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Abstract
Recent advances have shown that statistical tests
for the rank of cross-covariance matrices play an
important role in causal discovery. These rank
tests include partial correlation tests as special
cases and provide further graphical information
about latent variables. Existing rank tests typ-
ically assume that all the continuous variables
can be perfectly measured, and yet, in practice
many variables can only be measured after dis-
cretization. For example, in psychometric studies,
the continuous level of certain personality dimen-
sions of a person can only be measured after being
discretized into order-preserving options such as
disagree, neutral, and agree. Motivated by this,
we propose Mixed data Permutation-based Rank
Test (MPRT), which properly controls the statis-
tical errors even when some or all variables are
discretized. Theoretically, we establish the ex-
changeability and estimate the asymptotic null
distribution by permutations; as a consequence,
MPRT can effectively control the Type I error
in the presence of discretization while previous
methods cannot. Empirically, our method is vali-
dated by extensive experiments on synthetic data
and real-world data to demonstrate its effective-
ness as well as applicability in causal discovery
(code will be available at https://github.
com/dongxinshuai/scm-identify).

1. Introduction and Related Work
Recent advances have shown that the rank of a cross-
covariance matrix and its statistical test play essential roles
in multiple fields of statistics especially in causal discovery
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(Sullivant et al., 2010; Spirtes, 2013). From one perspec-
tive, Independence and Conditional Independence (CI) are
crucial concepts in causal discovery and Bayesian network
learning (Pearl et al., 2000; Spirtes et al., 2000; Koller &
Friedman, 2009) due to its relation to d-separations (Pearl,
1988), and it has been shown that rank tests take those linear
CI tests as special cases (Sullivant et al., 2010; Di, 2009;
Dong et al., 2024a). From another point of view, rank of
a cross-covariance matrix corresponds to t-separations in a
graph (Sullivant et al., 2010), which contain graphical infor-
mation that can be used to identify latent variables (Huang
et al., 2022; Dong et al., 2024a). A more detailed discussion
about related work can be found in Appendix D.

Existing statistical rank tests (Anderson, 1984) are often
built upon Canonical Correlation Analysis (CCA) (Jordan,
1875; Hotelling, 1992), with a likelihood ratio based test
statistics. Despite their effectiveness, existing methods rely
on the strong assumption that all the variables concerned
can be perfectly measured. However, in many fields, it is
often the case that the best available data are just discretized
approximations of some underlying continuous variable
(formally defined in Eq. 1). For example, in mental health,
anxiety levels are often categorized into levels such as mild,
moderate, or severe, according to some latent thresholds
(Johnson et al., 2019). Examples can be found in multiple
fields such as finance (Changsheng & Yongfeng, 2012),
psychology (Lord & Novick, 2008), biometrics (Finney,
1952) and econometrics (Nerlove & Press, 1973), where
continuous variables are often assumed to be observed as
discretized values.

When discretization is present, existing rank tests can hardly
work. The main reason lies is that the discretized values only
reflect the order of the data, leading to cross-covariance esti-
mates that may differ significantly from the underlying cross-
covariance matrix (also illustrated in Figure 1). Furthermore,
even though the true underlying cross-covariance matrix can
be estimated by maximum likelihood-based methods such as
polychoric and polyserial correlations (Olsson et al., 1982;
Olsson, 1979), they cannot be directly plugged into existing
rank tests. This is because the involved discretization and
maximum likelihood processes change the distribution of
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test statistics to a considerable extent and thus the p-values
cannot be correctly calculated. As a consequence, Type I
errors of existing methods cannot be effectively controlled.
Both of these points are elaborated in Section 2.2.

To properly address the issue of discretization, in this paper,
we propose a novel statistic rank test based on permuta-
tion, i.e., Mixed data Permutation-based Rank Test (MPRT)
that can accommodate continuous, partially discretized, or
fully discretized observations. Specifically, in the presence
of discretization, the underlying cross-covariance can be
estimated by maximum likelihood estimator, but the infor-
mation loss resulting from discretization and the additional
estimation steps make the derivation of the null distribution
highly non-trivial. To this end, we start with the continuous
case and establish exchangeability of linear projections of
concerned variables (Theorem 4), based on which the null
distribution can be empirically estimated by permutations.
When some observations are discretized, the exchangeabil-
ity still holds but we do not have direct access to permutable
data. Fortunately, we show that the concerned statistic distri-
bution can still be consistently estimated by properly using
permuted discretized observations (Theorem 5). We sum-
marize our key contributions as follows.

• To our best knowledge, we propose the first statistic
rank test i.e., Mixed data Permutation-based Rank Test
(MPRT), that properly deals with the problem of dis-
cretization. Rank test takes partial correlation CI test
as a special case and thus the problem is crucial to many
scientific fields such as psychology, biometrics, and econo-
metrics, where discretizations are ubiquitous.

• Theoretically, we estimate the asymptotic null distribution
by effectively making use of data permutations, and thus
properly controls the Type I error. The setting considered
is rather general: for the test of rank(ΣX,Y), both X
and Y are allowed to be either fully continuous, partially
discretized, or fully discretized. Thus, our method also
includes the fully-continuous rank test as a special case.

• Empirically, we validate our novel rank test under multiple
synthetic settings where our method is shown to control
Type I error properly and Type II error effectively, while
existing methods cannot. We also use a real-world dataset
to show the practicability of the proposed rank test and
illustrate its application in causal discovery.

2. Preliminaries
2.1. Problem Setting

Suppose that we have a set of M observed random variables
V = {Vj}Mj=1 that are jointly Gaussian. However, for some
of these variables, direct observations are unavailable. We
use CV and DV to denote the index set of those variables
in V that we have direct observations and that of those we

only have order-preserving discretized observations, respec-
tively. Assume that we have N i.i.d., observations of these
variables. The underlying true data matrix is D ∈ RN×M ,
while we only have access to D̃, where some columns are
discretized. Specifically, for j ∈ CV, D̃:,j = D:,j , while
for those j ∈ DV, the observations are discretized in the
following fashion:

D̃i,j = t, if T j
t < Di,j ≤ T j

t+1,

for i ∈ {1, ..., N}, t ∈ {1, ..., Cj},
(1)

where Cj is the cardinality of the domain of the discretized
observation of Vj , T j

t refers to the t-th threshold for
variable Vj , T j

1 ≜ −∞, and T j
Cj+1 ≜∞.

We are interested in the rank of the population cross-
covariance matrix over certain combinations of variables,
e.g., ΣX,Y, where X ⊆ V and Y ⊆ V (X and Y are not
necessarily disjoint). The rank information is crucial to
causal discovery (Spirtes et al., 2000) and will be detailed
in Section 2.2. Ideally, we would expect that we have
infinite datapoints and there is no discretization; in this
case, the sample covariance Σ̂X,Y would be exactly the
same as the population covariance, and the rank can be
easily calculated by linear algebra. However, in practice
we only have finite datapoints and for some of the variables
we only have discretized observations. Thus, it is crucial
to consider the following problem: in the finite sample case
and in the presence of discretization, we only have access
to D̃ instead of D, how to build a valid statistic test that
properly controls the Type I error for testing the rank of a
cross-covariance matrix ΣX,Y?

2.2. Why this Problem is Important?

In this section we will briefly discuss why rank test is im-
portant in the context of causal discovery as well as why it
is crucial to deal with discretization.

Rank Test Takses Linear CI Test as a Special Case

In causal discovery, we aim to find the underlying causal
graph among variables given observational data. The most
classical approach is to use conditional independence (CI)
relationships to identify d-separations in a graph; see, e.g.,
the PC algorithm (Spirtes et al., 2000). This idea is captured
by the following theorem.

Theorem 1 (Conditional Independence and D-separation
(Pearl, 1988)). Under the Markov and faithfulness assump-
tion, for disjoint sets of variables A, B and C, C d-
separates A and B in graph G, iff A ⊥⊥ B|C holds for
every distribution in the graphical model associated to G.

In practice, we often consider linear causal models where
the CI test can be done by e.g., Fisher-Z (Fisher et al.,
1921). It has been shown that, for linear causal models,
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d-separations between variables can also be uncovered by
rank tests, which is summarized in the following theorem.

Theorem 2 (D-separation by Rank Test (Dong et al.,
2024a)). Suppose a linear causal model with graph G and
assume rank faithfulness (Spirtes, 2013). For disjoint vari-
able sets A, B, and C, we have C d-separates A and B in
graph G, if and only if rank(ΣA∪C,B∪C) = |C|.

The above Theorem 2 says that d-separations can also be
inferred from rank of a cross-covariance matrix, and thus for
causal discovery of linear causal models, partial correlation
test / linear CI test can be substituted by rank test.

Rank Relates to T-sep that Indicates Latent Variables

Next, we show that rank of cross-covariance informs
something beyond d-separations. Specifically, t-separations
(Sullivant et al., 2010) can be inferred from rank, and
t-separations can be used to identify latent variables. The
relation between rank and t-separations is given as follows.

Theorem 3 (Rank and T-separation (Sullivant et al., 2010)).
Given two sets of variables A and B from a linear model
with graph G and assume rank faithfulness. We have:

rank(ΣA,B) = min{|CA|+ |CB| : (CA,CB)

t-separates A from B in G},
(2)

where ΣA,B is the cross-covariance over A and B.
The left-hand side of Equation 2 is about properties of
the observational distribution, while the right-hand side
describes properties of the graph. An example highlighting
the greater informativeness of rank compared to CI is as
follows. Consider the graph G in Figure 5, where {X1,X2}
and {X3,X4} are d-separated by L1, but we can never infer
that from any CI test, i.e., we can never check whether
{X1,X2} ⊥⊥ {X3,X4}|L1 holds, as L1 is not observed.
In contrast, using rank information, we can infer that
rank(Σ{X1X2},{X3X4}) = 1, which implies {X1,X2} and
{X3,X4} are t-separated by one latent variable. The ratio-
nale behind is that the t-separation of two set of variables
A, B by (CA,CB) can be inferred through rank, without
actually observing any element in (CA,CB). A more
detailed discussion can be found in (Dong et al., 2024a).

Discretization is Ubiquitous and Needs to be Handled

Discretization is ubiquitous in many scientific fields. For
instance, it is common to come across concepts that cannot
be measured directly, such as depression, anxiety, attitude,
and the observations of such variables are often the result of
coarse-grained measurement of the underlying continuous
ones. More examples can be found in fields like psychology
(Lord & Novick, 2008), biometrics (Finney, 1952) and
econometrics (Nerlove & Press, 1973), where it is widely
accepted to assume a continuous variable underlies a
dichotomous or polychotomous observed one.

In the context of rank test, what should we do to deal with
such a ubiquitous discretization problem? One naive way
is to just treat these ordinal values as continuous ones and
test the rank of a cross-covariance matrix as usual, and yet
it cannot work. The reason lies in that the observed values
of these discretized variables just represent the ordering and
the values can be rather arbitrary. For example, assume
that the original continuous observations are discretized
into three levels represented by {1, 2, 3} respectively; one
can alternatively uses {1, 2, 2.1} or {1, 2, 1016} to represent
the three levels. If we directly use the ordinal values, the
resulting cross-covariance matrix can be very different from
the ground truth one, leading to meaningless results. An
example can be found in Figure 1, where (a) shows the
population cross-covariance and (b) shows the counterpart
calculated by using discretized observations. Even with
infinite samples, the two matrices are totally different, and
the rank of the matrix in (a) is 1 while rank of that in (b) is
3. Next, we will show that, even if we can use maximum
likelihood to estimate the correlation first, the problem is
still highly non-trivial.

2.3. Classical Rank Test with Estimated Correlation

We have shown that the naive solution of directly using
the ordinal values cannot work. Thus, one may wonder
another straightforward one - estimate the correlations first
(which can be done by maximizing likelihood, detailed in
Section 3.3), and then plug the estimated correlations into a
standard CCA rank test. In this section we will show that this
straightforward solution cannot work either; more specifi-
cally, the Type-I errors cannot be effectively controlled.

We start with a brief introduction to the classical rank test,
which is based on Canonical Correlation Analysis (CCA)
(Jordan, 1875; Hotelling, 1992). The key design of a test
typically is to find a suitable statistic and to derive its distri-
bution under the null hypothesis. As for rank test of cross-
covariance ΣX,Y, statistics based on CCA scores between
X and Y are found to be very effective. For |X| = P , |Y| =
Q, and K = min(P,Q), the CCA problem is as follows:

max
A∈RP×K ,B∈RQ×K

tr(AT Σ̂X,YB),

s.t., AT Σ̂XA = BT Σ̂YB = I.
(3)

Assume that the solution to Eq. 3 leads to CCA scores
between X and Y as {ri}Ki=1. With the null hypothesis that
rank(ΣX,Y) ≤ k, referred to asHk

0 , we would expect that
the top-k CCA scores are non-zero and the rest ones are
all zero. This leads to a likelihood-ratio-based test statistics
(Anderson, 1984) underHk

0 as follows.

λk = −
(
N − P +Q+ 3

2

)
ln(ΠK

i=k+1(1− r2i )), (4)
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(a) Population cross-covariance matrix over
continuous variables.

(b) Cross-covariance matrix using discretized
data with N → ∞.

(c) Distributions of p-values of CCART-C
and CCART-DE.

Figure 1. Subfigures (a) and (b) together show we cannot directly take the discrete values for the calculation of rank of the covariance.
Subfigure (c) shows that directly plugging an estimated cross-covariance into a rank test does not work as Type I cannot be controlled.

which has been shown to approximately follow a chi-square
distribution with degree of freedom (P −k+1)(Q−k+1).
To perform the rank test, one only has to calculate λk and
the related chi-square distribution to get the p-value.

In Eq 3, Σ̂X,Y refers to the sample covariance DXT
DY

N−1 . In
the presence of discretization, we only have access to D̃X

and D̃Y, but we can still estimate the cross-correlation by
maximizing the likelihood (detailed in Section 3.3), and take
the estimation into Eq. 3 to calculate the CCA scores and
thus the test statistics. However, due to the information loss
introduced by discretization and the additional maximum
likelihood steps, the distribution of the statistics is changed
to a considerable extent. An example is shown in Figure 1
(c), where CCART-C refers to CCA rank test using the
original continuous observations and CCART-DE refers to
first estimating the correlations by maximum likelihood
using discrete data and then plugging it into the CCA rank
test. As shown, the p-values of CCART-C are uniformly
distributed while the p-values of CCART-DE are clearly not;
most of them are near to zero and thus the test tends to reject
everything, leading to unacceptably large Type I errors (also
validated in Section 4.2 and Figure 2).

Ideally, we would expect to derive the updated distribution
of the statistics, and yet the involved likelihood maximiza-
tion steps make it very difficult. Therefore, we aim to solve
this problem by estimating the empirical cdf of the null
distribution using permutations, detailed in what follows.

3. Mixed Data Permutation-based Rank Test
In this section, we propose MPRT. A brief introduction to
permutation test can be found in Appendix C.1. We start
with the all continuous case.

3.1. All Continuous Case

Assume that we are interested in the rank of ΣX,Y, where
|X| = P and |Y| = Q and their corresponding data matri-

ces are D̃X ∈ RN×P and D̃Y ∈ RN×Q respectively. The
first crucial step is to solve the CCA problem defined in
Eq 3, by Singular Value Decomposition (SVD) as follows.

USV = Σ̂
− 1

2

X Σ̂X,YΣ̂
− 1

2

Y ,

A = Σ̂
− 1

2T

X U and B = Σ̂
− 1

2T

Y V T ,
(5)

where A and B are two linear projection matrices and the
two CCA variables are CX = ATX and CY = BTY. CX

and CY have two good properties: (i) Σ̂CX
= Σ̂CY

= I ,
and Σ̂CX,CY

is a diagonal matrix; (ii) under null hypothesis
Hk

0 : rank(ΣX,Y) ≤ k, only the top-k diagonal entries of
ΣCX,CY

are nonzero and the rest of the diagonal entries
should be zero. Taking these two into consideration, we
have the exchangeability between CXk: and CYk:, which
is formalized in the following Theorem 4 (proof of which
can be found in Appendix).

Theorem 4 (Exchangeability of CXk: and CYk:). Given a
set of variables V that are jointly gaussian, under null hy-
pothesisHk

0 : rank(ΣX,Y) ≤ k, where X,Y ⊆ V, random
vectors CXk: and CYk: are asymptotically independent
with each other.

Based on the exchangeability between CXk: and CYk:, we
can permute the data matrix of CXk: and CYk: in order to
get resampling of CXk: and CYk:. Specifically, given a
random permutation matrix P , PD̃CX

:,k: and D̃CY

:,k: together
serve as N i.i.d. resamplings from the joint distribution
of CXk: and CYk:. Further, the statistics in Eq. 4 only
depends on the k-th to K-th CCA scores between X and Y,
which can be equivalently calculated by the first to (K− k)-
th CCA scores between CXk: and CYk:, formally captured
by the following Lemma 1.

Lemma 1 (Alternative Way to Calculate Statistic in Eq. 4).
Let the CCA score between CXk: and CYk: be {r̂i}K−k

1 .
The statistic defined in Eq. 4 can also be formulated as:

λk = −
(
N − P +Q+ 3

2

)
ln(ΠK−k

i=1 (1− r̂2i )). (6)
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By Lemma 1, we know that the test statistics only depends
on CXk: and CYk:. Further, CXk: and CYk: can be resam-
pled by permutations. Taking these two into consideration,
we can make use of permutation to estimate the empirical
CDF of the null distribution, and thus correctly calculate
the p-value. Below we give a detailed description of the
procedure to do the permutation and consequently calculate
the p-value. Given A and B, we have the observed data
matrix of the two canonical variables as D̃CX = D̃XA and
D̃CY = D̃YB (where D̃CX , D̃CY ∈ RN×K). For each
random N ×N permutation matrix P , we use PD̃CX

:,k: and
D̃CY

:,k: to calculate the test statistics under permutation P as
λP
k following Eq. 6, and the p-value is obtained as:

pk = E 1[λP
k ≥λk], (7)

where the expectation is taken over random permutations.

3.2. Mixed Case - in the Presence of Discretization

Here we discuss the case where some columns of the
data matrices D̃X and D̃Y are discretized. Under such a
scenario, one can still estimate Σ̂X, Σ̂X,Y, and Σ̂Y by max-
imizing likelihood, which will be detailed in Section 3.3.
After that, A and B can still be estimated following Eq. 5,
and the exchangeability between CXk: and CYk: still holds.

However, to get the resampling of CXk: and CYk: by
permutation, one has to apply linear transformation A and
B to get D̃CX = D̃XA and D̃CY = D̃YB, respectively.
In the all continuous case, it is straightforward, but in the
presence of discretization, it makes no sense to apply a
linear transformation A to D̃X, when some columns of D̃X

are just ordinal values. As a consequence, we cannot make
use of Theorem 4 to get a resampling of CXk: and CYk: to
calculate the statistic λk and estimate the p-value anymore.

Fortunately, it can be shown that to calculate λP
k , one does

not have to really get the exact resampling from CXk: and
CYk:. Instead, for each random permutation P , we can get
a consistent estimation of {r̂i}K−k

1 and consequently calcu-
late λP

k . This is formalized by the following Theorem 5.

Theorem 5 (Consistent Estimation of {r̂i}K−k
1 under Per-

mutation P ). Under permutation P , the empirical CCA
scores between CXk: and CYk:, i.e., {r̂i}K−k

1 , are the

singular values of Σ̂− 1
2

CXk:
Σ̂CXk:,CYk:

Σ̂
− 1

2

CYk:
, which can be

consistently estimated by:

((AT Σ̂XA)k:,k:)
− 1

2 ((AT DXT
P TDY

N − 1
B)k:,k:)

((BT Σ̂YB)k:,k:)
− 1

2 ,

(8)

where DXT
PTDY

N−1 can be consistently estimated by using
D̃X and P T D̃Y and assuming unit variance of variables.

Remark 1 (Remark on Theorem 5). Theorem 5 implies that
we can consistently estimate λP

k by making use of randomly
permuted data D̃X and P T D̃Y. Note that although here the
transpose of permutation applies to D̃Y, the correctness of
the process still relies on the exchangeability between CXk:

and CYk:, and does not need the exchangeability between
X and Y. In words, doing permutation on D̃XA will meet
the problem of applying linear transformation to data that
might contain ordinal values, and Theorem 5 provides a way
to bypass the problem by permuting D̃Y instead.

Till now, the remaining problem is how to consistently esti-
mate cross-covariance matrices in the presence of discretiza-
tion, and it will be detailed in what follows.

3.3. Correlation Estimation with Discretization

Assume that we concern the rank of ΣX,Y, where some of
the variables are discretized and X and Y are not necessar-
ily disjoint. As mentioned, for those variables that we only
have discretized observations, their variance can never be
determined. Further, the rank of a cross-covariance matrix is
equivalent to the rank of the corresponding cross-correlation
matrix. Without loss of generality, we can assume all vari-
ables to have unit variance and zero mean. Thus, we some-
times use correlation and covariance interchangeably. The
remaining crucial step is to estimate the correlation matrix
for V = X ∪Y, i.e., R̂, by data D̃ ∈ RN×|V |. As some
elements of V are discrete, we use CV and DV to denote
the index set of continuous variables and discrete variables
in V respectively.

We first introduce the overall objective function for correla-
tion estimation as follows.

R̂ = argminR∈RM×M L(D̃,R), (9)

L(D̃,R) = −
∑

1≤i<j≤M

log pij(D̃:,ij ;Ri,j), (10)

where the optimization objective is minimizing pair-wise
negative log-likelihood, also referred to as pseudo likeli-
hood, instead of the real joint log-likelihood over all the
observed variables (Dong et al., 2024b). The reason lies in
that optimizing over the joint log-likelihood is very compu-
tationally expensive and the pseudo likelihood is tractable
while also serves as a consistent estimator (Besag, 1974;
Gourieroux et al., 1984; Gouriéroux et al., 2017; Fan et al.,
2017).

Next, we specify the pair-wise log-likelihood in three sce-
narios - between two continuous variables, between a con-
tinuous and a discrete, and between two discrete variables.

(i) Likelihood for Two Continuous Variables

If both i, j ∈ CV, the log-likelihood function
log pij(D̃:,ij ;Ri,j) is just the joint gaussian pdf
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parametrized by Ri,j given as follows:

(1/2)(tr

([
1,Ri,j

Ri,j , 1

]−1[
1, R̂i,j

R̂i,j , 1

])
+ log det

[
1,Ri,j

Ri,j , 1

]
),

(11)

where R̂i,j is the empirical correlation matrix that can be
directly calculated from data D̃:,ij .

(ii) Likelihood for a Continuous and a Discrete Variable

If i ∈ CV and j ∈ DV, then the log-likelihood (also known
as polyserial correlation estimation (Olsson et al., 1982))
log pij(D̃:,ij ;Ri,j) can be factorized as follows.

1

N

N∑
k=1

log p(Vi = D̃k,i)p(Vj = D̃k,j |Vi = D̃k,i,Ri,j),

(12)

where p(Vi = D̃k,i) is a standard gaussian pdf. For a
specific value of D̃k,j , say, t, we have that:

p(Vj = D̃k,j |Vi = D̃k,i,Ri,j)

= p(T j
t < Vj ≤ T j

t+1|Vi = D̃k,i,Ri,j)

= Φ(
T j
t+1 −Ri,jD̃k,i

(1−R2
i,j)

1/2
)− Φ(

T j
t −Ri,jD̃k,i

(1−R2
i,j)

1/2
),

(13)

where Φ is the standard gaussian cdf. We note that the
thresholds T are unknown, thus it could be taken as free pa-
rameters during optimization. In practice, it is more efficient
to estimate the thresholds first by using inverse gaussian cdf:

T̂ j
t+1 = Φ−1(

∑N
k=1 1[D̃k,j≤t]

N
). (14)

(iii) Likelihood for Two Discrete Variables

If both i, j ∈ DV, then the log-likelihood (also known as
polychoric correlation estimation (Olsson, 1979; Jöreskog,
1994)) log pij(D̃:,ij ;Ri,j) is as follows.

1

N

N∑
k=1

log(Φ2(T
i
D̃k,i+1

, T j

D̃k,j+1
;Ri,j)

+ Φ2(T
i
D̃k,i

, T j

D̃k,j
;Ri,j)

− Φ2(T
i
D̃k,i+1

, T j

D̃k,j
;Ri,j)

− Φ2(T
i
D̃k,i

, T j

D̃k,j+1
;Ri,j)),

(15)

where Φ2(., ., r) is the joint cdf of two standard gaussian
variables with correlation r and the thresholds for each
variable can also be estimated by using Eq. 14.

Algorithm 1 Mixed data Permutation-based Rank Test

1: Input: Sample D̃X, D̃Y, indexes of discretized
columns, null hypothesis Hk

0 : rank(ΣX,Y) ≤ k, and
significant level α;

2: Output: True (fail to rejectHk
0 ) or False (rejectHk

0 );
3: P = |X|, Q = |Y|, and K = min(P,Q)

4: Get Σ̂X, Σ̂X,Y , and Σ̂Y as submatrices of R̂ by Eq. 17
(unit variance assumed)

5: Calculate A and B following Eq. 5.
6: Let P = I (no permutation), calculate {r̂i}K−k

1 fol-
lowing Eq. 8 and then the statistic λk following Eq. 6

7: for each random permutation P do
8: Calculate {r̂i}K−k

1 under P following Eq. 8 and then
the statistic under P , i.e., λP

k , following Eq. 4
9: end for

10: Calculate p-value pk by Eq. 7
11: return pk ≥ α

3.4. Parameterization Trick for Rank Test
We note that the optimization problem in Eq. 9 does not
constrain the space to be a pseudo-correlation matrix - a
matrix that is PSD with unit diagonal elements. If we only
care about the maximum likelihood estimator, the pseudo-
correlation requirement might be unnecessary. However,
as we rely on SVD for CCA and rank test, the require-
ment of being pseudo-correlation matrix is crucial. A clas-
sical way to solve this problem is by projected gradient
descent: projecting the current solution to the space of
pseudo-correlation matrices after each step of gradient de-
scent. Yet, in practice we found this solution less effective,
as the projection cannot be analytically solved and requires
an additional optimization step.

To this end, we directly parameterize the space of
pseudo-correlation matrices in a geometric way following
(Rousseeuw & Molenberghs, 1993), given as follows.

R = UTU ,

Uj,i =

{
cosθi−j+1,iΠ

i−j
k=1sinθk,i, j ≤ i

0, j > i
,

s.t., θi,i = 0, ∀i.

(16)

Therefore, we have an alternative way to parameterize the
correlation matrix, which gives rise to the following new
formulation of our objective function (instead of Eq. 9):

R̂ = argminθ L(D̃,R). (17)

We summarize the overall testing procedure of our proposed
MPRT in Algorithm 1.
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(a) The probability of Type I errors with α = 0.05. (b) Type II errors (effective Type I controlled at 0.05).

Figure 2. The probability of Type I and Type II errors with mixed data, by different rank test methods, under different sample sizes.

(a) The probability of Type I errors with α = 0.05. (b) Type II errors (effective Type I controlled at 0.05).

Figure 3. The probability of Type I and Type II errors with continuous data, by different rank test methods, under different sample sizes.

4. Experiments
4.1. Experimental Setting

To empirically validate the proposed Mixed data
Permutation-based Rank Test (MPRT), we apply our
method to synthetic data and compare it with the following
methods. (i) CCART-C: CCA-based Rank Test (Anderson,
1984) that use the original continuous observation as
input; as it has access to the original observations, its
performance is taken as the best possible performance that
we can achieve. (ii) CCART-D: CCA-based Rank Test with
Discrete data; it directly takes the ordinal values as input.
(iii) CCART-DE: CCA-based Rank Test with Discrete data
Estimating covariance; it takes the estimated correlation
matrix as input (following Eq. 17).

We consider two scenarios: mixed data scenario where data
are partially discretized, and all continuous scenario where
all the original observations are available. The first scenario
is to illustrate how well can we handle discretization while
the second is to show that our method can serve as a general
rank test method as we also work well when there is no
discretization. In terms of performance, we concern both
Type I errors and Type II errors. Specifically, we expect
a good test can properly control the Type I errors given a
significance level α, while the Type II errors should be as

small as possible. We consider different sample sizes, and
for each comparison, we consider 3000 random trials. For
MPRT, we randomly generated 200 permutations to calcu-
late the p-value. The ground truth covariance matrices are
randomly generated. For the mixed scenario, we uniformly
generate two thresholds from [−1.5, 1.5] for each variable
that should be discretized, and use the thresholds together
with −∞ and∞ to discretize the continuous observations
into three categories {1, 2, 3}.

We also apply the proposed MPRT method with mixed
data to the classical causal discovery method PC algorithm
(Spirtes et al., 2000) and see whether our test method can
better test CI relations compared to the classical Fisher-Z
CI test (Fisher et al., 1921), in the presence of discretiza-
tion. Fisher-Z is only compared by the result of PC and
cannot be not compared in the previous setting, as linear CI
relations can only correspond to a part of the rank informa-
tion. Finally, we employ a real-life dataset to illustrate the
applicability of the proposed method in real-life scenarios.

4.2. Analysis on Type I and Type II Errors under
Different Sample Sizes

In this section we analyze the performance of each method
in terms of Type I and Type II errors under different sample
sizes. For the mixed data scenario, the result is shown in

7



Permutation-Based Rank Test in the Presence of Discretization and Application in Causal Discovery with Mixed Data

Table 1. F1 score and SHD of the PC algorithm, with different CI test methods (↑ the bigger the better while ↓ the smaller the better).
F1 score for skeleton ↑ SHD for skeleton ↓

CI test method N = 500 N = 1000 N = 2000 N = 500 N = 1000 N = 2000
MPRT 0.84 0.9 0.96 0.80 0.60 0.20

Fisher-Z 0.81 0.80 0.78 1.20 1.20 1.40
KCI 0.81 0.88 0.86 1.00 0.80 0.93

CCART-D 0.75 0.79 0.77 1.60 1.60 1.80
CCART-DE 0.80 0.85 0.83 1.40 1.30 1.60

(a) Discovered personality substructure for Openness. (b) Discovered substructure for Neuroticism.

Figure 4. Application of MPRT in causal discovery using real-life Big Five human personality data.

Figure 2. Specifically, one can see that both our proposed
MPRT and CCART-C can properly control the Type I errors
as the Type I errors of them are both very close to the signif-
icance level α = 0.05; in contrast, CCART-D and CCART-
DE totally failed to control the Type I errors. As for Type II
errors, it can be found that the Type II errors of MPRT are
quite small, and decreases with the increase of sample size
N , while CCART-D and CCART-DE cannot benefit from
the increase in sample size. We note that it is very natural
that MPRT cannot beat CCART-C as CCART-C takes the
original continuous observation as input while MPRT takes
mixed data as input. We show the performance of CCART-C
just in order to show the minimal possible Type II errors
that one can achieve in the presence of discretization.

We also show the performance when both CCART-C and
MPRT have access to the original continuous observations,
as in Figure 3. Specifically, both methods properly control
the Type I errors as in the subfigure 3 (a). For the Type II er-
rors, the performance of CCART-C and MPRT is almost the
same. This is as expected, as in this scenario both methods
use exactly the same test statistics except that CCART-C
uses the analytically derived null distribution to get the p-
value while MPRT uses the empirical CDF to calculate the
p-value; the two results are expected to be exactly the same
asymptotically.

Taking the performance under these two scenarios together
into consideration it can be argued that MPRT is a very
general and valid rank test as it can handle all continous data,
partially discretized data, and all discretized data and the
Type I are properly controlled while the power is also good.

4.3. Application in Causal Discovery

In this section we validate our test using the PC algorithm
(Spirtes et al., 2000). Specifically, we consider linear causal
models with gaussian noises Vi =

∑
Vj∈Pa(Vi)

aijVj + εVi
,

where the edge coefficients and the variance of the noises are
randomly generated. We consider the scenario where data
are partially discretized and compare MPRT with Fisher-Z
to see which one works better with PC. We employ F1 score
F1 = 2∗Recall∗Precision

Recall+Precision for skeleton (the bigger the better)
and Structural Hamming Distance (SHD) for skeleton (the
smaller the better) to evaluate the performance. As shown
in Table 1, MPRT achieves the best performance in terms of
both F1 and SHD, under all sample sizes. This validates the
claim that MPRT can serve as a powerful CI test for causal
discovery in the presence of discretization.

4.4. Real-world Causal Discovery Application

In this section, we further validate our proposed MPRT
method using a real-world Big Five Personality dataset
https://openpsychometrics.org/. It consists of
50 personality indicators and close to 20,000 data points.
Each Big Five personality dimension, namely, Openness,
Conscientiousness, Extraversion, Agreeableness, and Neu-
roticism (O-C-E-A-N), are designed to be measured with
their own 10 indicators and the values of each variable are
ordinal: Disagree, slightly disagree, Neutral, Slightly agree,
and Agree. We employ RLCD (Dong et al., 2024a), a re-
cently proposed rank based causal discovery method with
our MPRT method. We choose 7 items from openness and
6 items from neuroticism to verify our method.

The results are shown in Figure 4. Specifically, for open-
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ness we discovered two latent variables. L2 corresponds to
whether a person has a lot of ideas while L1 corresponds to
the general concept of openness. As for neuroticism, we also
discovered two latent variables. L1 relates more to one’s
emotions while L2 relates to one’s stress level. In contrast,
if we directly use the ordinal values to do the rank test, i.e.,
using CCART-D, all the p-values tend to be very small, and
thus we have to use very small significance level (around
1e-10) in order to have some structures discovered; yet us-
ing such an extremely small alpha value will induce a lot of
Type II errors. This result illustrates the superiority of using
MPRT in the presence of discretizations in real-life scenar-
ios, and again empirically validate the proposed method.

4.5. Discussion about Unit Variance Assumption in
Correlation Estimation and Non-Gaussianity

In Section 3.3, we assume that the underlying continuous
variables have unit variance and zero mean. Violation of
this assumption, i.e., shift and rescaling of variables, does
not affect the validity of our method. This is because we
care about the rank of the cross-covariance matrix, which is
equal to the rank of the cross-correlation matrix; the latter
is clearly invariant to shift or rescaling of either some or all
variables. Thus, in Section 3.3 we assume all variables are
standardized just for simplicity of notation.

If we assume that the underlying continuous variables follow
a linear SCM, but the joint distribution are not necessarily
gaussian anymore, the proposed method can still work, as
long as the parametric form is given: we only need to modify
the likelihood function in Section 3.3 according to the cor-
responding parametric form for correlation estimation. As a
comparison, traditional CCA-based rank tests must assume
normality to infer the null distribution. On the other hand,
if the parametric form is not given, which means we do not
have any information about the shape of the distribution, it
may be very hard to consistently recover the thresholds and
the underlying correlation, due to insufficient information.

5. Conclusion
In this paper, we propose a novel permutation-based rank
test that works in the presence of discretization. It is rather
general as it can accommodate fully continuous data, par-
tially discretized data, or fully discretized data as input.
Extensive experiments empirically validate our method.
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A. Proofs
A.1. Proof of Theorem 4

Theorem 4 (Exchangeability of CXk: and CYk:). Given a set of variables V that are jointly gaussian, under null hypothesis
Hk

0 : rank(ΣX,Y) ≤ k, where X,Y ⊆ V, random vectors CXk: and CYk: are asymptotically independent with each other.

Proof of Theorem 4. First, Σ̂X, Σ̂Y, and Σ̂X,Y by pseudo-likelihood, converge in probability to ΣX, ΣY, and ΣX,Y,
respectively (Besag, 1974; Gourieroux et al., 1984; Gouriéroux et al., 2017; Fan et al., 2017).

Plus, as we need to apply the continuous mapping theorem, we show the continuity and uniqueness of SVD in what follows.
SVD is not continuous only when the input matrix has repeated singular values. Specifically, if a matrix A has distinct
singular values, then SVD is continuous in the neighborhood of A, and unique only up to sign flip (chapter 2 section 5.3
of (Kato, 2013)). Thus, to make use of the continuous mapping theorem, we assume that Σ− 1

2

X ΣX,YΣ
− 1

2

Y does not have
repeated singular values (the set of matrices with repeated singular values has Lebesgue measure zero (Lemma 1.4.2 in
(Kunisky), also in (Bochnak et al., 2013)).). To further eliminate the sign indeterminacy, we can just follow scikit-learn to
impose the largest coefficient of each column in U in absolute value is positive (svd flip in scikit-learn).

Given (Σ̂X, Σ̂Y, Σ̂X,Y)
p→ (ΣX,ΣY,ΣX,Y), we aim to show the desired asymptotic independence. Specifically we

want to show (i) CXk:
p→ CX

∗
k: and CYk:

p→ CY
∗
k:, and (ii) CX

∗
k:,CY

∗
k: are independent under the null hypo. Here

CX = ATX,CY = BTY, CX
∗ = A∗TX, and CY

∗ = B∗TY, where (A,B) and (A∗, B∗) are produced by SVD using
estimated covariance and population one respectively as follows.

USV = Σ̂
− 1

2

X Σ̂X,YΣ̂
− 1

2

Y , A = Σ̂
− 1

2T

X U,B = Σ̂
− 1

2T

Y V T , U∗S∗V ∗ = Σ
− 1

2

X ΣX,YΣ
− 1

2

Y , A∗ = Σ
− 1

2T

X U∗, B∗ = Σ
− 1

2T

Y V ∗T .

For (i): By continuous mapping theorem, under the assumption of no repeated singular values, we have U
p→ U∗. As ΣX is

positive definite, the matrix inverse square root is continuous and thus Σ̂− 1
2T

X

p→ Σ
− 1

2T

X . Given (U, Σ̂
− 1

2T

X )
p→ (U∗,Σ

− 1
2T

X ),

we have Σ̂
− 1

2T

X U = A
p→ A∗ = Σ

− 1
2T

X U∗. Similarly, we have B
p→ B∗. Thus

((AT−A∗T )X, (BT−B∗T )Y)
p→ 0⇒ (((AT−A∗T )X)k:, ((B

T−B∗T )Y)k:)
p→ 0⇒ (CXk:,CYk:)

p→ (CX
∗
k:,CY

∗
k:).

For (ii): Under the null hypo, the cross-covariance between CX
∗
k: and CY

∗
k: are all zeros. As CX k :∗,CY

∗
k: are jointly

gaussian (linear mixing of X,Y), zero cross-covariance implies independence.

A.2. Proof of Lemma 1

Lemma 1 (Alternative Way to Calculate Statistic in Eq. 4). Let the CCA score between CXk: and CYk: be {r̂i}K−k
1 . The

statistic defined in Eq. 4 can also be formulated as:

λk = −
(
N − P +Q+ 3

2

)
ln(ΠK−k

i=1 (1− r̂2i )). (6)

Proof of Lemma 1. The CCA scores between CXk: and CYk: are just the diagonal entries of their cross-covariance matrix,
which corresponds to the k to K CCA scores between X and Y. Thus we have r̂i = ri+k for i = {1, ...,K − k}, and thus
λk = −(N − P+Q+3

2 ) ln(ΠK
i=k+1(1− r2i )).

A.3. Proof of Theorem 5

Theorem 5 (Consistent Estimation of {r̂i}K−k
1 under Permutation P ). Under permutation P , the empirical CCA scores

between CXk: and CYk:, i.e., {r̂i}K−k
1 , are the singular values of Σ̂− 1

2

CXk:
Σ̂CXk:,CYk:

Σ̂
− 1

2

CYk:
, which can be consistently

estimated by:

((AT Σ̂XA)k:,k:)
− 1

2 ((AT DXT
P TDY

N − 1
B)k:,k:)

((BT Σ̂YB)k:,k:)
− 1

2 ,

(8)
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where DXT
PTDY

N−1 can be consistently estimated by using D̃X and P T D̃Y and assuming unit variance of variables.

Proof of Theorem 5. We are interested in Σ̂
− 1

2

CXk:
Σ̂CXk:,CYk:

Σ̂
− 1

2

CYk:
. Assume that we have access to the original data DX

and DY. By the exchangeability, for each random P , we have (PDXA):,k: and (DYB):,k: are the N samples from joint

distribution of CXk: and CYk:. Then the Σ̂
− 1

2

CXk:
, Σ̂CXk:,CYk:

, and Σ̂
− 1

2

CYk:
are as follows:

Σ̂
− 1

2

CXk:
= (

((PDXA):,k:)
T (PDXA):,k:

N − 1
)−

1
2 , (18)

= (
((PDXA)T (PDXA))k:,k:

N − 1
)−

1
2 , (19)

= (
(ATDXT

DXA)k:,k:
N − 1

)−
1
2 , (20)

= ((AT Σ̂XA)k:,k:)
− 1

2 . (21)

Σ̂
− 1

2

CYk:
= (

((DYB):,k:)
T (DYB):,k:

N − 1
)−

1
2 , (22)

= (
((DYB)T (DYB))k:,k:

N − 1
)−

1
2 , (23)

= (
(BTDYT

DYB)k:,k:
N − 1

)−
1
2 , (24)

= ((BT Σ̂YB)k:,k:)
− 1

2 . (25)

Σ̂CXk:,CYk:
=

((PDXA):,k:)
T (DYB):,k:

N − 1
, (26)

=
((PDXA)TDYB)k:,k:

N − 1
, (27)

= (
(ATDXT

P TDYB)k:,k:
N − 1

), (28)

= (AT DXT
P TDY

N − 1
B)k:,k:. (29)

Further, D̃X and P T D̃Y can be taken as sampled from the joint distribution of two independent gaussian random vectors.
As each of them are marginally gaussian, they are also jointly gaussian. Thus, DXT

PTDY

N−1 can be consistently estimated by
maximizing likeilhood as in Eq. 17.

B. Other Definitions
B.1. T-separation

The definitions of trek and t-separation are as follows.

Definition 1 (Treks (Sullivant et al., 2010)). In G, a trek from X to Y is an ordered pair of directed paths (P1, P2) where P1

has a sink X, P2 has a sink Y, and both P1 and P2 have the same source Z.

Definition 2 (T-separation (Sullivant et al., 2010)). Let A, B, CA, and CB be four subsets of VG in graph G (not
necessarilly disjoint). (CA,CB) t-separates A from B if for every trek (P1,P2) from a vertex in A to a vertex in B, either
P1 contains a vertex in CA or P2 contains a vertex in CB.

Example 1. In Figure 5, there are multiple treks. For example, X4 ← L1 → X3 is a trek between X4 and X3, X4 ← L1 is a
trek between X4 and L1, and L1 → X3 is a trek between L1 and X3. As for t-separations, we have {X1,X2} and {X3,X4} are
t-separated by (∅, {L1}).
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Figure 5. An illustrative example to show that rank contains more graphical information than CI. When using CI, we cannot deduce that
{X1,X2} and {X3,X4} are d-separated by L1 as L1 is latent, while by using rank we can.

Figure 6. An illustration of exchangeability and permutation test. The left figure refer to N i.i.d. samples from P (X,Y). After random
permutation on Y, the permutated data can be considered as random i.i.d. samples from P (X) and P (Y). If the exchangeability holds,
i.e., random vectors X and Y are independent, then we have P (X,Y) = P (X)P (Y), and thus the permuted data can serve as another
N i.i.d. samples from P (X,Y).

C. Discussion
C.1. Brief Introduction to Permutation Test

Permutation tests aim to empirically estimate the CDF of the null distribution of a test statistic. The core of such an CDF
estimation is the exchangeability, under which we can make use of permuted data to serve as additional samples from the
same distribution.

Take Figure 6 as an example. The left figure in Figure 6 refer to N i.i.d. samples from P (X,Y). After random permutation
on Y, the permutated data can be considered as random i.i.d. samples from P (X) and P (Y). If the exchangeability holds
under the null hypothesis, i.e., random vectors X and Y are independent, then we have P (X,Y) = P (X)P (Y), and thus
the permuted data can serve as another N i.i.d. samples from P (X,Y). Now we know how to generate additional N i.i.d.
samples. As a test statistic is just a deterministic function of the N i.i.d., samples. For each randomly permuted data, we
can calculate the value of the test statistic, and thus all these calculated test statistics can be considered as sampled from
the distribution of the test statistic. Given these samples, we can construct the empirical CDF of the null distribution, and
consequently correctly calculate the p-value.

C.2. Number of Categories and Analysis of Type-I error and Power

The proposed method can handle any level of discretization, as long as it is greater than 1, with Type-I errors properly
controlled. At the same time, more levels are always beneficial, because it leads to less information loss during the
discretization process, and thus the correlation matrix can be more efficiently estimated for building the test.

Regarding Type-I errors, as we establish the exchangeability even in the discretized scenario, the asymptotic null distribution
can be estimated by random permutations. Consequently, Type-I errors can be properly controlled at any significance
level. At the same time, we do not have theoretical result on the analysis of the power yet. To be specific, even without
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considering discretization, the analysis of power involves tools from advanced random matrix theories and is highly
nontrivial. Furthermore, in our setting with discretized variables, the involved maximum likelihood step makes such an
analysis even more challenging. To our best knowledge, there is not any existing result available for the analytic form of the
power in our setting, and we plan to leave it for future exploration.

D. Related Work
Conditional independence and rank test. A line of conditional independence tests imposes simplifying assumptions on
the distributions. For instance, when the variables have linear relations with additive Gaussian noise, the Fisher’s classical
z-test based on partial correlations can be used (Fisher, 1924; Baba et al., 2004). Ramsey (2014) developed an approach that
separately regresses X and Y on Z, and further perform independence test on the corresponding residuals. Fukumizu et al.
(2007) proposed a conditional independence test method based on Hilbert-Schmidt independence criterion (HSIC) (Gretton
et al., 2007). Zhang et al. (2012) further provided a kernel-based conditional test that yields pointwise asymptotic level
control. Shah & Peters (2018) investigated the hardness of conditional independence test, and developed a method based
on kernel-ridge regression and generalised covariance measure. On the other hand, existing statistical tests for rank of a
cross-covariance matrix (Anderson, 1984) often rely on CCA (Jordan, 1875; Hotelling, 1992), with a likelihood ratio based
test statistics. Recently, Sun et al. (2025b) also establishes a valid partial correlation test in the presence of discretization,
with a focus on the binary discretization scenario, and later Sun et al. (2025a) better solves this problem with general method
of moment.

Permutation test. Research and applications related to permutation tests have addressed increased attention in recent
years (David, 2008; Pesarin & Salmaso, 2010; Welch, 1990). These tests lead to valid inferences while requiring weak
assumptions that are commonly satisfied, base on the exchangeability of observations under the null hypothesis. Recently, a
permutation-based CI test was proposed (Doran et al., 2014) and more recently a permutation-based rank test (Winkler et al.,
2020). However, they cannot deal with the discretization problem. In contrast, our MPRT can take all continuous, partially
discretized, or all discretized data as input, and our Type I errors can be properly controlled.

Constraint-based causal discovery. Constraint-based methods leverage statistical tests, such as conditional independence
tests, to estimate the causal structure. Spirtes & Glymour (1991) proposed the PC algorithm that estimates the skeleton
and orient certain edges to identify the Markov equivalence class. FCI (Spirtes et al., 1995; Colombo et al., 2012) was
developed to allow for latent and selection variables, while the CCD algorithm (Richardson, 1996) can accommodate cycles.
Furthermore, Huang et al. (2020) developed a constraint-based method that allows for heterogeneity or non-stationarity in
the data distribution, while Silva et al. (2006); Huang et al. (2022); Dong et al. (2024a) proposed algorithms based on rank
test that recover the causal structure involving latent confounders.
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