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ABSTRACT

In recent years, contrastive learning achieves impressive results on self-supervised
visual representation learning, but there still lacks a rigorous understanding of
its learning dynamics. In this paper, we show that if we cast a contrastive ob-
jective equivalently into the feature space, then its learning dynamics admits an
interpretable form. Specifically, we show that its gradient descent corresponds
to a specific message passing scheme on the corresponding augmentation graph.
Based on this perspective, we theoretically characterize how contrastive learn-
ing gradually learns discriminative features with the alignment update and the
uniformity update. Meanwhile, this perspective also establishes an intriguing con-
nection between contrastive learning and Message Passing Graph Neural Networks
(MP-GNNs). This connection not only provides a unified understanding of many
techniques independently developed in each community, but also enables us to
borrow techniques from MP-GNNs to design new contrastive learning variants,
such as graph attention, graph rewiring, jumpy knowledge techniques, etc. We
believe that our message passing perspective not only provides a new theoretical
understanding of contrastive learning dynamics, but also bridges the two seemingly
independent areas together, which could inspire more interleaving studies to benefit
from each other. The code is available at https://github.com/PKU-ML/
Message-Passing-Contrastive-Learning.

1 INTRODUCTION

Contrastive Learning (CL) has become arguably the most effective approach to learning visual
representations from unlabeled data (Chen et al., 2020b; He et al., 2020; Chen et al., 2020c; Wang
et al., 2021a; Chen et al., 2020d; 2021; Caron et al., 2021). However, till now, we actually know
little about how CL gradually learns meaningful features from unlabeled data. Recently, there has
been a burst of interest in the theory of CL. However, despite the remarkable progress that has been
made, existing theories of CL are established for either an arbitrary function f in the function class
F (Saunshi et al., 2019; Wang et al., 2022) or the optimal f∗ with minimal contrastive loss (Wang &
Isola, 2020; HaoChen et al., 2021; Wang et al., 2022). Instead, a theoretical characterization of the
learning dynamics is largely overlooked, which is the focus of this work.

Perhaps surprisingly, we find out that the optimization dynamics of contrastive learning corresponds
to a specific message passing scheme among different samples. Specifically, based on a reformulation
of the alignment and uniformity losses of the contrastive loss into the feature space, we show that the
derived alignment and uniformity updates actually correspond to message passing on two different
graphs: the alignment update on the augmentation graph defined by data augmentations, and the
uniformity update on the affinity graph defined by feature similarities. Therefore, the combined
contrastive update is a competition between two message passing rules. Based on this perspective,
we further show that the equilibrium of contrastive learning can be achieved when the two message
rules are balanced, i.e., when the learned distribution Pθ matches the ground-truth data distribution
Pd, which provides a clear picture for understanding the dynamics of contrastive learning.

∗Equal Contribution.
†Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn).
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Meanwhile, as message passing is a general paradigm in many scenarios, the message passing
perspective of contrastive learning above also allows us to establish some intriguing connections to
these seemingly different areas. One particular example is in graph representation learning. Message
Passing Graph Neural Networks (MP-GNNs) are the prevailing designs in modern Graph Neural
Networks (GNNs), including numerous variants like GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018), and even the Transformers (Vaswani et al., 2017). There is a vast literature studying
its diffusion dynamics and representation power (Li et al., 2018; Oono & Suzuki, 2020; Wang et al.,
2021b; Li et al., 2022; Dong et al., 2021; Xu et al., 2019; 2018; Chen et al., 2022). Therefore,
establishing a connection between contrastive learning (CL) and MP-GNNs will hopefully bring new
theoretical and empirical insights for understanding and designing contrastive learning methods. In
this work, we illustrate this benefit from three aspects: 1) we establish formal connections between
the basic message passing mechanisms in two domains; 2) based on this connection, we discover
some close analogies among the representative techniques independently developed in each domain;
and 3) borrowing techniques from MP-GNNs, we design two new contrastive learning variants, and
demonstrate their effectiveness on benchmark datasets. We summarize our contributions as follows:

• Learning Dynamics. We reformulate of the contrastive learning into the feature space and
develop a new decomposition of the alignment and uniformity loss. Based on this framework,
we show that the alignment and uniformity updates correspond to two different message
passing schemes, and characterize the equilibrium states under the combined update. This
message perspective provides a new understanding of contrastive learning dynamics.

• Connecting CL and MP-GNNs. Through the message passing perspective of contrastive
learning (CL), we show that we can establish an intriguing connection between CL and
MP-GNNs. We not only formally establish the equivalence between alignment update and
graph convolution, uniformity update and self-attention, but also point out the inherent
analogies between important techniques independently developed in each domain.

• New Designs Inspired by MP-GNNs. We also demonstrate the empirical benefits of
this connection by designing two new contrastive learning variants borrowing techniques
from MP-GNNs: one is to avoid the feature collapse of alignment update by multi-stage
aggregation, and one is to adaptively align different positive samples with by incorporating
the attention mechanism. Empirically, we show that both techniques leads to clear benefits
on benchmark datasets. In turn, their empirical successes also help verify the validness of
our established connection between CL and MP-GNNs.

2 A MESSAGE PASSING PERSPECTIVE ON CONTRASTIVE LEARNING

In this section, we develop a message passing perspective for understanding the dynamics of con-
trastive learning. We begin by reformulating the contrastive loss into the feature space with a new
decomposition. We then study the update rules derived from the alignment and uniformity losses,
and explain their behaviors from a message passing perspective. When combined together, we also
characterize how the two updates strike a balance at the equilibrium states. And we finish this section
with a proof-of-idea to illustrate the effectiveness of our derive message passing rules.

2.1 BACKGROUND, REFORMULATION, AND DECOMPOSITION

We begin our discussion by introducing the canonical formulation of contrastive learning methods in
the parameter space, and present their equivalent formulation in the feature space.

Contrastive Learning (CL). Given two positive samples (x, x+) generated by data augmentations,
and an independently sampled negative sample x′, we can learn an encoder fθ : Rd → Rm with the
wide adopted InfoNCE loss (Oord et al., 2018):

Lnce(θ) = −Ex,x+ [fθ(x)
⊤fθ(x

+)] + Ex logEx′ [exp(fθ(x)
⊤fθ(x

′))], (1)

where the form term pulls positive samples (x, x+) together by encouraging their similarity, and the
latter term pushes negative pairs (x, x′) apart. In practice, we typically randomly draw M negative
samples to approximate the second term.

In contrastive learning, the encoder is parameterized by deep neural networks, making it hardly
amenable for formal analysis. Wen & Li (2021) resort to single-layer networks with strong assump-
tions on data distribution, but it is far from practice. Instead, in this work, we focus on the dynamics
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of the learned data features fθ(x) in the feature spaceRm. As over-parameterized neural networks
are very expressive and adaptive, we assume the feature matrix Fθ to be unconstrained (updated
freely ignoring dependences on parameters and sample complexity) as in HaoChen et al. (2021). This
assumption is also widely adopted in deep learning theory, such as, layer peeled models (Mixon et al.,
2022; Zhu et al., 2021). The unconstrained feature assumption enables us to focus on the relationship
between augmented samples. As pointed out by Wang et al. (2022), the support overlap between
augmented data is the key for contrastive learning to generalize to downstream tasks. However,
we still do not have a clear view of how data augmentations affect feature learning, which is the
focus of this work. For a formal exposition, we model data augmentations through the language of
augmentation graph.

Following HaoChen et al. (2021), we assume a finite sample space X (can be exponentially large).
Given a set of natural data as X̄ = {x̄ | x̄ ∈ Rd}, we first draw a natural example x̄ ∈ Pd(X̄ ),
and then draw a pair of samples x, x+ from a random augmentation of x̄ with distribution A(·|x̄).
We denote X as the collection of augmented “views”, i.e., X = ∪x̄∈X̄ supp (A(·|x̄)). Regarding
the N samples in X as N nodes, we can construct an augmentation graph G = (X , A) with an
adjacency matrix A representing the mutual connectivity. The edge weight Axx′ ≥ 0 between x
and x′ is defined as their joint probability Axx′ = Pd(x, x

′) = Ex̄A(x|x̄)A(x′|x̄). The normalized
adjacency matrix is Ā = D−1/2AD−1/2, where D = deg(A) denotes the diagonal degree matrix,
i.e., Dxx = wx =

∑
x′ Axx′ . The symmetrically normalized Laplacian matrix L = I − Ā is known

to be positive semi-definite (Chung, 1997). As natural data and data augmentations are uniformly
sampled in practice (Chen et al., 2020b), we assume uniform distribution wx = 1/N for simplicity.

New Alignment and Uniformity Losses in Feature Space. Here, we reformulate the contrastive
losses into the feature space, and decompose them into two parts, the alignment loss for positive pairs,
and the uniformity loss for negative pairs (Lunif for InfoNCE loss, and L(sp)

unif for spectral loss):

Lalign(F ) = Tr(F⊤LF ) =
1

2
Ex,x+∥f(x)− f(x+)∥2, (2a)

Lunif(F ) = LSE(FF⊤)− ∥F∥2 = Ex logEx′ exp(f(x)⊤f(x′))− Ex∥f(x)∥2, (2b)

where LSE(X) = Tr(D log(deg(D exp(D−1/2XD−1/2)))) serve as a pseudo “norm”.1 The
following proposition establishes the equivalence between original loss and our reformulated one.
Proposition 1. When the x-th row of F is defined as Fx =

√
wxfθ(x), we have:

Lnce(θ) = Lalign(Fθ) + Lunif(Fθ). (3)

Remark on Loss Decomposition. Notably, our decomposition of contrastive loss is different from
the canonical decomposition proposed by Wang & Isola (2020). Taking the InfoNCE loss as an
example, they directly take the two terms of Eq. 1 as the alignment and uniformity losses, which,
however, leads to two improper implications without feature normalization. First, minimizing their
alignment loss Lalign(θ) = −Ex,x+fθ(x)

⊤fθ(x
+) alone is an ill-posed problem, as it approaches

−∞ when we simply scale the norm of F . In this case, the alignment loss gets smaller while the
distance between positive pairs gets larger. Second, minimizing the uniformity loss alone will bridge
the distance closer. Instead, with our decomposition, the alignment loss (Eq. 2a) is positive definite
and will bring samples together with smaller loss, and a larger uniformity loss (Eq. 2b) will expand
their distances (Figure 1). Thus, our decomposition in Eq. 2 seems more properly defined than theirs.

Based on the reformulation in Eq. 2, we will study the dynamics of each objective in Section 2.2.1 and
give a unified analysis of their equilibrium in Section 2.3, both from a message passing perspective.

2.2 A MESSAGE PASSING PERSPECTIVE ON ALIGNMENT AND UNIFORMITY

2.2.1 ALIGNMENT UPDATE IS MESSAGE PASSING ON AUGMENTATION GRAPH

In fact, the reformulated alignment loss Lalign(F ) = Tr(F⊤LF ) is widely known as the Laplacian
regularization that has wide applications in various graph-related scenarios (Ng et al., 2001; Ando &
Zhang, 2006). Its gradient descent with step size α > 0 gives the following update rule:

(global update) F (t+1) = F (t) − α∇F (t)Lalign(F
(t)) =

[
(1− 2α)I + 2αĀ

]
F (t). (4)

1Here log, exp are element-wise operations.
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One familiar with graphs can immediately recognize that this update rule is a matrix-form message
passing scheme of features F (t) with a propagation matrix P = (1− 2α)I + 2αĀ. For those less
familiar with the graph literature, let us take a look at the local update of the feature Fx of each x:

(local update) F
(t+1)
x = (1− 2α)F

(t+1)
x + 2α

∑
x′∈Nx

Āxx′F
(t+1)
x′ . (5)

We can see that the alignment loss updates each feature Fx by a weighted sum that aggregates features
from its neighborhood Nx = {x′ ∈ X |Āxx′ > 0}. In the context of contrastive learning, this reveals
that the alignment loss is to propagate features among positive pairs, and in each step, more alike
positive pairs x, x+ (with higher edge weights Axx+ ) will exchange more information.

Next, let us turn our focus to how this message passing scheme affects downstream classification. As
for contrastive learning, because positive samples come from the same class, this alignment loss will
help cluster same-class samples together. However, it does not mean that any augmentations can attain
a minimal intra-class variance. Below, we formally characterize the effect of data augmentations on
the feature clustering of each class k. We measure the degree of clustering by the distance between
all intra-class features to a one-dimensional subspaceM.
Proposition 2. Denote the distance between a feature matrix X and a subspace Ω by dΩ(X) :=
inf{∥X − Y ∥F | Y ∈ Ω}. Assume that data augmentations are label-preserving. Then, for samples
in each class k, denoting their adjacency matrix as Āk and their features at t-th step as F (t)

k , the
message passing in Eq. 4 leads to a smaller or equal distance to an one-dimensional subspaceM

dM(F
(t+1)
k ) ≤ |1− 2αλGk

| · dM(F
(t)
k ), (6)

where λGk
∈ [0, 2] denotes the intra-class algebraic connectivity of G (Chung, 1997), andM =

{e1 ⊗ y|y ∈ Rc}, and e1 is the eigenvector corresponding to the largest eigenvalue of Āk.

An important message of Proposition 2 is that the alignment update does not necessarily bring better
clustering, which depends on the algebraic connectivity λGk

: 1) only a non-zero λGk
guarantees the

strict decrease of intra-class distance, and 2) a larger λGk
indicates an even faster decrease. According

to spectral graph theory, λGk
is the second-smallest eigenvalue of the Laplacian L, and its magnitude

reflects how connected the graph is. In particular, λGk
> 0 holds if and only if the intra-class graph

is connected (Chung, 1997). Indeed, when the class is not connected, the alignment update can
never bridge the disjoint components together. While in contrastive learning, the design of data
augmentations determines Gk as well as λGk

. Therefore, our message passing analysis quantitatively
characterize how augmentations affect feature clustering in the contrastive learning dynamics.

2.2.2 UNIFORMITY UPDATE IS MESSAGE PASSING ON THE AFFINITY GRAPH

Contrary to the alignment loss, the uniformity loss instead penalizes the similarity between every
sample pair x, x′ ∈ X to encourage feature uniformity. Perhaps surprisingly, from a feature space
perspective, its gradient descent rule, namely the uniformity update, also corresponds to a message
passing scheme with the affinity graph G′ with a “fake” adjacency matrix A′:

(global update) F (t+1) = F (t) − α∇F (t)Lunif(F
(t)) = [(1 + 2α)I − 2αĀ′

sym]F
(t), (7)

where Ā′
sym = D′

exp
−1A′

exp + A′
expD

′
exp

−1, and A′
exp = exp(D−1/2F (t)F (t)⊤D−1/2), D′

exp =
deg(A′

exp). When we further apply stop gradient to the target branch (as adopted in BYOL (Grill
et al., 2020) and SimSiam (Chen & He, 2021)), we can further simplify it to

(global update with stop gradient) F (t+1) = [(1+α)I−αĀ′]F (t), where Ā′ = D′
exp

−1A′
exp. (8)

We can also interpret the uniformity update as a specific message passing scheme on the affinity
graph G′ = (X , A′) with node set X and adjacency matrix A′. In comparison to the augmentation
graph G that defines the edge weights via data augmentations, the affinity graph is instead constructed
through the estimated feature similarity between (x, x′). The contrastive learning with two graphs
resembles the wake-sleep algorithm in classical unsupervised learning (Hinton et al., 1995).

Further, we notice that the affinity matrix Ā′ is induced by the RBF kernel kRBF(u, v) = exp(−∥u−
v∥2/2) when the features are normalized, i.e., ∥f(x)∥ = 1 (often adopted in practice (Chen et al.,
2020b)). Generally speaking, the RBF kernel is more preferable than the linear kernel as it is more
non-Euclidean and non-parametric. Besides, because the message passing in the alignment update
utilizes Ā, which is also non-negative and normalized, the InfoNCE uniformity update with Ā′

nce can
be more stable and require less hyperparameter tuning to cooperate with the alignment update. Thus,
our message passing view not only provides a new understanding of the uniformity update, but also
helps explain the popularity of the InfoNCE loss.
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Figure 1: Mimicking contrastive learning with our message passing rules on synthetic data. The data
samples D are generated following the isotropic Gaussian distribution with means (−1, 0) and (1, 0)
(two classes, blue and yellow), and variance 0.7. We then construct an augmentation graph G by
drawing edged Aij = 1 for any data pair satisfying ∥xi − xj∥2 ≤ 0.4. For mimicking contrastive
learning, we firstly initialize all features {fi} uniformly in [−1, 1]2, and then perform message
passing of these features using G for 1,000 steps with step size 0.1. Best viewed in color.

2.3 THE EQUILIBRIUM BETWEEN THE ALIGNMENT AND UNIFORMITY UPDATE

Combining the alignment update and the uniformity update discussed above, we arrive at our final
update rule for contrastive learning with the (regularized) InfoNCE loss (with stop gradient):

F (t+1) = F (t) − α∇F (t)Lnce(F
(t)) = F (t) + α(Ā− Ā′)F (t), (9)

which is a special message passing scheme using the difference between the augmentation (data)
and affinity (estimated) adjacency matrices Adiff = Ā− Ā′. Accordingly, we can reformulate the
contrastive loss more intuitively as:

L(F ) = −Tr(sg(Adiff)FF⊤) = −Tr(ĀFF⊤) + Tr(sg(A′)FF⊤) = Lalign(F ) + Lunif(F ), (10)

where sg(·) means the stop gradient operator.

Equilibrium Distribution. The reformulation above (Eq. 10) also reveals the stationary point of the
learning dynamics, that is, Ādiff = Ā−A′ = 0, which implies the model equilibrium as follows.
Proposition 3. The contrastive learning dynamics with the InfoNCE loss saturates when the real
and the fake adjacency matrices agree, i.e., Ā = Ā′

nce, which means that element-wisely, we have:

∀ x, x+ ∈ X , Pd(x
+|x) = Pθ(x

+|x) ≜ exp(fθ(x)
⊤fθ(x

+))∑
x′ exp(fθ(x)⊤fθ(x′))

. (11)

That is, the ground-truth data conditional distribution Pd(x
+|x) equals to the Boltzmann distribution

Pθ(x
+|x) estimated from the encoder features.

In this way, our analysis reveals that contrastive learning (with InfoNCE loss) implicitly learns a
probabilistic model Pθ(x

+|x) (Eq. 11), and its goal is to approximate the conditional data distribution
Pd(x

+|x) defined via the augmentation graph G. This explains the effectiveness of contrastive
learning on out-of-distribution detection tasks (Winkens et al., 2020) that rely on good density
estimation. In practical implementations of InfoNCE, e.g., SimCLR, a temperature scalar τ is often
introduced to rescale the cosine similarities. With a flexible choice of τ , the model distribution Pθ

could better approximate sharp (like one-hot) data distribution Pd. A detailed comparison to related
work is included in Appendix A.

2.4 A PROOF-OF-IDEA EXPERIMENT

At last, we verify the derived three message passing rules (alignment, uniformity, contrastive) through
a synthetic experiment using on a synthetic augmentation graph to mimic contrastive learning in
the feature space. From Figure 1, we can see that the results generally align well with our theory.
First, the alignment update (Section 2.2.1) indeed bridges intra-class samples closer, but there is also

5



Published as a conference paper at ICLR 2023

a risk of feature collapse. Second, the uniformity update (Section 2.2.2) indeed keeps all samples
uniformly distributed. Third, by combining the alignment and uniformity updates, the contrastive
update (Section 2.3) can successfully cluster intra-class samples together while keeping inter-class
samples apart, even after long iterations. In this way, we show that like the actual learning behaviors
of contrastive learning, the derived contrastive message passing rules can indeed learn stable and
discriminative features from unlabeled data.

3 CONTRASTIVE LEARNING (CL) AND MESSAGE PASSING GRAPH NEURAL
NETWORKS (MP-GNNS): CONNECTIONS, ANALOGIES, AND NEW DESIGNS

In the previous section, we have shown the contrastive learning dynamics corresponds nicely to a
message passing scheme on two different graphs, Ā and Ā′. In a wider context, message passing is a
general technique with broad applications in graph theory, Bayesian inference, graph embedding, etc.
As a result, our interpretation of contrastive learning from a message passing perspective enables us
to establish some interesting connections between contrastive learning and these different areas.

A noticeable application of message passing is graph representation learning. In recent years, Message
Passing Graph Neural Networks (MP-GNNs) become the de facto paradigm for GNNs. Various
techniques have been explored in terms of different kinds of graph structures and learning tasks.
By drawing a connection between contrastive learning and MP-GNNs, we could leverage these
techniques to design better contrastive learning algorithms, as is the goal of this section.

To achieve this, we first establish the basic connections between the basic paradigms in Section
3.1. Built upon these connections, in Section 3.2, we point out the common ideas behind many
representative techniques independently proposed by each community in different names. Lastly, we
show that we could further borrow some new techniques from the MP-GNN literature for designing
new contrastive learning methods in Section 3.3.

3.1 CONNECTIONS BETWEEN THE TWO PARADIGMS

Regarding the alignment update and the uniformity update in contrastive learning, we show that they
do have a close connection to message passing schemes in graph neural networks.

Graph Convolution and Alignment Update. A graph data with N nodes typically consist of two
inputs, the input feature X ∈ RN×d, and the (normalized) adjacency matrix Ā ∈ Rn×n. For a
feature matrix H(t) ∈ Rn×m at the t-th layer, the canonical graph convolution scheme in GCN
(Kipf & Welling, 2017) gives H(t+1) = ĀH(t). Later, DGC (Wang et al., 2021b) generalizes it to
H(t+1) = (1 −∆t)I + ∆tĀH(t) with a flexible step size ∆t for finite difference, which reduces
the canonical form when ∆t = 1. Comparing it to the alignment update rule in Eq. 4, we can easily
notice their equivalence when we take the augmentation graph Ā as the input graph for a GCN (or
DGC), and adopt a specific step size ∆t = 2α. In other words, the gradient descent of F using
the alignment loss (an optimization step) is equivalent to the graph convolution of F based on the
augmentation graph Ā (an architectural module). Their differences in names and forms are only
superficial, since inherently, they share the same message passing mechanism.

Oversmoothing and Feature Collapse. The equivalence above is the key for us to unlock many
intriguing connections between the two seemingly different areas. A particular example is the
oversmoothing problem, one of the centric topics in MP-GNNs with tons of discussions, to name
a few, Li et al. (2018), Oono & Suzuki (2020), Shi et al. (2022). Oversmoothing refers to the
phenomenon that when we apply the graph convolution above for many times, the node features
will become indistinguishable from each other and lose discriminative ability. Meanwhile, we have
also observed the same phenomenon for the alignment update in Figure 1. Indeed, it is also well
known in contrastive learning that with the alignment loss alone, the features will collapse to a single
point, known as complete feature collapse. Hua et al. (2021) show that when equipped with BN at
the output, the features will not fully collapse but still collapse to a low dimensional subspace, named
dimensional collapse. In fact, both two feature collapse scenarios with the augmentation graph can
be characterized using existing oversmoothing analysis of a general graph (Oono & Suzuki, 2020).
Therefore, this connection also opens new paths for the theoretical analysis of contrastive learning.

Self-Attention and Uniformity Update. Besides the connection in the alignment update, we also
notice an interesting connection between the uniformity update rule and the self-attention mechanism.
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Table 1: Comparison of linear probing accuracy (%) of contrastive learning methods and their
variants inspired by MP-GNNs, evaluated on three datasets, CIFAR-10 (C10), CIFAR-100 (C100),
and ImageNet-100 (IN100), and two backbone networks: ResNet-18 (RN18) and ResNet-50 (RN50).

(a) SimSiam and its multi-stage variant (Eq. 13).

Model Pretraining C10 C100 IN100

RN18 SimSiam 83.8 56.3 68.8
+ Multi-stage 84.8 58.9 70.5

RN50 SimSiam 85.9 58.4 70.9
+ Multi-stage 87.0 59.8 72.3

(b) SimCLR and its attention variant (Eq. 15).

Model Pretraining C10 C100 IN100

RN18 SimCLR 84.5 56.1 62.3
+ Attention 85.4 56.9 63.1

RN50 SimCLR 88.2 59.8 66.0
+ Attention 89.4 60.7 66.7

Self-attention is the key component of Transformer (Vaswani et al., 2017), which recently obtains
promising progresses in various scenarios like images, video, text, graph, molecules (Lin et al., 2021).
For an input feature H(t) ∈ RN×m at the t-th step, the self-attention module gives update:

H(t+1) = Ā′H(t), where Ā′ = D′
exp

−1A′
exp, A

′
exp = exp(H(t)H(t)⊤). (12)

When comparing it to the uniformity update in Eq. 8, we can see that the two rules are equivalent
when α = −1. Because the step size is negative, self-attention is actually a gradient ascent step
that will maximize the feature uniformity loss (Eq. 2b). Consequently, stacking self-attention will
reduce the uniformity between features and lead to more collapsed representations, which explains
the feature collapse behavior observed in Transformers (Shi et al., 2022). Different from previous
work (Dong et al., 2021), our analysis above stems from the connection between contrastive learning
and MP-GNNs, and it provides a simple explanation of this phenomenon from an optimization
perspective.

3.2 ANALOGIES IN EXISTING TECHNIQUES

In the discussion above, we establish connections between the two paradigms. Besides, we know that
many important techniques and variants have been built upon the basic paradigms in each community.
Here, through a unified perspective of the two domains, we spot some interesting connections
between techniques developed independently in each domain, while the inherent connections are
never revealed. Below, we give two examples to illustrate benefits from these analogies.

NodeNorm / LayerNorm and ℓ2 Normalization. In contrastive learning, since SimCLR (Chen
et al., 2020b), a common practice is to apply ℓ2 normalization before calculating the InfoNCE loss,
i.e., f(x)/∥f(x)∥. As a result, the alignment loss becomes equivalent to the cosine similarity between
the features of positive pairs. Yet, little was known about the real benefits of ℓ2 normalization. As
another side of the coin, this node-wise feature normalization technique, in the name of NodeNorm
(Zhou et al., 2021), has already been shown as an effective approach to mitigate the performance
degradation of deep GCNs by controlling the feature variance. Zhou et al. (2021) also show that Lay-
erNorm (Ba et al., 2016) with both centering and normalization can also obtain similar performance.
These discussions in MP-GNNs also help us understand the effectiveness of ℓ2 normalization.

PairNorm / BatchNorm and Feature Centering. Another common technique in contrastive learning
is feature centering, i.e., f(x) − µ, where µ is the mean of all sample (node) features. In DINO
(Caron et al., 2021), it is adopted to prevent feature collapse. Similarly, Hua et al. (2021) also show
that BatchNorm (Ioffe & Szegedy, 2015) (with feature centering as a part) can alleviate feature
collapse. On the other side, PairNorm (Zhao & Akoglu, 2020) combines feature centering and feature
normalization (mentioned above) to alleviate oversmoothing. In particular, they show that PairNorm
can preserve the total feature distance of the input (initial features). This, in turn, could be adopted as
an explanation for how feature centering works in contrastive learning.

3.3 INSPIRED NEW DESIGNS

Besides the analogies drawn above, we find that there are also many other valuable techniques from
the MP-GNN literature that have not found their (exact) counterparts in contrastive learning. In this
section, we explore two new connections from different aspects: multi-stage aggregation for avoiding
feature collapse, and graph attention for better feature alignment.
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Figure 2: Experiments on CIFAR-10: (a) Performance of multi-stage aggregation (linear accuracy
(%)) and aggregation epochs s. (b) natural (1st column) samples and their augmented views (2-4th
columns) using SimCLR augmentations. (c) Estimated scores between the anchors (1st column) and
the augmented views (2-8th columns) using a pretrained SimCLR model.

3.3.1 NEW CONNECTION I: MULTI-STAGE GRAPH AGGREGATION

As discussed above, the alignment loss alone will lead to feature collapse in contrastive learning.
Although existing works like BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) can alleviate
feature collapse via asymmetric architectural designs, we are still not fully clear how they work.
Instead, the connection between feature collapse and oversmoothing (Section 3.1) inspires us to
borrow techniques from the MP-GNNs to alleviate the feature collapse issue of contrastive learning.

In the MP-GNN literature, a principled solution to oversmoothing is the jump knowledge technique
proposed in JK-Net (Xu et al., 2018). Instead of adopting features only from the last step H(T ) (which
might already oversmooth), JK-Net aggregates features from multiple stages, e.g., H(1), . . . ,H(T ),
as the final feature for classification. In this way, the knowledge from previous non-over-smoothing
steps could directly jump into the final output, which helps improve its discriminative ability. This
idea of multi-stage aggregation is also widely adopted in many other MP-GNNs, such as APPNP
(Klicpera et al., 2019), GCNII (Chen et al., 2020a), SIGN (Rossi et al., 2020), etc.

In this work, we transfer this idea to the contrastive learning scenario, that is, to alleviate feature
collapse by combining features from multiple previous epochs. Specifically, we create a memory
bankM to store the latest s-epoch features from the same natural sample x̄. At the t-th epoch, for x
generated from x̄, we have stored old features of it as z(t−1)

x̄ , z
(t−2)
x̄ , . . . , z

(t−r)
x̄ where r = min(s, t).

Then we replace the original positive feature fθ(x
+) with the aggregation of the old features in the

memory bank, where we simply adopt the sum aggregation for simplicity, i.e., zx̄ = 1
r

∑r
i=1 z

(t−i)
x̄ .

Next, we optimize the encoder network fθ with the following multi-stage alignment loss alone,

Lmulti−align(θ) = −Ex̄Ex|x̄(fθ(x)
⊤zx̄). (13)

Afterwards, we will push the newest feature z = fθ(x) to the memory bank, and drop the oldest
one if exceeded. In this way, we could align the new feature with multiple old features that are less
collapsed, which, in turn, also prevents the collapse of the updated features.

Result Analysis. From Figure 2a, we can see that when directly applying the multi-stage alignment
objective, a larger number of aggregation epochs could indeed improve linear accuracy and avoid full
feature collapse. Although the overall accuracy is still relatively low, we can observe a clear benefit
of multi-stage aggregation (better than random guess when s ≥ 2), which was only possible using
asymmetric modules, e.g., SimSiam’s predictor (Chen & He, 2021). Inspired by this observation, we
further combine multi-stage aggregation with SimSiam to further alleviate feature collapse. As shown
in Table 1a, the multi-stage mechanism indeed brings cosistent and significant improvements over
SimSiam on all three datasets, which clearly demonstrates the benefits of multi-stage aggregation
on improving existing non-contrastive methods by further alleviating their feature collapse issues.
Experiment details can be found in Appendix C.1.

3.3.2 NEW CONNECTION II: GRAPH ATTENTION

A noticeable defect of existing contrastive loss is that they assign an equal weight for different positive
pairs. As these positive samples are generated by input-agnostic random data augmentations, there
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could be a large difference in semantics between different positive samples. As marked in red (Figure
2b), some augmented views may even lose the center objects, and aligning with these bad cases will
bridge samples from different classes together and distort the decision boundary. Therefore, in the
alignment update, it is not proper to assign equal weights as in vanilla alignment loss (Eq. 5). Instead,
we should adaptively assign different weights to different pairs based on semantic similarities.

Revisiting MP-GNNs, we find that there are well-established techniques to address this issue. A
well-known extension of graph convolution is graph attention proposed in GAT (Veličković et al.,
2018), and Transformers can be seen as a special case of GAT applied to a fully connected graph. GAT
extends GCN by taking the semantic similarities between neighborhood features (corresponding to
positive pairs in the augmentation graph) into consideration. Specifically, for a node x with neighbors
Nx, GAT aggregates neighbor features with the attention scores as

H
(t+1)
x =

∑
x+∈Nx

α(x, x+)H
(t)
x+ , where α(x, x+) = exp(e(x,x+))∑

x′∈Ni
exp(e(x,x′)) . (14)

In GAT, they adopt additive attention to compute the so-called attention coefficients e(x, x′). Alterna-
tively, we can adopt the dot-product attention as in Transformers, e.g., e(x, x′) = H

(t)
x

⊤H
(t)
x′ .

Motivated by the design of graph attention, we revise the vanilla alignment loss by reweighting
positive pairs with their estimated semantic similarities. Following Transformer, we adopt the dot-
product form to estimate the attention coefficient as e(x, x+) = fθ(x)

⊤fθ(x
+). Indeed, Figure 2c

shows that the contrastive encoder can provide decent estimation of semantic similarities between
positive samples. Therefore, we adopt this attention coefficient to adaptively reweight the positive
pairs, and obtain the following attention alignment loss (with the uniformity loss unchanged),

Lattn−align(θ) =
1

2
Ex,x+α(x, x+)∥fθ(x)− fθ(x

+)∥2. (15)

Specifically, we assign the attention score α(x, x+) as α(x, x+) = exp(β·fθ(x)⊤fθ(x
+))∑

x′ exp(β·fθ(x)⊤fθ(x′))
, where

we simply adopt M negative samples in the mini-batch for computing the normalization, and β is a
hyperparameter to control the degree of reweighting. We also detach the gradients from the weights
as they mainly serve as loss coefficients. The corresponding attention alignment update is

(local update with attention) Fx ← (1− 2α)Fx + 2α

N∑
x+

Āxx+α(x, x+)Fx+ . (16)

Compared to the vanilla alignment update (Eq. 5), the attention alignment update adaptively aligns
different positive samples according to the feature-level semantic similarity α(x, x+). Thus, our pro-
posed attention alignment can help correct the potential sampling bias of existing data augmentation
strategies, and learn more semantic-consistent features.

Result Analysis. We follow the basic setup of SimCLR (Chen et al., 2020b) and consider two
popular backbones: ResNet-18 and ResNet-50. We consider image classification tasks on CIFAR-10,
CIFAR-100 and ImageNet-100. We train 100 epochs on ImageNet-100 and 200 epochs on CIFAR-10
and CIFAR-100. More details can be found in Appendix C.2. As shown in Table 1b, the proposed
attention alignment leads to a consistent 1% increase in linear probing accuracy among all settings,
which helps verify that our attentional reweighting of the positive samples indeed lead to consistently
better performance compared to the vanilla equally averaged alignment loss.

4 CONCLUSION

In this paper, we proposed a new message passing perspective for understanding the learning dynamics
of contrastive learning. We showed that the alignment update corresponds to a message passing
scheme on the augmentation graph, while the uniformity update is a reversed message passing on
the affinity graph, and the two message passing rules strike a balance at the equilibrium where the
two graphs agree. Based on this perspective as a bridge, we further developed a deep connection
between contrastive learning and MP-GNNs. On the one hand, we established formal equivalences
between their message passing rules, and pointed out the inherent connections between some existing
techniques developed in each domain. On the other hand, borrowing techniques from the MP-GNN
literature, we developed two new methods for contrastive learning, and verified their effectiveness
on real-world data. Overall, we believe that the discovered connection between contrastive learning
and message passing could inspire more studies from both sides to benefit from each other, both
theoretically and empirically.
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A RELATED WORK

Because our work analyzes contrastive learning in terms of the update rules of the alignment and
uniformity losses, it is closely related to Wang & Isola (2020) that firstly propose the alignment-
and-uniformity (A+U) perspective of the contrastive learning objective. However, there is a key
difference between the two works. In particular, Wang & Isola (2020) only show that if an encoder
with perfect A+U exists, it would be the minimizer of the InfoNCE loss (see Theorem 1 (Wang
& Isola, 2020)). But what we are actually interested is the opposite: will the minimization of the
InfoNCE loss guide us to the desired A+U properties? This is exactly the focus of our work by
studying the learning dynamics of contrastive learning. Besides, we also extend the analysis A+U
on the pretraining task (Wang & Isola, 2020) to its theoretical effect on downstream generalization
as discussed in Propositions 2. Comparing to Wang et al. (2022), they only assume the existence
of perfect alignment, while our analysis shows that the contrastive learning process helps improve
feature clustering.

Another closely related work is HaoChen et al. (2021) that develops the augmentation graph frame-
work that we build upon. Different from ours, they only characterize the optimal solution of the
spectral loss Lsp directly through eigen-decomposition (ED), which leads to following drawbacks.
First, because N can be exponentially large, ED (O(N3) complexity) is not directly applicable
in practice. Instead, our analysis focuses on the scalable first-order optimization methods that are
adopted in practice with good performance in limited training steps. Second, their theory only applies
to the spectral loss and fails to characterize the widely adopted InfoNCE loss, which does not admit
a closed-form solution. In comparison, our message passing analysis naturally incorporates the
InfoNCE loss, as shown in Section 2.2.2.

Besides, Wen & Li (2021) study the contrastive learning process, but only with single-layer networks
under toy problems, which is hardly practical. Tian et al. (2021) study the dynamics of non-contrastive
learning, but only focus on the predictor parameters. Different from theirs, we adopt a feature space
view and analyze the overall evolution of sample features for contrastive learning in practice. Many
works before like Wang & Liu (2021) also intuitively discuss the behaviors of contrastive learning
gradients. Instead, we provide a formal and systematic study of the learning dynamics of the samples
features by characterizing its effect on the downstream performance. In particular, we establish an
intriguing connection between contrastive learning and message passing, which is the first time that
the two distinctive techniques from different areas are formally bridged together.

B PROOF OF MAIN THEORETICAL RESULTS

Proposition 1. When the x-th row of F is defined as Fx =
√
wxfθ(x), we have:

Lnce(θ) = Lalign(Fθ) + Lunif(Fθ). (17)

Proof. We first prove the two equations Eq.(2a) and Eq.(2b), which states the relations between F
and f(x).

Lalign(F ) = Tr(F⊤LF ) =
1

2
Ex,x+∥f(x)− f(x+)∥2, (2a)

Lunif(F ) = LSE(FF⊤)− ∥F∥2 = Ex logEx′ exp(f(x)⊤f(x′))− Ex∥f(x)∥2, (2b)
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For the alignment loss, we have

Tr(F⊤LF ) = Tr(F⊤(I − Ā)F )

= −
∑
x,x′

√
wx
√
wx′Āxx′f(x)⊤f(x′) +

∑
x

wxf(x)
⊤f(x)

= −
∑
x

∑
x′

Axx′f(x)⊤f(x′) +
∑
x

∑
x′

Axx′f(x)⊤f(x)

= −
∑
x

∑
x′

Axx′f(x)⊤f(x′) +
1

2

∑
x

∑
x′

(Axx′f(x)⊤f(x) +Ax′xf(x
′)⊤f(x′))

= −
∑
x

∑
x′

Axx′f(x)⊤f(x′) +
1

2

∑
x

∑
x′

(Axx′f(x)⊤f(x) +Axx′f(x′)⊤f(x′))

=
1

2

∑
x

∑
x′

Axx′∥f(x)− f(x′)∥2

=
1

2
Ex,x+∥f(x)− f(x+)∥2

(19)
For the uniformity loss, we have

LSE(FF⊤)− ∥F∥2 = Tr(D log(D deg(exp(D−1/2FF⊤D−1/2))))− ∥F∥2

=
∑
x

wx log
∑
x′

wx′ exp(f(x)⊤f(x′))−
∑
x

wx∥f(x)∥2

= Ex logEx′ exp(f(x)⊤f(x′))− Ex∥f(x)∥2.

(20)

Therefore, we have

Lnce(θ) = −Ex,x+ [f(x)⊤f(x+)] + Ex logEx′ [exp(f(x)⊤f(x′))]

= −Ex,x+ [f(x)⊤f(x+)] + Ex(f(x)
⊤f(x)) + Ex logEx′ [exp(f(x)⊤f(x′))]− Ex∥f(x)∥2

=
1

2
Ex,x+∥f(x)− f(x+)∥2 + Ex logEx′ [exp(f(x)⊤f(x′))]− Ex∥f(x)∥2

= Lalign(Fθ) + Lunif(Fθ).
(21)

Proposition 2. Denote the distance between a feature matrix X and a subspace Ω by dΩ(X) :=
inf{∥X − Y ∥F | Y ∈ Ω}. Assume that data augmentations are label-preserving. Then, for samples
in each class k, denoting their adjacency matrix as Āk and their features at t-th step as F (t)

k , the
message passing in Eq. 4 leads to a smaller or equal distance to an one-dimensional subspaceM

dM(F
(t+1)
k ) ≤ |1− 2αλGk

| · dM(F
(t)
k ), (22)

where λGk
∈ [0, 2] denotes the intra-class algebraic connectivity of G (Chung, 1997), andM =

{e1 ⊗ y|y ∈ Rc}, and e1 is the eigenvector corresponding to the largest eigenvalue of Āk.

Proof. Under the condition that the data augmentations are label-preserving, there are no edges
between inter-class nodes. Thus, the propagation of the alignment update only happens within each
class. We denote the propagation matrix as Qk = (1−2α)I+2αĀk. Then we have F (t+1)

k = QkF
(t)
k .

Since Āk is a symmetrically normalized adjacent matrix, we can denote the spectrum of Āk as
1 = λ1 ≥ · · · ≥ λn ≥ −1. Then the spectrum of Qk is qi = 1− 2α + 2αλi, i = 1, 2, . . . , N , and
specifically, q1 = 1. We denote the corresponding orthonormal basis of Qk as [e1, . . . , en] since Qk

is a symmetric matrix.

Accordingly, we could decompose F
(t)
k according to the orthonormal basis as

F
(t)
k =

n∑
i=1

ei ⊗ hi, hi ∈ Rm. (23)
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Therefore, the projection of F (t)
k to the spaceM = {e1 ⊗ y|y ∈ Rc} gives the first component of the

decomposition (Eq.23), i.e., e1 ⊗ h1, and the residual is the remaining components orthogonal to e1,
i.e.,

∑n
i=2 ei ⊗ hi, with the following distance,

d2M(F
(t)
k ) =

∥∥∥∥∥
n∑

i=2

ei ⊗ hi, hi ∈ Rm

∥∥∥∥∥
2

F

=

n∑
i=2

∥hi∥22. (24)

Similarly, we can also deduce the distance of the updated features. Since Qei = qiei, we have

QF
(t)
k = e1 ⊗ h1 +

n∑
i=2

ei ⊗ (qihi). (25)

Thus, its projection toM is also e1 ⊗ h1, and we have

d2M(QF
(t)
k ) =

∥∥∥∥∥
n∑

i=2

ei ⊗ (qihi)

∥∥∥∥∥
2

F

=

n∑
i=2

∥qihi∥22. (26)

Combining Eqs.24,26, we arrive at

d2M(F
(t+1)
k ) = d2M(QF

(t)
k ) =

n∑
i=2

∥qihi∥22 ≤
n∑

i=2

q22∥hi∥22 = q22d
2
M(F

(t)
k ). (27)

Note that 1− λ2 is just the algebraic connectivity of G. Therefore, with q2 = 1− 2α+ 2λ2, we have

d2M(F
(t+1)
k ) ≤ (1− 2αλin

G )2d2M(F
(t)
k ) ≤ d2M(F

(t)
k ), (28)

By taking square root on this inequality, we arrive at the final result

dM(F
(t+1)
k ) ≤ |(1− 2αλin

G )| · dM(F
(t)
k ) ≤ dM(F

(t)
k ), (29)

which completes the proof.

Proposition 3. The contrastive learning dynamics with the InfoNCE loss saturates when the real
and the fake adjacency matrices agree, i.e., Ā = Ā′

nce, which means that element-wisely, we have:

∀ x, x+ ∈ X , Pd(x
+|x) = Pθ(x

+|x) ≜ exp(fθ(x)
⊤fθ(x

+))∑
x′ exp(fθ(x)⊤fθ(x′))

. (30)

That is, the ground-truth data conditional distribution Pd(x
+|x) equals to the Boltzmann distribution

Pθ(x
+|x) estimated from the encoder features.

Proof. Notice that the contrastive update takes the form of

F (t+1) = F (t) − α∇F (t)Lnce(F
(t)) = F (t) + 2α(Ā− Ā′

nce)F
(t). (31)

Therefore, when Ā = Ā′
nce, we have F (t+1) = F (t), which means that the contrastive learning

dynamics with the InfoNCE loss saturates. At this time, we have

Ā(i, j) = Ānce(i, j) =
exp(f(x)⊤f(x′))∑
k exp(f(x)

⊤f(xk))
, (32)

which implies the result in the proposition.

C EXPERIMENTAL DETAILS

C.1 DETAILS OF MULTI-STAGE GRAPH AGGREGATION

For the experiments in Figure 2a, we follow the default designs and settings of SimSiam (Chen &
He, 2021) on CIFAR-10, except that we remove its predictor to focus on the effect of multi-stage
aggregation. We adopt ResNet-50 as the backbone and pretrain for 100 epochs. During the training
process, we use a memory bank to store the features of all samples from the last k epochs. To obtain
the final aggregated feature, we average the features from the last k epochs. Afterwards, we update
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the memory bank with the feature of the positive sample in the current epoch, and discard old features
if they are not from the last k epochs.

For the experiments in Table 1a, we also follow SimSiam’s setting and consider image classification
tasks on three benchmark datasets: CIFAR-10, CIFAR-100 and ImageNet-100. We train ResNet-18
and ResNet-50 backbones for 200 epochs with the default hyperparameters of SimSiam (Chen &
He, 2021). Specifically, we use the SGD optimizer with 256 batch size and 5e-5 weight decay.
To implement the multi-stage variant of SimSiam, after 50 warmup epochs, we replace the target
feature in SimSiam (which is orginally the representation of a positive sample) with the multi-stage
aggeragated features over the last 2 epochs (current epoch and the last epoch).

C.2 DETAILS OF GRAPH ATTENTION EXPERIMENTS

We use SimCLR (Chen et al., 2020b) as our baseline and ResNet-18,ResNet-50 as the backbones.
We follow the backbone with a projection MLP to map the features to the 128-dimensional projection
space. We consider image classification tasks on CIFAR-10, CIFAR-100 and ImageNet-100. There
are two stages in contrastive learning, i.e., self-supervised pretraining and linear evaluation. We
pretrain the encoder for 100 epochs on ImageNet-100 and for 200 epochs on CIFAR-10 and CIFAR-
100. We use the LARS optimizer with cosine annealed learning rate schedule and 512 batch size.
After the pretraining process, we train a linear classifier following the frozen backbones using the
SGD optimizer. To obtain a more accurate estimation of semantic similarity, we use the features
before the projection layer and warmup the model for 30 epochs.
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