
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBOWHEEL: A HELICAL DATA ENGINE FROM REAL-
WORLD HUMAN DEMONSTRATIONS FOR CROSS-
DOMAIN ROBOTIC LEARNING

Anonymous authors
Paper under double-blind review

Multimodal 
support TrainingSupport multimodal 

downstream tasks Dataset

π0
RDT
Act

Diffusion Policy
……

···
Clutter

Different Arms
···

···

Texture

···

Object Retrieval

Trajectories, Lighting ...

Augmentation

Cross-domain robot

HOI data sources

public datasets

Recording

Online video Reconstruction
Retarget

Figure 1: The RoboWheel helical data engine. Our pipeline could process hand-object interaction
(HOI) videos from diverse sources (e.g., online recordings and public datasets) through high-fidelity
reconstruction to recover physically consistent trajectories. The reconstructed motions are retar-
geted to cross-domain robotic embodiments (e.g., arms, dexterous hands, humanoids), and enhanced
with multi-modal data augmentations (e.g., object retrieval, texture, trajectories). This generates a
large-scale dataset with multimodal observations (RGB-D, poses, contacts), supporting training for
various vision-language-action (VLA) and imitation learning models (e.g., ACT, Diffusion Policy).

ABSTRACT

We introduce RoboWheel, a helical data engine that converts in-the-wild human
hand–object interaction (HOI) videos into training-ready supervision for cross-
morphology robotic learning. From monocular RGB/RGB-D inputs, we perform
high-precision HOI reconstruction and enforce physical plausibility via a rein-
forcement learning optimizer that refines hand–object relative poses under contact
and penetration constraints. The reconstructed, contact-rich trajectories are then
retargetted to cross-domain embodiments, robot arms with simple end-effectors,
dexterous hands, and humanoids, yielding executable actions and rollouts. To
scale coverage, we build a simulation-augmented framework on Isaac Sim with
diverse domain randomization (body variants, trajectories, object replacement,
background changes, hand motion mirroring), which expands observations and
labels while preserving contact semantics. This process forms an end-to-end
pipeline from video → reconstruction → retargeting → augmentation → data
acquisition, closing the loop for iterative policy improvement. Across vision-
language-action and imitation-learning settings, RoboWheel-generated data pro-
vides reliable supervision and consistently improves task performance over base-
lines, enabling direct use of Internet HOI videos (hand-only or upper-body) as la-
bels for scenario-specific training. We further assemble a large-scale multimodal
dataset combining multi-camera captures, monocular videos, and public HOI cor-
pora, and demonstrate transfer on dexterous-hand and humanoid platforms.
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1 INTRODUCTION

Embodied agents learn most effectively when supervision reflects how humans actually interact with
the physical world. However, obtaining contact-rich, robot-usable supervision at scale remains no-
toriously difficult. Existing pipelines typically rely on prelabeled, curated human video datasets or
studio motion capture, which limits coverage, diversity, and transfer across different embodiments
and tasks. Notably, the Internet contains an immense reservoir of hand–object interaction (HOI)
videos (hand-only or upper-body) that include rich manipulation strategies, but these signals are
rarely converted into training-ready data for robots due to reconstruction noise, physical implausi-
bility, and embodiment mismatching.
We revisit this problem through the lens of modern perception. Human/hand and object motion
estimators (e.g. SMPL-H/MANO parameters for articulated hands/bodies and 6D object pose/mesh
trackers) now extract stable geometry and motion from monocular RGB/RGB-D inputs. However,
the raw outputs remain inadequate for control because contact estimates may be inconsistent, in-
terpenetrations can occur under occlusion, and trajectories often fail to respect robot kinematics.
These challenges reveal a persistent gap between “what can be reconstructed?” and “what a robot
can effectively execute or learn from?”.
Nevertheless, turning Internet-scale HOI videos into reliable robotic supervision is far from triv-
ial. The pipeline must overcome challenges at both the data source level and during reconstruction.
On the one hand, existing paradigms for collecting robot training data—teleoperation or simulated
demonstrations—are costly and biased or fail to capture real-world physical and perceptual distribu-
tions. On the other hand, extracting high-precision hand–object interactions from monocular video
introduces issues of camera/world-frame inconsistency, severe occlusions, unreliable object pose
estimation, and violations of physical plausibility. We detail these challenges in Appendix A.
To migrate this gap, we introduce RoboWheel, a helical data engine from real-world human demon-
strations for cross-domain robotic learning. RoboWheelturns in-the-wild HOI videos into training-
ready supervision for various robotic embodiments. Using state-of-the-art hand, whole-body, and
object motion estimation methods from monocular RGB/RGB-D video, the pipeline consolidates the
motion into a unified, robust framework for hand–object joint optimization and cross-embodiment
retargeting, outputting control trajectories in both operational (end-effector) and joint spaces. Tech-
nically, our system mainly includes the following four parts, (i) Reconstruct hand/body and object
motions from video; (ii) Multi-stage, physically grounded optimizer—projection losses for 2D con-
sistency, SDF-based collision/contact penalties, and an RL-guided refinement that maximizes plausi-
bility of the hand–object relative pose under stability/reachability priors; (iii) we retarget the refined
trajectories to multiple morphologies (robot arms with simple grippers, dexterous hands, humanoids)
via kinematic/dynamic constraints to produce executable actions; and (iv) we run simulation-based
data augmentation in Isaac Sim with domain randomization (left-right-hand mirroring, embodiment
variants, object replacement, background changes), preserving contact semantics while expanding
observations.
Before delving into details, we list our key contributions as follows.

• Precision, physically plausible HOI reconstruction and cross-domain retargeting. A contact-
consistent HOI reconstruction framework from monocular RGB/RGB-D, combining SOTA
hand/whole-body/object motion estimation with multi-stage physical optimization. It integrates
cross-embodiment retargeting, providing scalable supervision across diverse robot embodiments
(arms, dexterous hands, humanoids) with executable trajectories in operational and joint spaces.

• Simulation-augmented data flywheel. A dynamic augmentation and domain randomization
pipeline based on Isaac Sim ( embodiment variants, object replacement, background variation,
hands mirroring, etc.) conditioned on HOI. This data flywheel is validated on mainstream VLA
and imitation-learning settings to enhance robustness and scalability in robotic learning.

• Large-scale multimodal dataset. Thousands of high-precision (augmented to 150k+) sequences
from an in-house multi-view mocap pipeline, public HOI datasets, and curated online videos,
including robot actions, hand–object motions, tactile signals, multi-view observations, and task
descriptions, provide a rich, scalable resource for robotic learning and HOI models.

2 RELATED WORK

HOI datasets and monocular reconstruction. High-precision HOI annotations in the wild re-
main costly, as most public 3D HOI datasets rely on multiview rigs or motion capture (MoCap)
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systems for accurate hand-object geometry (Chao et al., 2021; Hampali et al., 2020; 2021; Taheri
et al., 2020; Wang et al., 2024). Large egocentric video corpora like Grauman et al. (2024) use
head-mounted cameras to avoid MoCap but lack frame-accurate 3D HOI geometry for reconstruc-
tion Grauman et al. (2022). Recent whole-body motion datasets such as Zhang et al. (2025) scale
to millions of SMPL-X frames but are not dedicated HOI datasets and offer limited hand-object
contact supervision. On the algorithmic side, Chen et al. (2025c) reconstructs objects by fusing
pixel-aligned features with 3D hand geometry in a transformer-based coarse-to-fine point cloud
decoder, yielding dense object geometry with high frame fidelity, while Fan et al. (2024) jointly
reconstructs articulated hands and objects using compositional SDF and contact constraints. These
methods, however, are generally limited to single-frame or in-contact scenarios and struggle with
approach/withdrawal phases, generalizability, occlusion, low video resolution, and varying hand
movement speeds. Recently, more generalizable approaches (Prakash et al., 2023; Yang et al., 2023;
Qu et al., 2023) have used data-driven priors; for instance, Yang et al. (2023) introduces diffusion-
guided, per-video optimization to enhance robustness under occlusion, albeit at the cost of heavier
computation and the need for short clips.

Embodied models and scalable data for generalist manipulation. Generalist vision–language–
action policies pretrained on large video and robot corpora to enable instruction following and out-
of-distribution generalization across tasks and embodiments (Brohan et al., 2022; Zitkovich et al.,
2023; Kim et al., 2024; Black et al., 2025). In parallel, imitation- and diffusion-based visuomotor
learning emphasize stable training and multimodal action distributions, from classic action-diffusion
policies to large diffusion foundation models that scale to bimanual control Chi et al. (2023); Liu
et al. (2024). To reduce data and hardware barriers, low-cost bimanual teleoperation systems pro-
vide dense demonstrations for fine-grained skills (Zhao et al., 2023), while object-/pose-centric rep-
resentations and semantic flows improve cross-object generalization and pose awareness Chen et al.
(2025b). At the dataset/benchmark layer, dual-arm generators and domain-randomized platforms
supply scalable supervision with unified evaluation (Mu et al., 2025; Chen et al., 2025a); open-
instruction rearrangement benchmarks probe 6-DoF reasoning under language guidance (Ding et al.,
2024); and video-driven pipelines synthesize long-horizon tasks directly from Internet videos (Ye
et al., 2025). Recent work on task-centric latent actions further mitigates embodiment mismatch by
learning instruction-conditioned action spaces transferable across robots (Bu et al., 2025).

Due to page limitations, we leave Robotic Learning from Human Demonstration discussion in Ap-
pendix B.

3 METHOD

3.1 SYSTEM OVERVIEW

We build a systematic pipeline covering in-the-wild hand-object interaction(HOI) videos into robot-
usable supervision data. An overview of our pipeline is illustrated in Fig. 2.

3.2 HAND MOTION AND OBJECT RECONSTRUCTION FROM RGB(D) VIDEOS (STAGE I)

Problem setup. Given video frames {It}Tt=1, our goal is to recover metrically consistent trajec-
tories and parametric representations of both the articulated hand and the manipulated object in the
same world coordinate. Concretely, the state of the hand pose at time t is,

ht = (θh(t), R
w
h (t), t

w
h (t)), (1)

where θh(t) is the hand pose, Rw
h (t) and twh (t) are the global transform and wrist of hands in

the world coordinate. The object state is the rigid 6D pose tied to its (scale-resolved) geometry,
pt = Tw

o (t) ∈ SE(3), defines the location and rotation of the object.

Human and hand motion recovery. Our method initially determines whether a clip implies hand-
only or whole-body motion. For the hand-only case, we estimate ht per frame using Pavlakos et al.
(2024). Otherwise, we estimate the SMPL-H parameters via Zhang et al. (2025) and directly produce
the world coordinate body pose θb(t) and the shape βb, equivalently extracting the hand state ht.

Object reconstruction and pose estimation. We ground the manipulated object, obtaining the
per-frame mask mt and depth Dt (predicted by Piccinelli et al. (2025) or RGB-D) in the video.
Conditioned on semantic cues, we use a multiview 3D generator G (Zhao et al., 2025) to produce an
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Figure 2: For monocular RGB(-D) input, we first estimate hand, whole-body, and object motion.
A multi-stage optimizer then applies: (I) projection losses aligning to 2D evidence; (II) colli-
sion/contact constraints with temporal regularization; and (III) RL-guided refinement improving
physical plausibility and reachability. Refined trajectories are retargeted to diverse embodiments
(grippers, dexterous hands, humanoids) and exported in operational/joint space. Finally, HOI-
conditioned domain randomization in Isaac Sim expands observations, closing a helical data loop.

unscaled textured mesh M̂o. Then we recover the metric scale of the manipulated object by back-
projecting the depth map inside the mask to a point set Pt = {Xc(p) = Dt(p)K

−1p̃ | p ∈ mt},
aggregating as P =

⋃
t Pt. Letting diag(·) denote the diagonal of the axis-aligned bounding box

AABB(·), we set Mo as the estimated rescaled object,

Mo = so M̂o, so = ∥diag(AABB(P))∥2/∥diag
(
AABB(M̂o)

)
∥2. (2)

where so is the estimated scale factor. With (Mo,Mt, Dt), a correspondence-driven tracker
F(·) (Wen et al., 2024) estimates the pose stream of the camera frame object T c

o (t).

Project to a unified action space. To eliminate viewpoint-dependent inconsistencies in real-world
HOI videos, we first estimate the camera intrinsics K and the camera-to-world transformation Tw

c =
(Rwc, twc) using Teed & Deng (2021). This allows us to transform all reconstructed hand-object
interactions to the world coordinate system. We then align the resulting trajectories to a canonical
action spaceA by constructing a reference frame based on body joint positions, ensuring consistency
across heterogeneous sources. For detailed transformation steps, please refer to Appendix D.

3.3 JOINT OPTIMIZATION FOR HAND AND OBJECT INTERACTION (STAGE II)

Problem setup. Given monocular frames {It}Tt=1 with estimated intrinsics K and extrinsics
(Rwc, twc), we seek temporally consistent hand motion and object trajectories in the same world co-
ordinate. As defined in Sec. 3.2, the hand state is ht =

(
θh(t), R

w
h (t), t

w
h (t)

)
, and the object state

pt = To(t) have been coarsely initialized by the last stage. We then jointly optimize {ht,pt}Tt=1 to
(i) prevent hand–object interpenetration and (ii) enforce physically plausible and temporally stable
contact.
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Phase (A): Physics- and contact-consistent refinement. Let ϕo(x; t) be a watertight object SDF
(positive outside), and Vh the point cloud of hand vertices. The optimization pipeline is as follows.
First, we optimize hand parameter th to avoid penetration between object and hand-palm.

Lh−pen =
∑
t

∑
i

[
max

(
0,−ϕo(v

i
h; t)

)]2
, i ∈

{
i | vih ∈ V palm

h (th)
}
.

Then, we optimize the hand parameter Rh, th and θh to avoid penetration between object and hand
with better grasping pose.

Lh−pen−contact = ηpen
∑
t

∑
i

[
max

(
0,−ϕo(v

i
h; t)

)]2
+ ηcontact

∑
t

∑
j

∥∥∥vjh − vko

∥∥∥2
2

+ ηsmooth

∑
t

(∥∥∆2th(t)
∥∥+

∥∥log (Rh(t− 1)⊤Rh(t)
)∥∥2

F

) ,

where i ∈
{
i | vih ∈ Vh(θh,Rh, th)

}
, j ∈

{
j | vjh ∈ K-closest vertices to object

}
,

vko is the closest object vertice to vjh.

Phase (B): Residual RL refinement for reachability and plausibility. Inspired by the residual
control framework (Li et al., 2025a), a reinforcement learning (RL) refinement process is conducted
in simulation to achieve physically plausible hand-object poses and ensure reachability on robots.
Given the human-object interaction (HOI) state st =

(
ht, pt, ḣt, ṗt, Ct

)
within the physical envi-

ronment, a residual learning strategy is applied to refine the trajectories of both the hand and the
object. The reward function rt is defined as:

rt = λgeoΦgeo (−∥∆ht∥ − ∥∆pt∥)︸ ︷︷ ︸
geometric reward

+λdynΦdyn

(
−∥∆ḣt∥ − ∥∆ṗt∥

)
︸ ︷︷ ︸

kinematic reward

+λconΦcon (Ct)︸ ︷︷ ︸
contact reward

,

where Φ denotes the reward function and ∆ the error between simulated and target states.

3.4 CROSS-DOMAIN RETARGETING (STAGE III)

Based on the physically plausible joint HOI reconstruction in Section 3.2, we obtained physically
plausible trajectories {ht, pt}Tt=1 and ensured stable hand-object contacts. We aim to retarget these
to heterogeneous robot embodiments—industrial arms, dexterous hands, and humanoids.

Open Open Open OpenHold Hold

Hand 
State

Gripper 
Pose

Gripper 
State

grasp by full hand grasp by finger

   KNN

Figure 3: We categorize hand poses into two
types: grasp by full hand and grasp by finger, each
associated with a specific retargeting method. Us-
ing the KNN algorithm, we classify hand poses
and perform orientation mapping. For gripper
state, we track target object keypoints. If displace-
ment occurs, the gripper is considered closed; oth-
erwise, it is open.

Robot arms. Given accurate 3D hand joints, we
retarget hand poses into executable end-effector
poses {Tg(t), g(t)}Tt=1 for a parallel-jaw gripper
(Fig. 3). Inspired by Kjellstrom et al. (2008b), we
implement two complementary orientation construc-
tions depending on whether the whole hand (palm-
involved) or only finger tips dominate the contact ge-
ometry. Whole-hand retargeting builds a stable palm
frame from MCP joints to suppress fingertip jitter;
finger-only mapping aligns to a hand-intrinsic frame
and uses the index–thumb chord to define the grip-
per axis.For the detailed algorithm, please refer to
the Appendix F.To assess the state of the gripper,
we employ CoTracker Karaev et al. (2024) to track
the motion trajectories of key points on the manip-
ulated object. The gripper state is determined based
on the displacement of these key points.A key ad-
vantage of this keypoint-oriented approach lies in its robustness to the significant visual ambiguity
caused by severe occlusions of the object mask during manipulation.
Beyond retargeting to simple gripper-based arms, our high-fidelity HOI reconstruction enables trans-
ferring to more complex embodiments such as dexterous hands and humanoid robots,as shown in
figure4. For dexterous hands, we retarget the reconstructed hand motions to the joint space of tar-
get robotic hands using kinematic similarity and contact-preserving constraints. This allows us to
generate fine-grained finger motion trajectories that maintain functional grasp semantics.
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Figure 4: Cross-domain embodiment retargeting.

Dexterous hands and humanoids. For whole-
body human demonstrations, we extend retarget-
ing to humanoid platforms by leveraging full-body
SMPL-H estimates. The resulting motion sequences
are adapted to humanoid joint trees through inverse
kinematics and dynamics-aware optimization, ensur-
ing physical plausibility and intent preservation.

With this unified retargeting framework, we expand
the scalability and diversity of RoboWheel data en-
gine. Each human demonstration is automatically
transduced into multiple, semantically aligned train-
ing episodes spanning a broad range of robot em-
bodiments—from parallel-jaw grippers to dexterous
multi-fingered hands and humanoids. This mechanism materially amplifies the effective yield of
every collected video by multiplying cross-embodiment supervision. By constructing a large-scale,
cross-domain corpus in this manner, RoboWheel furnishes directly usable supervision for training
generalist robotic policies that transfer skills and knowledge across heterogeneous hardware.

3.5 DATA AUGMENTATION IN SIMULATION (STAGE III)

We enhance observation diversity in simulation through HOI-conditioned domain randomization
while preserving the contact semantics essential for control. All HOI-to-workspace transformations
are defined in the canonical action spaceA, thereby ensuring consistent contact frames and approach
directions across randomized environments.

Different types of arm retargeting. Given an executable end-effector (EE) trajectory {Tg(t)}
produced by our retargeting method, we generate observations for heterogeneous arms, as illus-
trated in Fig. 5 . We instantiate in Isaac Sim five widely used 6–7 DoF robotic arms as simulation
assets: UR5/UR5e, Franka Emika Panda, KUKA LBR iiwa 7, Kinova Gen3, and Rethink Robotics
Sawyer. HOI-derived 6D EE trajectories Tg(t) ∈ SE(3), t = 1, . . . , T , are mapped into feasible
joint trajectories using cuRobo’s GPU-accelerated inverse kinematic (IK) backend (Sundaralingam
et al., 2023). For each robotic arm, at every timestep we invoke IK solver with the target pose Tg(t).
The solver returns a feasible joint configuration:

qt = argmin
q
Cgoal(Tg(t), q) s.t. qmin ⪯ q ⪯ qmax, Ccoll(q) ≤ 0, (3)

where Cgoal is cuRobo’s pose reaching cost and Ccoll is the self-collision constraint. To encourage
temporal consistency, we use the previous solution qt−1 as the IK seed when invoking the solver.

Episodes that pass the replay check retain the original HOI intent (e.g., grasp/carry/place/pour)
while providing embodiment diversity in joint space. We export both the joint-space commands
{qt}Tt=1 (arm and gripper included) and aligned operational-space labels per robot, enabling multi-
morphology policy training from the same HOI source.

UR5

Franka

Gen3

Iiwa7

Sawyer

Figure 5: RoboWheel retargets hand motion
to different kinds of robot arms.

Object retrieval and replacement. We build a large
object library by combining Zhao et al. (2025) genera-
tions with in-house scans; each asset includes a watertight
mesh, texture, category tag, and a canonical pose. For
a source episode with object mesh Mo and object pose
stream {To(t)}, we retrieve top-K substitutes M̃ = {M̃k}
using a fused similarity,

S(Mo, M̃) =αCD
(
M̂o,

ˆ̃M
)
+ β

(
1− IoUAABB

)
+ γ

〈
ϕsem(Mo), ϕsem(M̃)

〉
,

where ·̂ denotes unit AABB normalization, CD is
the symmetric Chamfer distance on surface samples,
IoUAABB measures coarse shape compatibility, and ϕsem are text–shape embeddings.
To ensure replay compatibility on a retrieved substitute, we align principal axes and bind the same
maximum AABB and canonical pose definition as the source Mo. Under this binding, the original
EE plan and the hand–object interaction geometry remain consistent, so the control trajectory can
be directly replayed on geometrically/semantically matched novel objects (e.g., mug↔ cup-with-
handle, box↔carton) while preserving task intent.
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Table 1: Modalities and scale comparison. “✗” and “✓” denote presence and absence respectively.

Dataset Tactile/
Force

Contact
State

Robot
Arm

Real-World
Human Operation # Trajectories Object Info Granularity

Robowheel-150K (ours) ✓ ✓ ✓ ✓ 150328 RGB(D) + 6-DoF object pose + Assets

GRAB Taheri et al. (2020) ✗ ✓ ✗ ✓ 1334 Body & 6-DoF object pose & Contact maps
HO3D (v3) Hampali et al. (2021) ✗ ✗ ✗ ✓ 68 6-DoF object pose + YCB assets
DexYCB Chao et al. (2021) ✗ ✗ ✗ ✓ 1,000 RGB-D + 6-DoF object pose + YCB assets
HO-Cap Wang et al. (2024) ✗ ✗ ✗ ✓ ∼64 Hand/object 3D shape + pose (multi-view)

DROID Khazatsky et al. (2024) ✗ ✗ ✓ ✓ (tele-op) 76,000 RGB(+Depth), lang, robot states
LIBERO Liu et al. (2023) ✗ ✗ ✓ ✗ (simulation) 366 Sim assets & states; benchmark tasks (130)
UCSD Kitchen Yan et al. (2023) ✗ ✗ ✓ ✗ (robot runs) 150 RGB + joint states/torques; no object assets
TACO Li et al. (2023) ✗ ✗ ✗ ✓ 2,500 Precise hand–object meshes + action labels

Trajectory augmentation. Informed by Xue et al. (2025) and tailored to our setting, we represent
each demonstration as a trajectory τ = {(Tg(t), g(t))}Tt=1, where Tg(t) = (R(t), p(t)) ∈ SE(3)
denotes the EE pose with orientation R(t) and translation p(t), and g(t) is the gripper command.
The trajectory is partitioned into object-centric segments {τ (k)}, each labeled by a contact state
c(k) ∈ {hold,open}. Instead of re-planning trajectories, we augment them as follows.

(i) For interaction segments (c(k) = hold), we apply an object-frame rigid transform To ∈ SE(3)
to each waypoint:

T̃g(t) = ToTg(t), g̃(t) = g(t).

Let R∆ := Rot(To). To maintain continuity without motion-plan regeneration, the same EE orien-
tation change is applied to non-interaction segments (see (ii)), and the orientation change induced
by R∆ is kept small for IK feasibility and repeatable execution.

(ii) For each non-interaction segment (c(k) = open), we linearly remap the translational path and set
the EE orientation as R̃(t) = R∆R(t). Let ps, pe be the original endpoints and p̂s, p̂e the remapped
anchors: the anchor adjacent to a transformed interaction segment is fixed by that segment, while
the opposite anchor is chosen within a predefined reachable set. With αt ∈ [0, 1] denoting the
normalized progress along the original segment from ps to pe,

p̃t = p̂s + αt(p̂e − p̂s) +
[
pt −

(
ps + αt(pe − ps)

)]
.

4 DATASET

Based on the RoboWheel system, we assembled a large-scale multimodal HOI-to-robot dataset built
by converting heterogeneous human videos into robot-usable episodes and augmenting them across
embodiments. The dataset includes (i) in-the-wild Internet HOI videos, (ii) public HOI datasets,
and (iii) our self-collected mocap high-precision capture system. We convert these data using
RoboWheel HOI reconstruction pipeline—omitted when HOI annotations already exist and per-
form cross-domain retargeting to generate observation streams suitable for replay in both simulation
and real-robot settings. Combined with cross-domain augmentation, this enables model training
across diverse robot embodiments. Comparing with previous datasets, in Tab. 1, shows the follow-
ing strengths and unique properties.

Tactile Signal for hand and objectData Collection Setup

Figure 6: Data collection setup and tactile in-
formation presentation

Diverse HOI reconstruction modalities.
Robowheel dataset contains approximately 150k
frames drawn from internet clips, reprocessed public
HOI corpora, and our studio captures. Each episode
includes synchronized multi-view RGB/RGB-D
observations, per-frame MANO parameters in the
world frame (pose/shape with global orientation and
translation), 6-DoF object pose with a textured asset (mesh/texture ID), contact states and partially
available tactile signals(shown in Fig. 6), and fine-grained language task descriptions. For more
details, please refer to Appendix I.

Diverse embodiment modalities. From the reconstructed HOI trajectories, we provide retargeted
robot control labels for multiple embodiments—arms, dexterous hands, and humanoids—including
operational-space (SE(3) end-effector) trajectories and joint-space commands. These labels are tem-
porally aligned with the observations and are suitable for embodied models training.
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Table 2: HOI reconstruction quality comparison. Object surface: CD (cm) = bidirectional Chamfer distance;
F5/F10 (%) = F-score at 5/10 mm. Hand: Hand jitter (cm/s2) = time-avg. norm of frame-to-frame wrist/palm
acceleration (30 FPS, 2nd-order diff.); W-MPJPE (mm) = wrist-relative MPJPE after aligning the wrist. Rel.
pose consistency: std of Trel(t) = T−1

h (t)To(t) in translation (cm) / rotation (deg).
Method Object Hand Rel. pose consistency ↓

CD (cm)↓ F5 (%)↑ F10 (%)↑ Hand jitter (cm/s2)↓ WA-MPJPE (mm)↓ Trans (cm)↓ Rot (deg)↓
HORT 8.9 55.0 83.0 3.35 19.92 3.54 -
DiffHOI 7.2 59.6 78.1 4.59 20.21 4.51 -
HOLD 7.5 53.2 77.9 3.47 20.59 2.44 -
Ours 5.1 63.4 89.1 0.92 7.81 0.26 1.9

Table 3: Real-world task performance grouped by difficulty (easy vs. hard).

Real-world Tasks Diff.
ACT

tele. | RW
DP

tele. | RW
RDT

tele. | RW
Pi0

tele. | RW
RDT+5kRW

RW
Pi0+5kRW

RW

Pick up milk

Easy

15.0% | 0.0% 20.0% | 15.0% 55.0% | 30.0% 70.0% | 65.0% 70.0% 80.0%
Lift wooden cup 0.0% | 0.0% 45.0% | 25.0% 75.0% | 45.0% 65.0% | 55.0% 70.0% 70.0%
Place milk 35.0% | 0.0% 50.0% | 35.0% 70.0% | 50.0% 80.0% | 55.0% 85.0% 80.0%
Restore bowl 0.0% | 0.0% 5.0% | 0.0% 65.0% | 65.0% 60.0% | 60.0% 75.0% 75.0%

Average 12.5% | 0.0% 30.0% | 18.8% 66.3% | 47.5% 68.8% | 58.8% 75.0% 76.3%

Move banana

Hard

0.0% | 0.0% 5.0% | 0.0% 55.0% | 20.0% 40.0% | 15.0% 65.0% 60.0%
Upright milk 0.0% | 0.0% 0.0% | 15.0% 45.0% | 30.0% 60.0% | 50.0% 60.0% 75.0%
Pour cola 0.0% | 0.0% 0.0% | 10.0% 35.0% | 35.0% 25.0% | 35.0% 40.0% 55.0%
Tip teacup 0.0% | 0.0% 0.0% | 0.0% 5.0% | 15.0% 35.0% | 25.0% 25.0% 45.0%

Average 0.0% | 0.0% 1.3% | 6.3% 35.0% | 25.0% 40.0% | 31.3% 47.5% 58.8%

5 EXPERIMENT

5.1 HOI RECONSTRUCTION QUALITY

We evaluate HOI reconstruction quality on Wang et al. (2024) with common metrics in Tab. 2 and
Fig. 7. All methods receive the same camera parameters and object meshes for a fair comparison.
We compare RoboWheel with HORT (2025c), HOLD (2023), and DiffHOI (2023).

5.2 RoboWheel PERFORMANCE ON EMBODIED TRAINING DATA

Figure 7: HOI reconstruction results of RoboWheel
.Whether the data comes from public HOI datasets (e.g.,
DexYCB) or not, RoboWheel can achieve high-precision
HOI reconstruction.

Here we show how RoboWheel-derived
embodied data support downstream
tasks and how well learned skills trans-
fer with data augmentation.

Performance on different VLA/IL
models. To study how Robowheel re-
constructions translate to downstream
control, we benchmark ten household
tasks grouped by difficulty (Easy/Hard)
and evaluate several VLA/IL algo-
rithms (ACT, DP, RDT, Pi0). We eval-
uate each algorithm under three distinct training regimes: (i) Teleoperation Demonstrations (Tele.),
(ii) an equivalent number of trajectories generated by RoboWheel (RW), and (iii) a two-stage regime
involving pre-training on an additional 5k RoboWheel trajectories followed by task-specific fine-
tuning (denoted as RDT+5kRW and Pi0+5kRW). Per-task success rate(%) is reported in the same
real setup in Tab. 3. Macro averages within each difficulty group are reported.

As shown in Tab. 3 and Fig. 8, VLA policies (Pi0 & RDT) pretrained with 5k RoboWheel data
achieved the highest success rates, demonstrating a remarkable performance improvement. The
impact of this improvement is more evident in tasks of higher complexity. Notably, when training or
fine-tuning these VLA/IL methods with an identical number of training episodes from teleoperation
or RoboWheel, policies trained solely on RoboWheel data achieve performance comparable to those
trained on teleoperation data, despite the sim-to-real gap. This result highlights the effectiveness of
RoboWheel data for augmentation.

The underlying reason for this is twofold. First, RoboWheel provides precise HOI reconstruction,
enabling the generation of trajectories with accuracy approaching that of teleoperation, ensuring
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Place milk

Pour cola

Tip teacup

Upright milk

Figure 8: Real-world Performance on 4 Tasks
Table 4: Task performance in unseen scenarios with RDT.

Real-world Tasks
Unseen Object Clutter Objects Unseen Background

RW RW-
aug

RW RW-
aug

RW RW-
aug

Lift wooden cup 4/10 5/10 4/10 4/10 0/10 4/10
Place milk 5/10 6/10 5/10 6/10 1/10 3/10
Upright milk 3/10 3/10 4/10 4/10 3/10 5/10
Pour cola 3/10 3/10 3/10 4/10 2/10 4/10

Average 3.75/10 4.25/10(+0.5) 4.00/10 4.50/10(+0.5) 1.50/10 4.00/10(+2.5)

Table 5: Robot direct re-
play success rate ↑ (%).
Task Ours GAT-Grasp yoto

Lift wooden cup 87.5 25.0 75.0
Place bowl 100 62.5 100
Upritght milk 100.0 50.0 62.5
Pour cola 100 62.5 75.0
move banana 87.5 62.5 87.5
Tip teacup 87.5 37.5 00.0

Macro avg 91.7 50.0 66.7

effective transfer from simulation to real-world environments. Second, data augmentation is applied
to RoboWheel, and its broader data distribution helps the policy mitigate the negative impact of the
visual domain gap, endowing the policies with enhanced robustness.

Generalization on unseen object, unseen background, and clutter. We probe generalization of
the four household skills under three shifts: unseen object instances, unseen backgrounds, and clut-
tered scenes. We compare models trained on Robowheel only (RW) versus RW with augmentation
(RW-aug: object category & clutter & background). Each cell shows successes/trials for two inde-
pendent runs, as shown in Tab. 4. This setup isolates whether reconstruction-driven data and simple
augmentations suffice to transfer the skill to new objects, backgrounds, and cluttered environments.

When trained on the RoboWheel data without augmentation, the finetuned RDT still manages to
achieve some successful trials when encountering unseen objects or inferring in cluttered environ-
ments. However, when there are significant changes in the observations (e.g., changing the back-
ground), the model experiences catastrophic performance degradation. In contrast, the fine-tuned
RDT with augmented RoboWheel data shows a significant improvement in handling new observa-
tions, particularly in the unseen background setting, where the success rate increased by 25%.

5.3 REAL-ROBOT REPLAY PERFORMANCE COMPARE

Under the same hand-motion input, we retarget the hand motions to a two-finger gripper using
different existing methods and execute the same set of tasks, using success rate to quantify the
robustness of each mapping scheme. As evidenced by the comparisons in Tab. 5 and Fig. 19,
our retargeting approach consistently attains higher success rates across tasks, and its definition
of gripper orientation is more robust—supporting flexible execution of tasks under diverse hand-
gesture regimes.

6 CONCLUSION

Our helical data engine RoboWheel is designed to transform real-world hand-object interaction
videos into cross-domain robotic learning supervision. By leveraging high-fidelity reconstruction,
multi-stage optimization, and cross-embodiment retargeting, RoboWheel offers a scalable frame-
work for generating training data that is physically consistent and directly applicable to diverse
robotic platforms. We demonstrated its effectiveness through an innovative data pipeline that in-
cludes simulation-augmented data augmentation and domain randomization, allowing for the gener-
ation of a large-scale multimodal dataset that supports various VLAs and imitation learning models.
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ETHICS STATEMENT

This research adheres to ethical guidelines in all aspects of the study.RoboWheel is a system that
converts in-the-wild human hand-object interaction (HOI) videos into embodied supervision for
cross-domain robotic learning. In our research, we used videos from the internet, but their usage is
strictly limited to academic purposes. Any harmful use is not intended or encouraged.

REPRODUCIBILITY STATEMENT

To reporduce our retargeting results in both real-world and simulated environments, please consult
the Appendix F, where we present the pseudocode for the retargeting process. Regarding the real-
world performance evaluation of the four VLA/IL policies, the code is fully sourced from the open-
source repository, with implementation specifics provided in the Appendix J.1.
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A PROBLEM AND CHANNLLENGE

A.1 LIMITATIONS OF DATA SOURCES FOR ROBOT LEARNING

Building robust, general-purpose robotic systems requires large-scale, diverse, high-quality training
data that remain aligned with real-world distributions and respect physical plausibility. Existing data
acquisition paradigms broadly fall into two categories—teleoperation and generative/simulation-
based approaches. The former is costly and difficult to scale, subject to operator bias and inconsis-
tency, and struggles to cover long-horizon, contact-rich scenarios; the latter, while easy to expand,
exhibits pronounced sim-to-real gaps, insufficient physical modeling, and perceptual domain shift,
leading to distributional mismatch with the real world and limited transferability and verifiability.

A.2 CHALLENGES IN HIGH-PRECISION HAND AND OBJECT RECONSTRUCTION

Despite substantial progress in Human–Object Interaction (HOI), extracting high-quality HOI data
from monocular video remains challenging, particularly for real-world applications that demand
both high precision and scalability. Existing HOI reconstruction pipelines are constrained in sev-
eral respects: 1) many methods reconstruct in the camera coordinate frame; when camera intrin-
sics/extrinsics are unknown, transforming to the world frame that underlies robot action spaces
often yields pronounced, physically implausible trajectory jitter; 2) object pose estimation typically
hinges on strong prerequisites—e.g., access to object models/assets and metric depth—and even
when such conditions are satisfied, occlusions by the manipulating hand or other objects frequently
induce large pose-tracking errors; and 3) the reconstructed relative hand–object configurations of-
ten violate physical plausibility—indeed, non-negligible errors are observed even in HOI datasets
captured with motion-capture systems and multi-view camera rigs.

B RELATED WORK

Robotic Learning from Human Demonstration Early work in vision-based programming by
demonstration mapped human hand poses to robot grasps directly from images, establishing a
pipeline from grasp recognition to example-based robot execution Kjellstrom et al. (2008a). More
recent systems leverage richer HOI signals: Zhou et al. (2025) extract binocular hand-motion cues
from human videos, compress trajectories into keyframes with coordination masks, augment demon-
strations geometrically, and train a bimanual diffusion policy that executes long-horizon dual-arm
tasks and generalizes across scenes. Complementarily, Wang et al. (2025) treat human gestures
as structured priors, retrieving grasp affordances from HOI memories and transferring them to
novel objects, yielding robust performance in single-object and cluttered settings. At scale, cross-
embodiment corpora and models (Open X-Embodiment/RT-X) demonstrate positive transfer across
heterogeneous robots, motivating retargetable supervision from human interactions (Vuong et al.,
2023). Specialized transfer frameworks extend this idea to dexterous bimanual manipulation via
residual learning (Li et al., 2025b), while whole-body humanoid control benefits from motion-
tracking pipelines distilled into guided diffusion policies that enable versatile downstream behav-
iors (Truong et al., 2025). Together, these threads indicate a viable route from human HOI video to
robot-usable policies via reconstruction, retargeting, and data augmentation.
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C NOTATION USED THROUGHOUT THE PAPER.

Symbol Meaning Notes / Space

{It}Tt=1 Input frame sequence RGB / RGB-D
K Camera intrinsics Known or estimated
Tw
c Camera pose in world frame SE(3); often (Rwc, twc)

Π(·) Pinhole projection operator 3D → pixel coordinates
Πxz(·) Projection onto xz-plane Removes y component
ht Hand state at time t (θh(t), R

w
h (t), t

w
h (t))

θh(t) Hand kinematic parameters (MANO/SMPL-H)Joint angles / shape
Rw

h (t), t
w
h (t) Wrist pose in world (rot/trans) SO(3) and R3

pt Object state at time t Tw
o (t) ∈ SE(3)

Tw
o (t) = (Ro(t), to(t)) Object pose in world (rot/trans) SE(3)

Mo, M̂o Object mesh (metric / up-to-scale) Triangle mesh + texture
so Object scale factor From depth–mesh alignment
mt, Dt Object mask and depth map at t Segmentation and depth
Pt, P Back-projected points (per-frame / global) From Dt and K
AABB(·) Axis-aligned bounding box Use diagonal via diag(·)
A Canonical action space Unified facing/origin
TA
w = (Rw→A, tw→A) World-to-action-space transform Coordinate re-alignment

∆2(·) Second-order temporal difference Jitter suppression
ρ(·) Robust loss (e.g., Geman–McClure) For reprojection errors
IoU(·, ·) Intersection-over-Union Contour/overlap consistency
d(·, ·) Point–set / point–surface distance For proximity/attraction
Vh, Vo Hand mesh vertices / object surface points Geometry sets
ϕh(x; t) Hand signed distance field (SDF) Positive outside (as used here)
TSDFo object truncated signed distance function negative inside and zero else
q̃i(t) World coords of sampled object surface point Ro(t)q

loc
i + to(t)

Nt Near-contact candidate set |ϕh| < τband or Top-K
∥ · ∥F Frobenius norm For rotation log etc.
logSO(3)(·) Lie-group log map on SO(3) Rotation discrepancy
dSE(3)(·, ·) Geodesic distance on SE(3) Pose discrepancy
Eπ[·] Expectation under policy π RL objective
rt Instantaneous reward Weighted components
ψlimits(·) Joint-limit margin reward Prefer mid-range
πθ Residual policy network Added to aIK

aIKt Inverse-kinematics baseline action ManipTrans-style residual
control

Trel(t) Relative pose T−1
h (t)To(t) Hand–object relative pose

ADD-S Average Distance (symmetric objects) Pose error metric (cm)
Rg, pg Gripper pose (rot/trans) From hand keypoints
q
(r)
t Joint configuration of robot r at t From bounded-rate IK
ϕlim(q) Joint-limit penalty IK constraint term
m(q) Manipulability Avoid singularities
S = diag(−1, 1, 1) Left–right mirror matrix About sagittal plane
Ry(π) Rotation about y by π Used with S to set facing
φsem(·) Semantic embedding (text–shape) For semantic similarity
γt Discount factor power RL return discounting
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source camera
𝑇𝑇𝑤𝑤𝑤𝑤𝑤

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅ℎ𝑖𝑖𝑖𝑖
𝐿𝐿ℎ𝑖𝑖𝑖𝑖

x y

z

canonical action space

𝑟𝑟𝑥𝑥𝑥𝑥 = Ⅱ𝑥𝑥𝑥𝑥 𝐿𝐿𝑠𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑠𝑠𝑠𝑠𝑠 + (𝐿𝐿ℎ𝑖𝑖𝑖𝑖 − 𝑅𝑅ℎ𝑖𝑖𝑖𝑖))

𝑥⃑𝑥 =
𝑟𝑟𝑥𝑥𝑥𝑥
𝑟𝑟𝑥𝑥𝑥𝑥

𝑦⃑𝑦 = 0,1,0 𝑇𝑇 𝑧𝑧 = 𝑥⃑𝑥 x 𝑦⃑𝑦

𝑇𝑇𝑐𝑐2𝑤𝑤

Figure 9: Our pipeline decouples the reconstructed hand-object motions from the specific camera
viewpoint of the source video. We first lift the reconstructions to a consistent world frame using the
camera-to-world transformation Tc2w . Subsequently, we normalize these trajectories into a canon-
ical action space via Tw2A. This two-step alignment ensures that the retargeted actions maintain a
consistent approach direction and kinematic interpretation across all robotic embodiments.
D CONVERT HOI MOTION TO CANONICAL ACTION SPACE

Real-world HOI videos are captured under arbitrary viewpoints, which leads to view-dependent re-
constructions of both hand and object. To eliminate this inconsistency, we adopt a lifting procedure,
as shown in Fig. 9. In the first step, all reconstructed HOI results are transformed from their re-
spective camera coordinate systems into the same world coordinate system. In the second step, the
trajectories in the world coordinate system are further normalized into a unified canonical action
space, ensuring that interaction trajectories from heterogeneous sources become retargetable.

Step 1: Estimate (K,Tw
c ) and lift to the world frame. We assume a static-camera prior and

estimate camera intrinsics K and a (time-invariant) camera-to-world transform Tw
c = (Rwc, twc)

with DROID-SLAM Teed & Deng (2021), optimizing sparse/semi-dense reprojection together with
temporal smoothness:

min
K,Tw

c

∑
t,i

∥∥Π(K, (Tw
c )−1;Xi

)
− ui,t

∥∥2
2
+ λ

(
∥∆twc∥22 +

∥∥ logSO(3)(R
⊤
wcR

+
wc)

∥∥2
2

)
, (4)

where (·)+ denotes the next keyframe. We adopt the keyframe solution as the clipwise Tw
c . We

also evaluated DPVO and COLMAP and found DROID-SLAM more stable on our setting. With the
fixed Tw

c for each clip, we could project our estimated ht,pt convert to the world frame:

Step 2: Align to canonical action space A. Given the left/right hip and shoulder positions
p
L/R
hip , p

L/R
sho in the world coordinate system {Z}, we first compute a lateral reference vector on

the xz-plane:
vlat = Πxz

(
(pLhip − pRhip) + (pLsho − pRsho)

)
.

We then construct the canonical frame A with the following conventions:

• zA is aligned with the scene up direction (gravity / ground normal).
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• yA is determined by the dominant interaction direction (e.g., the average hand→object
approach vector).

• xA is obtained by the right-hand rule, ensuring orthonormality.

After orthonormalization, these axes form the rotation matrix Rw→A ∈ SO(3). Finally, we center the
action trajectory at the object position (by default, at the first salient frame t0), giving the translation
tw→A = −Rw→A two (t0) and the resulting rigid transformation TA

w = (Rw→A, tw→A).

E DATA AUGMENTATION

Here, we present various data augmentation strategies and additional details applied to more tasks.

E.1 RATARGETING TO DIFFERENT ROBOT ARM

Here, we present additional results from the data augmentation module, demonstrating motion retar-
geting for HOI reconstruction to different robotic arms. Figure ?? and Figure 11 show the retargeted
motions for the tasks ”flip milk,” ”pour water,” and ”place milk” to the UR5/UR5e, Franka Emika
Panda, KUKA LBR iiwa 7, Kinova Gen3, and Rethink Robotics Sawyer arms, respectively.

UR5

Franka

Gen3

Iiwa7

Sawyer

Flip milk

 

UR5

Franka

Gen3

Iiwa7

Sawye

Pour Cola

r

Figure 10: Visualization of robot arm augmentation:flip milk and pour Water
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Place milk

UR5

Franka

Gen3

Iiwa7

Sawyer

Figure 11: Visualization of robot arm augmentation:place milk
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E.2 BACKGROUND VARIATION(TEXTURE)

As shown in Fig. 12We apply scene-level visual randomization to diversify the pixel distribution
while keeping task dynamics and contact semantics unchanged: i) workspace and background ap-
pearance randomization (e.g., tabletop, backsplash) via texture and normal-map swaps, and adjust-
ment of basic PBR parameters (albedo/roughness); ii) illumination randomized using parametric
light sources (cylinder and sphere lights) with variations in spatial placement, intensity, color, color
temperature, and emission radius, enabling a broad range of plausible lighting conditions; iii) clutter
regime ranging from empty scenes to heavy distractors, with randomly sampled object positions and
orientations placed collision-free outside the robot’s swept volume via rejection sampling; iv) mild
camera intrinsics/extrinsics jitter consistent with prior calibration to emulate plausible view changes.

Original Augmentation

Clutter or not

Background
Variation

Object 
Retrieval

Figure 12: Diverse background texture augmentation in RoboWheel.
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E.3 OBJECT RETRIVAL

Our object-retrieval augmentation strategy successfully enables the transfer of manipulation skills to
novel objects in simulation. By replacing the original object with a retrieved counterpart that shares
high geometric and semantic similarity, and initializing it in the same canonical pose, the robot can
reliably execute the same action trajectory. Visually confirmed in Figure 13, Figire 14, and Figure
15 for tasks including ”pour water”, ”tip tea cup”, and ”place box”.

Figure 13: Object Retrieval augmentation

Figure 14: Object Retrieval augmentation
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Figure 15: Object Retrieval augmentation
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E.4 HAND MIRROR

Motivation. Many daily manipulations are left–right symmetric up to a sagittal-plane reflection;
mirroring increases trajectory diversity without changing task semantics.

Operator. Let the sagittal reflection be S = diag(−1, 1, 1). For positions, p′(t) = S p(t). A pure
reflection is improper for orientations, so we compose a π-rotation about the y-axis to recover a
proper rotation:

R′(t) = S R(t)S ·Ry(π), det
(
R′(t)

)
= +1. (5)

We mirror both hand and object about the same plane so that T ′
rel(t) = T ′

h(t)
−1T ′

o(t) = Trel(t),
preserving contact frames and approach vectors. Gripper chirality and finger-axis signs are flipped
consistently.

Safeguards. We exclude actions whose handedness encodes semantics (e.g., threaded fasteners),
detected via a non-zero screw component about the task z-axis exceeding τscrew. Mirrored rollouts
must pass the replay check on a reference arm before inclusion.
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Algorithm 1 Whole-Hand (Palm-Involved)
Gripper Pose Construction
Input: wrist kwri, index MCP kmcp

ind ,
ring MCP kmcp

ring

Output: Gripper pose (Rg,pg).

w←kwri, i←kmcp
ind , r←kmcp

ring

// Extract keypoints
o← (w + i+ r)/3 // palm origin
vx ← (r−w) // X-axis direction
x̄← vx/(NORMALIZE(vx) + 10−8)

// Normalized X-axis
vz ← CROSS PRODUCT(i−w, r−w)

// Z-axis (palm normal)
z̄← vz/(NORMALIZE(vz) + 10−8)

// Normalized Z-axis
ȳ← CROSS PRODUCT(z̄, x̄)

// Y-axis direction
z̄← SIGN(⋄) · z̄
Rg ← CONCATENATE([x̄, ȳ, z̄])

// Rotation matrix
pg ← o+ dz z̄ // Position

Return (Rg,pg)

Algorithm 2 Finger-Only (Pinch/Precision)
Gripper Pose Construction

Input: index TIP ktip
ind, index MCP kmcp

index ,
thumb tip ktip

thumb, thumb MCP kmcp
thumb

Output: Gripper pose (Rg,pg).

i ← ktip
ind, m ← kmcp

ind , t ← ktip
thumb, r ←

kmcp
thumb // Extract keypoints

o← (t+ i)/2 // palm origin
vz ← (i−m) // Z-axis direction
z̄← vz/(NORMALIZE(vz) + 10−8)

// Normalized Z-axis
vy ← CROSS PRODUCT(i −m, m − r)

// Y-axis (palm normal)
ȳ← vy/(NORMALIZE(vy) + 10−8)

// Normalized Y-axis
x̄← CROSS PRODUCT(ȳ, z̄)

// X-axis direction
z̄← SIGN(⋄) · z̄
Rg ← CONCATENATE([x̄, ȳ, z̄])

// Rotation matrix
pg ← o // Position

Return (Rg,pg)

F CONVERT HAND GESTURE TO ROBOT ARM

For the two different gesture types, namely whole-hand and finger-only, we designed corresponding
mapping schemes to translate hand motions to a two-fingered gripper. For whole-hand gestures, our
method primarily leverages keypoints on the palm plane to define the gripper’s orientation and spa-
tial position. For finger-only gestures, we incorporate fingertip positions to accommodate dexterous
manipulation.
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G MORE VISUALIZATION RESULTS IN REAL-WORLD VALIDATION

Here, we present the experimental results for all designed tasks conducted on physical robot(UR5).

Upright milk

Pick up milk

Lift wooden 
cup

Move banana

Store bowl

Place milk

Pour cola

Tip teacup

Figure 16: Visualization of 8 tasks on real robot

H VISUALIZATION RESULTS OF MANIPTRANS

We mapped the hand gestures onto the dexterous hand and completed the training in a simulation
environment. The training outcomes are shown in Appendix H.

xhand

inspire

Figure 17: Visualization results of maniptrans

I MOCAP HANDWARE SETUP

Glove The glove equipped with 16 Gen3 tactile sensors and 29 magnetic encoders. This glove
is worn on a single hand and serves to collect high-frequency tactile data. The tactile sensors are
capable of detecting pressure, force, and vibration, while the magnetic encoders are used to capture
precise joint angles and movements of the fingers. This combination allows for detailed hand-object
interaction data to be gathered with high temporal resolution.

RGBD Cameras Two Intel RealSense D455 RGBD cameras are used to capture depth and RGB
data simultaneously. The cameras are mounted at strategic locations to ensure optimal coverage and
accurate 3D spatial data. The depth cameras provide high-resolution depth maps, while the RGB
cameras offer high-quality color images. For synchronized data acquisition, a synchronization cable
is employed, connecting three cameras to ensure precise temporal alignment across all devices.
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Figure 18: Mocap Handware Config Visualization

RGB Cameras A total of six high-resolution RGB cameras are used for detailed visual tracking.
These cameras are positioned to cover different angles, enabling comprehensive capture of the en-
vironment and subjects. The cameras are used to provide complementary visual data to the depth
information provided by the RGBD cameras.

J EXPERIMENT DETAILS

We used the RoboWheeldata to train four VLA/IL policies, namely ACT, DP, RDT-1B, and Pi0, to
validate the effectiveness of our data.Before using these models for training, we first preprocessed
the data to fit the observations, actions, and instructions ifneeded required for model training.

J.1 IMPLEMENTATION AND HYPER-PARAMETERS OF 4 VLA/IL POLICIES

For ACT ,we trained each task for 20,000 iterations, with 90% of the data used for training and the
remaining 10% for validation. When training DP, we kept the same training steps, learning rate, and
chunk size as ACT. The specific parameter values are listed in table 6.

Hyperparameter (ACT) Value Hyperparameter (DP) Value
Chunk Size 16 Chunk Size 16
Hidden Dim 512 Action Horizon 8
Batch Size 16 Batch Size 16
Learning Rate 1e-5 Learning Rate 1e-5
Dim Feedforward 3200 Observation Horizon 8
Num Steps 20000 Num Steps 20000

Table 6: Hyperparameters of training ACT and DP

RDT was pretrained for 100,000 steps with a batch size of 8 per GPU on 4 GPUs, and all single-task
fine-tuning was conducted for 10,000 steps with a batch size of 8 per GPU on a single GPUs.

Pi0 was pretrained for 100,000 steps with a batch size of 32 on 8 GPUs, and all fine-tuning was
performed for 30,000 steps using the same batch size on a single GPU.

The other hyperparameters for RDT and Pi0 were kept consistent with the official documentation.

K ARM ACTION REPLAY COMPARISON WITH DIFFERENT METHODS

Replay Comparison by Different Methods: We compared the mapping method of RoboWheel with
YOTO and GAT-Grasp. YOTO and GAT-Grasp result in discrepancies in gripper position or orienta-
tion mapping, leading to failure, while RoboWheel provides more accurate and reasonable mapping.

L LLM USAGE

We utilize large language models (LLMs) to polish our articles and correct errors, including gram-
matical mistakes and imprecise phrasing.
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Ours

GAT-
Grasp

YOTO

Figure 19: Replay Comparison by Different Methods: We compared the mapping method of
RoboWheel with YOTO and GAT-Grasp. YOTO and GAT-Grasp result in discrepancies in grip-
per position or orientation mapping, leading to failure, while RoboWheel provides more accurate
and reasonable mapping.
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