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Abstract

Controlled table-to-text generation seeks to001
generate natural language descriptions for high-002
lighted subparts of a table. Previous SOTA003
systems still employ a sequence-to-sequence004
generation method, which merely captures the005
table as a linear structure and is brittle when ta-006
ble layouts change. We seek to go beyond this007
paradigm by (1) effectively expressing the rela-008
tions of content pieces in the table, and (2) mak-009
ing our model robust to content-invariant struc-010
tural transformations. Accordingly, we propose011
an equivariance learning framework, encod-012
ing tables with a structure-aware self-attention013
mechanism. This prunes the full self-attention014
structure into an order-invariant graph attention015
that captures the connected graph structure of016
cells belonging to the same row or column, and017
it differentiates between relevant cells and irrel-018
evant cells from the structural perspective. Our019
framework also modifies the positional encod-020
ing mechanism to preserve the relative position021
of tokens in the same cell but enforce position022
invariance among different cells. Our technol-023
ogy is free to be plugged into existing table-024
to-text generation models, and has improved025
T5-based models to offer better performance026
on ToTTo and HiTab. Moreover, on a harder027
version of ToTTo, we preserve promising per-028
formance, while previous SOTA systems, even029
with transformation-based data augmentation,030
have seen significant performance drops.1031

1 Introduction032

Table-to-text generation seeks to generate natu-033

ral language descriptions for content and entailed034

conclusions in tables. It is an important task that035

not only makes ubiquitous tabular data more dis-036

coverable and accessible, but also supports down-037

stream tasks of tabular semantic retrieval (Wang038

et al., 2021a), reasoning (Gupta et al., 2020), fact039

checking (Chen et al., 2019; Wang et al., 2021b)040

and table-assisted question answering (Chen et al.,041

1Code and data will be released after paper publication.
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Figure 1: Description generation on content-equivalent
tables with different layouts by T5 and LATTICE2. Cor-
rect film-role pairs in generations are in orange. We
report also the BLEU-4 score of each generation. T5 is
brittle to layout changes, while LATTICE return consis-
tent results.

2020c). While rich and diverse facts can be pre- 042

sented in a table, the controlled table-to-text gener- 043

ation task, which generates focused textual descrip- 044

tions for highlighted subparts of a table, has gar- 045

nered much attention recently (Parikh et al., 2020; 046

Kale and Rastogi, 2020; Cheng et al., 2021). 047

Prior studies on controlled table-to-text gener- 048

ation often employ a sequence-to-sequence gen- 049

eration method, which merely captures the table 050

as a linear structure (Parikh et al., 2020; Kale and 051

Rastogi, 2020; Su et al., 2021). However, table 052

layouts, though overlooked by prior studies, are 053

key to the generation from two perspectives. First, 054

table layouts indicate the relations among cells that 055

2This example is from the ToTTo dataset. The film names
and role names in original example is too long. For presenta-
tion, we replace the actor name, film names and role names.
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collectively present a fact, which are however not056

simply captured by a linearized table. For example,057

if we linearize the first table row-wise in Fig. 1,058

Wai Siu-bo will be next to both Royal Tramp and059

King of Beggers, so that it is not clear this role be-060

longs to which film. Second, the same content can061

be equivalently expressed in tables with different062

layouts, while linearization simplifies the layout063

representation, it causes brittle generation when064

table layouts change. Fig. 1 shows two tables with065

the same content but different layouts, for which066

the generations by T5 are largely inconsistent.067

In this paper, we focus on improving con-068

trolled table-to-text generation systems by incor-069

porating two properties: structure-awareness and070

transformation-invariance. Structure-awareness,071

which seeks to understand cell relations indicated072

by the table structure, is essential for capturing073

contextualized cell information. Transformation-074

invariance, which seeks to make the model insen-075

sitive to content-invariant structural transforma-076

tions (including transpose, row shuffle and col-077

umn shuffle), is essential for model robustness.078

However, incorporating structure-awareness and079

transformation-invariance into existing generative080

neural networks is nontrivial, especially when pre-081

serving the generation ability of pretrained models082

as much as possible.083

We enforce the awareness of table layouts and084

robustness to content-invariant structural transfor-085

mations on pretrained generative models with an086

equivariance-learning framework, namely Layout087

Aware and TransformaTion Invariant Controlled088

Table-to-Text GEneration (LATTICE). LATTICE en-089

codes tables with a transformation-invariant graph090

masking technology. This prunes the full self-091

attention structure into an order-invariant graph-092

based attention that captures the connected graph093

of cells belonging to the same row or column, and094

differentiates between relevant cells and irrelevant095

cells from the structural perspective. LATTICE also096

modifies the positional encoding mechanism to pre-097

serve the relative position of tokens within the same098

cell but enforces position invariance among differ-099

ent cells. Our technology is free to be plugged into100

existing table-to-text generation models, and has101

improved T5-based models (Raffel et al., 2020) on102

ToTTo (Parikh et al., 2020) and HiTab (Cheng et al.,103

2021). Moreover, on a harder version of ToTTo, we104

preserve promising performance, while previous105

SOTA systems, even with transformation-based106

data augmentation, have seen significant perfor- 107

mance drops. 108

Our contributions are three-fold. First, we pro- 109

pose two essential properties of a precise and ro- 110

bust controlled table-to-text generation system, i.e. 111

structure-awareness and transformation-invariance. 112

Second, we demonstrate how our transformation- 113

invariant graph masking technology can enforce 114

these two properties, and effectively enhance a rep- 115

resentative group of Transformer-based generative 116

models, i.e. T5-based models, for more general- 117

izable and accurate generation. Third, in addi- 118

tion to experiments on ToTTo and HiTab bench- 119

marks, we evaluate our model on a harder version 120

of ToTTo with a special focus on robustness to 121

content-invariant structural transformations. 122

2 Method 123

In this section, we first describe the preliminaries of 124

content-invariant table transformations, base mod- 125

els and the input format for controlled table-to-text 126

generation (§2.1). Then we introduce the techni- 127

cal details about how the transformation-invariant 128

graph masking technology in LATTICE enforces 129

the model to be structure-aware and transformation- 130

invariant (§2.2). Finally, we present two alternative 131

techniques for strengthening the transformation- 132

invariance to be compared with LATTICE (§2.3). 133

2.1 Preliminaries 134

Content-Invariant Table Transformations. Ta- 135

bles organize and present information by row and 136

column. A piece of information is presented in 137

a cell (with headers), which is the basic unit of a 138

table. Rows and columns are high-level units, indi- 139

cating relations among cells and combining them to 140

express more comprehensive information. We dis- 141

cuss two categories of transformations that may be 142

made on a table, as shown in Fig. 2. First, content- 143

variant transformations modify or exchange a part 144

of cells in different rows or columns changing the 145

semantics of the table. In such cases, new tabu- 146

lar content are created including information be- 147

ing inconsistent with the original table. Second, 148

content-invariant transformations consists of oper- 149

ations that do not influence content within combi- 150

nations of the same rows and columns, resulting in 151

semantically equal (sub-)tables. Specifically, such 152

operations include transpose, row shuffle and col- 153

umn shuffle. By performing any or a combination 154

of such operations, we can present the same infor- 155
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Figure 2: Examples of different types of table transformations. Arrows indicate how specific operations change the
positions of tables components. Modifications causing semantic changes are in red.

mation in different table layouts.156

Base Models. Pretrained Transformer-based gen-157

erative models achieve SOTA performance on vari-158

ous text generation tasks (Raffel et al., 2020; Lewis159

et al., 2020). In order to adapt this kind of models160

to table-to-text generation, prior works propose to161

linearize the table into a textual sequence (Kale and162

Rastogi, 2020; Chen et al., 2020b; Su et al., 2021).163

Our method LATTICE is model-agnostic and can164

be incorporated into any such models. Follow-165

ing Kale and Rastogi (2020), we choose a family166

of the best performing models, T5 (Raffel et al.,167

2020), as our base models. Models of this fam-168

ily are jointly pretrained on a series of supervised169

and self-supervised text-to-text tasks. Models can170

switch between different tasks by prepending a171

task-specific prefix to the input. Our experiments172

(§3.3 and §3.4) point out that base models are brit-173

tle to content-invariant table transformations and174

can only capture limited layout information.175

Input Format. Prior works (Kale and Rastogi,176

2020; Chen et al., 2020b; Su et al., 2021) linearize177

(highlighted) table cells based on row and column178

indexes. The input sequence often starts with the179

metadata of a table, such as page title and section180

title. Then, it traverses the table row-wise from181

the top-left cell to the bottom-right cell. Head-182

ers of each cell can be either treated as individ-183

ual cells or appended to the cell content. Each184

metadata/cell/header field is separated with spe-185

cial tokens. This linearization process suits the in-186

put to text-to-text generation models, yet discards187

much of the structural information of a table (e.g.,188

two cells in the same column can be separated189

by irrelevant cells in the sequence, while the last190

cell and first cell in adjacent rows can be adjacent191

although they are irrelevant), and is sensitive to192

content-invariant table transformations. 193

2.2 Transformation-Invariant Graph Masking 194

LATTICE realizes equivariance learning by mod- 195

ifying the Transformer encoder architecture. It 196

also improves the base model’s ability of cap- 197

turing structures of highlighted tabular content. 198

Specifically, we incorporate a structure-aware self- 199

attention mechanism and a transformation invariant 200

positional encoding mechanism in the base model 201

The workflow is shown in Fig. 3. 202

Structure-Aware Self-Attention. Transformer 203

(Vaswani et al., 2017) adopts self-attention to aggre- 204

gate information from all the tokens in the input se- 205

quence. The attention flows form a complete graph 206

connecting each token. This mechanism works 207

well for modeling sequences but falls short of cap- 208

turing tabular structures. The non-linear layout 209

structure reflects semantic relations among cells, 210

hence should be captured by self-attention. 211

We incorporate structural information by prun- 212

ing the attention flows. According to the nature 213

of information arrangement in a table, two cells 214

in neither the same row nor the same column are 215

not semantically related, or at least the combina- 216

tion of them do not directly express information 217

this table seeks to convey. Intuitively, representa- 218

tions of these cells should not directly pass infor- 219

mation to each other. In LATTICE, attention flows 220

among tokens of semantically unrelated cells are re- 221

moved from the attention graph, while those within 222

the metadata, within each cell, and between meta- 223

data and each cell are preserved. In this way, we 224

also ensure the transformation-invariance property 225

of the self-attention mechanism as related cells in 226

the same row or same column are all linked in an 227

unordered way in the attention graph. It is easy 228

to show that for any individual cell, the links in 229
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Figure 3: Attention flows of the base model and LATTICE. In this example, we adopt the input format which appends
headers to each cell, so headers can be seen as part of the cell content. We omit the attention flows among tokens
within a cell, as they are in the same type of the flows between headers and corresponding cells. Pij represents the
relative position between tokens at both ends of the attention flow, where i and j are absolute positions of tokens in
the linearized table and Pmax is the max relative position allowed. The base model has a complete attention graph
among all cells with relative positions based on linear distance. LATTICE prunes the attention flow based on the
table layout and assigns transformation-invariant relative positions between cells.

the attention graph will remain the same after any230

content-invariant operations (§2.1) are applied.231

Transformation-Invariant Positional Encoding.232

When calculating the attention scores between each233

pair of tokens, the base model captures their rel-234

ative position in the sequence of linearized table235

as an influential feature. Specifically, the attention236

flow from the i-th token to the j-th token is paired237

with a relative position Pij = |i − j|. This easily238

causes positional biases among distinct cells, since239

the relative positions in the sequence do not fully240

reflect relations among cells in the table. Moreover,241

the relative position between the same token pair242

will change as the table layout change, which is the243

source of inconsistent generation shown in Fig. 1.244

As discussed in §2.1, for a given cell, its rela-245

tions with other cells in the same row or column246

should be equally considered. It is natural to assign247

the same relative positions among (tokens of) cells248

in the same row or column, no matter how far their249

distance is in the linear sequence. Meanwhile, we250

preserve the relative positions of tokens inside the251

same cell (or the metadata). Specifically, the rel-252

ative position between the i-th token and the j-th253

token in the input sequence is254

Pij = Pji =

{
|i− j|, if in the same field;
Pmax, otherwise;

255

where “same field” means the two tokens are from256

the same cell or both of them are from the metadata,257

and Pmax is the max relative position allowed. As a258

result, LATTICE represents cells (and the metadata)259

in a way that is invariant to their relative positions260

in the sequence. As content-invariant table transfor-261

mations do not change the relations among cells in 262

the table (i.e. whether two cells are from the same 263

row or column), this positional encoding mecha- 264

nism is transformation-invariant. 265

Training and Inference. After obtaining the
structure-aware and transformation-invariant table
representation, LATTICE conducts similar training
and inference as the base model. Given the lin-
earized table Ti, its layout structure Si, and target
sentence Yi = {yi1, yi2, ..., yini

}, training minimizes
the negative log-likelihood. For a dataset (or batch)
with N samples, the loss function is

L = − 1

N

N∑
i=1

ni∑
j=1

logP (yij |yi<j , Ti, Si).

During inference, the model generates a sentence 266

token by token, where each time it outputs a distri- 267

bution over a vocabulary. 268

2.3 Alternative Techniques 269

In addition to the equivariance learning realized by 270

tranformation-invariant graph masking, we present 271

and compare with two alternative techniques. 272

Layout-Agnostic Input. The first technique is ad- 273

justing input sequences to be invariant to content- 274

invariant table transformations. A simple way is to 275

reorder cells and headers by an arbitrary order not 276

based on table layouts (e.g., lexicographic order) 277

to form a sequence. If any special tokens are used 278

to separate cells and headers, they should also in- 279

clude no layout information3. As a result, this input 280

format loses all information about table layouts. 281

3For example, use <header> instead of <row_header>.
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Data Augmentation. The second technique is data282

augmentation by content-invariant table transfor-283

mation. This technique augment tables with dif-284

ferent layouts to training data, seeking to enhance285

the robustness of the base model by exposing it to286

more diverse training instances.287

Our experiments systematically compares these288

two techniques with tranformation-invariant graph289

masking in §3.3, revealing how directly performing290

equivariance learning from the perspective of neu-291

ral network structure leads to better performance292

and robustness than using layout-agnostic input or293

data augmentation.294

3 Experiments295

In this section, we conduct experiments on two296

benchmark datasets. First, we introduce the details297

of datasets, baselines, evaluation metrics and our298

implementation (§3.1). Then, we show the overall299

performance of LATTICE (§3.2). After that, we an-300

alyze the model robustness on a harder version of301

the ToTTo dataset where content-invariant pertur-302

bations are introduced (§3.3). Finally, we provide303

ablation study on components of transformation-304

invariant graph masking (§3.4).305

3.1 Experimental Settings306

Datasets. We evaluate our model on ToTTo (Parikh307

et al., 2020) and HiTab (Cheng et al., 2021) bench-308

marks. Details of them are described as follows309

(see Appx. §A for more information):310

• ToTTo: ToTTo consists of 83,141 Wikipedia ta-311

bles, 120,761/7,700/7,700 sentences (i.e. descrip-312

tions of tabular data) for train/dev/test. Target313

sentences in test set are not publicly available.314

Each sentence is paired with a set of highlighted315

cells in a table, and each table has metadata in-316

cluding its page title and section title. The dev317

and test sets can be further split into 2 subsets, i.e.318

overlap and non-overlap, according to whether319

the table exists in the train set.320

• HiTab: HiTab contains 3,597 tables, includ-321

ing tables from statistical reports and Wikipedia,322

forming 10,686 samples distributed across train323

(70%), dev (15%), and test (15%). Each sam-324

ple consists of a target sentence and a table with325

highlighted cells and hierarchical headers.326

Evaluation Metrics. We adopt three widely used327

evaluation metrics for text generation. BLEU (Pa-328

pineni et al., 2002) is one of the most common329

metric for text generation based on n-gram co- 330

occurrence. We use the commonly used BLEU-4 331

following prior works (Parikh et al., 2020; Cheng 332

et al., 2021). PARENT (Dhingra et al., 2019) is a 333

metric for data-to-text evaluation taking both refer- 334

ences and tables into account. BLEURT (Sellam 335

et al., 2020) is a learned evaluation metric for text 336

generation based on BERT (Devlin et al., 2019). 337

Following prior studies (Parikh et al., 2020; Cheng 338

et al., 2021), we report all three metrics on ToTTo 339

and the first two metrics on HiTab using the evalu- 340

ation tool released by Parikh et al. (2020). 341

Baselines. We present baseline results of the fol- 342

lowing representative methods: 343

• Pointer-Generator (Gehrmann et al., 2018): An 344

LSTM-based encoder-decoder model with atten- 345

tion and copy mechanism, first proposed by See 346

et al. (2017) for text summarization. 347

• BERT-to-BERT (Rothe et al., 2020): A 348

Transformer-based encoder-decoder model, 349

where the encoder and decoder are initialized 350

with BERT (Devlin et al., 2019). 351

• T5 (Kale and Rastogi, 2020): A pretrained gener- 352

ation model first proposed by Raffel et al. (2020). 353

The model is Transformer-based, pretrained on 354

text-to-text tasks, and finetuned on linearized ta- 355

bles to offer the previous SOTA performance. 356

All the baseline results on ToTTo can be found 357

in the official leaderboard4, except for T5-small 358

and T5-base, for which we reproduce the results 359

on dev set reported by Kale and Rastogi (2020) 360

and submit the predictions on hidden test set to the 361

leaderboard. For HiTab, we run T5 and LATTICE 362

using our replication of the linearization process 363

introduced by Cheng et al. (2021)5. Results of 364

other baselines are from Cheng et al. (2021). 365

Implementation Details. We adopt the pretrained 366

model weights released by Raffel et al. (2020). 367

Specifically, we use T5-small and T5-base6. For 368

finetuning, we use a batch size of 8 and a constant 369

learning rate of 2e−4. Following Kale and Rastogi 370

(2020); Cheng et al. (2021), all input sequences 371

4https://github.com/
google-research-datasets/ToTTo

5According to the authors, their linearization process needs
unreleased raw excel files. We reproduce it with released
tables which results in less precise and informative inputs.

6Although a previous study (Kale and Rastogi, 2020) has
obtained better results using the much larger T5-3B, we were
not able to run that model on our equipment even with a batch
size of 1 due to the overly excessive GPU memory usage.

5
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Model Overall Overlap Non-Overlap

BLEU PARENT BLEURT BLEU PARENT BLEURT BLEU PARENT BLEURT
Pointer-Generator 41.6 51.6 0.076 50.6 58.0 0.244 32.2 45.2 -0.092
BERT-to-BERT 44.0 52.6 0.121 52.7 58.4 0.259 35.1 46.8 -0.017

T5-small 45.3 57.0 0.187 52.7 61.0 0.316 37.8 53.0 0.057
LATTICE (T5-small) 47.4 57.8 0.207 55.6 62.3 0.337 39.1 53.3 0.077

T5-base 47.4 56.4 0.221 55.5 61.1 0.344 39.1 51.7 0.098
LATTICE (T5-base) 48.4 58.1 0.222 56.1 62.4 0.345 40.4 53.9 0.099

Table 1: Results on ToTTo test set. Best scores are in bold.

Model BLEU PARENT
Pointer-Generator 5.8 8.8
BERT-to-BERT 11.4 16.7

T5-small 14.2 22.0
LATTICE (T5-small) 15.7 23.8

T5-base 14.7 21.9
LATTICE (T5-base) 16.3 22.7

Table 2: Results on HiTab test set.

are truncated to a length of 512 to accommodate372

the limit of the pretrained models. Although our373

model can achieve consistent performance with any374

input format, we adopt the layout-agnostic input375

format (§2.3) to avoid uncertainty due to trunca-376

tion and special markers. More details about our377

implementation are in Appx. §B.378

3.2 Main Results379

Tab. 1 shows model performance on ToTTo test set.380

Among the baselines, methods based on pretrained381

Transformer models (i.e. BERT-to-BERT and T5)382

outperform the others and T5 models perform the383

best. Our method LATTICE can be plugged into384

such models. We compare our method with pure385

T5 models of different sizes, and LATTICE con-386

sistently performs better. Overall, LATTICE (T5-387

small) achieves improvements of 2.1 BLEU points388

and 0.8 PARENT points in comparison with T5-389

small, and LATTICE (T5-base) achieves improve-390

ments of 1.0 BLEU points and 1.7 PARENT points391

in comparison with T5-base. These results indicate392

the importance of structure information, which is393

almost totally abandoned by baselines. Further, the394

performance gain on tables both seen and unseen395

during training are significant. Specifically, on the396

overlap subset, LATTICE (T5-small) achieves im-397

provements of 2.9 BLEU points and 1.3 PARENT398

points, and LATTICE (T5-base) achieves improve-399

ments of 0.9 BLEU points and 1.3 PARENT points,400

indicating better intrinsic performance. On the non-401

overlap subset, LATTICE (T5-small) achieves im-402

provements of 1.3 BLEU points and 1.0 PARENT403

points, and LATTICE (T5-base) achieves improve-404

ments of 1.3 BLEU points and 2.2 PARENT points,405

indicating LATTICE is more generalizable to un- 406

seen tables. We also observe that the improvement 407

on BLEURT is not as much as the other two met- 408

rics. It is reasonable as BLEURT is trained with 409

machine translation annotations and synthetic data 410

by mask filling, backtranslation and word drop. 411

These training data ensures its robustness to sur- 412

face generation but not reasoning-based generation. 413

Although the effectiveness of BLEURT is verified 414

on an RDF-to-text dataset, tabular data holds dif- 415

ferent properties with RDF data7. 416

Results on HiTab in Tab. 2 further verify the ef- 417

fectiveness and generalizability of LATTICE. For 418

different model sizes, LATTICE consistently per- 419

forms better than T5 models. We also observe 420

that on this dataset the model with highest BLEU 421

score is not the model with highest PARENT score. 422

It is partially because of the annotations. Many 423

numbers appear in both tables and target sentences 424

are of different precision. Copying such numbers 425

from tables to generated sentences may increase 426

PARENT score but reduce BLEU score. 427

3.3 Robustness Evaluation 428

To further evaluate model robustness against 429

content-invariant perturbations on tables, we create 430

a harder version of the ToTTo dev set, where each 431

table is perturbed with a combination of row-wise 432

shuffling, column-wise shuffling and table trans- 433

pose. Especially, models can no longer benefit 434

from memorizing the layout of tables appearing 435

in both train set and dev set. We compare four 436

methods based on T5, including the basic version 437

proposed by Kale and Rastogi (2020), enhanced T5 438

with the layout-agnostic input or data augmentation 439

(§2.3), and T5 incorporated in LATTICE. 440

According to the results shown in Tab. 3, 441

vanilla T5 models face a severe performance drop 442

when content-invariant perturbations are intro- 443

duced. Overall, BLEU scores drop by 3.4 for T5- 444

small, and 4.5 for T5-base. We also observe that 445

7For example, in the ToTTo dataset, 21% samples requires
reasoning while 13% samples requires comparison.
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Model Overall Overlap Non-Overlap

Origin Transform ∆ Origin Transform ∆ Origin Transform ∆

T5-small 45.7 42.3 -3.4 53.7 49.3 -4.4 37.7 35.4 -2.3
+ layout-agnostic input 44.2 44.2 0 51.6 51.6 0 37.0 37.0 0
+ data augmentation 45.3 44.4 -0.9 52.8 52.0 -0.8 37.9 37.0 -0.9
LATTICE (T5-small) 47.5 47.5 0 55.5 55.5 0 39.5 39.5 0
T5-base 47.4 42.9 -4.5 55.8 50.7 -5.1 39.2 35.4 -3.8
+ layout-agnostic input 46.2 46.2 0 54.3 54.3 0 38.3 38.3 0
+ data augmentation 47.2 46.9 -0.3 55.3 54.8 -0.5 39.2 38.9 -0.3
LATTICE (T5-base) 48.6 48.6 0 56.6 56.6 0 40.8 40.8 0

Table 3: Robustness evaluation on ToTTo dev set. Origin is the BLUE score on original tables, while Transform is
the BLUE score on transformed tables. All transformed tables are transposed, row shuffled and column shuffled. ∆
is the difference between the two scores. Best scores in each group are in bold.

Att Pos Overall Overlap Non-Overlap
- - 45.7 53.7 37.7
✓ - 47.0 54.4 39.6
✓ ✓ 47.5 55.5 39.5

Table 4: Ablation study on ToTTo dev set. Scores are
BLEU. Att and Pos denote structure-aware self-attention
and transformation-invariant positional encoding.

the performance drop on overlap subset is larger446

than on non-overlap subset. This indicates that the447

performance gain of T5 models is somehow due448

to their memory of some tables existing in train449

set, which is however brittle and not generalizable.450

Applying layout-agnostic input format, which lin-451

earizes tables by lexicographic order instead of cell452

index order, ensures models to return stable predic-453

tions, but results in worse overall performance due454

to the loss of structural information. Not surpris-455

ingly, layout-agnostic input causes performance456

drops by 1.5 BLEU points and 1.2 BLEU points to457

T5-small and T5-base on original dev set.458

Another common way to improve model robust-459

ness is increasing the diversity of training instances460

with data augmentation. We augment the origi-461

nal training set by 8-fold using the three content-462

invariant transformation operations and their com-463

binations. Training with augmented data reduces464

the gap between model performance on original465

tables and transformed tables. However, data aug-466

mentation is never exhaustive enough to guarantee467

true equivariance. Also, this introduces different468

variants of the same table into the train set, so there469

is a gap between the same table in train set and dev470

set. As a result, the performance on overlap subset471

is slightly worse than without data augmentation,472

but the performance on non-overlap subset is not473

negatively influenced. LATTICE guarantees con-474

sistent predictions towards content-invariant table475

transformations while achieving the best perfor-476

mance. In comparison with using layout-agnostic477

input format which also guarantees equivariance, 478

LATTICE (T5-small) provides additional 3.3 BLEU 479

points, and LATTICE (T5-base) provides additional 480

2.4 BLEU points on original dev set. 481

3.4 Ablation Study 482

To help understand the effect of two key mecha- 483

nisms in transformation-invariant graph masking, 484

we hereby present ablation study results in Tab. 4. 485

Structure-Aware Self-Attention. We examine the 486

effectiveness of structure-aware self-attention. In 487

comparison with original (fully-connected) self- 488

attention, incorporating structural information by 489

pruning attention flows can improve the overall 490

performance by 1.3 BLEU points. Detailed scores 491

on two subsets show that both tables seen and un- 492

seen during training can benefit from structural 493

information. The consistent improvements on two 494

subsets indicate that structure-aware self-attention 495

improves model ability of capturing cell relations 496

rather than memorizing tables. 497

Transformation-Invariant Positional Encoding. 498

We further test the effectiveness of transformation- 499

invariant positional encoding. We observe that al- 500

though this technique is mainly designed for en- 501

suring model robustness towards layout changes, it 502

can bring an additional improvement of 0.5 BLEU 503

points to overall performance. Interestingly, the 504

improvement is mainly on the overlap subset. We 505

attribute it to the fact that the same table in train set 506

and dev set may have different highlighted cells, so 507

that memorizing the layout information in train set 508

hinders in-domain generalization. 509

4 Related Work 510

We review two relevant research topics. Since both 511

topics have a large body of work, we provide a 512

selected summary. 513
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Table-to-text Generation. Table-to-text genera-514

tion seeks to generate textual descriptions for tab-515

ular data. In comparison to text-to-text genera-516

tion, the input of table-to-text generation is semi-517

structured data. Early studies adapt the encoder-518

decoder framework to data-to-text generation with519

encoders aggregating cell information (Lebret et al.,520

2016; Wiseman et al., 2017; Bao et al., 2018).521

Followed by the success of massively pre-trained522

sequence-to-sequence Transformer models (Raffel523

et al., 2020; Lewis et al., 2020), recent SOTA sys-524

tems apply these models to table-to-text generation525

(Kale and Rastogi, 2020; Su et al., 2021), where526

the input table is linearized to a textual sequence.527

A table can include ample information and it528

is not always able to be summarized in one sen-529

tence. A line of work learns to generate selective530

descriptions by paying attention to key information531

in the table (Perez-Beltrachini and Lapata, 2018;532

Ma et al., 2019). However, multiple statements can533

be entailed from a table when different parts of the534

table are focused on. To bridge this gap, Parikh535

et al. (2020) proposes controlled table-to-text gen-536

eration, allowing the generation process to react537

differently according to distinct highlighted cells.538

As highlighted cells can be at any positions and539

of arbitrary numbers, simple linearization, which540

breaks the layout structure, hinders relations among541

cells from being captured, therefore causing unreli-542

able or hallucinated descriptions to be generated.543

A few prior studies introduce structural infor-544

mation to improve model performance on table-545

to-text generation, either by incorporating token546

position (Liu et al., 2018), or by aggregating row547

and column level information (Bao et al., 2018;548

Nema et al., 2018; Jain et al., 2018). However,549

none of existing methods can be directly applied550

to pretrained Transformer-based generative mod-551

els, especially when we want to ensure model ro-552

bustness to content-invariant table transformations.553

Our method enforces both structure-awareness and554

transformation-invariance to such models.555

Equivariant Representation Learning. Equivari-556

ance is a type of prior knowledge existing broadly557

in real-world tasks. Earlier studies show that in-558

corporating equivariance learning can improve vi-559

sual perception model robustness against turbu-560

lence caused by geometric transformations, such561

as realizing translation, rotation, and scale equiv-562

ariance of images (Lenc and Vedaldi, 2015; Wor-563

rall et al., 2017; Ravanbakhsh et al., 2017; Sos-564

novik et al., 2019; Yang et al., 2020). The in- 565

put to those tasks presents unstructured informa- 566

tion, and several geometrically invariable opera- 567

tions are incorporated in neural networks to realize 568

the aforementioned equivariance properties. For 569

example, Convolutional Neural Networks (CNNs) 570

are equivariant to translations in nature (Lenc and 571

Vedaldi, 2015). Harmonic Networks and Spherical 572

CNNs extend the equivariance of CNNs to rota- 573

tions (Worrall et al., 2017; Esteves et al., 2018). 574

Group Equivariant Convolutional Networks are 575

equivariant to more spatial transformations includ- 576

ing translations, rotations and reflections (Cohen 577

and Welling, 2016). Nonetheless, none of these 578

geometrically invariable techniques can be directly 579

applied to Transformer-based generative models to 580

ensure equivariance on (a part of) structured tabular 581

data, which is exactly the focus of this work. Our 582

method realizes equivariant intermediate represen- 583

tations against content-invariant table transforma- 584

tions in table-to-text generation. 585

Some other works, while not explicitly using 586

equivariant model structures, seek to realize equiv- 587

ariant representations by augmenting more diverse 588

changes into training data (Chen et al., 2020a; 589

Wu et al., 2020). Although the model can benefit 590

from seeing more diverse inputs involving content- 591

invariant transformations (Wu et al., 2020), this 592

strategy has two drawbacks. The augmented data, 593

while introducing much computational overhead to 594

training, are never exhaustive enough to guarantee 595

true equivariance. By contrast, our method guar- 596

antees equivariance through the neural network de- 597

sign and do not introduce much training overhead. 598

5 Conclusion 599

We propose LATTICE, a structure-aware equiv- 600

ariance learning framework for controlled table- 601

to-text generation. Our experimental results ver- 602

ify the importance of structure-awareness and 603

transformation-invariance, two key properties en- 604

forced in LATTICE, towards precise and robust de- 605

scription generation for tabular content. The pro- 606

posed properties and equivariance learning frame- 607

work aligns well with the nature of information or- 608

ganized in tables. Future research can consider ex- 609

tending the structure-aware equivariance learning 610

framework to other data-to-text generation tasks 611

(Koncel-Kedziorski et al., 2019; Nan et al., 2021), 612

and tabular reasoning or retrieval tasks (Gupta et al., 613

2020; Wang et al., 2021a,b). 614
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Ethical Considerations615

This work seeks to develop a structure-aware equiv-616

ariance learning framework for table-to-text genera-617

tion. Since the proposed method focuses on improv-618

ing prior generation systems by better utilization619

of structural information, it does not introduce bias620

towards specific content. The distinction between621

beneficial use and harmful use depends mainly on622

the data. Proper use of the technology requires that623

input corpora are legally and ethically obtained.624

We conduct experiments on two open benchmark625

in the way they intended to. Although we create626

a harder version of ToTTo dev set, the table trans-627

formation operations we use are content-invariant,628

whereas the ground-truth generation remains the629

same as it is in the original dataset, ensuring no630

further social bias is introduced.631
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Appendices860

A Dataset Profile861

ToTTo. An English dataset released under the862

Apache License v2.0. The dataset is dedicated863

for controlled table-to-text generation.864

HiTab. An English dataset released under Mi-865

crosoft’s Computational Use of Data Agreement866

(C-UDA). It is intended for both controlled table-to-867

text generation and table QA with a special focus868

on hierarchical tables.869

B Implementation Details870

Population

Canada

Rank Territory Total

1 Ontario 13M

2 Quebec 4M

Totto:
<page_title> Canada </page_title> 
<section_title> Census </section_title> 
<table> <cell> 13M <header> Total 
</header> </cell> <cell> 4M <header> 
Total </header> </cell> </table>

Hitab:
Total [SEP] 13M [SEP] 4M

Figure 4: Example to demonstrate input formats. High-
lighted cells are 13M and 4M.

Input Format. As shown in Fig. 4, we use differ-871

ent input formats for ToTTo and Hitab following872

prior works (Kale and Rastogi, 2020; Cheng et al.,873

2021), since the tables and annotations in these two 874

datasets have different properties. 875

For ToTTo, we follow the linearization proce- 876

dure of Kale and Rastogi (2020). Specifically, the 877

textual sequence consists of the page title, section 878

title, table headers and cells. Each cell may be 879

associated with multiple row and column headers. 880

Special markers are used to denote the begin and 881

end of each field. Different from Kale and Rastogi 882

(2020), we use the same markers for row headers 883

and column headers. 884

For HiTab, we follow the linearization procedure 885

of Cheng et al. (2021). Specifically, the textual 886

sequence consists of highlighted cells and headers, 887

headers of highlighted cells, and cells belong to 888

highlighted headers. A universal separator token 889

[SEP] is used. 890

Model Details. LATTICE does not add any parame- 891

ters to the base model, so LATTICE (T5-small) has 892

60 million parameters and LATTICE (T5-base) has 893

220 million parameters, same as the base models. 894

For ToTTo, we use a beam size of 4 to generate 895

sentences with at most 128 tokens. For HiTab, we 896

use a beam size of 5 to generate sentences with 897

at most 60 tokens following Cheng et al. (2021). 898

Our implementation is based on Pytorch (Paszke 899

et al., 2019) and Transformers (Wolf et al., 2020). 900

We run experiments on a commodity server with a 901

GeForce RTX 2080 GPU. It takes about 0.5 hour 902

to train LATTICE (T5-small) for 10,000 steps and 903

about 1 hour to train LATTICE (T5-base) for 10,000 904

steps. Considering different sizes of two datasets, 905

we train models for 150,000 steps on ToTTo, and 906

for 20,000 steps on HiTab. Results of LATTICE on 907

ToTTo dev set and HiTab are average of multiple 908

runs. For ToTTo test set, we report the results on 909

official leaderboard. 910
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