in heterogeneous and relatively large real-world EHR datasets.

Besides these, longitudinal EHRs present unique challenges due to their temporal complexity. In
handling longitudinal clinical data, LLMs have shown promising capabilities in modeling tempo-
ral sequences, and interpreting medical texts, highlighting their applicability in health care |Loni
et al| (2025). For example, Thompson et al.| (2023) utilized Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) to retrieve the related clinical records. The text is then used to infer
the hospital stays and ICU episodes tasks. [Pellegrini et al.| (2025) proposed feature-wise and visit-
wise modeling approaches to capture the temporal structure of longitudinal EHRs. However, they
only use regular expressions to map the related disease and then aggregate the results. Tang et al.
(2024a) assigned specialized LLM agents to extract signs and symptoms relevant to AD and con-
ducted domain-specific evaluations. |Cui et al.| (2025) leveraged a multi-agent framework, where
a predictor and a critic agent are used to enhance reasoning and prediction performance. These
methods have shown improvements over previous methods, however, such a setup incurs substantial
computational and latency costs, which may limit its practicality in real clinical settings. Recent
work has also leveraged longitudinal EHRs with LLMs to support the detection of pancreatic can-
cer (Park et al.,2025)). However, the authors note that features within the 0-3 month diagnostic win-
dow carry disproportionately strong signals, raising concerns of optimistic performance estimates.
Furthermore, these methods often come with a high cost of computational resources and careful
design of a module to model the features. We therefore introduce HeLoM, a memory-augmented
framework that enables LLMs to iteratively refine patient visits without fine-tuning. It also combines
heterogeneity-aware prompting with two different imputation strategies to enhance performance.

3 METHODS

HeLoM aims to address: (1) difficulty in adaptively capturing long and irregular temporal sequences
across heterogeneous modalities, (2) limited scalability due to the context length restrictions of
LLMs, and (3) insufficient strategies for handling pervasive missing data in clinical records.

3.1 FRAMEWORK OVERVIEW

HeLoM (Figure 1)) builds on the idea of adaptive memory—augmented inference for longitudinal
EHR. Unlike conventional approaches that either truncate patient history to a few visits or naively
concatenate all encounters into a single context, both of which risk losing critical temporal depen-
dencies or overwhelming the model’s input window, our method relies on a lightweight and evolving
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external memory. This memory is iteratively refined during test time, ensuring that information most
relevant for disease prediction is retained while redundant or outdated details are pruned. The frame-
work operates as a cyclic pipeline composed of three tightly coupled modules:

* Generation of missing structured data: incomplete vital signs are completed either by
LLM-based synthesis, which generates plausible values in context, or by linear interpola-
tion for continuous signals. The structured data are then formatted through text templates
and appended after clinical notes. The integration is used for disease prediction and mem-
ory update.

* Disease prediction with “memory bank”: each new patient visit is processed jointly

with curated past memory, current visit and the imputed vital signs, enabling the model to
leverage longitudinal continuity while adapting to variable visit lengths.

* Memory refinement: after each prediction, the model synthesizes the current encounter
and existing memory into a compact representation that will guide subsequent inferences.

This iterative process allows the framework to co-evolve its predictions and memory representations
under a single LLM over time, effectively bridging the gap between zero-shot inference and the
cumulative reasoning needed in longitudinal EHR analysis.

Visitt = visitt+1

BMI: 24.61 kg/m2 BMI: 24.61 kg/im2
Pulse: 81.0 bpm

Blood pressure: 131/75 mmHg
Blood pressure: 131/75 mmHg
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Figure 1: Pipeline of the Proposed Framework HeLLoM.

3.2 GENERATION OF MISSING STRUCTURED DATA

Clinical records such as vital signs are inherently structured and usually incomplete, with values
missing due to irregular documentation practices or measurement errors. In this study, we focus on
a standard set of commonly recorded vital signs for T2D in EHRs and hospital settings, including
Temperature, Weight, FiO2, Pain, BMI, SpO2, and others. Different from prior work that primar-
ily relies on clinical notes (Hager et al., 2024} |Zhu et al., [2024), HeLoM explicitly leverages these
structured data by imputing missing values through context-aware strategies and integrating them
into prompts for downstream prediction and memory update. The detailed prompt design for in-
corporating heterogeneous data is provided in Appendix [C] For data missingness, our framework
examines two imputation mechanisms to ensure reliability. Formally, let the vital sign vector v, at

visit ¢ be:

v, = [U]EBMI)7U£BP)’Ut(Sp02)7.”} ’ (1)
where missing entries occur irregularly across visits. We consider two strategies for imputing the
missing values: (1) LLM-based imputation. Leveraging the reasoning capacity of the LLM, miss-
ing values of the vital signs are generated by conditioning on the current incomplete values, clin-
ical note, and the LLM’s memory bank (Sec. 3.4). Based on that, we can finalize the formula:
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¢ = GD(vy, @y, my—1), where GD, x4, and m;_1 stand for “Generate Data”, current visit note,
and previous memory, respectively. The imputed values are appended to the encounter note in a
standardized format, ensuring that structured and unstructured modalities are jointly available for
downstream prediction. This approach captures temporal continuity and patient-specific patterns,
yielding values that are both clinically plausible and contextually consistent. The prompt can be
accessed in Appendix [C|(2) Interpolation-based imputation. Each patient’s data is conceptualized
as a matrix V', where an element v; ; corresponds to the j-th vital sign measured during the ¢-th visit.
When a value v, ; was missing, it was imputed based on the temporally adjacent non-missing values
for that same vital sign. The estimated value, denoted as ?; j, was calculated using the following
formula:

t—t,

Urj = V5 + —
J p

(Veg,5 — V) (2)

In this equation, vy, ; represents the last valid observation of the vital sign prior to the missing entry

(at visit ¢,), and vy, ; is the next subsequent valid observation (at visit ¢7). The term ttf_ft”p

as a temporal weight, ensuring that the imputed value is proportionally influenced by its proximity
to the two neighboring data points. This method preserves the underlying temporal trend within the
series for each vital sign.

SErves

3.3 PROGRESSIVE DISEASE PREDICTION WITH MEMORY BANK

Given an t-th EHR visit z;, = (24,1, %2, ..., %) from a patient’s EHRS D,agient, after imputing
missing vital signs with information from both the current encounter and previously refined memory,
our framework integrates three complementary sources for early disease prediction: (1) the imputed
set of vital signs v; from the current visit, (2) raw clinical notes and structured features from the
current encounter (e.g., lab values, medications), and (3) the memory distilled from prior visits in the
LLM’s “memory bank”, where each refined note is sequentially stored and cumulatively retrieved
to inform subsequent predictions. The prediction of ¢-th visit pred, can be formulated as:

pred, = LLM (xy, Ty, y_1), 3)

where m;_; is the previous memory. These components are seamlessly combined through a pre-
defined template (See Appendix |[C) and fed into the LLM to determine whether the patient has
the target disease. This design ensures adaptability to both cold-start patients (with no prior mem-
ory, mo = &) and longitudinal scenarios, where multiple visits are available, predictions benefit
from the accumulated context encoded in m;_;. These prompts can be seen in Appendix [C} Un-
like approaches that rely on continuous retraining, our method performs test-time adaptation purely
through contextual enrichment. This strategy avoids expensive gradient updates, while still enabling
the system to adjust its reasoning across sequential inputs. By reusing distilled longitudinal context,
the framework reduces repetitive errors and provides more consistent predictions across time. Fur-
ther, the structured design allows seamless incorporation into clinical pipelines. Since predictions
are generated without retraining, they can be continuously updated as new visits occur, supporting
real-time monitoring in EHR systems.

3.4 PROGRESSIVE UPDATE OF MEMORY

One key step is to update memory dynamically after each visit. Rather than simply appending all
past notes, which quickly leads to input overload, HeLoM synthesizes a concise, evolving represen-
tation that captures salient information for future predictions. At each visit ¢, the new memory state
is generated as using the same LLM from Secs. [3.2]and 3.3}

thME(fCtyﬂtamt—l), €]

where ME(-) denotes the process of Memory Evolution with structured vitals, unstructured notes,
and the prior memory. Inspired by Dynamic Cheatsheet (Suzgun et al 2025)), this refinement is
guided by the format prompt and the following three principles: (1) Contextual relevance: prioritiz-
ing information that is essential for longitudinal reasoning, such as abnormal trajectories or recurring
symptoms, while discarding redundant or short-lived fluctuations. (2) Compactness: compressing
visit-level evidence into structured descriptors or concise textual snippets, ensuring the evolving
memory remains manageable and retrievable. (3) Adaptivity: incorporate predictive cues identified
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at inference (e.g., whether a certain lab combination strongly influenced the model’s decision) so
that future predictions can reuse these insights. In practice, the refinement step operates as a two-
way filter: it selects useful information from the current visit and simultaneously re-evaluates older
memory content. Outdated or less relevant patterns can be down-weighted or pruned, preventing
the accumulation of irrelevant noise. This ensures that the memory reflects a balanced, high-yield
summary rather than a chronological archive. The prompt can be seen in Appendix [C]

The iterative refinement mechanism is especially advantageous in EHR data, where heterogene-
ity and redundancy are pervasive. First, repeated lab tests across visits may produce overlapping
information, while narrative notes often contain boilerplate text. By distilling these inputs into con-
cise, context-aware memory states, the model avoids being overwhelmed by irrelevant repetition.
Another benefit of this design is that it creates a feedback loop between prediction and memory
update. Each prediction not only generates an outcome pred, but also leaves a trace in the evolv-
ing summary. Over time, this co-adaptation ensures that the system becomes more aligned with
both patient-specific patterns and broader population-level regularities, showing potential for early
disease detection. Finally, from a systems perspective, this refinement allows the framework to
scale efficiently. Since the evolving memory remains bounded in size and updated iteratively, the
model can be deployed in real-world clinical settings without exceeding computational budgets or
context-window limitations. This provides a practical pathway for continuous monitoring of chronic
conditions such as diabetes.

4 EXPERIMENTS

4.1 SETUP

Dataset. Due to the limited full metadata for EHRs in the Table 1: Patient Visits and Disease
public, we curated a longitudinal EHR dataset in collabora- Onset for T2D Dataset.

tion with the hospital of our institution to support T2D re- Statistic Value
search. The cohort comprises 354 adult patients (over 18 years Avg #Visit 6.15
old) who received care between 2010 and 2021, each with at Max #Visit 44
least two outpatient visits within 24 months. The dataset has Min #Visit 3
roughly half patients diagnosed with T2D and the other half Median #Visits 4
serving as the control group. The Avg Disease Onset is the av- Avg Disease Onset ~ 5.33

erage visit index when an adult is detected as T2D. The dataset

consists of vital signs and free-text clinical notes, and visit dates. Notes that are shorter than 150
words or those explicitly containing T2D diagnoses were excluded. Laboratory measures in the
notes include glucose, HbAlc, lipid profiles, and complete blood counts, while vital signs cover
BMLI, blood pressure, pulse, respiration, and others. This heterogeneous dataset provides a founda-
tion for developing predictive models of T2D from longitudinal EHRs. Some basic statistics of the
T2D dataset are shown in Table[T] and more details of the dataset can be seen in Appendix B}

Baselines and Backbone LLMs. We compare our approach with (1) the common paradigm that
concatenates all available visit records of a patient as much as the model’s context length allows in
chronological order into a single textual input, preserving the temporal sequence of clinical infor-
mation. The resulting text is then fed into LLMs with a context window of either 16k or 24k tokens.
The models are prompted to analyze the patient’s clinical history and directly generate a diagnosis-
related response (e.g., whether the patient has T2D); and (2) PromptEHR (Zhu et al.| [2024) which
designs a new prompting-based approach for structured longitudinal EHR data, flexibly modeling
variable numbers of visits. The input also includes both structured features and free-text.

We utilized a diverse range of mainstream LLMs as the backbone prediction models, including
DeepSeek-R1-0528-Qwen3-8B (Guo et al., |2025), Mistral-7B-Instruct-v0.2 (Jiang et al.l [2023)),
Llama3.1-8B-Instruct (Grattafiori et al.l 2024) and one medical LLM MediPhi-Instruct (Corbeil
et al., 2025). MediPhi from Microsoft is fine-tuned on various medical corpora and specializes in
the medical and clinical domains. They are noted as DeepSeek, Mistral, Llama3.1, and MediPhi for
short, respectively. The decoding parameters were set as follows: temperature = 0, and top-p = 1.0.
All other parameters, including top-k and repetition penalty, were kept at their default value. Infer-
ence processing was under the vLLM libranﬁ All the prompts used can be found in Appendix

'https://github.com/vllm-project/vlim
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Metrics. To evaluate HeLoM, we use the following metrics: (1) classification metrics for disease
prediction, including Accuracy, Precision, Recall, and F1-score; (2) Avg PV: the average visit in-
dex when the model predict the disease. This is to examine HeLoM’s potential in early disease
prediction.

4.2 MAIN RESULTS

We evaluate five prompting paradigms: Baseline-16K, Baseline-24K, PromptEHR, and HeLoM
with two data imputation methods for generating the missing values, denoted as HeLoM w. LLM’s
V for using LLM and HeL.oM w. Interp’s V for using linear interpolation. The best and second-best
results are in bold and underlined font in Table[2] respectively.

Table 2: Performance of models in different prompting paradigms. BL stands for the baseline.

Model Variant Accuracy Precision Recall Fl-score
BL-16K 0.579 0.679 0.299 0.416
BL-24K 0.590 0.705 0.311 0.431
PromptEHR 0.672 0.665 0.695 0.680
DeepSeek  HeLoM w. LLM’s V 0.638 0.592 0.893 0.712
HeLoM w. Interp’s V 0.588 0.551 0.949 0.697
PromptEHR w/o V 0.623 0.770 0.337 0.469
HeLoM w/o V 0.554 0.530 0.955 0.681
BL-16K 0.672 0.814 0.446 0.577
BL-24K 0.658 0.841 0.390 0.533
PromptEHR 0.623 0.770 0.337 0.469
Mistral HeLoM w. LLM’s V 0.701 0.696 0.712 0.704
HeLoM w. Interp’s V 0.692 0.705 0.661 0.682
PromptEHR w/o V 0.625 0.770 0.339 0.471
HeLoM w/o V 0.667 0.695 0.593 0.640
BL-16K 0.590 0.670 0.356 0.465
BL-24K 0.607 0.732 0.339 0.463
PromptEHR 0.497 0.476 0.057 0.101
Llama3.1 HeLoM w. LLM’s V 0.669 0.622 0.864 0.623
HeLoM w. Interp’s V 0.613 0.569 0.927 0.705
PromptEHR w/o V 0.497 0.476 0.057 0.101
HeLoM w/o V 0.664 0.614 0.881 0.724
BL-16K 0.610 0.617 0.582 0.599
BL-24K 0.590 0.595 0.565 0.580
PromptEHR 0.521 0.509 0.846 0.636
MediPhi  HeLoM w. LLM’s V 0.621 0.606 0.695 0.647
HeLoM w. Interp’s V 0.596 0.583 0.672 0.625
PromptEHR w/o V 0.623 0.770 0.337 0.469
HeLoM w/o V 0.569 0.559 0.648 0.600

We can observe that HeLoM markedly improve Recall and F1-score, while maintaining competi-
tive levels of Accuracy and Precision. For instance, with DeepSeek as the backbone LLM, HeLLoM
achieves the highest F1-score of 0.712, which substantially surpass other methods. This highlights
that, while baselines (including PromptEHR) often achieve relatively high Precision, they suffer
from lower Recall. By contrast, our methods strike a better balance between Precision and Recall,
yielding stronger Fl-scores. In disease prediction, improvements in Recall are particularly mean-
ingful: failing to detect high-risk patients (false negatives) is far more detrimental than producing
additional false positives. An additional insight is that the LLM-based imputation method often
achieves the better Recall and F1-score across models, while still maintaining competitive Preci-
sion. In Llama3.1 with PromptEHR, we observe a huge drop in Recall and F1-score, because 94%
of its prediction is non-T2D. For MediPhi, although PromptEHR attains the highest Recall (0.846),
it does so at the cost of markedly reduced Precision and overall accuracy, same for DeepSeek. In
contrast, HeLoM provides a more balanced performance profile across different backbone LLMs,
as evidenced by consistently higher Fl-scores (e.g., 0.647 in HeLoM with LLM’s V vs. 0.636 in
PromptEHR) in MediPhi. These findings suggest that the principled design of HeLoM —memory-
augmented, heterogeneity, and missingness handling — enables it to achieve a more clinically desir-
able balance between sensitivity and reliability, offering more consistent identification of high-risk
patients compared to baseline methods.
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4.3 AVERAGE VISIT INDEX FOR DISEASE DETECTION

This experiment evaluates HeLoM’s ability for early Table 3: Average visit index for T2D detec-
disease detection across longitudinal visits. At visit tion of various models.
t, HeLoM has access to patient’s records up to ¢ and Model Methods for Vitals | Avg PV

Fhen outputs a di.sease.prediction; once the prediction Without V 161
is positive, the iteration stops and the correspond- DeepSeek Original V 1.86
ing visit index is recorded as the disease detection cepoee LLM’s V 1.70
point. This setting mirrors realistic clinical moni- Interp’s V 1.43
toring, where patients are sequentially assessed until Without V 2.38
diagnosis becomes evident. Here, we do not com- Mistral Original V 2.06
pare with the baselines as the number of visits used 11;1];1;4 5 \\// %;g
for their disease prediction depends on the LLM’s _e pS ’
context length. Rather, we compare HeLoM with its g{thoui v }gg
variants—excluding vital signs and using original in- Llama3.1 riginal v ’
. . LLM’s V 1.50
complete vitals (Ori V). Interp’s V 1.40
Table [3| shows the average visit index (Avg PV) for Without V 1.98
disease prediction, where a lower value indicates an  \ediPhi Original V i 23
earlier detection. HeLLoM consistently predicts T2D IL LM ,S‘V ’
nterp’s V 1.76

at between the first and second visit on average; for
instance, DeepSeek-HeLLoM with interpolated vitals detects onset at 1.43 visits on average compared
to 1.86 with Ori V, while MediPhi-HeLoM achieves 1.74 visits using LLM-generated vitals. For
Llama3.1, using the original incomplete vital signs yields earlier prediction results than HeLoM.
This might be attributed to Llama3.1’s internal capabilities of inferring the missing values even
without data imputation. Together with results in Sec. 4.2, we show that HeLoM not only presents
better prediction performance but also earlier prediction results.

4.4 ABLATION STUDY

Impact of Data Imputation. To study the impact of HeLoM’s imputation methods, we further
conduct a series of ablation experiments. We examined the following additional settings: (1) base-
lines (BL-24K and PromptEHR) with LLM-generated vital signs. We choose LLM-based over
interpolation-based data imputation as the former generally achieves better performance. (2) HeLoM
with original incomplete vital signs (HeLoM w. Ori V). By comparing performance across these
various settings, we can assess whether imputation of vital signs can improve models’ performance.

Table 4: Ablation Experiments For Imputation of Vital Signs.

Model Methods Accuracy Precision Recall F1-score
BL-24K + LLM’s V 0.588 0.559 0.831 0.668
DeepSeek  PromptEHR + LLM’s V 0.658 0.639 0.729 0.680
HeLoM w. Ori V 0.646 0.603 0.859 0.709
BL-24K + LLM’s V 0.689 0.825 0.480 0.607
Mistral PromptEHR + LLM’s V 0.658 0.630 0.746 0.683
HeLoM w. Ori V 0.686 0.723 0.605 0.658
BL-24K + LLM’s V 0.585 0.561 0.780 0.652
Llama3.1  PromptEHR + LLM’s V 0.557 0.672 0.220 0.332
HeLoM w. Ori V 0.632 0.618 0.844 0.713
BL-24K + LLM’s V 0.559 0.565 0.514 0.538
MediPhi ~ PromptEHR + LLM’s V 0.506 0.500 0.876 0.637
HeLoM w. Ori V 0.616 0.607 0.655 0.630

Combining results in Table [2| and Table 4] we can observe that with LLM-based data imputation,
performance of all models including baselines is significantly improved. For Mistral, the gain of
performance is more pronounced: For instance, PromptEHR with imputation enhances the Recall
(0.746) and F1-score (0.683) over PromptEHR without imputation (Recall: 0.337, F1-Score: 0.469).
These results suggest that data imputation plays a significant role in disease prediction with EHRs.
Additionally, HeLoM still outperforms baselines with data imputation, suggesting the importance
of “memory bank” for disease prediction with longitudinal EHRs.
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1o Mistral — Recall vs. Class Ratio

Impact of Incorporating Vital Signs. To
study the impact of incorporating vital signs, 08
we perform additional experiments on HeLoM §7‘<‘>—<R":‘
and PromptEHR where vital signs are removed 06
from the input. As shown in Table 2} incorpo- r/-/’__.—'/‘

Recall

rating vital signs mostly improves model per- 0.4

formance across prompting paradigms. For W
HeLoM, it achieves higher Recall or F1-scores 02 T B ey

than its variant that does not consider vital 3 pdoh ¢ rma

signs, particularly for DeepSeek, MediPhi and 00— " o o o "

Mistral, where Fl-score gains are substantial. Negative: Positive ratio (1_NoD : 2_Type2)

The exception is for Llama3.1, which is partly

due to its limited capabilities in handling het-  Figure 2: Mistral — Recall under different imbal-
erogeneous data. Together, these findings un- ance ratios.

derscore the importance of incorporating vital signs for reliable disease detection. Similar to
PromptEHR, its performance, especially regarding Recall and F1 score, greatly degrades when vital
signs are removed when DeepSeek and MediPhi are the backbone models. Impact of Data Imbal-
ance Ratio. In practice, T2D prevalence is low; a system useful in clinical settings should maintain
performance as positive samples become rare. Take Mistral as an example, by fixing the number
of negative samples and randomly reducing positive samples, we test HeLoM’s performance when
varying the T2D:NonT2D ratio among {1:1, 1:2, ..., 1:6}. As shown in Figure |2, our methods re-
main high recall across all data ratios, clearly outperforming baselines. The proposed HeLLoM with
different data imputation methods yields consistently higher sensitivity to T2D samples, indicating
better robustness to class imbalance.

4.5 ERROR CASE ANALYSES

To gain a deeper understanding of HeLoM’s performance, we conducted an error analysis by ran-
domly sampling 100 mis-classified examples from HeLoM w. LLM’s V, using Llama 3.1 as an
illustrative example. We chose Llama 3.1 because its results exhibited distinct patterns of behavior
compared to the other backbone models. Specifically, we find two types of errors common for the
Llama3.1 model: (1) failure to synthesize dynamically meaningful variations in the generated vital
signs. This error type occupies 8% of the incorrect predictions. (2) unclear or partial synthesized
data. Such an error occupies 14% of the incorrect predictions. This indicates that more advanced
data synthesis methods are warranted for longitudinal and heterogeneous EHRs. See Appendix D]
for an example of each error type.

5 CONCLUSION

This work presents HeLLoM, a progressive memory-augmented framework for disease prediction
with longitudinal and heterogeneous EHRs collected from a real-world hospital. HeLoM addresses
three central challenges: limited and non-adaptive context, heterogeneous data integration, and
missingness handling. By iteratively updating memory bank, combining vitals with clinical notes,
and applying both LLM-based and linear interpolation-based imputations, HeL.oM consistently im-
proves Recall and Fl-scores across diverse backbone models—an especially valuable property for
minimizing missed diagnoses in clinical settings. Our analyses further highlight the critical role of
vital signs besides clinical notes and the benefits of generating them through imputation. Beyond
these, HeLoM demonstrates robustness under class imbalance and achieves earlier disease detection
than existing paradigms, underscoring its practical potential for real-world patient monitoring.

This study also has limitations that suggest promising future work. First, patient data and compute
servers were kept offline for privacy reasons, preventing access to other cloud-based LLMs. Second,
all experiments were conducted on a private, single-institution EHR dataset, though the use of EHRs
is from real-world settings. Third, our study is focused on text and tabular data other than images.
Future research should incorporate open datasets and develop multimodal foundation models to
enhance capabilities of HeLoM.
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A APPENDIX

This appendix provides supplementary materials that support the methodological framework and
predictive analyses described in the main text. In particular, it includes detailed prompts, evolv-
ing reference structures, and illustrative examples that were used to guide diabetes risk prediction
from EHRs. These materials are intended to demonstrate in greater detail how the proposed system
operates under practical clinical constraints. First, we illustrate the adaptation to missing clinical
variables, showing how surrogate values are synthesized in a clinically plausible manner to ensure
completeness of the input space. Second, we highlight the integration of longitudinal information,
current visit and the completed vital signs to predict the disease condition, where sequential visits
and evolving patient histories are aggregated into compact yet informative summaries that provide
continuity across encounters. Third, we showcase the mechanism by which the system continuously
refines its internal knowledge base, selectively preserving high-value reasoning strategies, discard-
ing redundant or outdated elements, and thereby improving predictive stability over time. Together,
these demonstrations clarify the inner workings of the framework and provide transparency into the
iterative processes that enable robust diabetes risk prediction.
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B DATASET DETAILS

The number of longitudinal EHR data with both clinical notes and vita signs is very limited. Col-
laborating with the hospital of our institution, we utilize a dataset consisting of adult patients who
received care at UI Health between January 1, 2010, and July 31, 2021. This cohort includes indi-
viduals (age over 18 years) both with and without a documented diagnosis of type 2 diabetes (T2D),
which is spanning over 354 patients, and with at least 2 outpatient visits within a 24-month time
span. It also contains free text clinical notes, visit dates and vital signs. We filtered out those pa-
tients which has doctor’s diagnosis explicitly shown in their clinical notes and dropped those notes
that are less than 150 words in length. Free text notes also include imaging information in the form
of reports, for example electrocardiogram, abdominal ultrasound, magnetic resonance imaging and
computed tomography scan reports, and image pictures are not included, and we will not address
image processing in this work. A slew of laboratory related variables are included, with type of lab-
oratory and their value, for example fasting glucose, hemoglobin Alc (HbAlc - to diagnose T2D),
high-density lipoprotein, triglycerides, total cholesterol, complete blood count, and many many oth-
ers. Those vital signs we used in this work include temperature, weight, FiO2, pain, body mass
index (BMI), SpO2, BSA, height, diastolic, BP, systolic, pulse and respiration. Some basic statistics
of the T2D dataset can be seen in Table [Tl

C DETIALED INSTRUCTION

We put detailed instruction for HeLoM below:

Detailed Instruction

Vital Sign Prediction Prompt for Our Framework with LLMs:

DATA SYNTHESIS (for Missing Clinical Variables)

Instruction: When predicting diabetes from EHR data, you may
encounter missing clinical variables. In such cases, you are
allowed to reasonably assume and synthesize surrogate values to
support a more complete analysis. These synthetic values must be
clinically plausible, consistent with the available evidence, and
clearly stated as assumptions.

1. Target Variables to Synthesize (if absent):

- Temperature, Weight, Height, Body Mass Index (BMI), Body Surface
Area (BSA), Oxygen Saturation (SpO), Fraction of Inspired Oxygen
(F1i0), Pain Score, Blood Pressure (Systolic / Diastolic), Pulse /
Heart Rate, Respiratory Rate

2. Guidelines for Data Synthesis: Consistency with Known Data:

- Derive secondary measures (e.g., BMI = Weight / Height?; BSA from
weight and height) when possible.

— Ensure synthesized values align with the patient’s age, sex, and
any existing comorbidities.

3. Clinical Plausibility:

- Use ranges that are typical for adults unless otherwise
indicated.

- For abnormal values (e.g., very high BMI, low SpO), justify why
such an assumption may be clinically meaningful.

4. Predictive Relevance:

— Prioritize variables known to be related to diabetes risk (e.g.,
BMI, weight, blood pressure) .

— Use additional parameters (temperature, FiO, pain, etc.) for
contextual plausibility even if their predictive role is indirect.
5. Output Requirement:

- Integrate synthesized values into your analysis only when they
are missing.

— Present them alongside the reasoning process, with a note such
as: Assumed BMI = 28 kg/m? based on weight and height estimates.
The following information is about missing vital signs, previous
memory and current visit data: This is the current incomplete
vital signs: [[VITAL SIGNS]]
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This is the memory from previous information: [[PREVIOUS MEMORY]]
This is the current visit notes: [ [CURRENT NOTE]]

Disease Prediction Prompt for Our Framework:

DISEASE PREDICTOR (Diabetes Risk Assessment)

Instruction: You are a medical assistant tasked with analyzing
and predicting whether a patient shows signs of diabetes using EHR
data. Each task will include:

- A specific EHR data to predict diabetes.

— Keep concise and brief if possible.

1. ANALYSIS APPROACH

Carefully analyze both the provided EHR data and the evolving
patient summary before starting.

— Identify relevant medical patterns, lab results, or prior
knowledge that could guide your prediction.

— Construct a structured plan for analyzing the patient’s risk of
diabetes.

2. REASONING PROCESS

— Combine the previous memory for your prediction and carefully
build on the information.

- Present your reasoning in clear, step-by-step logic.

- Explain how the evidence supports (or does not support) a
diabetes diagnosis.

- Explicitly state and justify any assumptions or approximations
you introduce.

- Verify consistency across all available information before
finalizing the prediction.

3. FINAL ANSWER FORMAT

ALWAYS present your final answer in the following format:

FINAL ANSWER:

<answer>

(final answer, please Jjust answer yes or no that the patient has
diabetes)

</answer>

Note: Ensure the final answer is wrapped inside the <answer>
block.

Patient Memory Base (Evolving Summary) : [ [SUMMARY] ]

This is the current vital signs: [ [PREDICTED VITALS]]

This is the current visit of the patient, please analyze and answer
based on the following EHR data: [ [CURRENT VISIT]]

Memory Evolvement Prompt for Our Framework:

Diabetes Prediction Memory Base

1. Aim and Scope As the Knowledge Curator, your responsibility

is to construct and refine a dynamic reference base that supports
reliable diabetes prediction from EHR data. This framework should
prioritize information that captures longitudinal patterns|such

as abnormal trajectories or recurring symptoms|while discarding
redundant or short-lived fluctuations. The ultimate objective 1is
to ensure that the memory base evolves into a compact, adaptive,
and clinically meaningful resource that facilitates accurate

predictions.

2. Key Duties Ensure reliability: Every entry must be precise,
context—-aware, and clinically relevant.

Iteratively enrich content: Consolidate visit-level information

into structured, concise descriptors; highlight trends and
predictive cues rather than isolated fluctuations.

Promote adaptive reuse: Integrate evidence that has influenced
past model decisions (e.g., lab combinations or symptom clusters
identified as predictive), so future predictions can benefit from
prior insights.

3. Principles to Follow Contextual Relevance: Retain information
that is essential for longitudinal reasoning (abnormal
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trajectories, repeated abnormalities, persistent symptoms), while
pruning redundant or transient signals.

Compactness: Summarize visit-level observations into concise
textual snippets or structured descriptors, ensuring that the
memory base remains lightweight, navigable, and easy to retrieve.
Adaptivity: Incorporate predictive cues observed during inference
(e.g., biomarker constellations that strongly influenced risk
estimates), so that the memory evolves alongside model reasoning.
4. Formatting Rules Every update should follow this structured
format for consistency:

<memory_items>

<memory-entry>

[Summarize the context and highlight the crucial aspects. Provide
an analysis.]

</memory_entry>

</memory_items>

Note: When updating, any information not explicitly included will
be lost. Always carry forward all relevant knowledge from the
previous memory.

This is the previous memory: [[PREVIOUS_MEMORY] ]

This is the predicted completed vitals: [ [PREDICTED VITALS]]

This is the current visit notes: [ [CURRENT NOTE]]

D ERROR TYPE

We put detailed examples of error type for Llama3.1 below:

Detailed Instruction

Generating data in first step To synthesize the following data:
- Temperature: Assuming a normal body temperature of 98.6°F (37°C)
- Weight: Not provided, but we can estimate based on the patient’s

age, sex, and height (not provided). For simplicity, let’s assume
a normal weight for a 63-year-old female, approximately 150 lbs
(68 kg) - Fi0O2: Not provided, but we can assume a normal value of

0.21 (21- Pain: The patient is scheduled for surgery, which may
indicate some level of pain, but this is not a direct indicator of
diabetes — BMI: We will calculate the BMI based on the synthesized
weight (150 lbs or 68 kg) and an assumed height (574" or 162.56 cm)
- Sp0O2: Not provided, but we can assume a normal value of 95-100-
BSA: We will calculate the Body Surface Area (BSA) based on the
synthesized height and weight - Height: Not provided, but we will
assume 5’4" (162.56 cm) - Diastolic BP: Not provided, but we can
assume a normal value of 80 mmHg - Systolic BP: Not provided, but
we can assume a normal value of 120 mmHg - Pulse: Not provided,
but we can assume a normal value of 60-100 beats per minute -
Respiration: Not provided, but we can assume a normal value of
12-20 breaths per minute

Letter Usage

Using a simplified diabetes risk assessment tool, such as the
American Diabetes Association’s (ADA) risk assessment tool, we
can estimate the patient’s 10-year risk of developing diabetes:
— Age: 63 years (moderate risk) - Sex: Female (moderate risk)
— BMI: 25.4 (overweight, moderate risk) - Family history: Not
provided, but we can assume a moderate risk - Physical activity:
The patient is being treated for a surgical procedure, which
may indicate a sedentary lifestyle (moderate risk) - Other risk
factors: Not provided, but we can assume a moderate risk Based
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on these risk factors, the patient’s 10-year risk of developing
diabetes is estimated to be around 20-30%.

NEW MEMORY ITEM

<memory_item> xxPatient Profile:**x - Age: 63 years - Sex: Female
- Associated diagnoses: None mentioned, but the patient is being
treated for a surgical procedure - Fasting glucose: Not provided
+**Risk Assessment:** — Age: 63 years (moderate risk) - Sex:
Female (moderate risk) - BMI: 25.4 (overweight, moderate risk) -
Family history: Not provided, but we can assume a moderate risk
— Physical activity: The patient is being treated for a surgical
procedure, which may indicate a sedentary lifestyle (moderate risk)
— Other risk factors: Not provided, but we can assume a moderate
risk

**xDiabetes Risk:** The patient’s 10-year risk of developing
diabetes is estimated to be around 20-30%.

</memory_item>

The patient, XXX, has been referred to a specialist for further
evaluation and treatment of her ankle injury. The specialist has
ordered additional tests, including a blood glucose test, which
reveals a fasting glucose level of 126 mg/dL. This is higher than
the normal range of 70-100 mg/dL, indicating hyperglycemia.

Based on the new information, we can reassess the patient’s risk of
diabetes.

1. =xxReassess the patient’s risk of diabetesxx: The patient’s
fasting glucose level of 126 mg/dL indicates hyperglycemia, which
is a strong indicator of diabetes. We can use this information to
update the patient’s risk assessment.

Using a simplified diabetes risk assessment tool, such as the
American Diabetes Association’s (ADA) risk assessment tool, we can
estimate the patient’s 10-year risk of developing diabetes: =

Age: 63 years (moderate risk) - Sex: Female (moderate risk) -
BMI: 25.4 (overweight, moderate risk) - Fasting glucose: 126 mg/dL
(high risk) - Family history: Not provided, but we can assume a

moderate risk - Physical activity: The patient is being treated
for an ankle injury, which may indicate a sedentary lifestyle
(moderate risk) - Other risk factors: Not provided, but we can
assume a moderate risk Based on these risk factors, the patient’s
10-year risk of developing diabetes is estimated to be around
50-60%.

NEW MEMORY ITEM

<memory_item> xxPatient Profile:**x - Age: 63 years - Sex: Female
- Associated diagnoses: None mentioned, but the patient is being
treated for an ankle injury - Fasting glucose: 126 mg/dL (high
risk)

*xRisk Assessment:*x — Age: 63 years (moderate risk) - Sex:
Female (moderate risk) - BMI: 25.4 (overweight, moderate risk)

- Fasting glucose: 126 mg/dL (high risk) - Family history:

Not provided, but we can assume a moderate risk - Physical
activity: The patient is being treated for an ankle injury,
which may indicate a sedentary lifestyle (moderate risk) - Other
risk factors: Not provided, but we can assume a moderate risk
+**xDiabetes Risk:*x* The patient’s 10-year risk of developing
diabetes is estimated to be around 50-60%.

</memory_item>

NEW MEMORY ITEM

<memory_-item> xxPatient Profile:*x — Age: 63 years — Sex: Female
— Associlated diagnoses: None mentioned, but the patient is being
treated for an ankle injury - Fasting glucose: 126 mg/dL (high
risk)

16



Under review as a conference paper at ICLR 2026

**xRisk Assessment:*«x — Age: 63 years (moderate risk) - Sex:
Female (moderate risk) — BMI: 25.4 (overweight, moderate risk)

— Fasting glucose: 126 mg/dL (high risk) - Family history:

Not provided, but we can assume a moderate risk - Physical
activity: The patient is being treated for an ankle injury,
which may indicate a sedentary lifestyle (moderate risk) - Other
risk factors: Not provided, but we can assume a moderate risk
+**xDiabetes Risk:*x* The patient’s 10-year risk of developing
diabetes is estimated to be around 50-60%.

</memory_item>

NEW MEMORY ITEM

<memory_-item> xxPatient Profile:*x — Age: 63 years — Sex: Female
- Associated diagnoses: None mentioned, but the patient is

being treated for an ankle injury - Fasting glucose: 126 mg/dL
(high risk) +*xRisk Assessment:*x — Age: 63 years (moderate
risk) - Sex: Female (moderate risk) - BMI: 25.4 (overweight,
moderate risk) - Fasting glucose: 126 mg/dL (high risk) - Family
history: Not provided, but we can assume a moderate risk -
Physical activity: The patient is being treated for an ankle
injury, which may indicate a sedentary lifestyle (moderate risk)
— Other risk factors: Not provided, but we can assume a moderate
risk *xDiabetes Risk:xx The patient’s 10-year risk of developing
diabetes is estimated to be around 50-60%.

</memory_item>

E LARGE LANGUAGE MODELS (LLMs) USAGE

We used large language models (LLMs) solely for language polishing and grammar improvement;
all scientific content, ideas, and analyses are the authors’ own.
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