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Figure 1: The RoboWheel helical data engine. Our pipeline could process hand-object interaction
(HOI) videos from diverse sources (e.g., online recordings and public datasets) through high-fidelity
reconstruction to recover physically consistent trajectories. The reconstructed motions are retar-
geted to cross-domain robotic embodiments (e.g., arms, dexterous hands, humanoids), and enhanced
with multi-modal data augmentations (e.g., object retrieval, texture, trajectories). This generates a
large-scale dataset with multimodal observations (RGB-D, poses, contacts), supporting training for
various vision-language-action (VLA) and imitation learning models (e.g., ACT, Diffusion Policy).

ABSTRACT

We introduce RoboWheel, a helical data engine that converts in-the-wild human
hand-object interaction (HOI) videos into training-ready supervision for cross-
morphology robotic learning. From monocular RGB/RGB-D inputs, we perform
high-precision HOI reconstruction and enforce physical plausibility via a rein-
forcement learning optimizer that refines hand—object relative poses under contact
and penetration constraints. The reconstructed, contact-rich trajectories are then
retargetted to cross-domain embodiments, robot arms with simple end-effectors,
dexterous hands, and humanoids, yielding executable actions and rollouts. To
scale coverage, we build a simulation-augmented framework on Isaac Sim with
diverse domain randomization (body variants, trajectories, object replacement,
background changes, hand motion mirroring), which expands observations and
labels while preserving contact semantics. This process forms an end-to-end
pipeline from video — reconstruction — retargeting — augmentation — data
acquisition, closing the loop for iterative policy improvement. Across vision-
language-action and imitation-learning settings, RoboWheel-generated data pro-
vides reliable supervision and consistently improves task performance over base-
lines, enabling direct use of Internet HOI videos (hand-only or upper-body) as la-
bels for scenario-specific training. We further assemble a large-scale multimodal
dataset combining multi-camera captures, monocular videos, and public HOI cor-
pora, and demonstrate transfer on dexterous-hand and humanoid platforms.
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1 INTRODUCTION

Embodied agents learn most effectively when supervision reflects how humans actually interact with
the physical world. However, obtaining contact-rich, robot-usable supervision at scale remains no-
toriously difficult. Existing pipelines typically rely on prelabeled, curated human video datasets or
studio motion capture, which limits coverage, diversity, and transfer across different embodiments
and tasks. Notably, the Internet contains an immense reservoir of hand—object interaction (HOI)
videos (hand-only or upper-body) that include rich manipulation strategies, but these signals are
rarely converted into training-ready data for robots due to reconstruction noise, physical implausi-
bility, and embodiment mismatching.

We revisit this problem through the lens of modern perception. Human/hand and object motion
estimators (e.g. SMPL-H/MANO parameters for articulated hands/bodies and 6D object pose/mesh
trackers) now extract stable geometry and motion from monocular RGB/RGB-D inputs. However,
the raw outputs remain inadequate for control because contact estimates may be inconsistent, in-
terpenetrations can occur under occlusion, and trajectories often fail to respect robot kinematics.
These challenges reveal a persistent gap between “what can be reconstructed?” and “what a robot
can effectively execute or learn from?”.

Nevertheless, turning Internet-scale HOI videos into reliable robotic supervision is far from triv-
ial. The pipeline must overcome challenges at both the data source level and during reconstruction.
On the one hand, existing paradigms for collecting robot training data—teleoperation or simulated
demonstrations—are costly and biased or fail to capture real-world physical and perceptual distribu-
tions. On the other hand, extracting high-precision hand—object interactions from monocular video
introduces issues of camera/world-frame inconsistency, severe occlusions, unreliable object pose
estimation, and violations of physical plausibility. We detail these challenges in Appendix [A]l

To migrate this gap, we introduce RoboWheel, a helical data engine from real-world human demon-
strations for cross-domain robotic learning. RoboWheelturns in-the-wild HOI videos into training-
ready supervision for various robotic embodiments. Using state-of-the-art hand, whole-body, and
object motion estimation methods from monocular RGB/RGB-D video, the pipeline consolidates the
motion into a unified, robust framework for hand—object joint optimization and cross-embodiment
retargeting, outputting control trajectories in both operational (end-effector) and joint spaces. Tech-
nically, our system mainly includes the following four parts, (i) Reconstruct hand/body and object
motions from video; (ii) Multi-stage, physically grounded optimizer—projection losses for 2D con-
sistency, SDF-based collision/contact penalties, and an RL-guided refinement that maximizes plausi-
bility of the hand—object relative pose under stability/reachability priors; (iii) we retarget the refined
trajectories to multiple morphologies (robot arms with simple grippers, dexterous hands, humanoids)
via kinematic/dynamic constraints to produce executable actions; and (iv) we run simulation-based
data augmentation in Isaac Sim with domain randomization (left-right-hand mirroring, embodiment
variants, object replacement, background changes), preserving contact semantics while expanding
observations.

Before delving into details, we list our key contributions as follows.

* Precision, physically plausible HOI reconstruction and cross-domain retargeting. A contact-
consistent HOI reconstruction framework from monocular RGB/RGB-D, combining SOTA
hand/whole-body/object motion estimation with multi-stage physical optimization. It integrates
cross-embodiment retargeting, providing scalable supervision across diverse robot embodiments
(arms, dexterous hands, humanoids) with executable trajectories in operational and joint spaces.

* Simulation-augmented data flywheel. A dynamic augmentation and domain randomization
pipeline based on Isaac Sim ( embodiment variants, object replacement, background variation,
hands mirroring, etc.) conditioned on HOI. This data flywheel is validated on mainstream VLA
and imitation-learning settings to enhance robustness and scalability in robotic learning.

» Large-scale multimodal dataset. Thousands of high-precision (augmented to 150k+) sequences
from an in-house multi-view mocap pipeline, public HOI datasets, and curated online videos,
including robot actions, hand—object motions, tactile signals, multi-view observations, and task
descriptions, provide a rich, scalable resource for robotic learning and HOI models.

2 RELATED WORK

HOI datasets and monocular reconstruction. High-precision HOI annotations in the wild re-
main costly, as most public 3D HOI datasets rely on multiview rigs or motion capture (MoCap)
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systems for accurate hand-object geometry (Chao et al., 2021 Hampali et al., 20205 2021} Taheri
et al., [2020; [Wang et al.| [2024). Large egocentric video corpora like |Grauman et al.| (2024) use
head-mounted cameras to avoid MoCap but lack frame-accurate 3D HOI geometry for reconstruc-
tion |Grauman et al.| (2022). Recent whole-body motion datasets such as Zhang et al.| (2025) scale
to millions of SMPL-X frames but are not dedicated HOI datasets and offer limited hand-object
contact supervision. On the algorithmic side, |Chen et al.| (2025c)) reconstructs objects by fusing
pixel-aligned features with 3D hand geometry in a transformer-based coarse-to-fine point cloud
decoder, yielding dense object geometry with high frame fidelity, while [Fan et al.| (2024) jointly
reconstructs articulated hands and objects using compositional SDF and contact constraints. These
methods, however, are generally limited to single-frame or in-contact scenarios and struggle with
approach/withdrawal phases, generalizability, occlusion, low video resolution, and varying hand
movement speeds. Recently, more generalizable approaches (Prakash et al.,[2023} | Yang et al., 2023
Qu et al.,|2023) have used data-driven priors; for instance, |Yang et al.| (2023)) introduces diffusion-
guided, per-video optimization to enhance robustness under occlusion, albeit at the cost of heavier
computation and the need for short clips.

Embodied models and scalable data for generalist manipulation. Generalist vision—language—
action policies pretrained on large video and robot corpora to enable instruction following and out-
of-distribution generalization across tasks and embodiments (Brohan et al., 2022} [Zitkovich et al.,
2023; [Kim et al., 2024; Black et al., 2025). In parallel, imitation- and diffusion-based visuomotor
learning emphasize stable training and multimodal action distributions, from classic action-diffusion
policies to large diffusion foundation models that scale to bimanual control |Chi et al.| (2023)); [Liu
et al.| (2024). To reduce data and hardware barriers, low-cost bimanual teleoperation systems pro-
vide dense demonstrations for fine-grained skills (Zhao et al.| [2023)), while object-/pose-centric rep-
resentations and semantic flows improve cross-object generalization and pose awareness (Chen et al.
(2025b). At the dataset/benchmark layer, dual-arm generators and domain-randomized platforms
supply scalable supervision with unified evaluation (Mu et al. [2025 |Chen et al.| 2025a)); open-
instruction rearrangement benchmarks probe 6-DoF reasoning under language guidance (Ding et al.}
2024); and video-driven pipelines synthesize long-horizon tasks directly from Internet videos (Ye
et al.| 2025). Recent work on task-centric latent actions further mitigates embodiment mismatch by
learning instruction-conditioned action spaces transferable across robots (Bu et al., 2025).

Due to page limitations, we leave Robotic Learning from Human Demonstration discussion in Ap-
pendix [B]

3 METHOD

3.1 SYSTEM OVERVIEW

We build a systematic pipeline covering in-the-wild hand-object interaction(HOI) videos into robot-
usable supervision data. An overview of our pipeline is illustrated in Fig.

3.2 HAND MOTION AND OBJECT RECONSTRUCTION FROM RGB(D) VIDEOS (STAGE I)

Problem setup. Given video frames {I;}1_;, our goal is to recover metrically consistent trajec-
tories and parametric representations of both the articulated hand and the manipulated object in the
same world coordinate. Concretely, the state of the hand pose at time ¢ is,

hy = (0n(t), Ry (1), t5 (1)), (1)

where 6,(t) is the hand pose, R}’(¢) and t}’(¢) are the global transform and wrist of hands in
the world coordinate. The object state is the rigid 6D pose tied to its (scale-resolved) geometry,
p: = T(t) € SE(3), defines the location and rotation of the object.

Human and hand motion recovery. Our method initially determines whether a clip implies hand-
only or whole-body motion. For the hand-only case, we estimate h; per frame using Pavlakos et al.
(2024). Otherwise, we estimate the SMPL-H parameters via/Zhang et al.[(2025) and directly produce
the world coordinate body pose 8, (t) and the shape [3,, equivalently extracting the hand state h;.

Object reconstruction and pose estimation. We ground the manipulated object, obtaining the
per-frame mask m; and depth D, (predicted by |Piccinelli et al.| (2025) or RGB-D) in the video.
Conditioned on semantic cues, we use a multiview 3D generator G (Zhao et al.,2025) to produce an
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Figure 2: For monocular RGB(-D) input, we first estimate hand, whole-body, and object motion.
A multi-stage optimizer then applies: (I) projection losses aligning to 2D evidence; (II) colli-
sion/contact constraints with temporal regularization; and (III) RL-guided refinement improving
physical plausibility and reachability. Refined trajectories are retargeted to diverse embodiments
(grippers, dexterous hands, humanoids) and exported in operational/joint space. Finally, HOI-
conditioned domain randomization in Isaac Sim expands observations, closing a helical data loop.

unscaled textured mesh M,,. Then we recover the metric scale of the manipulated object by back-
projecting the depth map inside the mask to a point set P; = {X.(p) = Di(p) K~'p | p € my},
aggregating as P = J, P:. Letting diag(-) denote the diagonal of the axis-aligned bounding box
AABB(+), we set M, as the estimated rescaled object,

My = s,0M,, 5, = |diag(AABB(P))]|,/||diag (AABB(N,)) |1 @)

where s, is the estimated scale factor. With (M,, M;, D;), a correspondence-driven tracker

F(-) (Wen et al.||2024) estimates the pose stream of the camera frame object T5(t).

Project to a unified action space. To eliminate viewpoint-dependent inconsistencies in real-world
HOI videos, we first estimate the camera intrinsics K and the camera-to-world transformation T;;Y =
(Rue, twe) using Teed & Deng| (2021). This allows us to transform all reconstructed hand-object
interactions to the world coordinate system. We then align the resulting trajectories to a canonical
action space A by constructing a reference frame based on body joint positions, ensuring consistency
across heterogeneous sources. For detailed transformation steps, please refer to Appendix [D]

3.3 JOINT OPTIMIZATION FOR HAND AND OBJECT INTERACTION (STAGE II)

Problem setup. Given monocular frames {I;}7_; with estimated intrinsics K and extrinsics
(Rue, twe), we seek temporally consistent hand motion and object trajectories in the same world co-
ordinate. As defined in Sec. the hand state is hy = (05,(t), R} (t), ti¥(t)), and the object state

p: = T,(t) have been coarsely initialized by the last stage. We then jointly optimize {h;, p;}7_; to
(i) prevent hand—object interpenetration and (ii) enforce physically plausible and temporally stable
contact.
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Phase (A): Physics- and contact-consistent refinement. Let ¢,(x;t) be a watertight object SDF
(positive outside), and V}, the point cloud of hand vertices. The optimization pipeline is as follows.
First, we optimize hand parameter t;, to avoid penetration between object and hand-palm.

Lipen =3 [max (0, —go(vj; )], i€ {z | vl e v,falm(th)} .
t 7

Then, we optimize the hand parameter Ry, t;, and 8, to avoid penetration between object and hand

with better grasping pose.
2

Lh—pen—contact = Tlpen Z Z [max (0, *(7250(1}7}"1; t)):l 2 —+ Tcontact Z Z HU{L - 'U]; )
t i P

=+ Msmooth Z (HAzth(t)H + HlOg (Rh(t - I)TRh(t)) ||i“)

where @ € {i|vl € Vy(0n,Ru,tn)}, § € {j | v) € K-closest vertices to object},

v¥ is the closest object vertice to fui.

Phase (B): Residual RL refinement for reachability and plausibility. Inspired by the residual
control framework (Li et al., 2025a), a reinforcement learning (RL) refinement process is conducted
in simulation to achieve physically plausible hand-object poses and ensure reachability on robots.
Given the human-object interaction (HOI) state s, = (ht7 Dty hey Py Ct) within the physical envi-
ronment, a residual learning strategy is applied to refine the trajectories of both the hand and the
object. The reward function r, is defined as:

11 = s ®aso ([ Al — 1Ap]) + AasnPayn (1Al = A1) + AsonPn (€1)

geometric reward . N contact reward
kinematic reward

where ® denotes the reward function and A the error between simulated and target states.

3.4 CROSS-DOMAIN RETARGETING (STAGE III)

Based on the physically plausible joint HOI reconstruction in Section [3.2} we obtained physically
plausible trajectories {hy,p;}7_; and ensured stable hand-object contacts. We aim to retarget these
to heterogeneous robot embodiments—industrial arms, dexterous hands, and humanoids.

KNN
>

£

Robot arms. Given accurate 3D hand joints, we eenzart
retarget hand poses into executable end-effector

poses {Ty(t),g(t)}{—, for a parallel-jaw gripper wana
(Fig.[3). Inspired by Kjellstrom et al| (2008b), we 5= # \ - ¢ LN
implement two complementary orientation construc- — P— —
tions depending on whether the whole hand (palm- ~ Sieper S5 (7 o1 @y

involved) or only finger tips dominate the contact ge- i .
ometry. Whole-hand retargeting builds a stable palm  cripper
frame from MCP joints to suppress fingertip jitter; 5%
finger-only mapping aligns to a hand-intrinsic frame
and uses the index—thumb chord to define the grip-
per axis.For the detailed algorithm, please refer to
the Appendix [F]To assess the state of the gripper, ing the KNN algorithm, we classify hand poses
we emp.loy C().Track.er Karaev et .al. (2024) to trapk and perform orientation mapping. For gripper
the motion trajectories of key points on the manip-  gate, we track target object keypoints. If displace-
ulated object. The gripper state is determined based ment occurs, the gripper is considered closed; oth-
on the displacement of these key points.A key ad- erwise, it is open.

vantage of this keypoint-oriented approach lies in its robustness to the significant visual ambiguity
caused by severe occlusions of the object mask during manipulation.

Beyond retargeting to simple gripper-based arms, our high-fidelity HOI reconstruction enables trans-
ferring to more complex embodiments such as dexterous hands and humanoid robots,as shown in
figurdd] For dexterous hands, we retarget the reconstructed hand motions to the joint space of tar-
get robotic hands using kinematic similarity and contact-preserving constraints. This allows us to
generate fine-grained finger motion trajectories that maintain functional grasp semantics.

Open Hold Open Open
Figure 3: We categorize hand poses into two
types: grasp by full hand and grasp by finger, each
associated with a specific retargeting method. Us-
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SMPL-H estimates. The resulting motion sequences 1 % e
WD

Dexterous hands and humanoids. For whole- \('\ @. A. Sea}
body human demonstrations, we extend retarget- ve <

&5

are adapted to humanoid joint trees through inverse
kinematics and dynamics-aware optimization, ensur-

ing physical plausibility and intent preservation. Q}
[ :
With this unified retargeting framework, we expand { ‘ ﬁ
T
J1 —

/.
Mano Xhand Inspire Allegro Shadow

the scalability and diversity of RoboWheel data en- 7

gine. Each human demonstration is automatically

transduced into multiple, semantically aligned train- 4
Smpl-H Unitree G1 Tien Kung  RobotEra Q5

ing episodes spanning a broad range of robot em-
bodiments—from parallel-jaw grippers to dexterous
multi-fingered hands and humanoids. This mechanism materially amplifies the effective yield of
every collected video by multiplying cross-embodiment supervision. By constructing a large-scale,
cross-domain corpus in this manner, RoboWheel furnishes directly usable supervision for training
generalist robotic policies that transfer skills and knowledge across heterogeneous hardware.

Figure 4: Cross-domain embodiment retargeting.

3.5 DATA AUGMENTATION IN SIMULATION (STAGE IIT)

We enhance observation diversity in simulation through HOI-conditioned domain randomization
while preserving the contact semantics essential for control. All HOI-to-workspace transformations
are defined in the canonical action space .4, thereby ensuring consistent contact frames and approach
directions across randomized environments.

Different types of arm retargeting. Given an executable end-effector (EE) trajectory {T(t)}
produced by our retargeting method, we generate observations for heterogeneous arms, as illus-
trated in Fig.[5]. We instantiate in Isaac Sim five widely used 6—7 DoF robotic arms as simulation
assets: URS5/UR5e, Franka Emika Panda, KUKA LBR iiwa 7, Kinova Gen3, and Rethink Robotics
Sawyer. HOI-derived 6D EE trajectories Ty(t) € SE(3),t = 1,...,T, are mapped into feasible
joint trajectories using cuRobo’s GPU-accelerated inverse kinematic (IK) backend
. For each robotic arm, at every timestep we invoke IK solver with the target pose T (%).
The solver returns a feasible joint configuration:

gy = arg mqin Cgoal(Tq(t)>Q) S.t. gmin = ¢ = Gmax; Ccoll(q) <0, 3)
where Cyoq1 is cuRobo’s pose reaching cost and Ceopi is the self-collision constraint. To encourage
temporal consistency, we use the previous solution ¢;_1 as the IK seed when invoking the solver.

Episodes that pass the replay check retain the original HOI intent (e.g., grasp/carry/place/pour)
while providing embodiment diversity in joint space. We export both the joint-space commands
{g:}1_, (arm and gripper included) and aligned operational-space labels per robot, enabling multi-
morphology policy training from the same HOI source.

Object retrieval and replacement. We build a large urs | 288
object library by combining [Zhao et al. (2025)) genera- :
tions with in-house scans; each asset includes a watertight Franka | ( :
mesh, texture, category tag, and a canonical pose. For

a source episode with object mesh M, and object pose Gen3
stream {7, (t)}, we retrieve top-K substitutes M = { M}
using a fused similarity, A

S(Mo, M) = CD(Mo, M) + 3 (1 — IoUaass)

) +7 (Beem(Mo), deem (1)), "
where - deqotes unit AABB normalization, CD is Figure 5: RoboWheel retargets hand motion
the symmetric Chamfer distance on sgrfape samples, | “ier ot kinds of robot arms.
ToU s A measures coarse shape compatibility, and ¢gen, are text—shape embeddings.
To ensure replay compatibility on a retrieved substitute, we align principal axes and bind the same
maximum AABB and canonical pose definition as the source M,. Under this binding, the original
EE plan and the hand—object interaction geometry remain consistent, so the control trajectory can
be directly replayed on geometrically/semantically matched novel objects (e.g., mug <+ cup-with-
handle, box > carton) while preserving task intent.

liwa7
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Table 1: Modalities and scale comparison. “X”” and “v"” denote presence and absence respectively.

Tactile/ Contact Robot Real-World

Dataset Force State Arm Human Operation # Trajectories Object Info Granularity
Robowheel-150K (ours) v v v v 150328 RGB(D) + 6-DoF object pose + Assets
GRAB [Taheri et al. (2020} X v X v 1334 Body & 6-DoF object pose & Contact maps
HO3D (v3)Hampali et al. (2021} X X X v 68 6-DoF object pose + YCB assets
DexYCB |Chao et al. (2021} X X X v 1,000 RGB-D + 6-DoF object pose + YCB assets
HO-Cap |Wang et al.|(2024) X X X v ~64 Hand/object 3D shape + pose (multi-view)
DROID |Khazatsky et al. (2024} X X v v (tele-op) 76,000 RGB(+Depth), lang, robot states
LIBERO |Liu et al.|(2023} X X v X (simulation) 366 Sim assets & states; benchmark tasks (130)
UCSD Kitchen |Yan et al. [(2023) X X v X (robot runs) 150 RGB + joint states/torques; no object assets
TACO |Li et al.|(2023} X X X v 2,500 Precise hand—object meshes + action labels

Trajectory augmentation. Informed by Xue et al.|(2025) and tailored to our setting, we represent
each demonstration as a trajectory 7 = {(T,(t), g(t))}{—, where T,(t) = (R(t),p(t)) € SE(3)
denotes the EE pose with orientation R(t) and translation p(t), and g(¢) is the gripper command.
The trajectory is partitioned into object-centric segments {7(®)}, each labeled by a contact state
cF) e {hold, open}. Instead of re-planning trajectories, we augment them as follows.

(i) For interaction segments (¢(*) = hold), we apply an object-frame rigid transform 7}, € SE(3)
to each waypoint:

T,(t) = T,T,(t),  §(t) = g(t).
Let Ra := Rot(7,). To maintain continuity without motion-plan regeneration, the same EE orien-
tation change is applied to non-interaction segments (see (ii)), and the orientation change induced
by Ra is kept small for IK feasibility and repeatable execution.

(ii) For each non-interaction segment (¢*) = open), we linearly remap the translational path and set
the EE orientation as R(t) = RaR(t). Let ps, p. be the original endpoints and ps, p. the remapped
anchors: the anchor adjacent to a transformed interaction segment is fixed by that segment, while
the opposite anchor is chosen within a predefined reachable set. With oy € [0, 1] denoting the
normalized progress along the original segment from p; to pe,

Dt = Ps + O‘t(ﬁe_f)s) + [pt - (ps+05t(pe—ps))]
4 DATASET

Based on the RoboWheel system, we assembled a large-scale multimodal HOI-to-robot dataset built
by converting heterogeneous human videos into robot-usable episodes and augmenting them across
embodiments. The dataset includes (i) in-the-wild Internet HOI videos, (ii) public HOI datasets,
and (iii) our self-collected mocap high-precision capture system. We convert these data using
RoboWheel HOI reconstruction pipeline—omitted when HOI annotations already exist and per-
form cross-domain retargeting to generate observation streams suitable for replay in both simulation
and real-robot settings. Combined with cross-domain augmentation, this enables model training
across diverse robot embodiments. Comparing with previous datasets, in Tab. [T} shows the follow-
ing strengths and unique properties.

€ fs;-‘u;v K gl
frames drawn from internet clips, reprocessed public J Y
HOI corpora, and our studio captures. Each episode 1 £
includes synchronized multi-view RGB/RGB-D Data Collection Setup Tactile Signal for hand and object
observations, per-frame MANO parameters in the Figure 6: Data collection setup and tactile in-
world frame (pose/shape with global orientation and  formation presentation
translation), 6-DoF object pose with a textured asset (mesh/texture ID), contact states and partially

available tactile signals(shown in Fig. [)), and fine-grained language task descriptions. For more
details, please refer to Appendix [I|

Diverse = HOI  reconstruction modalities.
Robowheel dataset contains approximately 150k

Diverse embodiment modalities. From the reconstructed HOI trajectories, we provide retargeted
robot control labels for multiple embodiments—arms, dexterous hands, and humanoids—including
operational-space (SE(3) end-effector) trajectories and joint-space commands. These labels are tem-
porally aligned with the observations and are suitable for embodied models training.
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Table 2: HOI reconstruction quality comparison. Object surface: CD (cm) = bidirectional Chamfer distance;
F5/F10 (%) = F-score at 5/10 mm. Hand: Hand jitter (cm/s?) = time-avg. norm of frame-to-frame wrist/palm
acceleration (30 FPS, 2nd-order diff.); W-MPJPE (mm) = wrist-relative MPJPE after aligning the wrist. Rel.
pose consistency: std of Tye1(t) = T, ' (£)T, (1) in translation (cm) / rotation (deg).

Method Object Hand Rel. pose consistency |
CD (cm)] F5 (%)t F10(%)T Hand jitter (cm/s?)] WA-MPJPE (mm)] Trans (cm)] Rot (deg))

HORT 8.9 55.0 83.0 3.35 19.92 3.54

DiffHOI 72 59.6 78.1 4.59 20.21 451

HOLD 75 532 779 3.47 20.59 2.44 -

Ours 5.1 63.4 89.1 0.92 7.81 0.26 1.9

Table 3: Real-world task performance grouped by difficulty (easy vs. hard).

ACT DP RDT Pi0 RDT+5kRW  Pi0+5kRW

Real-world Tasks Diff. tele. | RW tele. | RW tele. | RW tele.| RW RW RW

Pick up milk 15.0% | 0.0%  20.0% | 15.0% 55.0% | 30.0% 70.0% | 65.0% 70.0% 80.0%
Lift wooden cup Eas 0.0% 1 0.0%  45.0% | 25.0% 75.0% | 45.0% 65.0% | 55.0% 70.0% 70.0%
Place milk Y 350%00%  50.0% | 35.0% 70.0% | 50.0% 80.0% | 55.0% 85.0% 80.0%
Restore bowl 0.0% | 0.0% 5.0% ] 0.0%  65.0% |65.0% 60.0% | 60.0% 75.0% 75.0%
Average 125% 1 0.0%  30.0% | 18.8% 66.3% | 47.5% 68.8% | 58.8% 75.0% 76.3%
Move banana 0.0% | 0.0% 5.0% | 0.0%  55.0% |20.0% 40.0% | 15.0% 65.0% 60.0%
Upright milk Hard 0.0% | 0.0% 0.0% | 15.0% 45.0% | 30.0% 60.0% | 50.0% 60.0% 75.0%
Pour cola 0.0% | 0.0% 0.0% | 10.0% 35.0% | 35.0% 25.0% | 35.0% 40.0% 55.0%
Tip teacup 0.0% | 0.0% 0.0% | 0.0% 5.0% | 15.0% 35.0% | 25.0% 25.0% 45.0%
Average 0.0% | 0.0% 1.3% | 63%  35.0% |25.0% 40.0% | 31.3% 47.5% 58.8%

5 EXPERIMENT

5.1 HOI RECONSTRUCTION QUALITY

We evaluate HOI reconstruction quality on[Wang et al.| (2024) with common metrics in Tab. 2] and
Fig.[7] All methods receive the same camera parameters and object meshes for a fair comparison.
We compare RoboWheel with HORT (2025c)), HOLD (2023)), and DiffHOI (2023).

Here we show how RoboWheel-derived
embodied data support downstream
tasks and how well learned skills trans-
fer with data augmentation.

5.2 RoboWheel PERFORMANCE ON EMBODIED TRAINING DATA
Performance on different VLA/IL
models. To study how Robowheel re-

constructions translate to downstream nnnn
control, we benchmark ten household Figure 7: HOI reconstruction results of RoboWheel
tasks grouped by difficulty (Easy/Hard) .Whether the data comes from public HOI datasets (e.g.,
and evaluate several VLA/IL algo- DexYCB) or not, RoboWheel can achieve high-precision
rithms (ACT, DP, RDT, Pi0). We eval- HOI reconstruction.

uate each algorithm under three distinct training regimes: (i) Teleoperation Demonstrations (Tele.),
(ii) an equivalent number of trajectories generated by RoboWheel (RW), and (iii) a two-stage regime
involving pre-training on an additional Sk RoboWheel trajectories followed by task-specific fine-

tuning (denoted as RDT+5kRW and PiO+5kRW). Per-task success rate(%) is reported in the same
real setup in Tab. [3] Macro averages within each difficulty group are reported.

As shown in Tab. 3] and Fig. 8] VLA policies (Pi0 & RDT) pretrained with 5k RoboWheel data
achieved the highest success rates, demonstrating a remarkable performance improvement. The
impact of this improvement is more evident in tasks of higher complexity. Notably, when training or
fine-tuning these VLA/IL methods with an identical number of training episodes from teleoperation
or RoboWheel, policies trained solely on RoboWheel data achieve performance comparable to those
trained on teleoperation data, despite the sim-to-real gap. This result highlights the effectiveness of
RoboWheel data for augmentation.

The underlying reason for this is twofold. First, RoboWheel provides precise HOI reconstruction,
enabling the generation of trajectories with accuracy approaching that of teleoperation, ensuring
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Figure 8: Real-world Performance on 4 Tasks
Table 4: Task performance in unseen scenarios with RDT.

Table 5: Robot direct re-

Unseen Object Clutter Objects Unseen Background

Real-world Tasks play success rate 1 (%).

RW RW- RW RW- RW RW- Task Ours GAT-Grasp yoto
aug aug aug

Lift wooden cup  87.5 25.0 75.0
Lift wooden cup 4/10 510 4/10 4/10 0/10 4/10 Place bowl 100 62.5 100
: Upritght milk 100.0 50.0 62.5
Pla({e mllk. 510 6/10 5/10 6/10 1/10 3/10 Pour sola 100 s 250
Upright milk 3/10 3/10 410 410 3/10 5/10 move banana  87.5 625 875
Pour cola 3/10 3/10 3/10 4/10 2/10 4/10 Tip teacup 87.5 37.5 00.0
Average 37500 425/10(+0.5)400/10  450/10+0.5) 1.50/10  4.00/10(+2.5) Macroavg oL7 300 667

effective transfer from simulation to real-world environments. Second, data augmentation is applied
to RoboWheel, and its broader data distribution helps the policy mitigate the negative impact of the
visual domain gap, endowing the policies with enhanced robustness.

Generalization on unseen object, unseen background, and clutter. We probe generalization of
the four household skills under three shifts: unseen object instances, unseen backgrounds, and clut-
tered scenes. We compare models trained on Robowheel only (RW) versus RW with augmentation
(RW-aug: object category & clutter & background). Each cell shows successes/trials for two inde-
pendent runs, as shown in Tab.[d This setup isolates whether reconstruction-driven data and simple
augmentations suffice to transfer the skill to new objects, backgrounds, and cluttered environments.

When trained on the RoboWheel data without augmentation, the finetuned RDT still manages to
achieve some successful trials when encountering unseen objects or inferring in cluttered environ-
ments. However, when there are significant changes in the observations (e.g., changing the back-
ground), the model experiences catastrophic performance degradation. In contrast, the fine-tuned
RDT with augmented RoboWheel data shows a significant improvement in handling new observa-
tions, particularly in the unseen background setting, where the success rate increased by 25%.

5.3 REAL-ROBOT REPLAY PERFORMANCE COMPARE

Under the same hand-motion input, we retarget the hand motions to a two-finger gripper using
different existing methods and execute the same set of tasks, using success rate to quantify the
robustness of each mapping scheme. As evidenced by the comparisons in Tab. [5] and Fig. [T9}
our retargeting approach consistently attains higher success rates across tasks, and its definition
of gripper orientation is more robust—supporting flexible execution of tasks under diverse hand-
gesture regimes.

6 CONCLUSION

Our helical data engine RoboWheel is designed to transform real-world hand-object interaction
videos into cross-domain robotic learning supervision. By leveraging high-fidelity reconstruction,
multi-stage optimization, and cross-embodiment retargeting, RoboWheel offers a scalable frame-
work for generating training data that is physically consistent and directly applicable to diverse
robotic platforms. We demonstrated its effectiveness through an innovative data pipeline that in-
cludes simulation-augmented data augmentation and domain randomization, allowing for the gener-
ation of a large-scale multimodal dataset that supports various VLAs and imitation learning models.
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ETHICS STATEMENT

This research adheres to ethical guidelines in all aspects of the study.RoboWheelis a system that
converts in-the-wild human hand-object interaction (HOI) videos into embodied supervision for
cross-domain robotic learning. In our research, we used videos from the internet, but their usage is
strictly limited to academic purposes. Any harmful use is not intended or encouraged.

REPRODUCIBILITY STATEMENT

To reporduce our retargeting results in both real-world and simulated environments, please consult
the Appendix [} where we present the pseudocode for the retargeting process. Regarding the real-
world performance evaluation of the four VLA/IL policies, the code is fully sourced from the open-
source repository, with implementation specifics provided in the Appendix [J.1]
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A  PROBLEM AND CHANNLLENGE

A.1 LIMITATIONS OF DATA SOURCES FOR ROBOT LEARNING

Building robust, general-purpose robotic systems requires large-scale, diverse, high-quality training
data that remain aligned with real-world distributions and respect physical plausibility. Existing data
acquisition paradigms broadly fall into two categories—teleoperation and generative/simulation-
based approaches. The former is costly and difficult to scale, subject to operator bias and inconsis-
tency, and struggles to cover long-horizon, contact-rich scenarios; the latter, while easy to expand,
exhibits pronounced sim-to-real gaps, insufficient physical modeling, and perceptual domain shift,
leading to distributional mismatch with the real world and limited transferability and verifiability.

A.2 CHALLENGES IN HIGH-PRECISION HAND AND OBJECT RECONSTRUCTION

Despite substantial progress in Human—Object Interaction (HOI), extracting high-quality HOI data
from monocular video remains challenging, particularly for real-world applications that demand
both high precision and scalability. Existing HOI reconstruction pipelines are constrained in sev-
eral respects: 1) many methods reconstruct in the camera coordinate frame; when camera intrin-
sics/extrinsics are unknown, transforming to the world frame that underlies robot action spaces
often yields pronounced, physically implausible trajectory jitter; 2) object pose estimation typically
hinges on strong prerequisites—e.g., access to object models/assets and metric depth—and even
when such conditions are satisfied, occlusions by the manipulating hand or other objects frequently
induce large pose-tracking errors; and 3) the reconstructed relative hand—object configurations of-
ten violate physical plausibility—indeed, non-negligible errors are observed even in HOI datasets
captured with motion-capture systems and multi-view camera rigs.

B RELATED WORK

Robotic Learning from Human Demonstration Early work in vision-based programming by
demonstration mapped human hand poses to robot grasps directly from images, establishing a
pipeline from grasp recognition to example-based robot execution [Kjellstrom et al.| (2008al). More
recent systems leverage richer HOI signals: [Zhou et al.| (2025) extract binocular hand-motion cues
from human videos, compress trajectories into keyframes with coordination masks, augment demon-
strations geometrically, and train a bimanual diffusion policy that executes long-horizon dual-arm
tasks and generalizes across scenes. Complementarily, |Wang et al| (2025) treat human gestures
as structured priors, retrieving grasp affordances from HOI memories and transferring them to
novel objects, yielding robust performance in single-object and cluttered settings. At scale, cross-
embodiment corpora and models (Open X-Embodiment/RT-X) demonstrate positive transfer across
heterogeneous robots, motivating retargetable supervision from human interactions (Vuong et al.,
2023). Specialized transfer frameworks extend this idea to dexterous bimanual manipulation via
residual learning (Li et al., 2025b)), while whole-body humanoid control benefits from motion-
tracking pipelines distilled into guided diffusion policies that enable versatile downstream behav-
iors (Truong et al., [2025). Together, these threads indicate a viable route from human HOI video to
robot-usable policies via reconstruction, retargeting, and data augmentation.
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C NOTATION USED THROUGHOUT THE PAPER.

Symbol Meaning Notes / Space

{LYE, Input frame sequence RGB /RGB-D

K Camera intrinsics Known or estimated

Y Camera pose in world frame SE(3); often (Ruc, twe)
I1(+) Pinhole projection operator 3D — pixel coordinates
.. () Projection onto zz-plane Removes y component
h, Hand state at time ¢ (On(t), Ry (1), t (t))
O (t) Hand kinematic parameters (MANO/SMPL-H)Joint angles / shape

Ry (1), ty (1)

bt

T2 (1) = (Rolt), to(t))
M,, M,

So

mg, Dt

P,

AABB(")

A

Tﬂ:} — (RwaA’ tw*}A)
A%()

p(:)

IOU('7 )

d('7 )

Vhy Vo

Pn(x;1)

TSDF,

qi(t)

t
[~ 1lr
10%50(3) )
dsp(3)(-
Ex[]
Tt
Piimits (+)
e

ol

Trel(t)

ADD-S

Ry, py

g\

H1im (q)

m(q)

S = diag(-1,1,1)
Ry(m)

Lpfem(')

vy

Wrist pose in world (rot/trans)
Object state at time ¢

Object pose in world (rot/trans)
Object mesh (metric / up-to-scale)
Object scale factor

Object mask and depth map at ¢

Back-projected points (per-frame / global)

Axis-aligned bounding box
Canonical action space
World-to-action-space transform
Second-order temporal difference
Robust loss (e.g., Geman—McClure)
Intersection-over-Union

Point—set / point—surface distance

Hand mesh vertices / object surface points

Hand signed distance field (SDF)

object truncated signed distance function
World coords of sampled object surface point

Near-contact candidate set
Frobenius norm

Lie-group log map on SO(3)
Geodesic distance on SE(3)
Expectation under policy m
Instantaneous reward

Joint-limit margin reward
Residual policy network
Inverse-kinematics baseline action

Relative pose T}, ' (t) To (t)

Average Distance (symmetric objects)
Gripper pose (rot/trans)

Joint configuration of robot r at ¢
Joint-limit penalty

Manipulability

Left-right mirror matrix

Rotation about y by 7

Semantic embedding (text—shape)
Discount factor power

SO(3) and R®

T (t) € SE(3)

SE(3)

Triangle mesh + texture
From depth—mesh alignment
Segmentation and depth
From D; and K

Use diagonal via diag(-)
Unified facing/origin
Coordinate re-alignment
Jitter suppression

For reprojection errors
Contour/overlap consistency
For proximity/attraction
Geometry sets

Positive outside (as used here)
negative inside and zero else
Ro(t) @i + to(t)

|én| < Toanda or Top-K

For rotation log etc.
Rotation discrepancy

Pose discrepancy

RL objective

Weighted components
Prefer mid-range

Added to a'™
ManipTrans-style residual
control

Hand-object relative pose
Pose error metric (cm)

From hand keypoints

From bounded-rate IK

IK constraint term

Avoid singularities

About sagittal plane

Used with S to set facing
For semantic similarity

RL return discounting
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Figure 9: Our pipeline decouples the reconstructed hand-object motions from the specific camera
viewpoint of the source video. We first lift the reconstructions to a consistent world frame using the
camera-to-world transformation T, . Subsequently, we normalize these trajectories into a canon-
ical action space via Ty,0a. This two-step alignment ensures that the retargeted actions maintain a
consistent approach direction and kinematic interpretation across all robotic embodiments.

D CONVERT HOI MOTION TO CANONICAL ACTION SPACE

Real-world HOI videos are captured under arbitrary viewpoints, which leads to view-dependent re-
constructions of both hand and object. To eliminate this inconsistency, we adopt a lifting procedure,
as shown in Fig.[0] In the first step, all reconstructed HOI results are transformed from their re-
spective camera coordinate systems into the same world coordinate system. In the second step, the
trajectories in the world coordinate system are further normalized into a unified canonical action
space, ensuring that interaction trajectories from heterogeneous sources become retargetable.

Step 1: Estimate (K,7:) and lift to the world frame. We assume a static-camera prior and
estimate camera intrinsics K and a (time-invariant) camera-to-world transform T = (R, twc)
with DROID-SLAM [Teed & Deng|(2021)), optimizing sparse/semi-dense reprojection together with
temporal smoothness:

P ZHH 5 X0) — ey + A(1Atwel3 + [ logsow (FLRES) - @)

where ()T denotes the next keyframe. We adopt the keyframe solution as the clipwise 7. We
also evaluated DPVO and COLMAP and found DROID-SLAM more stable on our setting. With the
fixed T} for each clip, we could project our estimated h;, p; convert to the world frame:

Step 2: Align to canonical action space A. Given the left/right hip and shoulder positions

pﬁl/pR, pfh/oR in the world coordinate system {Z}, we first compute a lateral reference vector on

the xz-plane:
Vlat = sz((pﬁip - thip) + (p£h0 - pg]o))'

We then construct the canonical frame A with the following conventions:

* 24 is aligned with the scene up direction (gravity / ground normal).
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* y 4 is determined by the dominant interaction direction (e.g., the average hand—object
approach vector).

* x4 is obtained by the right-hand rule, ensuring orthonormality.

After orthonormalization, these axes form the rotation matrix R, 4 € SO(3). Finally, we center the
action trajectory at the object position (by default, at the first salient frame ?(), giving the translation
tusa = — Rusa t?(to) and the resulting rigid transformation T4 = (R4, tusa)-

E DATA AUGMENTATION
Here, we present various data augmentation strategies and additional details applied to more tasks.

E.1 RATARGETING TO DIFFERENT ROBOT ARM

Here, we present additional results from the data augmentation module, demonstrating motion retar-
geting for HOI reconstruction to different robotic arms. Figure ?? and Figure[T1|show the retargeted
motions for the tasks “flip milk,” ”pour water,” and place milk” to the UR5/URS5e, Franka Emika
Panda, KUKA LBR iiwa 7, Kinova Gen3, and Rethink Robotics Sawyer arms, respectively.

URS

Franka |

Gen3

liwa7

sawyer |4

UR5

Franka

Gen3

Sawyer ‘

Pour cola

Figure 10: Visualization of robot arm augmentation:flip milk and pour Water
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URS

Franka

liwa7

Sawyer 4

Place milk

Figure 11: Visualization of robot arm augmentation:place milk
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E.2 BACKGROUND VARIATION(TEXTURE)

As shown in Fig. [I2We apply scene-level visual randomization to diversify the pixel distribution
while keeping task dynamics and contact semantics unchanged: i) workspace and background ap-
pearance randomization (e.g., tabletop, backsplash) via texture and normal-map swaps, and adjust-
ment of basic PBR parameters (albedo/roughness); i) illumination randomized using parametric
light sources (cylinder and sphere lights) with variations in spatial placement, intensity, color, color
temperature, and emission radius, enabling a broad range of plausible lighting conditions; iii) clutter
regime ranging from empty scenes to heavy distractors, with randomly sampled object positions and
orientations placed collision-free outside the robot’s swept volume via rejection sampling; iv) mild
camera intrinsics/extrinsics jitter consistent with prior calibration to emulate plausible view changes.

Object
Retrieval

L

"
N/
< M

Background ,

Variation
. TN

Clutter or not

Original Augmentation

Figure 12: Diverse background texture augmentation in RoboWheel.
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E.3 OBJECT RETRIVAL

Our object-retrieval augmentation strategy successfully enables the transfer of manipulation skills to
novel objects in simulation. By replacing the original object with a retrieved counterpart that shares
high geometric and semantic similarity, and initializing it in the same canonical pose, the robot can
reliably execute the same action trajectory. Visually confirmed in Figure [I3] Figire [I4] and Figure

CLINET)

[I3]for tasks including “pour water”, “tip tea cup”, and “place box”.

Figure 14: Object Retrieval augmentation
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Figure 15: Object Retrieval augmentation
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E.4 HAND MIRROR

Motivation. Many daily manipulations are left-right symmetric up to a sagittal-plane reflection;
mirroring increases trajectory diversity without changing task semantics.

Operator. Let the sagittal reflection be S = diag(—1,1, 1). For positions, p’(t) = S p(t). A pure
reflection is improper for orientations, so we compose a m-rotation about the y-axis to recover a
proper rotation:

R(t) = SR(t)S-Ry(m),  det(R'(t)) =+1. 5)

We mirror both hand and object about the same plane so that 77,,(t) = T} (t) "' T5(t) = Tral(t),
preserving contact frames and approach vectors. Gripper chirality and finger-axis signs are flipped
consistently.

Safeguards. We exclude actions whose handedness encodes semantics (e.g., threaded fasteners),
detected via a non-zero screw component about the task z-axis exceeding Tscrew. Mirrored rollouts
must pass the replay check on a reference arm before inclusion.
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Algorithm 1 Whole-Hand (Palm-Involved)
Gripper Pose Construction

Algorithm 2 Finger-Only (Pinch/Precision)
Gripper Pose Construction

mcp
kind 4

Input: wrist ki, index MCP
ring MCP k>P

ring
Output: Gripper pose (Rg, pg).
WKy, 1K, r<—kf§§§
// Extract keypoints
o« (w+i+r)/3 //palmorigin
vy < (r —w) // X-axis direction
% < v, /(NORMALIZE(v,) + 10~%)
// Normalized X-axis
v, < CROSS_PRODUCT(i —w, r — w)
// Z-axis (palm normal)
z < v,/(NORMALIZE(v,) + 10~%)
// Normalized Z-axis
y < CROSS_PRODUCT(z, x)
// Y-axis direction
Z < SIGN(¢) - z
R, < CONCATENATE([x,y, z])
// Rotation matrix
pg < o+ d.z // Position
Return (R, py)

index TIP k', index MCP k™

ind? index °

thumb MCP k}<P

Input:
thumb tip kP

thumb?

Output: Gripper pose (R, pg).

i tip mcp tip
! I:pkind’ m < kind ’ t A kthumb’ r <
Kiumb 7/ Extract keypoints

«— (t+1)/2 // palm origin

vy <~ (i—m) //Z-axis direction

z + v./(NORMALIZE(v,) + 10~%)
// Normalized Z-axis

vy < CROSS_PRODUCT(i — m, m —r)
// Y-axis (palm normal)

y < v,/(NORMALIZE(v,) + 1078)
// Normalized Y-axis

X < CROSS_PRODUCT(y, z)
// X-axis direction

z < SIGN(¢) - z

R, + CONCATENATE([X,y,2])
// Rotation matrix

Py < o // Position

Return (R, py)

F CONVERT HAND GESTURE TO ROBOT ARM

For the two different gesture types, namely whole-hand and finger-only, we designed corresponding
mapping schemes to translate hand motions to a two-fingered gripper. For whole-hand gestures, our
method primarily leverages keypoints on the palm plane to define the gripper’s orientation and spa-
tial position. For finger-only gestures, we incorporate fingertip positions to accommodate dexterous

manipulation.
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G MORE VISUALIZATION RESULTS IN REAL-WORLD VALIDATION

Here, we present the experimental results for all designed tasks conducted on physical robot(URSY).
Upright milk
Pick up milk
Lift wooden
cup

Move banana

Store bowl

Place milk ' 4 FLA‘ ' “'”'L;\‘ E\ Ll ‘ y »L&::
{ ;“"*f :- ,,-4- ‘ LA‘\ ” i “ M

0y - "/ i - ‘u-q W v L - ‘r. ™7
4 : i
% : 7 Ve

Figure 16: Visualization of 8 tasks on real robot

Pour cola

Tip teacup

H VISUALIZATION RESULTS OF MANIPTRANS

We mapped the hand gestures onto the dexterous hand and completed the training in a simulation
environment. The training outcomes are shown in Appendix [H]

xhand

inspire

Figure 17: Visualization results of maniptrans

I MocAP HANDWARE SETUP

Glove The glove equipped with 16 Gen3 tactile sensors and 29 magnetic encoders. This glove
is worn on a single hand and serves to collect high-frequency tactile data. The tactile sensors are
capable of detecting pressure, force, and vibration, while the magnetic encoders are used to capture
precise joint angles and movements of the fingers. This combination allows for detailed hand-object
interaction data to be gathered with high temporal resolution.

RGBD Cameras Two Intel RealSense D455 RGBD cameras are used to capture depth and RGB
data simultaneously. The cameras are mounted at strategic locations to ensure optimal coverage and
accurate 3D spatial data. The depth cameras provide high-resolution depth maps, while the RGB
cameras offer high-quality color images. For synchronized data acquisition, a synchronization cable
is employed, connecting three cameras to ensure precise temporal alignment across all devices.
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Figure 18: Mocap Handware Config Visualization

RGB Cameras A total of six high-resolution RGB cameras are used for detailed visual tracking.
These cameras are positioned to cover different angles, enabling comprehensive capture of the en-
vironment and subjects. The cameras are used to provide complementary visual data to the depth
information provided by the RGBD cameras.

J EXPERIMENT DETAILS

We used the RoboWheeldata to train four VLA/IL policies, namely ACT, DP, RDT-1B, and Pi0, to
validate the effectiveness of our data.Before using these models for training, we first preprocessed
the data to fit the observations, actions, and instructions i fneeded required for model training.

J.1 IMPLEMENTATION AND HYPER-PARAMETERS OF 4 VLA/IL POLICIES

For ACT ,we trained each task for 20,000 iterations, with 90% of the data used for training and the
remaining 10% for validation. When training DP, we kept the same training steps, learning rate, and
chunk size as ACT. The specific parameter values are listed in table|[6]

Hyperparameter (ACT) | Value | Hyperparameter (DP) | Value

Chunk_Size 16 Chunk_Size 16
Hidden_Dim 512 Action_Horizon 8
Batch_Size 16 Batch_Size 16
Learning_Rate le-5 | Learning_Rate le-5
Dim_Feedforward 3200 | Observation_Horizon 8
Num_Steps 20000 | Num-Steps 20000

Table 6: Hyperparameters of training ACT and DP

RDT was pretrained for 100,000 steps with a batch size of 8 per GPU on 4 GPUs, and all single-task
fine-tuning was conducted for 10,000 steps with a batch size of 8 per GPU on a single GPUs.

Pi0 was pretrained for 100,000 steps with a batch size of 32 on 8§ GPUs, and all fine-tuning was
performed for 30,000 steps using the same batch size on a single GPU.

The other hyperparameters for RDT and Pi0 were kept consistent with the official documentation.

K ARM ACTION REPLAY COMPARISON WITH DIFFERENT METHODS

Replay Comparison by Different Methods: We compared the mapping method of RoboWheel with
YOTO and GAT-Grasp. YOTO and GAT-Grasp result in discrepancies in gripper position or orienta-
tion mapping, leading to failure, while RoboWheel provides more accurate and reasonable mapping.

L LLM USAGE

We utilize large language models (LLMs) to polish our articles and correct errors, including gram-
matical mistakes and imprecise phrasing.
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Figure 19: Replay Comparison by Different Methods: We compared the mapping method of
RoboWheel with YOTO and GAT-Grasp. YOTO and GAT-Grasp result in discrepancies in grip-
per position or orientation mapping, leading to failure, while RoboWheel provides more accurate
and reasonable mapping.
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