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Abstract

Gaussian processes (GPs) produce good probabilistic models of functions, but
most GP kernels require O((n+m)n2) time, where n is the number of data points
and m the number of predictive locations. We present a new kernel that allows for
Gaussian process regression in O((n +m) log(n +m)) time. Our “binary tree”
kernel places all data points on the leaves of a binary tree, with the kernel depending
only on the depth of the deepest common ancestor. We can store the resulting kernel
matrix in O(n) space in O(n log n) time, as a sum of sparse rank-one matrices,
and approximately invert the kernel matrix in O(n) time. Sparse GP methods also
offer linear run time, but they predict less well than higher dimensional kernels. On
a classic suite of regression tasks, we compare our kernel against Matérn, sparse,
and sparse variational kernels. The binary tree GP assigns the highest likelihood to
the test data on a plurality of datasets, usually achieves lower mean squared error
than the sparse methods, and often ties or beats the Matérn GP. On large datasets,
the binary tree GP is fastest, and much faster than a Matérn GP.

1 Introduction

Gaussian processes (GPs) can be used to perform regression with high-quality uncertainty estimates,
but they are slow. Naïvely, GP regression requires O(n3 + n

2
m) computation time and O(n2)

computation space when predicting at m locations given n data points [28]. A kernel matrix of size
n⇥ n must be inverted (or Cholesky decomposed), and then m matrix-vector multiplications must
be done with that inverse matrix (or m linear solves with the Cholesky factors). A few methods that
we will discuss later achieve O(n2

m) time complexity [25, 30].

With special kernels, GP regression can be faster and use less space. Inducing point methods, using
z inducing points, allow regression to be done in O(z2(n + m)) time and in O(z2 + zn) space
[21, 22, 23, 13]. We will discuss the details of these inducing point kernels later, but they are kernels
in their own right, not just approximations to other kernels. Unfortunately, these kernels are low
dimensional (having a z-dimensional Hilbert space), which limits the expressivity of the GP model.

We present a new kernel, the binary tree kernel, that also allows for GP regression in O(n + m)
space and O((n + m) log(n + m)) time (both model fitting and prediction). The time and space
complexity of our method is also linear in the depth of the binary tree, which is naïvely linear in the
dimension of the data, although in practice we can increase the depth sublinearly. Training some
kernel parameters takes time quadratic in the depth of the tree. The dimensionality of the binary
tree kernel is exponential in the depth of the tree, making it much more expressive than an inducing
points kernel. Whereas for an inducing points kernel, the runtime is quadratic in the dimension of the
Hilbert space, for the binary tree kernel, it is only logarithmic—an exponential speedup.

A simple depiction of our kernel is shown in Figure 1, which we will define precisely in Section
3. First, we create a procedure for placing all data points on the leaves of a binary tree. Given the
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binary tree, the kernel between two points depends only on the depth of the deepest common ancestor.
Because very different tree structures are possible for the data, we can easily form an ensemble of
diverse GP regression models. Figure 2 depicts a schematic sample from a binary tree kernel. Note
how the posterior mean is piecewise flat, but the pieces can be small.

Figure 1: A binary tree kernel with four data points.
In this example, k(x1, x1) = 1, k(x1, x2) = 0,
k(x1, x3) = 0.8, and k(x1, x4) = 0.3.

On a standard suite of benchmark regres-
sion tasks [25], we show that our kernel usu-
ally achieves better negative log likelihood
(NLL) than state-of-the-art sparse methods and
conjugate-gradient-based “exact” methods, at
lower computational cost in the big-data regime.

There are not many limitations to using our ker-
nel. The main limitation is that other kernels
sometimes capture the relationships in the data
better. We do not have a good procedure for un-
derstanding when data has more Matérn charac-
ter or more binary tree character (except through
running both and comparing training NLL). But
given that the binary tree kernel usually outperforms the Matérn, we’ll tentatively say the best first
guess is that a new dataset has more binary tree character. One concrete limitation for some appli-
cations, like Bayesian Optimization, is that the posterior mean is piecewise-flat, so gradient-based
heuristics for finding extrema would not work.

In contexts where a piecewise-flat posterior mean is suitable, we struggle to see when one would
prefer a sparse or sparse variational GP to a binary tree kernel. The most thorough approach would
be to run both and see which has a better training NLL, but if you had to pick one, the binary tree
GP seems to be better performing and comparably fast. If minimizing mean-squared error is the
objective, the Matérn kernel seems to do slightly better than the binary tree. If the dataset is small,
and one needs a very fast prediction, a Matérn kernel may be the best option. But otherwise, if one
cares about well-calibrated predictions, these initial results we present tentatively suggest using a
binary tree kernel over the widely-used Matérn kernel.

The log-linear time and linear space complexity of the binary tree GP, with performance exceeding a
“normal” kernel, could profoundly expand the viability of GP regression to larger datasets.

2 Preliminaries

Our problem setting is regression. Given a function f : X ! R, for some arbitrary set X , we would
like to predict f(x) for various x 2 X . What we have are observations of f(x) for various (other)
x 2 X . Let X 2 X

n be an n-tuple of elements of X , and let y 2 Rn be an n-tuple of real numbers,
such that yi ⇠ f(Xi) +N (0,�), for � 2 R�0. X and y comprise our training data.

With an m-tuple of test locations X 0
2 X

m, let y0 2 Rm, with y
0
i = f(X 0

i). y0 is the ground truth
for the target locations. Given training data, we would like to produce a distribution over R for each
target location X

0
i , such that it assigns high marginal probability to the unknown y

0
i. Alternatively, we

sometimes would like to produce point estimates ŷ0i in order to minimize the squared error (ŷ0i � y
0
i)

2.

A GP prior over functions is defined by a mean function m : X ! R, and a kernel k : X ⇥X ! R.
The expected function value at a point x is defined to be m(x), and the covariance of the function
values at two points x1 and x2 is defined to be k(x1, x2). Let KXX 2 Rn⇥n be the matrix of kernel

Figure 2: A schematic diagram of a function sampled from a binary tree kernel. The function is
over the interval [0, 1], and points on the interval are placed onto the leaves of a depth-4 binary
tree according to the first 4 bits of their binary expansion. The sampled function is in black. Purple
represents the sample if the tree had depth 3, green depth 2, orange depth 1, and red depth 0.
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values (KXX)ij = k(Xi, Xj), and let mX 2 Rn be the vector of mean values (mX)i = m(Xi).
For a GP to be well-defined, the kernel must be such that KXX is positive semidefinite for any
X 2 X

n. For a point x 2 X , Let KXx 2 Rn be the vector of kernel values: (KXx)i = k(Xi, x),
and let KxX = K

>
Xx. Let � � 0 be the variance of observation noise. Let µx and �

2
x be the mean

and variance of our posterior predictive distribution at x. Then, with K
�inv
XX = (KXX + �I)�1,

µx := (y �mX)>K�inv
XXKXx +m(x) (1) �

2
x := k(x, x)�KxXK

�inv
XXKXx + �. (2)

See Williams and Rasmussen [28] for a derivation. We compute Equations 1 and 2 for all x 2 X
0.

3 Binary tree kernel

We now introduce the binary tree kernel. First, we encode our data points as binary strings. So we
have X = Bq , where B = {0, 1}, and q 2 N.

If X = Rd, we must map Rd
7! Bq . First, we rescale all points (training points and test points) to lie

within the box [0, 1]d. (If we have a stream of test points, and one lands outside of the box [0, 1]d, we
can either set KxX to 0 for that point or we rescale and retrain in O(n log n) time.) Then, for each
x 2 [0, 1]d, for each dimension, we take the binary expansion up to some precision p, and for those
d⇥ p bits, we permute them using some fixed permutation. We call this permutation the bit order, and
it is the same for all x 2 [0, 1]d. Note that now q = dp. See Figure 3 for an example. We optimize
the bit order during training, and we can also form an ensemble of GPs using different bit orders.

Figure 3: Function from
[0, 1]2 ! B8.

For x 2 Bq , let xi be the first i bits of x. [[expression]] evaluates to
1, if expression is true, otherwise 0. We now define the kernel:
Definition 1 (Binary Tree Kernel). Given a weight vector w 2 Rq

,

with w ⌫ 0 and ||w||1 = 1,

kw(x1, x2) =
qX

i=1

wi

hh
x
i
1 = x

i
2

ii

So the more leading bits shared by x1 and x2, the larger the covari-
ance between the function values. Consider, for example, points x1

and x4 from Figure 1, where x1 is (left, left, right), and x4 is (left, right, right); they share only the
first leading “bit”. We train the weight vector w to maximize the likelihood of the training data.
Proposition 1 (Positive Semidefiniteness). For X 2 X

n
, for k = kw, KXX ⌫ 0.

Proof. Let s 2
Sq

i=1 B
i be a binary string, and let |s| be the length of s. Let X[s] 2 Rn with (X[s])j =hh

X
|s|
j = s

ii
. X[s]X

>
[s] is clearly positive semidefinite. Finally, KXX =

Pq
i=1

P
s2Bi wiX[s]X

>
[s],

and recall wi � 0, so KXX ⌫ 0.

4 Sparse rank one sum representation

In order to do GP regression in O(n) space and O(n log n) time, we develop a “Sparse Rank One
Sum” representation of linear operators (SROS). This was developed separately from the very similar
Hierarchical matrices [1], which we discuss below. In SROS form, linear transformation of a vector
can be done in O(n) time instead of O(n2). We will store our kernel matrix and inverse kernel matrix
in SROS form. The proof of Proposition 1 exemplifies representing a matrix as the sum of sparse
rank one matrices. Note that each X[s] is sparse—if q is large, most X[s]’s are the zero vector.

We now show how to interpret an SROS representation of an n⇥ n matrix. Let [n] = {1, 2, ..., n}.
For r 2 N, let L : [r]n ⇥ [r]n ⇥ Rn

⇥Rn
! Rn⇥n construct a linear operator from four vectors.

Definition 2 (Linear Operator from Simple SROS Representation). Let p, p
0
2 [r]n, and let u, u

0
2

Rn
. For l 2 [r], let u

p=l
2 Rn

be the vector where u
p=l
j = uj [[pj = l]], likewise for u

0
and p

0
. Then:

L(p, p0, u, u0) 7!
Pm

i=1 u
p=i(u0)p

0=i>
.
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Figure 4: A matrix in standard form
constructed from a matrix in SROS
form. The large square depicts the
matrix L(p, p0, u, u0) 2 R5⇥5 with
elements colored by value. See up=0

for a color legend.

We depict Definition 2 in Figure 4. p and p
0 represent par-

titions over n elements: all elements with the same integer
value in the vector p belong to the same partition. Note that
r, the number of parts in the partition, need not exceed n, the
number of elements being partitioned. If p = p

0 (which is
almost always the case for us) and the elements of p, u, and u

0

were shuffled so that all elements in the same partition were
next to each other, then L(p, p0, u, u0) would be block diag-
onal. Note that L(p, p0, u, u0) is not necessarily low rank. If
p is the finest possible partition, and p = p

0, L(p, p0, u, u0) is
diagonal. SROS matrices can be thought of as a generalization
of two types of matrix that are famously amenable to fast com-
putation: rank one matrices (all points in the same partition)
and diagonal matrices (each point in its own partition).

We now extend the definition of L to allow for multiple p, p0,
u, and u

0 vectors.

Definition 3 (Linear Operator from SROS Representation).
Let L : [r]n⇥q

⇥[r]n⇥q
⇥Rn⇥q

⇥Rn⇥q
! Rn⇥n

. Let P, P
0
2

[r]n⇥q
, and let U,U

0
2 Rn⇥q

. Let P:,i, U:,i, etc. be the i
th

columns of the respective arrays. Then:

L(P, P 0
, U, U

0) 7!
Pq

i=1 L(P:,i, P
0
:,i, U:,i, U

0
:,i).

Algorithm 1 performs linear transformation of a vector using SROS representation in O(nq) time.

Algorithm 1 Linear Transformation with SROS Linear Operator. This can be vectorized on a
Graphical Processing Unit (GPU), using e.g. torch.Tensor.index_add_ for Line 5 and non-slice
indexing for Line 6 [19]. Slight restructuring allows vectorization over [q] as well.

Require: P, P
0
2 [r]n⇥q , U,U 0

2 Rn⇥q , x 2 Rn

Ensure: y = L(P, P 0
, U, U

0)x
1: y  0 2 Rn

2: for i 2 [q] do . O(nq) time
3: p, p

0
, u, u

0
 P:,i, P

0
:,i, U:,i, U

0
:,i

4: z  0 2 Rr
. zl will store the dot product ((u0)p

0=l)>xp0=l

5: for j 2 [n] do zp0
j
 zp0

j
+ u

0
jxj . O(n) time

6: for j 2 [n] do yj  yj + zpjuj . O(n) time
return y

We now discuss how to approximately invert a certain kind of symmetric SROS matrix, but our
methods could be extended to asymmetric matrices. First, we define a partial ordering over partitions.
For two partitions p, p0, we say p

0
 p if p0 is finer than or equal to p; that is, p0j = p

0
j0 =) pj = pj0 .

Using that partial ordering, a symmetric SROS matrix can be approximately inverted efficiently if for
all 1  i, i

0
 q, P:,i  P:,i0 or P:,i0  P:,i. As the reader may have recognized, our kernel matrix

KXX can be written as an SROS matrix with this property.

We will write symmetric SROS matrices in a slightly more convenient form. All (u0)p=l must be a
constant times up=l. We will store these constants in an array C. Let L(P,C, U) be shorthand for
L(P, P, U,C � U), where � denotes element-wise multiplication. For L(P,C, U) to be symmetric,
it must be the case that Pji = Pj0i =) Cji = Cj0i. Then, all elements of U corresponding to
a given u

p=l are multiplied by the same constant. We now present an algorithm for calculating
(L(P,C, U) + �I)�1, for � 6= 0, which is an approximate inversion of L(P,C, U). We have not
yet analyzed numerical sensitivity for � ! 0, but we conjecture that all floating point numbers
involved need to be stored to at least log2(1/�) bits. Without loss of generality, let � = 1, and note
(L(P,C, U) + �I)�1 = �

�1(L(P,��1
C,U) + I)�1.

By assumption, all columns of P are comparable with respect to the partial ordering above, so we
can reorder the columns of P such that P:,i � P:,j for i < j. The key identity that we use to develop
our fast inversion algorithm is the Sherman–Morrison Formula:
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(A+ cuu
>)�1 = A

�1
�

A
�1

uu
>
A

�1

c�1 + u>A�1u
(3)

Starting with A = I , we add the sparse rank one matrices iteratively, from the finest partition to the
coarsest one, updating A

�1 as we go. We represent (L(P,C, U)+I)�1 in the form I+L(P,C 0
, U

0),
so we write an algorithm that returns C 0 and U

0. We can also quickly calculate log |L(P,C, U) + I|

at the same time, using the matrix determinant lemma: |A+ cuu
>
| = (1 + cu

>
A

�1
u)|A|.

Theorem 1 (Fast Inversion). For P 2 [r]n⇥q
and C,U 2 Rn⇥q

, if P:,i

(is coarser than)

� P:,j for i < j,

then there exists C
0
, U

0
2 Rn⇥q

, such that (L(P,C, U) + I)�1 = I + L(P,C 0
, U

0). There exists an

algorithm for computing C
0

and U
0

that takes O(nq2) time.

Proof. For X 2 Rn⇥q , let X:,i+1:q 2 Rn⇥(q�i) be columns i+ 1 through q of matrix X (inclusive).
Let Ai = I + L(P:,i+1:q, C:,i+1:q, U:,i+1:q), and Aq = I . Now suppose A

�1
i can be written as

I + L(P:,i+1:q, C
0
:,i+1:q, U

0
:,i+1:q) for some C 0 and U

0. For the base case of i = q, this holds trivially.
We show it also holds for i� 1, and we can compute C

0
:,i:q , U 0

:,i:q in O
�
n(q � i)

�
time. Let p = P:,i,

u = U:,i, and c = C:,i. Consider up=l, where each element is zero unless the corresponding element
of p equals l. What do we know about the product A�1

i u
p=l (as seen in Equation 3)?

Because the columns of P go from coarser partitions to finer ones, all of the vectors generating
the sparse rank one components of L(P:,i+1:q, C

0
:,i+1:q, U

0
:,i+1:q) are from partitions that are equal

to or finer than p. Thus, they are either zero everywhere u
p=l is zero, or zero everywhere u

p=l is
nonzero. Vectors v of the second kind can be ignored, as cvv>up=l = 0. Thus, when multiplying
L(P:,i+1:q, C

0
:,i+1:q, U

0
:,i+1:q) by u

p=l, the only relevant vectors are filled with zeros except where
the corresponding element of p equals l. So we can get rid of those rows of P:,i+1:q, C 0

:,i+1:q, and
U

0
:,i+1:q. Suppose there are nl elements of p that equal l. Then L(P:,i+1:q, C

0
:,i+1:q, U

0
:,i+1:q)u

p=l

involves nl rows, and can be computed in O
�
nl(q � i)

�
time. Moreover, this product, which we’ll

call (u0)p=l, is only nonzero when the corresponding element of p equals l, so it has the same sparsity
pattern as up=l. The other component of A�1

i is the identity matrix, and Iu
p=l clearly has the same

sparsity as up=l. Thus, returning to Equation 3, when we add u
p=l(up=l)> to Ai, we update A

�1
i

with an outer product of vectors whose sparsity pattern is the same as that of up=l.

For each l, A�1
i need not be updated with each u

p=l one at a time. For l 6= l
0, up=l and u

p=l0

are nonzero at separate indices, so u
p=l and (u0)p=l0 are nonzero at separate indices, so the extra

component of A�1
i that appears after the u

p=l0 update is irrelevant to the u
p=l update, because

(up=l)>(u0)p=l0 = 0. Since the u
p=l update takes O(nl(q � i)) time, all of them together take

O(
P

l nl(q � i)) time, which equals O(n(q � i)) time. Calculating an element of c0 only involves
computing the denominator in Equation 3, using a matrix-vector product already computed. So we
can write C

0
:,i:q and U

0
:,i:q by adding a preceding column to C

0
:,i+1:q and U

0
:,i+1:q, using the same

partition p, and it takes O(n(q � i)) time.

Following the induction down to i = 0, we have (L(P,C, U)+ I)�1 = I +L(P,C 0
, U

0), and a total
time of O(nq2).

Algorithm 2 also performs approximate inversion, which we prove in Appendix A. It differs slightly
from the algorithm in the proof, but can take full advantage of a GPU speedup. In the setting where
all columns of U are identical, observe that in Lines 10 and 11, the same computation is repeated for
all k 2 [i]. Indeed, in this setting, this block of code can be modified to run in O(n) time rather than
O(ni), making the whole algorithm run in O(nq) time, as shown in Proposition 4 in Appendix A.

A Hierarchical matrix is a matrix which is either represented as a low-rank matrix or as a 2 ⇥ 2
block matrix of Hierarchical matrices [1]. In our SROS format, many of the sparse rank one matrices
overlap, whereas in a Hierarchical matrix, the low-rank matrices do not overlap, and converting
an SROS matrix into a Hierarchical matrix would typically be inefficient. Hierarchical matrices
admit approximate inversion in O(na2 log2 n) time, where a is the maximum rank of the component
submatrices [11]. However, this is not an approximation in a technical sense, as there is no error
bound. At many successive steps in the algorithm, a rank 2a matrix is approximated by a rank a
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Algorithm 2 Inverse and determinant of I+ SROS Linear Operator. Lines 5 through 11 can all be
easily vectorized on a GPU. Lines 5 and 10 require torch.Tensor.index_add_ or equivalent, and
lines 6 and 11 require non-slice indexing, which are not quite as fast as some GPU operations.

Require: P 2 [r]n⇥q , C,U 2 Rn⇥q

Ensure: I + L(P,C 0
, U

0) = (I + L(P,C, U))�1; x = log |I + L(P,C, U)|
1: x,C

0
, U

0
 0,0 2 Rn⇥q

, U

2: for i 2 (q, q � 1, ..., 1) do . O(nq2) time
3: p, c, u, u

0
 P:,i, C:,i, U:,i, U

0
:,i

4: z  0 2 Rr
. zl will store c

(l)((u0)p=l)>up=l, where c
(l) = ck if pk = l

5: for j 2 [n] do zpj  zpj + cju
0
juj . O(n) time

6: for j 2 [n] do C
0
ji  �cj/(1 + zpj ) . O(n) time

7: for l 2 [r] do x x+ log(1 + zl) . O(n) time because r  n

8: if i > 0 then

9: y  0 2 Rn⇥i
. O(ni) time

10: for j, k 2 [n]⇥ [i� 1] do ypjk  ypjk + u
0
jUjk . O(ni) time

11: for j, k 2 [n]⇥ [i� 1] do U
0
jk  U

0
jk + C

0
jiu

0
jypjk . O(ni) time

return C
0
, U

0
, x

matrix [10]; to our knowledge there is no analysis of how resulting errors might cascade. After
converting an SROS matrix to hierarchical form, this rough inversion would take O(nq2 log2 n) time.

5 Binary tree Gaussian process

We now show that our kernel matrix KXX can be written in SROS form, with P containing succes-
sively finer partitions. Thus, KXX can be approximately inverted quickly, for use in Equations 1 and
2. Next, we’ll show that we can efficiently optimize the log likelihood of the training data by tuning
the weight vector w along with the bit order. The log likelihood can be calculated in O(nq log n)
time and then the gradient w.r.t. w in O(nq2) time.

Recall from the proof of Proposition 1: KXX =
Pq

i=1

P
s2Bi wiX[s]X

>
[s], where X[s] 2 Rn

with (X[s])j =
hh
X

|s|
j = s

ii
. So we will set P:,i, C:,i, and U:,i, so that L(P:,i, C:,i, U:,i) =

P
s2Bi wiX[s]X

>
[s]. Let P:,i partition the set of points X so that points are in the same partition if the

first i bits match. Now, requiring the first i+ 1 bits to match is a stricter criterion than requiring the
first i bits to match, so the P:,i grow successively finer. For any piece of the partition where the first i
bits of the constituent points equals the bitstring s, the corresponding sparse rank one component of
KXX is wiX[s]X

>
[s]. So let U:,i = 1n, and let C:,i = wi1n.

Proposition 2 (SROS Form Kernel). KXX = L(P,C, U), as defined above.

This follows immediately from the definitions. To compute these partitions P:,i, we sort X , which is
a set of bit strings. And then we can easily compute which points have the same first i bits. This all
takes O(nq log n) time. Now note that U:,i = U:,i0 for all i, i0, so (KXX + �I)�1 and |KXX + �I|

can be computed in O(nq) time, rather than O(nq2).

The training negative log likelihood of a GP is that of the corresponding multivariate Gaussian on
the training data. So: NLL(w) = 1

2

�
y
>(KXX(w) + �I)�1

y + log |KXX(w) + �I|+ n log(2⇡)
�
.

This can be computed in O(nq) time, since matrix-vector multiplication takes O(nq) time for a
matrix in SROS form. So if the bit order is unchanged, an optimization step can be done in O(nq)
time, and if the data needs to be resorted, then in O(nq log n) time. On the largest dataset we tested
(House Electric), with n ⇡ 1.3 million and q = 88, sorting the data and computing P takes about
0.96 seconds on a GPU, and then calculating the negative log likelihood takes about another 1.08
seconds. We show in Appendix B how to compute rw NLL in O(nq2) time.

To optimize the bit order and weight vector at the same time, we represent both with a single parameter
vector ✓ 2 Rq

+, with ||✓||1 = 1. To get the bit order from ✓, we start with a default bit order and
permute the bit order according to a permutation that would sort ✓ in descending order. To get the
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Algorithm 3 GP Regression with a binary tree kernel.

Require: X 2 Bn⇥q , y 2 Rn, X 0
2 Bm⇥q , w 2 Rq , � 2 R+

Ensure: µX0 and �
2
X0 are the predictive means and variances at X 0, and nll the training negative log

likelihood.
1: X̃  X �X

0

2: X̃
"
, perm Sort(X̃) . The rows of X are sorted lexically from leading

bit to trailing bit. O((n+m)q log(n+m)) time.
3: for j, i 2 [n+m]⇥ [q] do P̃

"
ji  #of unique rows in X

"
1:j,1:i

4: . M1:j,1:i is the first j rows and i columns of M . O((n+m)q) time.
5: P̃  perm�1(P ") . This “unsorts” the input. O((n+m)q) time.
6: P, P

0
 P̃1:n, P̃n+1:n+m

7: U,U
0
, Ũ  1n⇥q

,1m⇥q
,1(n+m)⇥q

8: C, C̃  1n
w

T
,1n+m

w
T

9: C
�1
� , U

�1
, logdet�  Invert(P,��1

C,U) . Uses Algorithm 2. Speedup to O(nq) time
because columns of U are identical.

10: C
�1

, logdet �
�1

C
�1
� , logdet� + n log(�)

11: z  LinTransform(P, P, U�1
, C

�1
� U

�1
, y) + �

�1
y . Uses Algorithm 1 to compute the

Woodbury vector. O(nq) time.
12: µX0  LinTransform(P 0

, P, U
0
, C � U, z) . O((n+m)q) time.

13: nll (y>z + logdet + n log(2⇡))/2
14: C̃

prec
, Ũ

prec
 Invert(P̃ ,�

�1
C̃,�

�1
Ũ) . O((n+m)q) time.

15: C
prec

, U
prec
 C̃

prec
n+1:n+m, Ũ

prec
n+1:n+m

16: C
cov

, U
cov
 Invert(P 0

, C
prec

, U
prec) . O(mq

2) time; extra factor of q because
columns of U prec are not identical.

17: �
2
X0  �(1m + SumEachRow(Ccov

� U
cov
� U

cov)) . O(mq) time.
18: return µX0 , �2

X0 , nll

weight vector, we sort ✓ in descending order, add a 0 at the end, and compute the differences between
adjacent elements. When there are ties in the elements of ✓, the choice of bit order does not affect the
negative log likelihood (or the kernel at all) because the relevant associated weight is 0. The negative
log likelihood is continuous with respect to ✓, and when all values of ✓ are unique, it is differentiable
with respect to ✓. Letting ✓ = e

�
/||e

�
||1, we minimize loss w.r.t. � using BFGS [8].

To calculate the predictive mean at a list of predictive locations X 0, we first multiply y by (KXX +
�I)�1, and then we multiply that vector by KXX0 . We obtain both KXX and KXX0 in SROS form
as follows. Let X̃ = X �X

0 be the concatenation of the two tuples, now an (n+m)-tuple. Writing
KX̃X̃ = L(P̃ , C̃, Ũ), the arrays on the r.h.s. can be computed in O((n + m)q log(n + m)) time.
Then, with P , C, and U being the first n rows of P̃ , C̃, Ũ , KXX = L(P,C, U). And letting P

00 and
U

00 be the last m rows, KXX0 = L(P, P 00
, C �U,U

00). Thus, the predictive mean µx from Equation
1 can be computed at m locations in O((n+m)q log(n+m)) time.

The predictive covariance matrix, which extends the predictive variance from Equation 2, is calculated
⌃X0 = KX0X0 +�Im�KX0X(KXX +�In)�1

KXX0 = (KX̃X̃ +�Im+n)/KXX , where / denotes
the Schur complement. From a property of block matrix inversion, the last m columns of the last
m rows of (KX̃X̃ + �I)�1 equals ((KX̃X̃ + �Im+n)/KXX)�1. So we get the predictive precision
matrix in O((n+m)q log(n+m)) time by inverting KX̃X̃ +�I and taking the bottom right m⇥m

block. Then, we get the predictive covariance matrix by inverting that. This takes O(mq
2) time,

since it does not have the property of all the columns of U being equal. If we only want the diagonal
elements of an SROS matrix (the independent predictive variances in this case), we can simply sum
the rows of C�U�U in O(mq) time. Thus, in total, computing the independent predictive variances
requires O((n+m)q log(n+m) +mq

2) time. See Algorithm 3.

6 Related Work

All existing kernels of which we are aware for linear time GP regression on unstructured data involve
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inducing points (related to the Nyström approximation [27]) or inducing frequencies. For a given set
of inducing points Z, for some base kernel k, the inducing point kernel (in its most basic form) is the
following, although subtle variants exist: kZ(x, x0) = KxZK

�1
ZZKZx0 [21].

Sparse Gaussian Process Regression (SGPR) involves selecting Z, and then using k
Z (or a variant).

Notably, KZ
XX = KXZK

�1
ZZKZX is low rank, providing computational efficiency. The predictive

mean and covariance have compact form, with observational noise �: µx(Z) = KxZ(�KZZ +
kZXkXZ)�1

KZXy and �
2
xx0(Z) = KxZ(KZZ + �

�1
kZXkXZ)�1

KZx0 .

Titsias’s [24] sparse variational kernel is also low rank and uses inducing points. The sparse variational
GP (SVGP) is constructed as the solution to a variational inference problem. It depends on inducing
points Z, data points X , and observed function values y. We have focused on Gaussian processes with
0 mean, but the SVGP method uses a nonzero prior mean along with a kernel: mSVGP(x) = µx(Z)
and k

SVGP(x, x0) = k(x, x0)�KxZK
�1
ZZKZx0 + �

2
xx0(Z). Given the dependence on X and y, this

is not a true probability distribution over function space. The variational problem underlying this
kernel also provides guidance in how to select the inducing points Z. For further discussion of the
kernel underlying the SVGP method, see Wild et al. [26].

An inducing point kernel with z inducing points produces a z-dimensional reproducing kernel Hilbert
space (RKHS). The dimensionality of the RKHS relates to the expressivity of the kernel. Whereas an
inducing point method buys a z-dimensional RKHS for the price of O(z2n) time and O(zn) space,
the binary tree kernel produces a 2q-dimensional RKHS in O(qn) time and space—an exponential
improvement. (Observe that we can find 2q linearly independent functions of the form k(·, x)—one
for each of the 2q leaves x might belong to.) Wilson and Nickisch [29] develop a method for speeding
up inducing point methods significantly, especially in low-dimensional settings.

Lázaro-Gredilla et al. [16] propose an inducing frequencies kernel: given a set of m inducing vectors
si, k(x, x0) = 1/m

Pm
i=1 cos(2⇡s

>
i (x� x

0)). Dutordoir et al. [6] propose an inducing frequencies
kernel for low dimensional data, in which k(x, x0) is a special function of x>

x
0.

On one-dimensional data, filtering/smoothing methods perform Bayesian inference over functions
in O(n) time [14, 12]. A few non-O(n) methods bear mentioning. We are not the first to consider
a kernel over points on the leaves of a tree [18, 17] or on the leaves of multiple trees [7], but their
methods take O(n3) time. On certain kinds of structured data, Toeplitz solvers achieve O(n2) time
complexity [30]. Cutajar et al.’s [3], Wang et al.’s [25], and others’ use of a conjugate gradients solver
to replace inversion/factorization has unclear time complexity between O(n2) and O(n3), depending
on the kernel matrix spectrum. 1

7 Experiments

In Table 1, we compare our binary tree kernel and a binary tree ensemble (see Appendix C for details
on the ensemble) against three baseline methods: exact GP regression using a Matérn kernel, sparse
Gaussian process regression (SGPR) [23], and a stochastic variational Gaussian process (SVGP)
[13]. We evaluate our method on the same open-access UCI datasets [4] as Wang et al. [25], using
their same training, validation, and test partitions, and we compare against the baseline results they
report. For the binary tree (BT) kernels, we use p = min(8, b150/dc+ 1), and recall q = pd. We set
� = 1/n. We train the bit order and weights to minimize training NLL. For the binary tree ensemble
(BTE), we use 20 kernels. For the Matérn kernel, we use Blackbox Matrix-Matrix multiplication
(BBMM) [9], which uses the conjugate gradients method to calculate matrix-vector products with
(KXX + �I)�1. SGPR uses 512 data points and SVGP uses 1,024 inducing points. We report
the mean and two standard errors across 3 replications with different dataset splits. For further
experimental details, see Appendix C. BTE achieves the best NLL on 6/12 datasets, and best RMSE
on 5/12 datasets (including some ties). Out of the 4 largest datasets, BT/BTE is fastest on 3. The run

1The conjugate gradients method takes O(n2p
) time, where  is the condition number of the kernel

matrix. Poggio et al. [20] say “claims about the condition number of a random matrix A should also apply
to kernel matrices with random data.” If they mean a Wishart random matrix (which it should be if, e.g.,
k(x, x0) = x

>
x
0), that would be the square of the condition number of the corresponding Gaussian random

matrix, which grows as O(n) [2]. Putting it all together, we get O(n3) for conjugate gradients. We don’t know
how quickly preconditioning can reduce the condition number.
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Figure 5: Run times given dataset size. For BT, the trendline is calculated controlling for log(q) with
affine regression, and then setting q = 150. The slope w.r.t. log(q) is 2.82± 1.06. Theoretically, all
slopes are too low except for that of SVGP, presumably because of overhead in the small-data regime.

times are plotted in Figure 5. The code is available at https://github.com/mkc1000/btgp and
https://tinyurl.com/btgp-colab.

BT performs noticeably worse than BTE for test NLL on CTSlice due to over-fitting. There are
enough degrees of freedom when optimizing the bit order (d = 385) that BT kernel can over-fit to
the training data. The ensemble over multiple bit orders is much more robust.

DATASET n d BTE BT MATÉRN (BBMM) SGPR SVGP

POLETELE 9,600 26 �0.625 ± 0.035 �0.490 ± 0.040 �0.180 ± 0.036 �0.094 ± 0.008 �0.001 ± 0.008
ELEVATORS 10,623 18 0.649 ± 0.032 0.646 ± 0.023 0.619 ± 0.054 0.580 ± 0.060 0.519 ± 0.022

BIKE 11,122 17 �0.708 ± 0.433 �0.806 ± 0.273 0.119 ± 0.044 0.291 ± 0.032 0.272 ± 0.018
KIN40K 25,600 8 0.869 ± 0.004 0.881 ± 0.008 �0.258 ± 0.084 0.087 ± 0.067 0.236 ± 0.077
PROTEIN 29,267 9 0.781 ± 0.023 0.845 ± 0.026 1.018 ± 0.056 0.970 ± 0.010 1.035 ± 0.006
KEGGDIR 31,248 20 �1.031 ± 0.020 �1.029 ± 0.021 �0.199 ± 0.381 �1.123 ± 0.016 �0.940 ± 0.020
CTSLICE 34,240 385 �2.527 ± 0.147 �1.092 ± 0.147 �0.894 ± 0.188 �0.073 ± 0.097 1.422 ± 0.005
KEGGU 40,708 27 �0.667 ± 0.007 �0.667 ± 0.007 �0.419 ± 0.027 �0.984 ± 0.012 �0.666 ± 0.007
3DROAD 278,319 3 �0.251 ± 0.009 �0.252 ± 0.006 0.909 ± 0.001 0.943 ± 0.002 0.697 ± 0.002

SONG 329,820 90 1.330 ± 0.003 1.331 ± 0.003 1.206 ± 0.024 1.213 ± 0.003 1.417 ± 0.000
BUZZ 373,280 77 1.198 ± 0.003 1.198 ± 0.003 0.267 ± 0.028 0.106 ± 0.008 0.224 ± 0.050

HOUSEELEC 1,311,539 11 �2.569 ± 0.006 �2.492 ± 0.012 �0.152 ± 0.001 — �1.010 ± 0.039

POLETELE 9,600 26 0.154 ± 0.006 0.161 ± 0.004 0.151 ± 0.012 0.217 ± 0.002 0.215 ± 0.002
ELEVATORS 10,623 18 0.478 ± 0.021 0.476 ± 0.018 0.394 ± 0.006 0.437 ± 0.018 0.399 ± 0.009

BIKE 11,122 17 0.118 ± 0.057 0.103 ± 0.029 0.220 ± 0.002 0.362 ± 0.004 0.303 ± 0.004
KIN40K 25,600 8 0.580 ± 0.003 0.587 ± 0.006 0.099 ± 0.001 0.273 ± 0.025 0.268 ± 0.022
PROTEIN 29,267 9 0.608 ± 0.008 0.623 ± 0.011 0.536 ± 0.012 0.656 ± 0.010 0.668 ± 0.005
KEGGDIR 31,248 20 0.086 ± 0.003 0.086 ± 0.003 0.086 ± 0.005 0.104 ± 0.003 0.096 ± 0.001
CTSLICE 34,240 385 0.116 ± 0.009 0.132 ± 0.009 0.262 ± 0.448 0.218 ± 0.011 1.003 ± 0.005
KEGGU 40,708 27 0.120 ± 0.001 0.121 ± 0.001 0.118 ± 0.000 0.130 ± 0.001 0.124 ± 0.002
3DROAD 278,319 3 0.187 ± 0.002 0.186 ± 0.001 0.101 ± 0.007 0.661 ± 0.010 0.481 ± 0.002

SONG 329,820 90 0.914 ± 0.003 0.916 ± 0.003 0.807 ± 0.024 0.803 ± 0.002 0.998 ± 0.000
BUZZ 373,280 77 0.801 ± 0.002 0.801 ± 0.002 0.288 ± 0.018 0.300 ± 0.004 0.304 ± 0.012

HOUSEELEC 1,311,539 11 0.029 ± 0.001 0.029 ± 0.001 0.055 ± 0.000 — 0.084 ± 0.005

POLETELE 9,600 26 5.16 ± 0.58 0.69 ± 0.018 1.16 ± 0.34 1.15 ± 0.068
ELEVATORS 10,623 18 2.6 ± 0.19 0.68 ± 0.012 1.16 ± 0.38 1.27 ± 0.092

BIKE 11,122 17 2.68 ± 0.15 0.69 ± 0.015 1.17 ± 0.38 1.28 ± 0.093
KIN40K 25,600 8 1.44 ± 0.028 0.71 ± 0.045 1.62 ± 0.96 3.26 ± 0.23
PROTEIN 29,267 9 2.92 ± 0.2 0.8 ± 0.17 2.27 ± 0.9 3.31 ± 0.27
KEGGDIR 31,248 20 7.14 ± 0.39 0.85 ± 0.1 2.2 ± 1.09 3.8 ± 0.38
CTSLICE 34,240 385 52.01 ± 0.92 3.32 ± 5.0 2.16 ± 0.99 3.87 ± 0.34
KEGGU 40,708 27 7.46 ± 0.54 6.32⇤ ± 0.41⇤ 2.22 ± 1.05 4.78 ± 0.4
3DROAD 278,319 3 1.93 ± 0.12 126.37⇤ ± 20.92⇤ 12.01 ± 5.51 34.09 ± 3.19

SONG 329,820 90 31.87 ± 3.79 33.79⇤ ± 10.45⇤ 7.89 ± 3.12 39.55 ± 3.08
BUZZ 373,280 77 20.18 ± 6.66 571.15⇤ ± 66.34⇤ 29.25 ± 18.33 46.35 ± 2.93

HOUSEELEC 1,311,539 11 118.41 ± 3.93 575.64⇤ ± 6.94⇤ — 367.71 ± 4.7

Table 1: NLL (top), RMSE (middle), and run time in minutes (bottom) on regression datasets, using
a single GPU (Tesla V100-SXM2-16GB for BT and BTE and Tesla V100-SXM2-32GB for the other
methods). The asterisk indicates an estimate of the time from the reported training time on 8 GPUS,
assuming linear speedup in number of GPUs and independent noise in training times per GPU. All
columns except BT and BTE come from Wang et al. [25].
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8 Discussion

We have proven that the binary tree kernel GP is scalable. Our empirical results suggest that it often
outpredicts not just other scalable methods, but even the popular Matérn GP. If the results in this
paper replicate in other domains, it could obviate wide usage of classic GP kernels like the Matérn
kernel, as well as inducing point kernels. Sometimes, our kernel fails to capture patterns in the data;
some functions’ values simply do not covary this way. But other kernels we tested seemed to fail like
that even more.

Our contributions to linear algebra and kernel design may significantly increase the size of data sets
on which GPs can do state-of-the-art modelling.
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